book.tex 829 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949229502295122952229532295422955229562295722958229592296022961229622296322964229652296622967229682296922970229712297222973229742297522976229772297822979229802298122982229832298422985229862298722988229892299022991229922299322994229952299622997229982299923000230012300223003230042300523006230072300823009230102301123012230132301423015230162301723018230192302023021230222302323024230252302623027230282302923030230312303223033230342303523036230372303823039230402304123042230432304423045230462304723048230492305023051230522305323054230552305623057230582305923060230612306223063230642306523066230672306823069230702307123072230732307423075230762307723078230792308023081230822308323084230852308623087230882308923090230912309223093230942309523096230972309823099231002310123102231032310423105231062310723108231092311023111231122311323114231152311623117231182311923120231212312223123231242312523126231272312823129231302313123132231332313423135231362313723138231392314023141231422314323144231452314623147231482314923150231512315223153231542315523156231572315823159231602316123162231632316423165231662316723168231692317023171231722317323174231752317623177231782317923180231812318223183231842318523186231872318823189231902319123192231932319423195231962319723198231992320023201232022320323204232052320623207232082320923210232112321223213232142321523216232172321823219232202322123222232232322423225232262322723228232292323023231232322323323234232352323623237232382323923240232412324223243232442324523246232472324823249232502325123252232532325423255232562325723258232592326023261232622326323264232652326623267232682326923270232712327223273232742327523276232772327823279232802328123282232832328423285232862328723288232892329023291232922329323294232952329623297232982329923300233012330223303233042330523306233072330823309233102331123312233132331423315233162331723318233192332023321233222332323324233252332623327233282332923330233312333223333233342333523336233372333823339233402334123342233432334423345233462334723348233492335023351233522335323354233552335623357233582335923360233612336223363233642336523366233672336823369233702337123372233732337423375233762337723378233792338023381233822338323384233852338623387233882338923390233912339223393233942339523396233972339823399234002340123402234032340423405234062340723408234092341023411234122341323414234152341623417234182341923420234212342223423234242342523426234272342823429234302343123432234332343423435234362343723438234392344023441234422344323444234452344623447234482344923450234512345223453234542345523456234572345823459234602346123462234632346423465234662346723468234692347023471234722347323474234752347623477234782347923480234812348223483234842348523486234872348823489234902349123492234932349423495234962349723498234992350023501235022350323504235052350623507235082350923510235112351223513235142351523516235172351823519235202352123522235232352423525235262352723528235292353023531235322353323534235352353623537235382353923540235412354223543235442354523546235472354823549235502355123552235532355423555235562355723558235592356023561235622356323564235652356623567235682356923570235712357223573235742357523576235772357823579235802358123582235832358423585235862358723588235892359023591235922359323594235952359623597235982359923600236012360223603236042360523606236072360823609236102361123612236132361423615236162361723618236192362023621236222362323624236252362623627236282362923630236312363223633236342363523636236372363823639236402364123642236432364423645236462364723648236492365023651236522365323654236552365623657236582365923660236612366223663236642366523666236672366823669236702367123672236732367423675236762367723678236792368023681236822368323684236852368623687236882368923690236912369223693236942369523696236972369823699237002370123702237032370423705237062370723708237092371023711237122371323714237152371623717237182371923720237212372223723237242372523726237272372823729237302373123732237332373423735237362373723738237392374023741237422374323744237452374623747237482374923750237512375223753237542375523756237572375823759237602376123762237632376423765237662376723768237692377023771237722377323774237752377623777237782377923780237812378223783237842378523786237872378823789237902379123792237932379423795237962379723798237992380023801238022380323804238052380623807238082380923810
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. %
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \usepackage[all]{xy}
  18. \usepackage{url}
  19. \definecolor{lightgray}{gray}{1}
  20. \newcommand{\black}[1]{{\color{black} #1}}
  21. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  22. \newcommand{\gray}[1]{{\color{gray} #1}}
  23. \def\racketEd{0}
  24. \def\pythonEd{1}
  25. \def\edition{1}
  26. % material that is specific to the Racket edition of the book
  27. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  28. % would like a command for: \if\edition\racketEd\color{olive}
  29. % and : \fi\color{black}
  30. %\newcommand{\pythonColor}[0]{\color{purple}}
  31. \newcommand{\pythonColor}[0]{}
  32. % material that is specific to the Python edition of the book
  33. \newcommand{\python}[1]{{\if\edition\pythonEd\pythonColor #1\fi}}
  34. \makeatletter
  35. \newcommand{\captionabove}[2][]{%
  36. \vskip-\abovecaptionskip
  37. \vskip+\belowcaptionskip
  38. \ifx\@nnil#1\@nnil
  39. \caption{#2}%
  40. \else
  41. \caption[#1]{#2}%
  42. \fi
  43. \vskip+\abovecaptionskip
  44. \vskip-\belowcaptionskip
  45. }
  46. %% For multiple indices:
  47. %\usepackage{multind} moved this to the file TimesAPriori_MIT.cls. -Jeremy
  48. \makeindex{subject}
  49. %\makeindex{authors}
  50. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  51. \if\edition\racketEd
  52. \lstset{%
  53. language=Lisp,
  54. basicstyle=\ttfamily\small,
  55. morekeywords={lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  56. deletekeywords={read,mapping,vector},
  57. escapechar=|,
  58. columns=flexible,
  59. %moredelim=[is][\color{red}]{~}{~},
  60. showstringspaces=false
  61. }
  62. \fi
  63. \if\edition\pythonEd
  64. \lstset{%
  65. language=Python,
  66. basicstyle=\ttfamily\small,
  67. morekeywords={match,case,bool,int,let,begin,if,else,closure},
  68. deletekeywords={},
  69. escapechar=|,
  70. columns=flexible,
  71. %moredelim=[is][\color{red}]{~}{~},
  72. showstringspaces=false
  73. }
  74. \fi
  75. %%% Any shortcut own defined macros place here
  76. %% sample of author macro:
  77. \input{defs}
  78. \newtheorem{exercise}[theorem]{Exercise}
  79. \numberwithin{theorem}{chapter}
  80. \numberwithin{definition}{chapter}
  81. \numberwithin{equation}{chapter}
  82. % Adjusted settings
  83. \setlength{\columnsep}{4pt}
  84. %% \begingroup
  85. %% \setlength{\intextsep}{0pt}%
  86. %% \setlength{\columnsep}{0pt}%
  87. %% \begin{wrapfigure}{r}{0.5\textwidth}
  88. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  89. %% \caption{Basic layout}
  90. %% \end{wrapfigure}
  91. %% \lipsum[1]
  92. %% \endgroup
  93. \newbox\oiintbox
  94. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  95. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  96. \def\oiint{\copy\oiintbox}
  97. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  98. %\usepackage{showframe}
  99. \def\ShowFrameLinethickness{0.125pt}
  100. \addbibresource{book.bib}
  101. \if\edition\pythonEd
  102. \addbibresource{python.bib}
  103. \fi
  104. \begin{document}
  105. \frontmatter
  106. %\HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  107. \HalfTitle{Essentials of Compilation}
  108. \halftitlepage
  109. \clearemptydoublepage
  110. \Title{Essentials of Compilation}
  111. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  112. %\edition{First Edition}
  113. \BookAuthor{Jeremy G. Siek}
  114. \imprint{The MIT Press\\
  115. Cambridge, Massachusetts\\
  116. London, England}
  117. \begin{copyrightpage}
  118. \textcopyright\ 2023 Jeremy G. Siek \\[2ex]
  119. This work is subject to a Creative Commons CC-BY-ND-NC license. \\[2ex]
  120. Subject to such license, all rights are reserved. \\[2ex]
  121. \includegraphics{CCBY-logo}
  122. The MIT Press would like to thank the anonymous peer reviewers who
  123. provided comments on drafts of this book. The generous work of
  124. academic experts is essential for establishing the authority and
  125. quality of our publications. We acknowledge with gratitude the
  126. contributions of these otherwise uncredited readers.
  127. This book was set in Times LT Std Roman by the author. Printed and
  128. bound in the United States of America.
  129. {\if\edition\racketEd
  130. Library of Congress Cataloging-in-Publication Data\\
  131. \ \\
  132. Names: Siek, Jeremy, author. \\
  133. Title: Essentials of compilation : an incremental approach in Racket / Jeremy G. Siek. \\
  134. Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes bibliographical references and index. \\
  135. Identifiers: LCCN 2022015399 (print) | LCCN 2022015400 (ebook) | ISBN 9780262047760 (hardcover) | ISBN 9780262373272 (epub) | ISBN 9780262373289 (pdf) \\
  136. Subjects: LCSH: Racket (Computer program language) | Compilers (Computer programs) \\
  137. Classification: LCC QA76.73.R33 S54 2023 (print) | LCC QA76.73.R33 (ebook) | DDC 005.13/3--dc23/eng/20220705 \\
  138. LC record available at https://lccn.loc.gov/2022015399\\
  139. LC ebook record available at https://lccn.loc.gov/2022015400\\
  140. \ \\
  141. \fi}
  142. 10 9 8 7 6 5 4 3 2 1
  143. %% Jeremy G. Siek. Available for free viewing
  144. %% or personal downloading under the
  145. %% \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  146. %% license.
  147. %% Copyright in this monograph has been licensed exclusively to The MIT
  148. %% Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  149. %% version to the public in 2022. All inquiries regarding rights should
  150. %% be addressed to The MIT Press, Rights and Permissions Department.
  151. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  152. %% All rights reserved. No part of this book may be reproduced in any
  153. %% form by any electronic or mechanical means (including photocopying,
  154. %% recording, or information storage and retrieval) without permission in
  155. %% writing from the publisher.
  156. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  157. %% United States of America.
  158. %% Library of Congress Cataloging-in-Publication Data is available.
  159. %% ISBN:
  160. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  161. \end{copyrightpage}
  162. \dedication{This book is dedicated to Katie, my partner in everything,
  163. my children, who grew up during the writing of this book, and the
  164. programming language students at Indiana University, whose
  165. thoughtful questions made this a better book.}
  166. %% \begin{epigraphpage}
  167. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  168. %% \textit{Book Name if any}}
  169. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  170. %% \end{epigraphpage}
  171. \tableofcontents
  172. %\listoffigures
  173. %\listoftables
  174. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  175. \chapter*{Preface}
  176. \addcontentsline{toc}{fmbm}{Preface}
  177. There is a magical moment when a programmer presses the \emph{run}
  178. button and the software begins to execute. Somehow a program written
  179. in a high-level language is running on a computer that is capable only
  180. of shuffling bits. Here we reveal the wizardry that makes that moment
  181. possible. Beginning with the groundbreaking work of Backus and
  182. colleagues in the 1950s, computer scientists developed techniques for
  183. constructing programs called \emph{compilers} that automatically
  184. translate high-level programs into machine code.
  185. We take you on a journey through constructing your own compiler for a
  186. small but powerful language. Along the way we explain the essential
  187. concepts, algorithms, and data structures that underlie compilers. We
  188. develop your understanding of how programs are mapped onto computer
  189. hardware, which is helpful in reasoning about properties at the
  190. junction of hardware and software, such as execution time, software
  191. errors, and security vulnerabilities. For those interested in
  192. pursuing compiler construction as a career, our goal is to provide a
  193. stepping-stone to advanced topics such as just-in-time compilation,
  194. program analysis, and program optimization. For those interested in
  195. designing and implementing programming languages, we connect language
  196. design choices to their impact on the compiler and the generated code.
  197. A compiler is typically organized as a sequence of stages that
  198. progressively translate a program to the code that runs on
  199. hardware. We take this approach to the extreme by partitioning our
  200. compiler into a large number of \emph{nanopasses}, each of which
  201. performs a single task. This enables the testing of each pass in
  202. isolation and focuses our attention, making the compiler far easier to
  203. understand.
  204. The most familiar approach to describing compilers is to dedicate each
  205. chapter to one pass. The problem with that approach is that it
  206. obfuscates how language features motivate design choices in a
  207. compiler. We instead take an \emph{incremental} approach in which we
  208. build a complete compiler in each chapter, starting with a small input
  209. language that includes only arithmetic and variables. We add new
  210. language features in subsequent chapters, extending the compiler as
  211. necessary.
  212. Our choice of language features is designed to elicit fundamental
  213. concepts and algorithms used in compilers.
  214. \begin{itemize}
  215. \item We begin with integer arithmetic and local variables in
  216. chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  217. the fundamental tools of compiler construction: \emph{abstract
  218. syntax trees} and \emph{recursive functions}.
  219. {\if\edition\pythonEd\pythonColor
  220. \item In chapter~\ref{ch:parsing} we learn how to use the Lark
  221. parser framework to create a parser for the language of integer
  222. arithmetic and local variables. We learn about the parsing
  223. algorithms inside Lark, including Earley and LALR(1).
  224. %
  225. \fi}
  226. \item In chapter~\ref{ch:register-allocation-Lvar} we apply
  227. \emph{graph coloring} to assign variables to machine registers.
  228. \item Chapter~\ref{ch:Lif} adds conditional expressions, which
  229. motivates an elegant recursive algorithm for translating them into
  230. conditional \code{goto} statements.
  231. \item Chapter~\ref{ch:Lwhile} adds loops\racket{ and mutable
  232. variables}. This elicits the need for \emph{dataflow
  233. analysis} in the register allocator.
  234. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  235. \emph{garbage collection}.
  236. \item Chapter~\ref{ch:Lfun} adds functions as first-class values
  237. without lexical scoping, similar to functions in the C programming
  238. language~\citep{Kernighan:1988nx}. The reader learns about the
  239. procedure call stack and \emph{calling conventions} and how they interact
  240. with register allocation and garbage collection. The chapter also
  241. describes how to generate efficient tail calls.
  242. \item Chapter~\ref{ch:Llambda} adds anonymous functions with lexical
  243. scoping, that is, \emph{lambda} expressions. The reader learns about
  244. \emph{closure conversion}, in which lambdas are translated into a
  245. combination of functions and tuples.
  246. % Chapter about classes and objects?
  247. \item Chapter~\ref{ch:Ldyn} adds \emph{dynamic typing}. Prior to this
  248. point the input languages are statically typed. The reader extends
  249. the statically typed language with an \code{Any} type that serves
  250. as a target for compiling the dynamically typed language.
  251. %% {\if\edition\pythonEd\pythonColor
  252. %% \item Chapter~\ref{ch:Lobject} adds support for \emph{objects} and
  253. %% \emph{classes}.
  254. %% \fi}
  255. \item Chapter~\ref{ch:Lgrad} uses the \code{Any} type introduced in
  256. chapter~\ref{ch:Ldyn} to implement a \emph{gradually typed language}
  257. in which different regions of a program may be static or dynamically
  258. typed. The reader implements runtime support for \emph{proxies} that
  259. allow values to safely move between regions.
  260. \item Chapter~\ref{ch:Lpoly} adds \emph{generics} with autoboxing,
  261. leveraging the \code{Any} type and type casts developed in chapters
  262. \ref{ch:Ldyn} and \ref{ch:Lgrad}.
  263. \end{itemize}
  264. There are many language features that we do not include. Our choices
  265. balance the incidental complexity of a feature versus the fundamental
  266. concepts that it exposes. For example, we include tuples and not
  267. records because although they both elicit the study of heap allocation and
  268. garbage collection, records come with more incidental complexity.
  269. Since 2009, drafts of this book have served as the textbook for
  270. sixteen-week compiler courses for upper-level undergraduates and
  271. first-year graduate students at the University of Colorado and Indiana
  272. University.
  273. %
  274. Students come into the course having learned the basics of
  275. programming, data structures and algorithms, and discrete
  276. mathematics.
  277. %
  278. At the beginning of the course, students form groups of two to four
  279. people. The groups complete approximately one chapter every two
  280. weeks, starting with chapter~\ref{ch:Lvar} and including chapters
  281. according to the students interests while respecting the dependencies
  282. between chapters shown in
  283. figure~\ref{fig:chapter-dependences}. Chapter~\ref{ch:Lfun}
  284. (functions) depends on chapter~\ref{ch:Lvec} (tuples) only in the
  285. implementation of efficient tail calls.
  286. %
  287. The last two weeks of the course involve a final project in which
  288. students design and implement a compiler extension of their choosing.
  289. The last few chapters can be used in support of these projects. Many
  290. chapters include a challenge problem that we assign to the graduate
  291. students.
  292. For compiler courses at universities on the quarter system
  293. (about ten weeks in length), we recommend completing the course
  294. through chapter~\ref{ch:Lvec} or chapter~\ref{ch:Lfun} and providing
  295. some scaffolding code to the students for each compiler pass.
  296. %
  297. The course can be adapted to emphasize functional languages by
  298. skipping chapter~\ref{ch:Lwhile} (loops) and including
  299. chapter~\ref{ch:Llambda} (lambda). The course can be adapted to
  300. dynamically typed languages by including chapter~\ref{ch:Ldyn}.
  301. %
  302. %% \python{A course that emphasizes object-oriented languages would
  303. %% include Chapter~\ref{ch:Lobject}.}
  304. This book has been used in compiler courses at California Polytechnic
  305. State University, Portland State University, Rose–Hulman Institute of
  306. Technology, University of Freiburg, University of Massachusetts
  307. Lowell, and the University of Vermont.
  308. \begin{figure}[tp]
  309. \begin{tcolorbox}[colback=white]
  310. {\if\edition\racketEd
  311. \begin{tikzpicture}[baseline=(current bounding box.center)]
  312. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  313. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  314. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  315. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  316. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  317. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  318. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  319. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  320. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  321. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  322. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  323. \path[->] (C1) edge [above] node {} (C2);
  324. \path[->] (C2) edge [above] node {} (C3);
  325. \path[->] (C3) edge [above] node {} (C4);
  326. \path[->] (C4) edge [above] node {} (C5);
  327. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  328. \path[->] (C5) edge [above] node {} (C7);
  329. \path[->] (C6) edge [above] node {} (C7);
  330. \path[->] (C4) edge [above] node {} (C8);
  331. \path[->] (C4) edge [above] node {} (C9);
  332. \path[->] (C7) edge [above] node {} (C10);
  333. \path[->] (C8) edge [above] node {} (C10);
  334. \path[->] (C10) edge [above] node {} (C11);
  335. \end{tikzpicture}
  336. \fi}
  337. {\if\edition\pythonEd\pythonColor
  338. \begin{tikzpicture}[baseline=(current bounding box.center)]
  339. \node (Prelim) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  340. \node (Var) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  341. \node (Parse) at (8,1.5) {\small Ch.~\ref{ch:parsing} Parsing};
  342. \node (Reg) at (0,0) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  343. \node (Cond) at (4,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  344. \node (Loop) at (8,0) {\small Ch.~\ref{ch:Lwhile} Loops};
  345. \node (Fun) at (0,-1.5) {\small Ch.~\ref{ch:Lfun} Functions};
  346. \node (Tuple) at (4,-1.5) {\small Ch.~\ref{ch:Lvec} Tuples};
  347. \node (Dyn) at (8,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  348. % \node (CO) at (0,-3) {\small Ch.~\ref{ch:Lobject} Objects};
  349. \node (Lam) at (0,-3) {\small Ch.~\ref{ch:Llambda} Lambda};
  350. \node (Gradual) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  351. \node (Generic) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  352. \path[->] (Prelim) edge [above] node {} (Var);
  353. \path[->] (Var) edge [above] node {} (Reg);
  354. \path[->] (Var) edge [above] node {} (Parse);
  355. \path[->] (Reg) edge [above] node {} (Cond);
  356. \path[->] (Cond) edge [above] node {} (Tuple);
  357. \path[->,style=dotted] (Tuple) edge [above] node {} (Fun);
  358. \path[->] (Cond) edge [above] node {} (Fun);
  359. \path[->] (Tuple) edge [above] node {} (Lam);
  360. \path[->] (Fun) edge [above] node {} (Lam);
  361. \path[->] (Cond) edge [above] node {} (Dyn);
  362. \path[->] (Cond) edge [above] node {} (Loop);
  363. \path[->] (Lam) edge [above] node {} (Gradual);
  364. \path[->] (Dyn) edge [above] node {} (Gradual);
  365. % \path[->] (Dyn) edge [above] node {} (CO);
  366. \path[->] (Gradual) edge [above] node {} (Generic);
  367. \end{tikzpicture}
  368. \fi}
  369. \end{tcolorbox}
  370. \caption{Diagram of chapter dependencies.}
  371. \label{fig:chapter-dependences}
  372. \end{figure}
  373. \racket{We use the \href{https://racket-lang.org/}{Racket} language both for
  374. the implementation of the compiler and for the input language, so the
  375. reader should be proficient with Racket or Scheme. There are many
  376. excellent resources for learning Scheme and
  377. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.}
  378. %
  379. \python{This edition of the book uses \href{https://www.python.org/}{Python}
  380. both for the implementation of the compiler and for the input language, so the
  381. reader should be proficient with Python. There are many
  382. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.}%
  383. %
  384. The support code for this book is in the GitHub repository at
  385. the following location:
  386. \begin{center}\small\texttt
  387. https://github.com/IUCompilerCourse/
  388. \end{center}
  389. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  390. is helpful but not necessary for the reader to have taken a computer
  391. systems course~\citep{Bryant:2010aa}. We introduce the parts of x86-64
  392. assembly language that are needed in the compiler.
  393. %
  394. We follow the System V calling
  395. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  396. that we generate works with the runtime system (written in C) when it
  397. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  398. operating systems on Intel hardware.
  399. %
  400. On the Windows operating system, \code{gcc} uses the Microsoft x64
  401. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  402. assembly code that we generate does \emph{not} work with the runtime
  403. system on Windows. One workaround is to use a virtual machine with
  404. Linux as the guest operating system.
  405. \section*{Acknowledgments}
  406. The tradition of compiler construction at Indiana University goes back
  407. to research and courses on programming languages by Daniel Friedman in
  408. the 1970s and 1980s. One of his students, Kent Dybvig, implemented
  409. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  410. compiler for Scheme. Throughout the 1990s and 2000s, Dybvig taught
  411. the compiler course and continued the development of Chez Scheme.
  412. %
  413. The compiler course evolved to incorporate novel pedagogical ideas
  414. while also including elements of real-world compilers. One of
  415. Friedman's ideas was to split the compiler into many small
  416. passes. Another idea, called ``the game,'' was to test the code
  417. generated by each pass using interpreters.
  418. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  419. developed infrastructure to support this approach and evolved the
  420. course to use even smaller
  421. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  422. design decisions in this book are inspired by the assignment
  423. descriptions of \citet{Dybvig:2010aa}. In the mid 2000s, a student of
  424. Dybvig named Abdulaziz Ghuloum observed that the front-to-back
  425. organization of the course made it difficult for students to
  426. understand the rationale for the compiler design. Ghuloum proposed the
  427. incremental approach~\citep{Ghuloum:2006bh} on which this book is
  428. based.
  429. I thank the many students who served as teaching assistants for the
  430. compiler course at IU including Carl Factora, Ryan Scott, Cameron
  431. Swords, and Chris Wailes. I thank Andre Kuhlenschmidt for work on the
  432. garbage collector and x86 interpreter, Michael Vollmer for work on
  433. efficient tail calls, and Michael Vitousek for help with the first
  434. offering of the incremental compiler course at IU.
  435. I thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  436. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  437. Michael Wollowski for teaching courses based on drafts of this book
  438. and for their feedback. I thank the National Science Foundation for
  439. the grants that helped to support this work: Grant Numbers 1518844,
  440. 1763922, and 1814460.
  441. I thank Ronald Garcia for helping me survive Dybvig's compiler
  442. course in the early 2000s and especially for finding the bug that
  443. sent our garbage collector on a wild goose chase!
  444. \mbox{}\\
  445. \noindent Jeremy G. Siek \\
  446. Bloomington, Indiana
  447. \mainmatter
  448. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  449. \chapter{Preliminaries}
  450. \label{ch:trees-recur}
  451. \setcounter{footnote}{0}
  452. In this chapter we review the basic tools needed to implement a
  453. compiler. Programs are typically input by a programmer as text, that
  454. is, a sequence of characters. The program-as-text representation is
  455. called \emph{concrete syntax}. We use concrete syntax to concisely
  456. write down and talk about programs. Inside the compiler, we use
  457. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  458. that efficiently supports the operations that the compiler needs to
  459. perform.\index{subject}{concrete syntax}\index{subject}{abstract
  460. syntax}\index{subject}{abstract syntax
  461. tree}\index{subject}{AST}\index{subject}{program}
  462. The process of translating concrete syntax to abstract syntax is
  463. called \emph{parsing}\index{subject}{parsing}\python{\ and is studied in
  464. chapter~\ref{ch:parsing}}.
  465. \racket{This book does not cover the theory and implementation of parsing.
  466. We refer the readers interested in parsing to the thorough treatment
  467. of parsing by \citet{Aho:2006wb}.}%
  468. %
  469. \racket{A parser is provided in the support code for translating from
  470. concrete to abstract syntax.}%
  471. %
  472. \python{For now we use Python's \code{ast} module to translate from concrete
  473. to abstract syntax.}
  474. ASTs can be represented inside the compiler in many different ways,
  475. depending on the programming language used to write the compiler.
  476. %
  477. \racket{We use Racket's
  478. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  479. feature to represent ASTs (section~\ref{sec:ast}).}
  480. %
  481. \python{We use Python classes and objects to represent ASTs, especially the
  482. classes defined in the standard \code{ast} module for the Python
  483. source language.}
  484. %
  485. We use grammars to define the abstract syntax of programming languages
  486. (section~\ref{sec:grammar}) and pattern matching to inspect individual
  487. nodes in an AST (section~\ref{sec:pattern-matching}). We use
  488. recursive functions to construct and deconstruct ASTs
  489. (section~\ref{sec:recursion}). This chapter provides a brief
  490. introduction to these components.
  491. \racket{\index{subject}{struct}}
  492. \python{\index{subject}{class}\index{subject}{object}}
  493. \section{Abstract Syntax Trees}
  494. \label{sec:ast}
  495. Compilers use abstract syntax trees to represent programs because they
  496. often need to ask questions such as, for a given part of a program,
  497. what kind of language feature is it? What are its subparts? Consider
  498. the program on the left and the diagram of its AST on the
  499. right~\eqref{eq:arith-prog}. This program is an addition operation
  500. that has two subparts, a \racket{read}\python{input} operation and a
  501. negation. The negation has another subpart, the integer constant
  502. \code{8}. By using a tree to represent the program, we can easily
  503. follow the links to go from one part of a program to its subparts.
  504. \begin{center}
  505. \begin{minipage}{0.4\textwidth}
  506. {\if\edition\racketEd
  507. \begin{lstlisting}
  508. (+ (read) (- 8))
  509. \end{lstlisting}
  510. \fi}
  511. {\if\edition\pythonEd\pythonColor
  512. \begin{lstlisting}
  513. input_int() + -8
  514. \end{lstlisting}
  515. \fi}
  516. \end{minipage}
  517. \begin{minipage}{0.4\textwidth}
  518. \begin{equation}
  519. \begin{tikzpicture}
  520. \node[draw] (plus) at (0 , 0) {\key{+}};
  521. \node[draw] (read) at (-1, -1) {\racket{\footnotesize\key{read}}\python{\key{input\_int()}}};
  522. \node[draw] (minus) at (1 , -1) {$\key{-}$};
  523. \node[draw] (8) at (1 , -2) {\key{8}};
  524. \draw[->] (plus) to (read);
  525. \draw[->] (plus) to (minus);
  526. \draw[->] (minus) to (8);
  527. \end{tikzpicture}
  528. \label{eq:arith-prog}
  529. \end{equation}
  530. \end{minipage}
  531. \end{center}
  532. We use the standard terminology for trees to describe ASTs: each
  533. rectangle above is called a \emph{node}. The arrows connect a node to its
  534. \emph{children}, which are also nodes. The top-most node is the
  535. \emph{root}. Every node except for the root has a \emph{parent} (the
  536. node of which it is the child). If a node has no children, it is a
  537. \emph{leaf} node; otherwise it is an \emph{internal} node.
  538. \index{subject}{node}
  539. \index{subject}{children}
  540. \index{subject}{root}
  541. \index{subject}{parent}
  542. \index{subject}{leaf}
  543. \index{subject}{internal node}
  544. %% Recall that an \emph{symbolic expression} (S-expression) is either
  545. %% \begin{enumerate}
  546. %% \item an atom, or
  547. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  548. %% where $e_1$ and $e_2$ are each an S-expression.
  549. %% \end{enumerate}
  550. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  551. %% null value \code{'()}, etc. We can create an S-expression in Racket
  552. %% simply by writing a backquote (called a quasi-quote in Racket)
  553. %% followed by the textual representation of the S-expression. It is
  554. %% quite common to use S-expressions to represent a list, such as $a, b
  555. %% ,c$ in the following way:
  556. %% \begin{lstlisting}
  557. %% `(a . (b . (c . ())))
  558. %% \end{lstlisting}
  559. %% Each element of the list is in the first slot of a pair, and the
  560. %% second slot is either the rest of the list or the null value, to mark
  561. %% the end of the list. Such lists are so common that Racket provides
  562. %% special notation for them that removes the need for the periods
  563. %% and so many parenthesis:
  564. %% \begin{lstlisting}
  565. %% `(a b c)
  566. %% \end{lstlisting}
  567. %% The following expression creates an S-expression that represents AST
  568. %% \eqref{eq:arith-prog}.
  569. %% \begin{lstlisting}
  570. %% `(+ (read) (- 8))
  571. %% \end{lstlisting}
  572. %% When using S-expressions to represent ASTs, the convention is to
  573. %% represent each AST node as a list and to put the operation symbol at
  574. %% the front of the list. The rest of the list contains the children. So
  575. %% in the above case, the root AST node has operation \code{`+} and its
  576. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  577. %% diagram \eqref{eq:arith-prog}.
  578. %% To build larger S-expressions one often needs to splice together
  579. %% several smaller S-expressions. Racket provides the comma operator to
  580. %% splice an S-expression into a larger one. For example, instead of
  581. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  582. %% we could have first created an S-expression for AST
  583. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  584. %% S-expression.
  585. %% \begin{lstlisting}
  586. %% (define ast1.4 `(- 8))
  587. %% (define ast1_1 `(+ (read) ,ast1.4))
  588. %% \end{lstlisting}
  589. %% In general, the Racket expression that follows the comma (splice)
  590. %% can be any expression that produces an S-expression.
  591. {\if\edition\racketEd
  592. We define a Racket \code{struct} for each kind of node. For this
  593. chapter we require just two kinds of nodes: one for integer constants
  594. (aka literals\index{subject}{literals})
  595. and one for primitive operations. The following is the \code{struct}
  596. definition for integer constants.\footnote{All the AST structures are
  597. defined in the file \code{utilities.rkt} in the support code.}
  598. \begin{lstlisting}
  599. (struct Int (value))
  600. \end{lstlisting}
  601. An integer node contains just one thing: the integer value.
  602. We establish the convention that \code{struct} names, such
  603. as \code{Int}, are capitalized.
  604. To create an AST node for the integer $8$, we write \INT{8}.
  605. \begin{lstlisting}
  606. (define eight (Int 8))
  607. \end{lstlisting}
  608. We say that the value created by \INT{8} is an
  609. \emph{instance} of the
  610. \code{Int} structure.
  611. The following is the \code{struct} definition for primitive operations.
  612. \begin{lstlisting}
  613. (struct Prim (op args))
  614. \end{lstlisting}
  615. A primitive operation node includes an operator symbol \code{op} and a
  616. list of child arguments called \code{args}. For example, to create an
  617. AST that negates the number $8$, we write the following.
  618. \begin{lstlisting}
  619. (define neg-eight (Prim '- (list eight)))
  620. \end{lstlisting}
  621. Primitive operations may have zero or more children. The \code{read}
  622. operator has zero:
  623. \begin{lstlisting}
  624. (define rd (Prim 'read '()))
  625. \end{lstlisting}
  626. The addition operator has two children:
  627. \begin{lstlisting}
  628. (define ast1_1 (Prim '+ (list rd neg-eight)))
  629. \end{lstlisting}
  630. We have made a design choice regarding the \code{Prim} structure.
  631. Instead of using one structure for many different operations
  632. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  633. structure for each operation, as follows:
  634. \begin{lstlisting}
  635. (struct Read ())
  636. (struct Add (left right))
  637. (struct Neg (value))
  638. \end{lstlisting}
  639. The reason that we choose to use just one structure is that many parts
  640. of the compiler can use the same code for the different primitive
  641. operators, so we might as well just write that code once by using a
  642. single structure.
  643. %
  644. \fi}
  645. {\if\edition\pythonEd\pythonColor
  646. We use a Python \code{class} for each kind of node.
  647. The following is the class definition for
  648. constants (aka literals\index{subject}{literals})
  649. from the Python \code{ast} module.
  650. \begin{lstlisting}
  651. class Constant:
  652. def __init__(self, value):
  653. self.value = value
  654. \end{lstlisting}
  655. An integer constant node includes just one thing: the integer value.
  656. To create an AST node for the integer $8$, we write \INT{8}.
  657. \begin{lstlisting}
  658. eight = Constant(8)
  659. \end{lstlisting}
  660. We say that the value created by \INT{8} is an
  661. \emph{instance} of the \code{Constant} class.
  662. The following is the class definition for unary operators.
  663. \begin{lstlisting}
  664. class UnaryOp:
  665. def __init__(self, op, operand):
  666. self.op = op
  667. self.operand = operand
  668. \end{lstlisting}
  669. The specific operation is specified by the \code{op} parameter. For
  670. example, the class \code{USub} is for unary subtraction.
  671. (More unary operators are introduced in later chapters.) To create an AST that
  672. negates the number $8$, we write the following.
  673. \begin{lstlisting}
  674. neg_eight = UnaryOp(USub(), eight)
  675. \end{lstlisting}
  676. The call to the \code{input\_int} function is represented by the
  677. \code{Call} and \code{Name} classes.
  678. \begin{lstlisting}
  679. class Call:
  680. def __init__(self, func, args):
  681. self.func = func
  682. self.args = args
  683. class Name:
  684. def __init__(self, id):
  685. self.id = id
  686. \end{lstlisting}
  687. To create an AST node that calls \code{input\_int}, we write
  688. \begin{lstlisting}
  689. read = Call(Name('input_int'), [])
  690. \end{lstlisting}
  691. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  692. the \code{BinOp} class for binary operators.
  693. \begin{lstlisting}
  694. class BinOp:
  695. def __init__(self, left, op, right):
  696. self.op = op
  697. self.left = left
  698. self.right = right
  699. \end{lstlisting}
  700. Similar to \code{UnaryOp}, the specific operation is specified by the
  701. \code{op} parameter, which for now is just an instance of the
  702. \code{Add} class. So to create the AST
  703. node that adds negative eight to some user input, we write the following.
  704. \begin{lstlisting}
  705. ast1_1 = BinOp(read, Add(), neg_eight)
  706. \end{lstlisting}
  707. \fi}
  708. To compile a program such as \eqref{eq:arith-prog}, we need to know
  709. that the operation associated with the root node is addition and we
  710. need to be able to access its two
  711. children. \racket{Racket}\python{Python} provides pattern matching to
  712. support these kinds of queries, as we see in
  713. section~\ref{sec:pattern-matching}.
  714. We often write down the concrete syntax of a program even when we
  715. actually have in mind the AST, because the concrete syntax is more
  716. concise. We recommend that you always think of programs as abstract
  717. syntax trees.
  718. \section{Grammars}
  719. \label{sec:grammar}
  720. \index{subject}{integer}
  721. %\index{subject}{constant}
  722. A programming language can be thought of as a \emph{set} of programs.
  723. The set is infinite (that is, one can always create larger programs),
  724. so one cannot simply describe a language by listing all the
  725. programs in the language. Instead we write down a set of rules, a
  726. \emph{context-free grammar}, for building programs. Grammars are often used to
  727. define the concrete syntax of a language, but they can also be used to
  728. describe the abstract syntax. We write our rules in a variant of
  729. Backus-Naur form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  730. \index{subject}{Backus-Naur form}\index{subject}{BNF} As an example,
  731. we describe a small language, named \LangInt{}, that consists of
  732. integers and arithmetic operations.\index{subject}{grammar}
  733. \index{subject}{context-free grammar}
  734. The first grammar rule for the abstract syntax of \LangInt{} says that an
  735. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  736. \begin{equation}
  737. \Exp ::= \INT{\Int} \label{eq:arith-int}
  738. \end{equation}
  739. %
  740. Each rule has a left-hand side and a right-hand side.
  741. If you have an AST node that matches the
  742. right-hand side, then you can categorize it according to the
  743. left-hand side.
  744. %
  745. Symbols in typewriter font, such as \racket{\code{Int}}\python{\code{Constant}},
  746. are \emph{terminal} symbols and must literally appear in the program for the
  747. rule to be applicable.\index{subject}{terminal}
  748. %
  749. Our grammars do not mention \emph{white space}, that is, delimiter
  750. characters like spaces, tabs, and new lines. White space may be
  751. inserted between symbols for disambiguation and to improve
  752. readability. \index{subject}{white space}
  753. %
  754. A name such as $\Exp$ that is defined by the grammar rules is a
  755. \emph{nonterminal}. \index{subject}{nonterminal}
  756. %
  757. The name $\Int$ is also a nonterminal, but instead of defining it with
  758. a grammar rule, we define it with the following explanation. An
  759. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  760. $-$ (for negative integers), such that the sequence of decimals
  761. %
  762. \racket{represents an integer in the range $-2^{62}$ to $2^{62}-1$. This
  763. enables the representation of integers using 63 bits, which simplifies
  764. several aspects of compilation.
  765. %
  766. Thus, these integers correspond to the Racket \texttt{fixnum}
  767. datatype on a 64-bit machine.}
  768. %
  769. \python{represents an integer in the range $-2^{63}$ to $2^{63}-1$. This
  770. enables the representation of integers using 64 bits, which simplifies
  771. several aspects of compilation. In contrast, integers in Python have
  772. unlimited precision, but the techniques needed to handle unlimited
  773. precision fall outside the scope of this book.}
  774. The second grammar rule is the \READOP{} operation, which receives an
  775. input integer from the user of the program.
  776. \begin{equation}
  777. \Exp ::= \READ{} \label{eq:arith-read}
  778. \end{equation}
  779. The third rule categorizes the negation of an $\Exp$ node as an
  780. $\Exp$.
  781. \begin{equation}
  782. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  783. \end{equation}
  784. We can apply these rules to categorize the ASTs that are in the
  785. \LangInt{} language. For example, by rule \eqref{eq:arith-int},
  786. \INT{8} is an $\Exp$, and then by rule \eqref{eq:arith-neg} the
  787. following AST is an $\Exp$.
  788. \begin{center}
  789. \begin{minipage}{0.5\textwidth}
  790. \NEG{\INT{\code{8}}}
  791. \end{minipage}
  792. \begin{minipage}{0.25\textwidth}
  793. \begin{equation}
  794. \begin{tikzpicture}
  795. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  796. \node[draw, circle] (8) at (0, -1.2) {$8$};
  797. \draw[->] (minus) to (8);
  798. \end{tikzpicture}
  799. \label{eq:arith-neg8}
  800. \end{equation}
  801. \end{minipage}
  802. \end{center}
  803. The next two grammar rules are for addition and subtraction expressions:
  804. \begin{align}
  805. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  806. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  807. \end{align}
  808. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  809. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  810. \eqref{eq:arith-read}, and we have already categorized
  811. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  812. to show that
  813. \[
  814. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  815. \]
  816. is an $\Exp$ in the \LangInt{} language.
  817. If you have an AST for which these rules do not apply, then the
  818. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  819. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  820. because there is no rule for the \key{*} operator. Whenever we
  821. define a language with a grammar, the language includes only those
  822. programs that are justified by the grammar rules.
  823. {\if\edition\pythonEd\pythonColor
  824. The language \LangInt{} includes a second nonterminal $\Stmt$ for statements.
  825. There is a statement for printing the value of an expression
  826. \[
  827. \Stmt{} ::= \PRINT{\Exp}
  828. \]
  829. and a statement that evaluates an expression but ignores the result.
  830. \[
  831. \Stmt{} ::= \EXPR{\Exp}
  832. \]
  833. \fi}
  834. {\if\edition\racketEd
  835. The last grammar rule for \LangInt{} states that there is a
  836. \code{Program} node to mark the top of the whole program:
  837. \[
  838. \LangInt{} ::= \PROGRAM{\code{\textquotesingle()}}{\Exp}
  839. \]
  840. The \code{Program} structure is defined as follows:
  841. \begin{lstlisting}
  842. (struct Program (info body))
  843. \end{lstlisting}
  844. where \code{body} is an expression. In further chapters, the \code{info}
  845. part is used to store auxiliary information, but for now it is
  846. just the empty list.
  847. \fi}
  848. {\if\edition\pythonEd\pythonColor
  849. The last grammar rule for \LangInt{} states that there is a
  850. \code{Module} node to mark the top of the whole program:
  851. \[
  852. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  853. \]
  854. The asterisk $*$ indicates a list of the preceding grammar item, in
  855. this case a list of statements.
  856. %
  857. The \code{Module} class is defined as follows:
  858. \begin{lstlisting}
  859. class Module:
  860. def __init__(self, body):
  861. self.body = body
  862. \end{lstlisting}
  863. where \code{body} is a list of statements.
  864. \fi}
  865. It is common to have many grammar rules with the same left-hand side
  866. but different right-hand sides, such as the rules for $\Exp$ in the
  867. grammar of \LangInt{}. As shorthand, a vertical bar can be used to
  868. combine several right-hand sides into a single rule.
  869. The concrete syntax for \LangInt{} is shown in
  870. figure~\ref{fig:r0-concrete-syntax} and the abstract syntax for
  871. \LangInt{} is shown in figure~\ref{fig:r0-syntax}.%
  872. %
  873. \racket{The \code{read-program} function provided in
  874. \code{utilities.rkt} of the support code reads a program from a file
  875. (the sequence of characters in the concrete syntax of Racket) and
  876. parses it into an abstract syntax tree. Refer to the description of
  877. \code{read-program} in appendix~\ref{appendix:utilities} for more
  878. details.}
  879. %
  880. \python{The \code{parse} function in Python's \code{ast} module
  881. converts the concrete syntax (represented as a string) into an
  882. abstract syntax tree.}
  883. \newcommand{\LintGrammarRacket}{
  884. \begin{array}{rcl}
  885. \Type &::=& \key{Integer} \\
  886. \Exp{} &::=& \Int{} \MID \CREAD \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  887. \MID \CSUB{\Exp}{\Exp}
  888. \end{array}
  889. }
  890. \newcommand{\LintASTRacket}{
  891. \begin{array}{rcl}
  892. \Type &::=& \key{Integer} \\
  893. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  894. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \SUB{\Exp}{\Exp}
  895. \end{array}
  896. }
  897. \newcommand{\LintGrammarPython}{
  898. \begin{array}{rcl}
  899. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  900. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  901. \end{array}
  902. }
  903. \newcommand{\LintASTPython}{
  904. \begin{array}{rcl}
  905. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  906. &\MID& \UNIOP{\key{USub()}}{\Exp} \MID \BINOP{\Exp}{\key{Add()}}{\Exp}\\
  907. &\MID& \BINOP{\Exp}{\key{Sub()}}{\Exp}\\
  908. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  909. \end{array}
  910. }
  911. \begin{figure}[tp]
  912. \begin{tcolorbox}[colback=white]
  913. {\if\edition\racketEd
  914. \[
  915. \begin{array}{l}
  916. \LintGrammarRacket \\
  917. \begin{array}{rcl}
  918. \LangInt{} &::=& \Exp
  919. \end{array}
  920. \end{array}
  921. \]
  922. \fi}
  923. {\if\edition\pythonEd\pythonColor
  924. \[
  925. \begin{array}{l}
  926. \LintGrammarPython \\
  927. \begin{array}{rcl}
  928. \LangInt{} &::=& \Stmt^{*}
  929. \end{array}
  930. \end{array}
  931. \]
  932. \fi}
  933. \end{tcolorbox}
  934. \caption{The concrete syntax of \LangInt{}.}
  935. \label{fig:r0-concrete-syntax}
  936. \end{figure}
  937. \begin{figure}[tp]
  938. \begin{tcolorbox}[colback=white]
  939. {\if\edition\racketEd
  940. \[
  941. \begin{array}{l}
  942. \LintASTRacket{} \\
  943. \begin{array}{rcl}
  944. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  945. \end{array}
  946. \end{array}
  947. \]
  948. \fi}
  949. {\if\edition\pythonEd\pythonColor
  950. \[
  951. \begin{array}{l}
  952. \LintASTPython\\
  953. \begin{array}{rcl}
  954. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  955. \end{array}
  956. \end{array}
  957. \]
  958. \fi}
  959. \end{tcolorbox}
  960. \python{
  961. \index{subject}{Constant@\texttt{Constant}}
  962. \index{subject}{UnaryOp@\texttt{UnaryOp}}
  963. \index{subject}{USub@\texttt{USub}}
  964. \index{subject}{inputint@\texttt{input\_int}}
  965. \index{subject}{Call@\texttt{Call}}
  966. \index{subject}{Name@\texttt{Name}}
  967. \index{subject}{BinOp@\texttt{BinOp}}
  968. \index{subject}{Add@\texttt{Add}}
  969. \index{subject}{Sub@\texttt{Sub}}
  970. \index{subject}{print@\texttt{print}}
  971. \index{subject}{Expr@\texttt{Expr}}
  972. \index{subject}{Module@\texttt{Module}}
  973. }
  974. \caption{The abstract syntax of \LangInt{}.}
  975. \label{fig:r0-syntax}
  976. \end{figure}
  977. \section{Pattern Matching}
  978. \label{sec:pattern-matching}
  979. As mentioned in section~\ref{sec:ast}, compilers often need to access
  980. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python}
  981. provides the \texttt{match} feature to access the parts of a value.
  982. Consider the following example: \index{subject}{match} \index{subject}{pattern matching}
  983. \begin{center}
  984. \begin{minipage}{1.0\textwidth}
  985. {\if\edition\racketEd
  986. \begin{lstlisting}
  987. (match ast1_1
  988. [(Prim op (list child1 child2))
  989. (print op)])
  990. \end{lstlisting}
  991. \fi}
  992. {\if\edition\pythonEd\pythonColor
  993. \begin{lstlisting}
  994. match ast1_1:
  995. case BinOp(child1, op, child2):
  996. print(op)
  997. \end{lstlisting}
  998. \fi}
  999. \end{minipage}
  1000. \end{center}
  1001. {\if\edition\racketEd
  1002. %
  1003. In this example, the \texttt{match} form checks whether the AST
  1004. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  1005. three pattern variables \texttt{op}, \texttt{child1}, and
  1006. \texttt{child2}. In general, a match clause consists of a
  1007. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  1008. recursively defined to be a pattern variable, a structure name
  1009. followed by a pattern for each of the structure's arguments, or an
  1010. S-expression (a symbol, list, etc.). (See chapter 12 of The Racket
  1011. Guide\footnote{See \url{https://docs.racket-lang.org/guide/match.html}.}
  1012. and chapter 9 of The Racket
  1013. Reference\footnote{See \url{https://docs.racket-lang.org/reference/match.html}.}
  1014. for complete descriptions of \code{match}.)
  1015. %
  1016. The body of a match clause may contain arbitrary Racket code. The
  1017. pattern variables can be used in the scope of the body, such as
  1018. \code{op} in \code{(print op)}.
  1019. %
  1020. \fi}
  1021. %
  1022. %
  1023. {\if\edition\pythonEd\pythonColor
  1024. %
  1025. In the example above, the \texttt{match} form checks whether the AST
  1026. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  1027. three pattern variables (\texttt{child1}, \texttt{op}, and
  1028. \texttt{child2}). In general, each \code{case} consists of a
  1029. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  1030. recursively defined to be one of the following: a pattern variable, a
  1031. class name followed by a pattern for each of its constructor's
  1032. arguments, or other literals\index{subject}{literals} such as strings
  1033. or lists.
  1034. %
  1035. The body of each \code{case} may contain arbitrary Python code. The
  1036. pattern variables can be used in the body, such as \code{op} in
  1037. \code{print(op)}.
  1038. %
  1039. \fi}
  1040. A \code{match} form may contain several clauses, as in the following
  1041. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  1042. the AST. The \code{match} proceeds through the clauses in order,
  1043. checking whether the pattern can match the input AST. The body of the
  1044. first clause that matches is executed. The output of \code{leaf} for
  1045. several ASTs is shown on the right side of the following:
  1046. \begin{center}
  1047. \begin{minipage}{0.6\textwidth}
  1048. {\if\edition\racketEd
  1049. \begin{lstlisting}
  1050. (define (leaf arith)
  1051. (match arith
  1052. [(Int n) #t]
  1053. [(Prim 'read '()) #t]
  1054. [(Prim '- (list e1)) #f]
  1055. [(Prim '+ (list e1 e2)) #f]
  1056. [(Prim '- (list e1 e2)) #f]))
  1057. (leaf (Prim 'read '()))
  1058. (leaf (Prim '- (list (Int 8))))
  1059. (leaf (Int 8))
  1060. \end{lstlisting}
  1061. \fi}
  1062. {\if\edition\pythonEd\pythonColor
  1063. \begin{lstlisting}
  1064. def leaf(arith):
  1065. match arith:
  1066. case Constant(n):
  1067. return True
  1068. case Call(Name('input_int'), []):
  1069. return True
  1070. case UnaryOp(USub(), e1):
  1071. return False
  1072. case BinOp(e1, Add(), e2):
  1073. return False
  1074. case BinOp(e1, Sub(), e2):
  1075. return False
  1076. print(leaf(Call(Name('input_int'), [])))
  1077. print(leaf(UnaryOp(USub(), eight)))
  1078. print(leaf(Constant(8)))
  1079. \end{lstlisting}
  1080. \fi}
  1081. \end{minipage}
  1082. \vrule
  1083. \begin{minipage}{0.25\textwidth}
  1084. {\if\edition\racketEd
  1085. \begin{lstlisting}
  1086. #t
  1087. #f
  1088. #t
  1089. \end{lstlisting}
  1090. \fi}
  1091. {\if\edition\pythonEd\pythonColor
  1092. \begin{lstlisting}
  1093. True
  1094. False
  1095. True
  1096. \end{lstlisting}
  1097. \fi}
  1098. \end{minipage}
  1099. \index{subject}{True@\TRUE{}}
  1100. \index{subject}{False@\FALSE{}}
  1101. \end{center}
  1102. When constructing a \code{match} expression, we refer to the grammar
  1103. definition to identify which nonterminal we are expecting to match
  1104. against, and then we make sure that (1) we have one
  1105. \racket{clause}\python{case} for each alternative of that nonterminal
  1106. and (2) the pattern in each \racket{clause}\python{case}
  1107. corresponds to the corresponding right-hand side of a grammar
  1108. rule. For the \code{match} in the \code{leaf} function, we refer to
  1109. the grammar for \LangInt{} shown in figure~\ref{fig:r0-syntax}. The $\Exp$
  1110. nonterminal has five alternatives, so the \code{match} has five
  1111. \racket{clauses}\python{cases}. The pattern in each
  1112. \racket{clause}\python{case} corresponds to the right-hand side of a
  1113. grammar rule. For example, the pattern \ADDP{\code{e1}}{\code{e2}}
  1114. corresponds to the right-hand side $\ADD{\Exp}{\Exp}$. When
  1115. translating from grammars to patterns, replace nonterminals such as
  1116. $\Exp$ with pattern variables of your choice (such as \code{e1} and
  1117. \code{e2}).
  1118. \section{Recursive Functions}
  1119. \label{sec:recursion}
  1120. \index{subject}{recursive function}
  1121. Programs are inherently recursive. For example, an expression is often
  1122. made of smaller expressions. Thus, the natural way to process an
  1123. entire program is to use a recursive function. As a first example of
  1124. such a recursive function, we define the function \code{is\_exp} as
  1125. shown in figure~\ref{fig:exp-predicate}, to take an arbitrary
  1126. value and determine whether or not it is an expression in \LangInt{}.
  1127. %
  1128. We say that a function is defined by \emph{structural recursion} if
  1129. it is defined using a sequence of match \racket{clauses}\python{cases}
  1130. that correspond to a grammar and the body of each
  1131. \racket{clause}\python{case} makes a recursive call on each child
  1132. node.\footnote{This principle of structuring code according to the
  1133. data definition is advocated in the book \emph{How to Design
  1134. Programs} by \citet{Felleisen:2001aa}.} \python{We define a
  1135. second function, named \code{stmt}, that recognizes whether a value
  1136. is a \LangInt{} statement.} \python{Finally, }
  1137. figure~\ref{fig:exp-predicate} \racket{also} contains the definition of
  1138. \code{is\_Lint}, which determines whether an AST is a program in \LangInt{}.
  1139. In general, we can write one recursive function to handle each
  1140. nonterminal in a grammar.\index{subject}{structural recursion} Of the
  1141. two examples at the bottom of the figure, the first is in
  1142. \LangInt{} and the second is not.
  1143. \begin{figure}[tp]
  1144. \begin{tcolorbox}[colback=white]
  1145. {\if\edition\racketEd
  1146. \begin{lstlisting}
  1147. (define (is_exp ast)
  1148. (match ast
  1149. [(Int n) #t]
  1150. [(Prim 'read '()) #t]
  1151. [(Prim '- (list e)) (is_exp e)]
  1152. [(Prim '+ (list e1 e2))
  1153. (and (is_exp e1) (is_exp e2))]
  1154. [(Prim '- (list e1 e2))
  1155. (and (is_exp e1) (is_exp e2))]
  1156. [else #f]))
  1157. (define (is_Lint ast)
  1158. (match ast
  1159. [(Program '() e) (is_exp e)]
  1160. [else #f]))
  1161. (is_Lint (Program '() ast1_1)
  1162. (is_Lint (Program '()
  1163. (Prim '* (list (Prim 'read '())
  1164. (Prim '+ (list (Int 8)))))))
  1165. \end{lstlisting}
  1166. \fi}
  1167. {\if\edition\pythonEd\pythonColor
  1168. \begin{lstlisting}
  1169. def is_exp(e):
  1170. match e:
  1171. case Constant(n):
  1172. return True
  1173. case Call(Name('input_int'), []):
  1174. return True
  1175. case UnaryOp(USub(), e1):
  1176. return is_exp(e1)
  1177. case BinOp(e1, Add(), e2):
  1178. return is_exp(e1) and is_exp(e2)
  1179. case BinOp(e1, Sub(), e2):
  1180. return is_exp(e1) and is_exp(e2)
  1181. case _:
  1182. return False
  1183. def stmt(s):
  1184. match s:
  1185. case Expr(Call(Name('print'), [e])):
  1186. return is_exp(e)
  1187. case Expr(e):
  1188. return is_exp(e)
  1189. case _:
  1190. return False
  1191. def is_Lint(p):
  1192. match p:
  1193. case Module(body):
  1194. return all([stmt(s) for s in body])
  1195. case _:
  1196. return False
  1197. print(is_Lint(Module([Expr(ast1_1)])))
  1198. print(is_Lint(Module([Expr(BinOp(read, Sub(),
  1199. UnaryOp(Add(), Constant(8))))])))
  1200. \end{lstlisting}
  1201. \fi}
  1202. \end{tcolorbox}
  1203. \caption{Example of recursive functions for \LangInt{}. These functions
  1204. recognize whether an AST is in \LangInt{}.}
  1205. \label{fig:exp-predicate}
  1206. \end{figure}
  1207. %% You may be tempted to merge the two functions into one, like this:
  1208. %% \begin{center}
  1209. %% \begin{minipage}{0.5\textwidth}
  1210. %% \begin{lstlisting}
  1211. %% (define (Lint ast)
  1212. %% (match ast
  1213. %% [(Int n) #t]
  1214. %% [(Prim 'read '()) #t]
  1215. %% [(Prim '- (list e)) (Lint e)]
  1216. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1217. %% [(Program '() e) (Lint e)]
  1218. %% [else #f]))
  1219. %% \end{lstlisting}
  1220. %% \end{minipage}
  1221. %% \end{center}
  1222. %% %
  1223. %% Sometimes such a trick will save a few lines of code, especially when
  1224. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1225. %% \emph{not} recommended because it can get you into trouble.
  1226. %% %
  1227. %% For example, the above function is subtly wrong:
  1228. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1229. %% returns true when it should return false.
  1230. \section{Interpreters}
  1231. \label{sec:interp_Lint}
  1232. \index{subject}{interpreter}
  1233. The behavior of a program is defined by the specification of the
  1234. programming language.
  1235. %
  1236. \racket{For example, the Scheme language is defined in the report by
  1237. \citet{SPERBER:2009aa}. The Racket language is defined in its
  1238. reference manual~\citep{plt-tr}.}
  1239. %
  1240. \python{For example, the Python language is defined in the Python
  1241. language reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1242. %
  1243. In this book we use interpreters to specify each language that we
  1244. consider. An interpreter that is designated as the definition of a
  1245. language is called a \emph{definitional
  1246. interpreter}~\citep{reynolds72:_def_interp}.
  1247. \index{subject}{definitional interpreter} We warm up by creating a
  1248. definitional interpreter for the \LangInt{} language. This interpreter
  1249. serves as a second example of structural recursion. The definition of the
  1250. \code{interp\_Lint} function is shown in
  1251. figure~\ref{fig:interp_Lint}.
  1252. %
  1253. \racket{The body of the function is a match on the input program
  1254. followed by a call to the \lstinline{interp_exp} auxiliary function,
  1255. which in turn has one match clause per grammar rule for \LangInt{}
  1256. expressions.}
  1257. %
  1258. \python{The body of the function matches on the \code{Module} AST node
  1259. and then invokes \code{interp\_stmt} on each statement in the
  1260. module. The \code{interp\_stmt} function includes a case for each
  1261. grammar rule of the \Stmt{} nonterminal, and it calls
  1262. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1263. function includes a case for each grammar rule of the \Exp{}
  1264. nonterminal. We use several auxiliary functions such as \code{add64}
  1265. and \code{input\_int} that are defined in the support code for this book.}
  1266. \begin{figure}[tp]
  1267. \begin{tcolorbox}[colback=white]
  1268. {\if\edition\racketEd
  1269. \begin{lstlisting}
  1270. (define (interp_exp e)
  1271. (match e
  1272. [(Int n) n]
  1273. [(Prim 'read '())
  1274. (define r (read))
  1275. (cond [(fixnum? r) r]
  1276. [else (error 'interp_exp "read expected an integer" r)])]
  1277. [(Prim '- (list e))
  1278. (define v (interp_exp e))
  1279. (fx- 0 v)]
  1280. [(Prim '+ (list e1 e2))
  1281. (define v1 (interp_exp e1))
  1282. (define v2 (interp_exp e2))
  1283. (fx+ v1 v2)]
  1284. [(Prim '- (list e1 e2))
  1285. (define v1 (interp_exp e1))
  1286. (define v2 (interp_exp e2))
  1287. (fx- v1 v2)]))
  1288. (define (interp_Lint p)
  1289. (match p
  1290. [(Program '() e) (interp_exp e)]))
  1291. \end{lstlisting}
  1292. \fi}
  1293. {\if\edition\pythonEd\pythonColor
  1294. \begin{lstlisting}
  1295. def interp_exp(e):
  1296. match e:
  1297. case BinOp(left, Add(), right):
  1298. l = interp_exp(left); r = interp_exp(right)
  1299. return add64(l, r)
  1300. case BinOp(left, Sub(), right):
  1301. l = interp_exp(left); r = interp_exp(right)
  1302. return sub64(l, r)
  1303. case UnaryOp(USub(), v):
  1304. return neg64(interp_exp(v))
  1305. case Constant(value):
  1306. return value
  1307. case Call(Name('input_int'), []):
  1308. return input_int()
  1309. def interp_stmt(s):
  1310. match s:
  1311. case Expr(Call(Name('print'), [arg])):
  1312. print(interp_exp(arg))
  1313. case Expr(value):
  1314. interp_exp(value)
  1315. def interp_Lint(p):
  1316. match p:
  1317. case Module(body):
  1318. for s in body:
  1319. interp_stmt(s)
  1320. \end{lstlisting}
  1321. \fi}
  1322. \end{tcolorbox}
  1323. \caption{Interpreter for the \LangInt{} language.}
  1324. \label{fig:interp_Lint}
  1325. \end{figure}
  1326. Let us consider the result of interpreting a few \LangInt{} programs. The
  1327. following program adds two integers:
  1328. {\if\edition\racketEd
  1329. \begin{lstlisting}
  1330. (+ 10 32)
  1331. \end{lstlisting}
  1332. \fi}
  1333. {\if\edition\pythonEd\pythonColor
  1334. \begin{lstlisting}
  1335. print(10 + 32)
  1336. \end{lstlisting}
  1337. \fi}
  1338. %
  1339. \noindent The result is \key{42}, the answer to life, the universe,
  1340. and everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to
  1341. the Galaxy} by Douglas Adams.}
  1342. %
  1343. We wrote this program in concrete syntax, whereas the parsed
  1344. abstract syntax is
  1345. {\if\edition\racketEd
  1346. \begin{lstlisting}
  1347. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1348. \end{lstlisting}
  1349. \fi}
  1350. {\if\edition\pythonEd\pythonColor
  1351. \begin{lstlisting}
  1352. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1353. \end{lstlisting}
  1354. \fi}
  1355. The following program demonstrates that expressions may be nested within
  1356. each other, in this case nesting several additions and negations.
  1357. {\if\edition\racketEd
  1358. \begin{lstlisting}
  1359. (+ 10 (- (+ 12 20)))
  1360. \end{lstlisting}
  1361. \fi}
  1362. {\if\edition\pythonEd\pythonColor
  1363. \begin{lstlisting}
  1364. print(10 + -(12 + 20))
  1365. \end{lstlisting}
  1366. \fi}
  1367. %
  1368. \noindent What is the result of this program?
  1369. {\if\edition\racketEd
  1370. As mentioned previously, the \LangInt{} language does not support
  1371. arbitrarily large integers but only $63$-bit integers, so we
  1372. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1373. in Racket.
  1374. Suppose that
  1375. \[
  1376. n = 999999999999999999
  1377. \]
  1378. which indeed fits in $63$ bits. What happens when we run the
  1379. following program in our interpreter?
  1380. \begin{lstlisting}
  1381. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1382. \end{lstlisting}
  1383. It produces the following error:
  1384. \begin{lstlisting}
  1385. fx+: result is not a fixnum
  1386. \end{lstlisting}
  1387. We establish the convention that if running the definitional
  1388. interpreter on a program produces an error, then the meaning of that
  1389. program is \emph{unspecified}\index{subject}{unspecified behavior} unless the
  1390. error is a \code{trapped-error}. A compiler for the language is under
  1391. no obligation regarding programs with unspecified behavior; it does
  1392. not have to produce an executable, and if it does, that executable can
  1393. do anything. On the other hand, if the error is a
  1394. \code{trapped-error}, then the compiler must produce an executable and
  1395. it is required to report that an error occurred. To signal an error,
  1396. exit with a return code of \code{255}. The interpreters in chapters
  1397. \ref{ch:Ldyn} and \ref{ch:Lgrad} and in section \ref{sec:arrays} use
  1398. \code{trapped-error}.
  1399. \fi}
  1400. % TODO: how to deal with too-large integers in the Python interpreter?
  1401. %% This convention applies to the languages defined in this
  1402. %% book, as a way to simplify the student's task of implementing them,
  1403. %% but this convention is not applicable to all programming languages.
  1404. %%
  1405. The last feature of the \LangInt{} language, the \READOP{} operation,
  1406. prompts the user of the program for an integer. Recall that program
  1407. \eqref{eq:arith-prog} requests an integer input and then subtracts
  1408. \code{8}. So, if we run {\if\edition\racketEd
  1409. \begin{lstlisting}
  1410. (interp_Lint (Program '() ast1_1))
  1411. \end{lstlisting}
  1412. \fi}
  1413. {\if\edition\pythonEd\pythonColor
  1414. \begin{lstlisting}
  1415. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1416. \end{lstlisting}
  1417. \fi}
  1418. \noindent and if the input is \code{50}, the result is \code{42}.
  1419. We include the \READOP{} operation in \LangInt{} so that a clever
  1420. student cannot implement a compiler for \LangInt{} that simply runs
  1421. the interpreter during compilation to obtain the output and then
  1422. generates the trivial code to produce the output.\footnote{Yes, a
  1423. clever student did this in the first instance of this course!}
  1424. The job of a compiler is to translate a program in one language into a
  1425. program in another language so that the output program behaves the
  1426. same way as the input program. This idea is depicted in the
  1427. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1428. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1429. Given a compiler that translates from language $\mathcal{L}_1$ to
  1430. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1431. compiler must translate it into some program $P_2$ such that
  1432. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1433. same input $i$ yields the same output $o$.
  1434. \begin{equation} \label{eq:compile-correct}
  1435. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1436. \node (p1) at (0, 0) {$P_1$};
  1437. \node (p2) at (3, 0) {$P_2$};
  1438. \node (o) at (3, -2.5) {$o$};
  1439. \path[->] (p1) edge [above] node {compile} (p2);
  1440. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1441. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1442. \end{tikzpicture}
  1443. \end{equation}
  1444. \python{We establish the convention that if running the definitional
  1445. interpreter on a program produces an error, then the meaning of that
  1446. program is \emph{unspecified}\index{subject}{unspecified behavior}
  1447. unless the exception raised is a \code{TrappedError}. A compiler for
  1448. the language is under no obligation regarding programs with
  1449. unspecified behavior; it does not have to produce an executable, and
  1450. if it does, that executable can do anything. On the other hand, if
  1451. the error is a \code{TrappedError}, then the compiler must produce
  1452. an executable and it is required to report that an error
  1453. occurred. To signal an error, exit with a return code of \code{255}.
  1454. The interpreters in chapters \ref{ch:Ldyn} and \ref{ch:Lgrad} and in
  1455. section \ref{sec:arrays} use \code{TrappedError}.}
  1456. In the next section we see our first example of a compiler.
  1457. \section{Example Compiler: A Partial Evaluator}
  1458. \label{sec:partial-evaluation}
  1459. In this section we consider a compiler that translates \LangInt{}
  1460. programs into \LangInt{} programs that may be more efficient. The
  1461. compiler eagerly computes the parts of the program that do not depend
  1462. on any inputs, a process known as \emph{partial
  1463. evaluation}~\citep{Jones:1993uq}.\index{subject}{partialevaluation@partial evaluation}
  1464. For example, given the following program
  1465. {\if\edition\racketEd
  1466. \begin{lstlisting}
  1467. (+ (read) (- (+ 5 3)))
  1468. \end{lstlisting}
  1469. \fi}
  1470. {\if\edition\pythonEd\pythonColor
  1471. \begin{lstlisting}
  1472. print(input_int() + -(5 + 3) )
  1473. \end{lstlisting}
  1474. \fi}
  1475. \noindent our compiler translates it into the program
  1476. {\if\edition\racketEd
  1477. \begin{lstlisting}
  1478. (+ (read) -8)
  1479. \end{lstlisting}
  1480. \fi}
  1481. {\if\edition\pythonEd\pythonColor
  1482. \begin{lstlisting}
  1483. print(input_int() + -8)
  1484. \end{lstlisting}
  1485. \fi}
  1486. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1487. evaluator for the \LangInt{} language. The output of the partial evaluator
  1488. is a program in \LangInt{}. In figure~\ref{fig:pe-arith}, the structural
  1489. recursion over $\Exp$ is captured in the \code{pe\_exp} function,
  1490. whereas the code for partially evaluating the negation and addition
  1491. operations is factored into three auxiliary functions:
  1492. \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub}. The input to these
  1493. functions is the output of partially evaluating the children.
  1494. The \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub} functions check whether their
  1495. arguments are integers and if they are, perform the appropriate
  1496. arithmetic. Otherwise, they create an AST node for the arithmetic
  1497. operation.
  1498. \begin{figure}[tp]
  1499. \begin{tcolorbox}[colback=white]
  1500. {\if\edition\racketEd
  1501. \begin{lstlisting}
  1502. (define (pe_neg r)
  1503. (match r
  1504. [(Int n) (Int (fx- 0 n))]
  1505. [else (Prim '- (list r))]))
  1506. (define (pe_add r1 r2)
  1507. (match* (r1 r2)
  1508. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1509. [(_ _) (Prim '+ (list r1 r2))]))
  1510. (define (pe_sub r1 r2)
  1511. (match* (r1 r2)
  1512. [((Int n1) (Int n2)) (Int (fx- n1 n2))]
  1513. [(_ _) (Prim '- (list r1 r2))]))
  1514. (define (pe_exp e)
  1515. (match e
  1516. [(Int n) (Int n)]
  1517. [(Prim 'read '()) (Prim 'read '())]
  1518. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1519. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]
  1520. [(Prim '- (list e1 e2)) (pe_sub (pe_exp e1) (pe_exp e2))]))
  1521. (define (pe_Lint p)
  1522. (match p
  1523. [(Program '() e) (Program '() (pe_exp e))]))
  1524. \end{lstlisting}
  1525. \fi}
  1526. {\if\edition\pythonEd\pythonColor
  1527. \begin{lstlisting}
  1528. def pe_neg(r):
  1529. match r:
  1530. case Constant(n):
  1531. return Constant(neg64(n))
  1532. case _:
  1533. return UnaryOp(USub(), r)
  1534. def pe_add(r1, r2):
  1535. match (r1, r2):
  1536. case (Constant(n1), Constant(n2)):
  1537. return Constant(add64(n1, n2))
  1538. case _:
  1539. return BinOp(r1, Add(), r2)
  1540. def pe_sub(r1, r2):
  1541. match (r1, r2):
  1542. case (Constant(n1), Constant(n2)):
  1543. return Constant(sub64(n1, n2))
  1544. case _:
  1545. return BinOp(r1, Sub(), r2)
  1546. def pe_exp(e):
  1547. match e:
  1548. case BinOp(left, Add(), right):
  1549. return pe_add(pe_exp(left), pe_exp(right))
  1550. case BinOp(left, Sub(), right):
  1551. return pe_sub(pe_exp(left), pe_exp(right))
  1552. case UnaryOp(USub(), v):
  1553. return pe_neg(pe_exp(v))
  1554. case Constant(value):
  1555. return e
  1556. case Call(Name('input_int'), []):
  1557. return e
  1558. def pe_stmt(s):
  1559. match s:
  1560. case Expr(Call(Name('print'), [arg])):
  1561. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1562. case Expr(value):
  1563. return Expr(pe_exp(value))
  1564. def pe_P_int(p):
  1565. match p:
  1566. case Module(body):
  1567. new_body = [pe_stmt(s) for s in body]
  1568. return Module(new_body)
  1569. \end{lstlisting}
  1570. \fi}
  1571. \end{tcolorbox}
  1572. \caption{A partial evaluator for \LangInt{}.}
  1573. \label{fig:pe-arith}
  1574. \end{figure}
  1575. To gain some confidence that the partial evaluator is correct, we can
  1576. test whether it produces programs that produce the same result as the
  1577. input programs. That is, we can test whether it satisfies the diagram
  1578. of \eqref{eq:compile-correct}.
  1579. %
  1580. {\if\edition\racketEd
  1581. The following code runs the partial evaluator on several examples and
  1582. tests the output program. The \texttt{parse-program} and
  1583. \texttt{assert} functions are defined in
  1584. appendix~\ref{appendix:utilities}.\\
  1585. \begin{minipage}{1.0\textwidth}
  1586. \begin{lstlisting}
  1587. (define (test_pe p)
  1588. (assert "testing pe_Lint"
  1589. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1590. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1591. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1592. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1593. \end{lstlisting}
  1594. \end{minipage}
  1595. \fi}
  1596. % TODO: python version of testing the PE
  1597. \begin{exercise}\normalfont\normalsize
  1598. Create three programs in the \LangInt{} language and test whether
  1599. partially evaluating them with \code{pe\_Lint} and then
  1600. interpreting them with \code{interp\_Lint} gives the same result
  1601. as directly interpreting them with \code{interp\_Lint}.
  1602. \end{exercise}
  1603. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1604. \chapter{Integers and Variables}
  1605. \label{ch:Lvar}
  1606. \setcounter{footnote}{0}
  1607. This chapter covers compiling a subset of
  1608. \racket{Racket}\python{Python} to x86-64 assembly
  1609. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1610. integer arithmetic and local variables. We often refer to x86-64
  1611. simply as x86. The chapter first describes the \LangVar{} language
  1612. (section~\ref{sec:s0}) and then introduces x86 assembly
  1613. (section~\ref{sec:x86}). Because x86 assembly language is large, we
  1614. discuss only the instructions needed for compiling \LangVar{}. We
  1615. introduce more x86 instructions in subsequent chapters. After
  1616. introducing \LangVar{} and x86, we reflect on their differences and
  1617. create a plan to break down the translation from \LangVar{} to x86
  1618. into a handful of steps (section~\ref{sec:plan-s0-x86}). The rest of
  1619. the chapter gives detailed hints regarding each step. We aim to give
  1620. enough hints that the well-prepared reader, together with a few
  1621. friends, can implement a compiler from \LangVar{} to x86 in a short
  1622. time. To suggest the scale of this first compiler, we note that the
  1623. instructor solution for the \LangVar{} compiler is approximately
  1624. \racket{500}\python{300} lines of code.
  1625. \section{The \LangVar{} Language}
  1626. \label{sec:s0}
  1627. \index{subject}{variable}
  1628. The \LangVar{} language extends the \LangInt{} language with
  1629. variables. The concrete syntax of the \LangVar{} language is defined
  1630. by the grammar presented in figure~\ref{fig:Lvar-concrete-syntax}, and
  1631. the abstract syntax is presented in figure~\ref{fig:Lvar-syntax}. The
  1632. nonterminal \Var{} may be any \racket{Racket}\python{Python}
  1633. identifier. As in \LangInt{}, \READOP{} is a nullary operator,
  1634. \key{-} is a unary operator, and \key{+} is a binary operator.
  1635. Similarly to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1636. \racket{\key{Program} struct}\python{\key{Module} instance} to mark
  1637. the top of the program.
  1638. %% The $\itm{info}$
  1639. %% field of the \key{Program} structure contains an \emph{association
  1640. %% list} (a list of key-value pairs) that is used to communicate
  1641. %% auxiliary data from one compiler pass the next.
  1642. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1643. exhibit several compilation techniques.
  1644. \newcommand{\LvarGrammarRacket}{
  1645. \begin{array}{rcl}
  1646. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1647. \end{array}
  1648. }
  1649. \newcommand{\LvarASTRacket}{
  1650. \begin{array}{rcl}
  1651. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1652. \end{array}
  1653. }
  1654. \newcommand{\LvarGrammarPython}{
  1655. \begin{array}{rcl}
  1656. \Exp &::=& \Var{} \\
  1657. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1658. \end{array}
  1659. }
  1660. \newcommand{\LvarASTPython}{
  1661. \begin{array}{rcl}
  1662. \Exp{} &::=& \VAR{\Var{}} \\
  1663. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1664. \end{array}
  1665. }
  1666. \begin{figure}[tp]
  1667. \centering
  1668. \begin{tcolorbox}[colback=white]
  1669. {\if\edition\racketEd
  1670. \[
  1671. \begin{array}{l}
  1672. \gray{\LintGrammarRacket{}} \\ \hline
  1673. \LvarGrammarRacket{} \\
  1674. \begin{array}{rcl}
  1675. \LangVarM{} &::=& \Exp
  1676. \end{array}
  1677. \end{array}
  1678. \]
  1679. \fi}
  1680. {\if\edition\pythonEd\pythonColor
  1681. \[
  1682. \begin{array}{l}
  1683. \gray{\LintGrammarPython} \\ \hline
  1684. \LvarGrammarPython \\
  1685. \begin{array}{rcl}
  1686. \LangVarM{} &::=& \Stmt^{*}
  1687. \end{array}
  1688. \end{array}
  1689. \]
  1690. \fi}
  1691. \end{tcolorbox}
  1692. \caption{The concrete syntax of \LangVar{}.}
  1693. \label{fig:Lvar-concrete-syntax}
  1694. \end{figure}
  1695. \begin{figure}[tp]
  1696. \centering
  1697. \begin{tcolorbox}[colback=white]
  1698. {\if\edition\racketEd
  1699. \[
  1700. \begin{array}{l}
  1701. \gray{\LintASTRacket{}} \\ \hline
  1702. \LvarASTRacket \\
  1703. \begin{array}{rcl}
  1704. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1705. \end{array}
  1706. \end{array}
  1707. \]
  1708. \fi}
  1709. {\if\edition\pythonEd\pythonColor
  1710. \[
  1711. \begin{array}{l}
  1712. \gray{\LintASTPython}\\ \hline
  1713. \LvarASTPython \\
  1714. \begin{array}{rcl}
  1715. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1716. \end{array}
  1717. \end{array}
  1718. \]
  1719. \fi}
  1720. \end{tcolorbox}
  1721. \caption{The abstract syntax of \LangVar{}.}
  1722. \label{fig:Lvar-syntax}
  1723. \end{figure}
  1724. {\if\edition\racketEd
  1725. Let us dive further into the syntax and semantics of the \LangVar{}
  1726. language. The \key{let} feature defines a variable for use within its
  1727. body and initializes the variable with the value of an expression.
  1728. The abstract syntax for \key{let} is shown in
  1729. figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1730. \begin{lstlisting}
  1731. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1732. \end{lstlisting}
  1733. For example, the following program initializes \code{x} to $32$ and then
  1734. evaluates the body \code{(+ 10 x)}, producing $42$.
  1735. \begin{lstlisting}
  1736. (let ([x (+ 12 20)]) (+ 10 x))
  1737. \end{lstlisting}
  1738. \fi}
  1739. %
  1740. {\if\edition\pythonEd\pythonColor
  1741. %
  1742. The \LangVar{} language includes an assignment statement, which defines a
  1743. variable for use in later statements and initializes the variable with
  1744. the value of an expression. The abstract syntax for assignment is
  1745. defined in figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1746. assignment is \index{subject}{Assign@\texttt{Assign}}
  1747. \begin{lstlisting}
  1748. |$\itm{var}$| = |$\itm{exp}$|
  1749. \end{lstlisting}
  1750. For example, the following program initializes the variable \code{x}
  1751. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1752. \begin{lstlisting}
  1753. x = 12 + 20
  1754. print(10 + x)
  1755. \end{lstlisting}
  1756. \fi}
  1757. {\if\edition\racketEd
  1758. %
  1759. When there are multiple \key{let}s for the same variable, the closest
  1760. enclosing \key{let} is used. That is, variable definitions overshadow
  1761. prior definitions. Consider the following program with two \key{let}s
  1762. that define two variables named \code{x}. Can you figure out the
  1763. result?
  1764. \begin{lstlisting}
  1765. (let ([x 32]) (+ (let ([x 10]) x) x))
  1766. \end{lstlisting}
  1767. For the purposes of depicting which variable occurrences correspond to
  1768. which definitions, the following shows the \code{x}'s annotated with
  1769. subscripts to distinguish them. Double-check that your answer for the
  1770. previous program is the same as your answer for this annotated version
  1771. of the program.
  1772. \begin{lstlisting}
  1773. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1774. \end{lstlisting}
  1775. The initializing expression is always evaluated before the body of the
  1776. \key{let}, so in the following, the \key{read} for \code{x} is
  1777. performed before the \key{read} for \code{y}. Given the input
  1778. $52$ then $10$, the following produces $42$ (not $-42$).
  1779. \begin{lstlisting}
  1780. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1781. \end{lstlisting}
  1782. \fi}
  1783. \subsection{Extensible Interpreters via Method Overriding}
  1784. \label{sec:extensible-interp}
  1785. \index{subject}{method overriding}
  1786. To prepare for discussing the interpreter of \LangVar{}, we explain
  1787. why we implement it in an object-oriented style. Throughout this book
  1788. we define many interpreters, one for each language that we
  1789. study. Because each language builds on the prior one, there is a lot
  1790. of commonality between these interpreters. We want to write down the
  1791. common parts just once instead of many times. A naive interpreter for
  1792. \LangVar{} would handle the \racket{cases for variables and
  1793. \code{let}} \python{case for variables} but dispatch to an
  1794. interpreter for \LangInt{} in the rest of the cases. The following
  1795. code sketches this idea. (We explain the \code{env} parameter in
  1796. section~\ref{sec:interp-Lvar}.)
  1797. \begin{center}
  1798. {\if\edition\racketEd
  1799. \begin{minipage}{0.45\textwidth}
  1800. \begin{lstlisting}
  1801. (define ((interp_Lint env) e)
  1802. (match e
  1803. [(Prim '- (list e1))
  1804. (fx- 0 ((interp_Lint env) e1))]
  1805. ...))
  1806. \end{lstlisting}
  1807. \end{minipage}
  1808. \begin{minipage}{0.45\textwidth}
  1809. \begin{lstlisting}
  1810. (define ((interp_Lvar env) e)
  1811. (match e
  1812. [(Var x)
  1813. (dict-ref env x)]
  1814. [(Let x e body)
  1815. (define v ((interp_Lvar env) e))
  1816. (define env^ (dict-set env x v))
  1817. ((interp_Lvar env^) body)]
  1818. [else ((interp_Lint env) e)]))
  1819. \end{lstlisting}
  1820. \end{minipage}
  1821. \fi}
  1822. {\if\edition\pythonEd\pythonColor
  1823. \begin{minipage}{0.45\textwidth}
  1824. \begin{lstlisting}
  1825. def interp_Lint(e, env):
  1826. match e:
  1827. case UnaryOp(USub(), e1):
  1828. return - interp_Lint(e1, env)
  1829. ...
  1830. \end{lstlisting}
  1831. \end{minipage}
  1832. \begin{minipage}{0.45\textwidth}
  1833. \begin{lstlisting}
  1834. def interp_Lvar(e, env):
  1835. match e:
  1836. case Name(id):
  1837. return env[id]
  1838. case _:
  1839. return interp_Lint(e, env)
  1840. \end{lstlisting}
  1841. \end{minipage}
  1842. \fi}
  1843. \end{center}
  1844. The problem with this naive approach is that it does not handle
  1845. situations in which an \LangVar{} feature, such as a variable, is
  1846. nested inside an \LangInt{} feature, such as the \code{-} operator, as
  1847. in the following program.
  1848. {\if\edition\racketEd
  1849. \begin{lstlisting}
  1850. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1851. \end{lstlisting}
  1852. \fi}
  1853. {\if\edition\pythonEd\pythonColor
  1854. \begin{minipage}{1.0\textwidth}
  1855. \begin{lstlisting}
  1856. y = 10
  1857. print(-y)
  1858. \end{lstlisting}
  1859. \end{minipage}
  1860. \fi}
  1861. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1862. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1863. then it recursively calls \code{interp\_Lint} again on its argument.
  1864. Because there is no case for \code{Var} in \code{interp\_Lint}, we get
  1865. an error!
  1866. To make our interpreters extensible we need something called
  1867. \emph{open recursion}\index{subject}{open recursion}, in which the
  1868. tying of the recursive knot is delayed until the functions are
  1869. composed. Object-oriented languages provide open recursion via method
  1870. overriding. The following code uses
  1871. method overriding to interpret \LangInt{} and \LangVar{} using
  1872. %
  1873. \racket{the
  1874. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1875. \index{subject}{class} feature of Racket.}%
  1876. %
  1877. \python{a Python \code{class} definition.}
  1878. %
  1879. We define one class for each language and define a method for
  1880. interpreting expressions inside each class. The class for \LangVar{}
  1881. inherits from the class for \LangInt{}, and the method
  1882. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1883. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1884. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1885. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1886. \code{interp\_exp} in \LangInt{}.
  1887. \begin{center}
  1888. \hspace{-20pt}
  1889. {\if\edition\racketEd
  1890. \begin{minipage}{0.45\textwidth}
  1891. \begin{lstlisting}
  1892. (define interp-Lint-class
  1893. (class object%
  1894. (define/public ((interp_exp env) e)
  1895. (match e
  1896. [(Prim '- (list e))
  1897. (fx- 0 ((interp_exp env) e))]
  1898. ...))
  1899. ...))
  1900. \end{lstlisting}
  1901. \end{minipage}
  1902. \begin{minipage}{0.45\textwidth}
  1903. \begin{lstlisting}
  1904. (define interp-Lvar-class
  1905. (class interp-Lint-class
  1906. (define/override ((interp_exp env) e)
  1907. (match e
  1908. [(Var x)
  1909. (dict-ref env x)]
  1910. [(Let x e body)
  1911. (define v ((interp_exp env) e))
  1912. (define env^ (dict-set env x v))
  1913. ((interp_exp env^) body)]
  1914. [else
  1915. (super (interp_exp env) e)]))
  1916. ...
  1917. ))
  1918. \end{lstlisting}
  1919. \end{minipage}
  1920. \fi}
  1921. {\if\edition\pythonEd\pythonColor
  1922. \begin{minipage}{0.45\textwidth}
  1923. \begin{lstlisting}
  1924. class InterpLint:
  1925. def interp_exp(e):
  1926. match e:
  1927. case UnaryOp(USub(), e1):
  1928. return neg64(self.interp_exp(e1))
  1929. ...
  1930. ...
  1931. \end{lstlisting}
  1932. \end{minipage}
  1933. \begin{minipage}{0.45\textwidth}
  1934. \begin{lstlisting}
  1935. def InterpLvar(InterpLint):
  1936. def interp_exp(e):
  1937. match e:
  1938. case Name(id):
  1939. return env[id]
  1940. case _:
  1941. return super().interp_exp(e)
  1942. ...
  1943. \end{lstlisting}
  1944. \end{minipage}
  1945. \fi}
  1946. \end{center}
  1947. We return to the troublesome example, repeated here:
  1948. {\if\edition\racketEd
  1949. \begin{lstlisting}
  1950. (Let 'y (Int 10) (Prim '- (Var 'y)))
  1951. \end{lstlisting}
  1952. \fi}
  1953. {\if\edition\pythonEd\pythonColor
  1954. \begin{lstlisting}
  1955. y = 10
  1956. print(-y)
  1957. \end{lstlisting}
  1958. \fi}
  1959. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}%
  1960. \racket{on this expression,}
  1961. \python{on the \code{-y} expression,}
  1962. %
  1963. which we call \code{e0}, by creating an object of the \LangVar{} class
  1964. and calling the \code{interp\_exp} method
  1965. {\if\edition\racketEd
  1966. \begin{lstlisting}
  1967. ((send (new interp-Lvar-class) interp_exp '()) e0)
  1968. \end{lstlisting}
  1969. \fi}
  1970. {\if\edition\pythonEd\pythonColor
  1971. \begin{lstlisting}
  1972. InterpLvar().interp_exp(e0)
  1973. \end{lstlisting}
  1974. \fi}
  1975. \noindent To process the \code{-} operator, the default case of
  1976. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1977. method in \LangInt{}. But then for the recursive method call, it
  1978. dispatches to \code{interp\_exp} in \LangVar{}, where the
  1979. \code{Var} node is handled correctly. Thus, method overriding gives us
  1980. the open recursion that we need to implement our interpreters in an
  1981. extensible way.
  1982. \subsection{Definitional Interpreter for \LangVar{}}
  1983. \label{sec:interp-Lvar}
  1984. Having justified the use of classes and methods to implement
  1985. interpreters, we revisit the definitional interpreter for \LangInt{}
  1986. shown in figure~\ref{fig:interp-Lint-class} and then extend it to
  1987. create an interpreter for \LangVar{}, shown in
  1988. figure~\ref{fig:interp-Lvar}.
  1989. %
  1990. \python{We change the \code{interp\_stmt} method in the interpreter
  1991. for \LangInt{} to take two extra parameters named \code{env}, which
  1992. we discuss in the next paragraph, and \code{cont} for
  1993. \emph{continuation}, which is the technical name for what comes
  1994. after a particular point in a program. The \code{cont} parameter is
  1995. the list of statements that that follow the current statement. Note
  1996. that \code{interp\_stmts} invokes \code{interp\_stmt} on the first
  1997. statement and passes the rest of the statements as the argument for
  1998. \code{cont}. This organization enables each statement to decide what
  1999. if anything should be evaluated after it, for example, allowing a
  2000. \code{return} statement to exit early from a function (see
  2001. Chapter~\ref{ch:Lfun}).}
  2002. The interpreter for \LangVar{} adds two new cases for
  2003. variables and \racket{\key{let}}\python{assignment}. For
  2004. \racket{\key{let}}\python{assignment}, we need a way to communicate the
  2005. value bound to a variable to all the uses of the variable. To
  2006. accomplish this, we maintain a mapping from variables to values called
  2007. an \emph{environment}\index{subject}{environment}.
  2008. %
  2009. We use
  2010. %
  2011. \racket{an association list (alist) }%
  2012. %
  2013. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary} }%
  2014. %
  2015. to represent the environment.
  2016. %
  2017. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  2018. and the \code{racket/dict} package.}
  2019. %
  2020. The \code{interp\_exp} function takes the current environment,
  2021. \code{env}, as an extra parameter. When the interpreter encounters a
  2022. variable, it looks up the corresponding value in the environment. If
  2023. the variable is not in the environment (because the variable was not
  2024. defined) then the lookup will fail and the interpreter will
  2025. halt with an error. Recall that the compiler is not obligated to
  2026. compile such programs (Section~\ref{sec:interp_Lint}).\footnote{In
  2027. Chapter~\ref{ch:Lif} we introduce type checking rules that
  2028. prohibit access to undefined variables.}
  2029. %
  2030. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  2031. initializing expression, extends the environment with the result
  2032. value bound to the variable, using \code{dict-set}, then evaluates
  2033. the body of the \key{Let}.}
  2034. %
  2035. \python{When the interpreter encounters an assignment, it evaluates
  2036. the initializing expression and then associates the resulting value
  2037. with the variable in the environment.}
  2038. \begin{figure}[tp]
  2039. \begin{tcolorbox}[colback=white]
  2040. {\if\edition\racketEd
  2041. \begin{lstlisting}
  2042. (define interp-Lint-class
  2043. (class object%
  2044. (super-new)
  2045. (define/public ((interp_exp env) e)
  2046. (match e
  2047. [(Int n) n]
  2048. [(Prim 'read '())
  2049. (define r (read))
  2050. (cond [(fixnum? r) r]
  2051. [else (error 'interp_exp "expected an integer" r)])]
  2052. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  2053. [(Prim '+ (list e1 e2))
  2054. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  2055. [(Prim '- (list e1 e2))
  2056. (fx- ((interp_exp env) e1) ((interp_exp env) e2))]))
  2057. (define/public (interp_program p)
  2058. (match p
  2059. [(Program '() e) ((interp_exp '()) e)]))
  2060. ))
  2061. \end{lstlisting}
  2062. \fi}
  2063. {\if\edition\pythonEd\pythonColor
  2064. \begin{lstlisting}
  2065. class InterpLint:
  2066. def interp_exp(self, e, env):
  2067. match e:
  2068. case BinOp(left, Add(), right):
  2069. l = self.interp_exp(left, env)
  2070. r = self.interp_exp(right, env)
  2071. return add64(l, r)
  2072. case BinOp(left, Sub(), right):
  2073. l = self.interp_exp(left, env)
  2074. r = self.interp_exp(right, env)
  2075. return sub64(l, r)
  2076. case UnaryOp(USub(), v):
  2077. return neg64(self.interp_exp(v, env))
  2078. case Constant(value):
  2079. return value
  2080. case Call(Name('input_int'), []):
  2081. return int(input())
  2082. def interp_stmt(self, s, env, cont):
  2083. match s:
  2084. case Expr(Call(Name('print'), [arg])):
  2085. val = self.interp_exp(arg, env)
  2086. print(val, end='')
  2087. return self.interp_stmts(cont, env)
  2088. case Expr(value):
  2089. self.interp_exp(value, env)
  2090. return self.interp_stmts(cont, env)
  2091. case _:
  2092. raise Exception('error in interp_stmt, unexpected ' + repr(s))
  2093. def interp_stmts(self, ss, env):
  2094. match ss:
  2095. case []:
  2096. return 0
  2097. case [s, *ss]:
  2098. return self.interp_stmt(s, env, ss)
  2099. def interp(self, p):
  2100. match p:
  2101. case Module(body):
  2102. self.interp_stmts(body, {})
  2103. def interp_Lint(p):
  2104. return InterpLint().interp(p)
  2105. \end{lstlisting}
  2106. \fi}
  2107. \end{tcolorbox}
  2108. \caption{Interpreter for \LangInt{} as a class.}
  2109. \label{fig:interp-Lint-class}
  2110. \end{figure}
  2111. \begin{figure}[tp]
  2112. \begin{tcolorbox}[colback=white]
  2113. {\if\edition\racketEd
  2114. \begin{lstlisting}
  2115. (define interp-Lvar-class
  2116. (class interp-Lint-class
  2117. (super-new)
  2118. (define/override ((interp_exp env) e)
  2119. (match e
  2120. [(Var x) (dict-ref env x)]
  2121. [(Let x e body)
  2122. (define new-env (dict-set env x ((interp_exp env) e)))
  2123. ((interp_exp new-env) body)]
  2124. [else ((super interp_exp env) e)]))
  2125. ))
  2126. (define (interp_Lvar p)
  2127. (send (new interp-Lvar-class) interp_program p))
  2128. \end{lstlisting}
  2129. \fi}
  2130. {\if\edition\pythonEd\pythonColor
  2131. \begin{lstlisting}
  2132. class InterpLvar(InterpLint):
  2133. def interp_exp(self, e, env):
  2134. match e:
  2135. case Name(id):
  2136. return env[id]
  2137. case _:
  2138. return super().interp_exp(e, env)
  2139. def interp_stmt(self, s, env, cont):
  2140. match s:
  2141. case Assign([lhs], value):
  2142. env[lhs.id] = self.interp_exp(value, env)
  2143. return self.interp_stmts(cont, env)
  2144. case _:
  2145. return super().interp_stmt(s, env, cont)
  2146. def interp_Lvar(p):
  2147. return InterpLvar().interp(p)
  2148. \end{lstlisting}
  2149. \fi}
  2150. \end{tcolorbox}
  2151. \caption{Interpreter for the \LangVar{} language.}
  2152. \label{fig:interp-Lvar}
  2153. \end{figure}
  2154. {\if\edition\racketEd
  2155. \begin{figure}[tp]
  2156. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  2157. \small
  2158. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  2159. An \emph{association list} (called an alist) is a list of key-value pairs.
  2160. For example, we can map people to their ages with an alist
  2161. \index{subject}{alist}\index{subject}{association list}
  2162. \begin{lstlisting}[basicstyle=\ttfamily]
  2163. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  2164. \end{lstlisting}
  2165. The \emph{dictionary} interface is for mapping keys to values.
  2166. Every alist implements this interface. \index{subject}{dictionary}
  2167. The package
  2168. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  2169. provides many functions for working with dictionaries, such as
  2170. \begin{description}
  2171. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  2172. returns the value associated with the given $\itm{key}$.
  2173. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  2174. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  2175. and otherwise is the same as $\itm{dict}$.
  2176. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  2177. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  2178. of keys and values in $\itm{dict}$. For example, the following
  2179. creates a new alist in which the ages are incremented:
  2180. \end{description}
  2181. \vspace{-10pt}
  2182. \begin{lstlisting}[basicstyle=\ttfamily]
  2183. (for/list ([(k v) (in-dict ages)])
  2184. (cons k (add1 v)))
  2185. \end{lstlisting}
  2186. \end{tcolorbox}
  2187. %\end{wrapfigure}
  2188. \caption{Association lists implement the dictionary interface.}
  2189. \label{fig:alist}
  2190. \end{figure}
  2191. \fi}
  2192. The goal for this chapter is to implement a compiler that translates
  2193. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2194. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2195. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2196. That is, they output the same integer $n$. We depict this correctness
  2197. criteria in the following diagram:
  2198. \[
  2199. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2200. \node (p1) at (0, 0) {$P_1$};
  2201. \node (p2) at (4, 0) {$P_2$};
  2202. \node (o) at (4, -2) {$n$};
  2203. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2204. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2205. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2206. \end{tikzpicture}
  2207. \]
  2208. Next we introduce the \LangXInt{} subset of x86 that suffices for
  2209. compiling \LangVar{}.
  2210. \section{The \LangXInt{} Assembly Language}
  2211. \label{sec:x86}
  2212. \index{subject}{x86}
  2213. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2214. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2215. assembler.
  2216. %
  2217. A program begins with a \code{main} label followed by a sequence of
  2218. instructions. The \key{globl} directive makes the \key{main} procedure
  2219. externally visible so that the operating system can call it.
  2220. %
  2221. An x86 program is stored in the computer's memory. For our purposes,
  2222. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2223. values. The computer has a \emph{program counter}
  2224. (PC)\index{subject}{program counter}\index{subject}{PC} stored in the
  2225. \code{rip} register that points to the address of the next instruction
  2226. to be executed. For most instructions, the program counter is
  2227. incremented after the instruction is executed so that it points to the
  2228. next instruction in memory. Most x86 instructions take two operands,
  2229. each of which is an integer constant (called an \emph{immediate
  2230. value}\index{subject}{immediate value}), a
  2231. \emph{register}\index{subject}{register}, or a memory location.
  2232. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2233. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2234. && \key{r8} \MID \key{r9} \MID \key{r10}
  2235. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2236. \MID \key{r14} \MID \key{r15}}
  2237. \newcommand{\GrammarXInt}{
  2238. \begin{array}{rcl}
  2239. \Reg &::=& \allregisters{} \\
  2240. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2241. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2242. \key{subq} \; \Arg\key{,} \Arg \MID
  2243. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2244. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2245. \key{callq} \; \mathit{label} \MID
  2246. \key{retq} \MID
  2247. \key{jmp}\,\itm{label} \MID \\
  2248. && \itm{label}\key{:}\; \Instr
  2249. \end{array}
  2250. }
  2251. \begin{figure}[tp]
  2252. \begin{tcolorbox}[colback=white]
  2253. {\if\edition\racketEd
  2254. \[
  2255. \begin{array}{l}
  2256. \GrammarXInt \\
  2257. \begin{array}{lcl}
  2258. \LangXIntM{} &::= & \key{.globl main}\\
  2259. & & \key{main:} \; \Instr\ldots
  2260. \end{array}
  2261. \end{array}
  2262. \]
  2263. \fi}
  2264. {\if\edition\pythonEd\pythonColor
  2265. \[
  2266. \begin{array}{lcl}
  2267. \Reg &::=& \allregisters{} \\
  2268. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2269. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2270. \key{subq} \; \Arg\key{,} \Arg \MID
  2271. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2272. && \key{callq} \; \mathit{label} \MID
  2273. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2274. \LangXIntM{} &::= & \key{.globl main}\\
  2275. & & \key{main:} \; \Instr^{*}
  2276. \end{array}
  2277. \]
  2278. \fi}
  2279. \end{tcolorbox}
  2280. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2281. \label{fig:x86-int-concrete}
  2282. \end{figure}
  2283. A register is a special kind of variable that holds a 64-bit
  2284. value. There are 16 general-purpose registers in the computer; their
  2285. names are given in figure~\ref{fig:x86-int-concrete}. A register is
  2286. written with a percent sign, \key{\%}, followed by the register name,
  2287. for example \key{\%rax}.
  2288. An immediate value is written using the notation \key{\$}$n$ where $n$
  2289. is an integer.
  2290. %
  2291. %
  2292. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2293. which obtains the address stored in register $r$ and then adds $n$
  2294. bytes to the address. The resulting address is used to load or to store
  2295. to memory depending on whether it occurs as a source or destination
  2296. argument of an instruction.
  2297. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from
  2298. the source $s$ and destination $d$, applies the arithmetic operation,
  2299. and then writes the result to the destination $d$. \index{subject}{instruction}
  2300. %
  2301. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2302. stores the result in $d$.
  2303. %
  2304. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2305. specified by the label, and $\key{retq}$ returns from a procedure to
  2306. its caller.
  2307. %
  2308. We discuss procedure calls in more detail further in this chapter and
  2309. in chapter~\ref{ch:Lfun}.
  2310. %
  2311. The last letter \key{q} indicates that these instructions operate on
  2312. quadwords, which are 64-bit values.
  2313. %
  2314. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2315. counter to the address of the instruction immediately after the
  2316. specified label.}
  2317. Appendix~\ref{sec:x86-quick-reference} contains a reference for
  2318. all the x86 instructions used in this book.
  2319. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2320. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2321. \lstinline{movq $10, %rax}
  2322. puts $10$ into register \key{rax}, and then \lstinline{addq $32, %rax}
  2323. adds $32$ to the $10$ in \key{rax} and
  2324. puts the result, $42$, into \key{rax}.
  2325. %
  2326. The last instruction \key{retq} finishes the \key{main} function by
  2327. returning the integer in \key{rax} to the operating system. The
  2328. operating system interprets this integer as the program's exit
  2329. code. By convention, an exit code of 0 indicates that a program has
  2330. completed successfully, and all other exit codes indicate various
  2331. errors.
  2332. %
  2333. \racket{However, in this book we return the result of the program
  2334. as the exit code.}
  2335. \begin{figure}[tbp]
  2336. \begin{minipage}{0.45\textwidth}
  2337. \begin{tcolorbox}[colback=white]
  2338. \begin{lstlisting}
  2339. .globl main
  2340. main:
  2341. movq $10, %rax
  2342. addq $32, %rax
  2343. retq
  2344. \end{lstlisting}
  2345. \end{tcolorbox}
  2346. \end{minipage}
  2347. \caption{An x86 program that computes
  2348. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2349. \label{fig:p0-x86}
  2350. \end{figure}
  2351. We exhibit the use of memory for storing intermediate results in the
  2352. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2353. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2354. uses a region of memory called the \emph{procedure call stack}
  2355. (\emph{stack} for
  2356. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2357. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2358. for each procedure call. The memory layout for an individual frame is
  2359. shown in figure~\ref{fig:frame}. The register \key{rsp} is called the
  2360. \emph{stack pointer}\index{subject}{stack pointer} and contains the
  2361. address of the item at the top of the stack. In general, we use the
  2362. term \emph{pointer}\index{subject}{pointer} for something that
  2363. contains an address. The stack grows downward in memory, so we
  2364. increase the size of the stack by subtracting from the stack pointer.
  2365. In the context of a procedure call, the \emph{return
  2366. address}\index{subject}{return address} is the location of the
  2367. instruction that immediately follows the call instruction on the
  2368. caller side. The function call instruction, \code{callq}, pushes the
  2369. return address onto the stack prior to jumping to the procedure. The
  2370. register \key{rbp} is the \emph{base pointer}\index{subject}{base
  2371. pointer} and is used to access variables that are stored in the
  2372. frame of the current procedure call. The base pointer of the caller
  2373. is stored immediately after the return address.
  2374. Figure~\ref{fig:frame} shows the memory layout of a frame with storage
  2375. for $n$ variables, which are numbered from $1$ to $n$. Variable $1$ is
  2376. stored at address $-8\key{(\%rbp)}$, variable $2$ at
  2377. $-16\key{(\%rbp)}$, and so on.
  2378. \begin{figure}[tbp]
  2379. \begin{minipage}{0.66\textwidth}
  2380. \begin{tcolorbox}[colback=white]
  2381. {\if\edition\racketEd
  2382. \begin{lstlisting}
  2383. start:
  2384. movq $10, -8(%rbp)
  2385. negq -8(%rbp)
  2386. movq -8(%rbp), %rax
  2387. addq $52, %rax
  2388. jmp conclusion
  2389. .globl main
  2390. main:
  2391. pushq %rbp
  2392. movq %rsp, %rbp
  2393. subq $16, %rsp
  2394. jmp start
  2395. conclusion:
  2396. addq $16, %rsp
  2397. popq %rbp
  2398. retq
  2399. \end{lstlisting}
  2400. \fi}
  2401. {\if\edition\pythonEd\pythonColor
  2402. \begin{lstlisting}
  2403. .globl main
  2404. main:
  2405. pushq %rbp
  2406. movq %rsp, %rbp
  2407. subq $16, %rsp
  2408. movq $10, -8(%rbp)
  2409. negq -8(%rbp)
  2410. movq -8(%rbp), %rax
  2411. addq $52, %rax
  2412. addq $16, %rsp
  2413. popq %rbp
  2414. retq
  2415. \end{lstlisting}
  2416. \fi}
  2417. \end{tcolorbox}
  2418. \end{minipage}
  2419. \caption{An x86 program that computes
  2420. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2421. \label{fig:p1-x86}
  2422. \end{figure}
  2423. \begin{figure}[tbp]
  2424. \begin{minipage}{0.66\textwidth}
  2425. \begin{tcolorbox}[colback=white]
  2426. \centering
  2427. \begin{tabular}{|r|l|} \hline
  2428. Position & Contents \\ \hline
  2429. $8$(\key{\%rbp}) & return address \\
  2430. $0$(\key{\%rbp}) & old \key{rbp} \\
  2431. $-8$(\key{\%rbp}) & variable $1$ \\
  2432. $-16$(\key{\%rbp}) & variable $2$ \\
  2433. \ldots & \ldots \\
  2434. $0$(\key{\%rsp}) & variable $n$\\ \hline
  2435. \end{tabular}
  2436. \end{tcolorbox}
  2437. \end{minipage}
  2438. \caption{Memory layout of a frame.}
  2439. \label{fig:frame}
  2440. \end{figure}
  2441. In the program shown in figure~\ref{fig:p1-x86}, consider how control
  2442. is transferred from the operating system to the \code{main} function.
  2443. The operating system issues a \code{callq main} instruction that
  2444. pushes its return address on the stack and then jumps to
  2445. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2446. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2447. that when control arrives at \code{main}, the \code{rsp} is 8 bytes
  2448. out of alignment (because the \code{callq} pushed the return address).
  2449. The first three instructions are the typical
  2450. \emph{prelude}\index{subject}{prelude} for a procedure. The
  2451. instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2452. pointer \code{rsp} and then saves the base pointer of the caller at
  2453. address \code{rsp} on the stack. The next instruction \code{movq
  2454. \%rsp, \%rbp} sets the base pointer to the current stack pointer,
  2455. which is pointing to the location of the old base pointer. The
  2456. instruction \code{subq \$16, \%rsp} moves the stack pointer down to
  2457. make enough room for storing variables. This program needs one
  2458. variable ($8$ bytes), but we round up to 16 bytes so that \code{rsp} is
  2459. 16-byte-aligned, and then we are ready to make calls to other functions.
  2460. \racket{The last instruction of the prelude is \code{jmp start}, which
  2461. transfers control to the instructions that were generated from the
  2462. expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2463. \racket{The first instruction under the \code{start} label is}
  2464. %
  2465. \python{The first instruction after the prelude is}
  2466. %
  2467. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2468. %
  2469. The instruction \code{negq -8(\%rbp)} changes the contents of variable
  2470. $1$ to $-10$.
  2471. %
  2472. The next instruction moves the $-10$ from variable $1$ into the
  2473. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2474. the value in \code{rax}, updating its contents to $42$.
  2475. \racket{The three instructions under the label \code{conclusion} are the
  2476. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2477. %
  2478. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2479. \code{main} function consists of the last three instructions.}
  2480. %
  2481. The first two restore the \code{rsp} and \code{rbp} registers to their
  2482. states at the beginning of the procedure. In particular,
  2483. \key{addq \$16, \%rsp} moves the stack pointer to point to the
  2484. old base pointer. Then \key{popq \%rbp} restores the old base pointer
  2485. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2486. \key{retq}, jumps back to the procedure that called this one and adds
  2487. $8$ to the stack pointer.
  2488. Our compiler needs a convenient representation for manipulating x86
  2489. programs, so we define an abstract syntax for x86, shown in
  2490. figure~\ref{fig:x86-int-ast}. We refer to this language as
  2491. \LangXInt{}.
  2492. %
  2493. {\if\edition\pythonEd\pythonColor%
  2494. The main difference between this and the concrete syntax of \LangXInt{}
  2495. (figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2496. names, and register names are explicitly represented by strings.
  2497. \fi} %
  2498. {\if\edition\racketEd
  2499. The main difference between this and the concrete syntax of \LangXInt{}
  2500. (figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2501. front of every instruction. Instead instructions are grouped into
  2502. \emph{basic blocks}\index{subject}{basic block} with a
  2503. label associated with every basic block; this is why the \key{X86Program}
  2504. struct includes an alist mapping labels to basic blocks. The reason for this
  2505. organization becomes apparent in chapter~\ref{ch:Lif} when we
  2506. introduce conditional branching. The \code{Block} structure includes
  2507. an $\itm{info}$ field that is not needed in this chapter but becomes
  2508. useful in chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2509. $\itm{info}$ field should contain an empty list.
  2510. \fi}
  2511. %
  2512. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2513. node includes an integer for representing the arity of the function,
  2514. that is, the number of arguments, which is helpful to know during
  2515. register allocation (chapter~\ref{ch:register-allocation-Lvar}).
  2516. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2517. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2518. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2519. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2520. \MID \skey{r14} \MID \skey{r15}}
  2521. \newcommand{\ASTXIntRacket}{
  2522. \begin{array}{lcl}
  2523. \Reg &::=& \allregisters{} \\
  2524. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2525. \MID \DEREF{\Reg}{\Int} \\
  2526. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2527. \MID \BININSTR{\code{subq}}{\Arg}{\Arg}\\
  2528. &\MID& \UNIINSTR{\code{negq}}{\Arg}
  2529. \MID \BININSTR{\code{movq}}{\Arg}{\Arg}\\
  2530. &\MID& \PUSHQ{\Arg}
  2531. \MID \POPQ{\Arg} \\
  2532. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2533. \MID \RETQ{}
  2534. \MID \JMP{\itm{label}} \\
  2535. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}
  2536. \end{array}
  2537. }
  2538. \newcommand{\ASTXIntPython}{
  2539. \begin{array}{lcl}
  2540. \Reg &::=& \allregisters{} \\
  2541. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2542. \MID \DEREF{\Reg}{\Int} \\
  2543. \Instr &::=& \BININSTR{\skey{addq}}{\Arg}{\Arg}
  2544. \MID \BININSTR{\skey{subq}}{\Arg}{\Arg}\\
  2545. &\MID& \UNIINSTR{\skey{negq}}{\Arg}
  2546. \MID \BININSTR{\skey{movq}}{\Arg}{\Arg}\\
  2547. &\MID& \PUSHQ{\Arg}
  2548. \MID \POPQ{\Arg} \\
  2549. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2550. \MID \RETQ{}
  2551. \MID \JMP{\itm{label}} \\
  2552. \Block &::= & \Instr^{+}
  2553. \end{array}
  2554. }
  2555. \begin{figure}[tp]
  2556. \begin{tcolorbox}[colback=white]
  2557. \small
  2558. {\if\edition\racketEd
  2559. \[\arraycolsep=3pt
  2560. \begin{array}{l}
  2561. \ASTXIntRacket \\
  2562. \begin{array}{lcl}
  2563. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2564. \end{array}
  2565. \end{array}
  2566. \]
  2567. \fi}
  2568. {\if\edition\pythonEd\pythonColor
  2569. \[
  2570. \begin{array}{lcl}
  2571. \Reg &::=& \allastregisters{} \\
  2572. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2573. \MID \DEREF{\Reg}{\Int} \\
  2574. \Instr &::=& \BININSTR{\scode{addq}}{\Arg}{\Arg}
  2575. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} \\
  2576. &\MID& \BININSTR{\scode{movq}}{\Arg}{\Arg}
  2577. \MID \UNIINSTR{\scode{negq}}{\Arg}\\
  2578. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2579. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{} \MID \JMP{\itm{label}} \\
  2580. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2581. \end{array}
  2582. \]
  2583. \fi}
  2584. \end{tcolorbox}
  2585. \caption{The abstract syntax of \LangXInt{} assembly.}
  2586. \label{fig:x86-int-ast}
  2587. \end{figure}
  2588. \section{Planning the Trip to x86}
  2589. \label{sec:plan-s0-x86}
  2590. To compile one language to another, it helps to focus on the
  2591. differences between the two languages because the compiler will need
  2592. to bridge those differences. What are the differences between \LangVar{}
  2593. and x86 assembly? Here are some of the most important ones:
  2594. \begin{enumerate}
  2595. \item x86 arithmetic instructions typically have two arguments and
  2596. update the second argument in place. In contrast, \LangVar{}
  2597. arithmetic operations take two arguments and produce a new value.
  2598. An x86 instruction may have at most one memory-accessing argument.
  2599. Furthermore, some x86 instructions place special restrictions on
  2600. their arguments.
  2601. \item An argument of an \LangVar{} operator can be a deeply nested
  2602. expression, whereas x86 instructions restrict their arguments to be
  2603. integer constants, registers, and memory locations.
  2604. {\if\edition\racketEd
  2605. \item The order of execution in x86 is explicit in the syntax, which
  2606. is a sequence of instructions and jumps to labeled positions,
  2607. whereas in \LangVar{} the order of evaluation is a left-to-right
  2608. depth-first traversal of the abstract syntax tree. \fi}
  2609. \item A program in \LangVar{} can have any number of variables,
  2610. whereas x86 has 16 registers and the procedure call stack.
  2611. {\if\edition\racketEd
  2612. \item Variables in \LangVar{} can shadow other variables with the
  2613. same name. In x86, registers have unique names, and memory locations
  2614. have unique addresses.
  2615. \fi}
  2616. \end{enumerate}
  2617. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2618. down the problem into several steps, which deal with these differences
  2619. one at a time. Each of these steps is called a \emph{pass} of the
  2620. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2621. %
  2622. This term indicates that each step passes over, or traverses, the AST
  2623. of the program.
  2624. %
  2625. Furthermore, we follow the nanopass approach, which means that we
  2626. strive for each pass to accomplish one clear objective rather than two
  2627. or three at the same time.
  2628. %
  2629. We begin by sketching how we might implement each pass and give each
  2630. pass a name. We then figure out an ordering of the passes and the
  2631. input/output language for each pass. The very first pass has
  2632. \LangVar{} as its input language, and the last pass has \LangXInt{} as
  2633. its output language. In between these two passes, we can choose
  2634. whichever language is most convenient for expressing the output of
  2635. each pass, whether that be \LangVar{}, \LangXInt{}, or a new
  2636. \emph{intermediate language} of our own design. Finally, to
  2637. implement each pass we write one recursive function per nonterminal in
  2638. the grammar of the input language of the pass.
  2639. \index{subject}{intermediate language}
  2640. Our compiler for \LangVar{} consists of the following passes:
  2641. %
  2642. \begin{description}
  2643. {\if\edition\racketEd
  2644. \item[\key{uniquify}] deals with the shadowing of variables by
  2645. renaming every variable to a unique name.
  2646. \fi}
  2647. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2648. of a primitive operation or function call is a variable or integer,
  2649. that is, an \emph{atomic} expression. We refer to nonatomic
  2650. expressions as \emph{complex}. This pass introduces temporary
  2651. variables to hold the results of complex
  2652. subexpressions.\index{subject}{atomic
  2653. expression}\index{subject}{complex expression}%
  2654. {\if\edition\racketEd
  2655. \item[\key{explicate\_control}] makes the execution order of the
  2656. program explicit. It converts the abstract syntax tree
  2657. representation into a graph in which each node is a labeled sequence
  2658. of statements and the edges are \code{goto} statements.
  2659. \fi}
  2660. \item[\key{select\_instructions}]\index{subject}{select instructions}
  2661. handles the difference between
  2662. \LangVar{} operations and x86 instructions. This pass converts each
  2663. \LangVar{} operation to a short sequence of instructions that
  2664. accomplishes the same task.
  2665. \item[\key{assign\_homes}] replaces variables with registers or stack
  2666. locations.
  2667. \end{description}
  2668. %
  2669. {\if\edition\racketEd
  2670. %
  2671. Our treatment of \code{remove\_complex\_operands} and
  2672. \code{explicate\_control} as separate passes is an example of the
  2673. nanopass approach.\footnote{For analogous decompositions of the
  2674. translation into continuation passing style, see the work of
  2675. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.} The traditional
  2676. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2677. %
  2678. \fi}
  2679. The next question is, in what order should we apply these passes? This
  2680. question can be challenging because it is difficult to know ahead of
  2681. time which orderings will be better (that is, will be easier to
  2682. implement, produce more efficient code, and so on), and therefore
  2683. ordering often involves trial and error. Nevertheless, we can plan
  2684. ahead and make educated choices regarding the ordering.
  2685. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2686. \key{uniquify}? The \key{uniquify} pass should come first because
  2687. \key{explicate\_control} changes all the \key{let}-bound variables to
  2688. become local variables whose scope is the entire program, which would
  2689. confuse variables with the same name.}
  2690. %
  2691. \racket{We place \key{remove\_complex\_operands} before \key{explicate\_control}
  2692. because the later removes the \key{let} form, but it is convenient to
  2693. use \key{let} in the output of \key{remove\_complex\_operands}.}
  2694. %
  2695. \racket{The ordering of \key{uniquify} with respect to
  2696. \key{remove\_complex\_operands} does not matter, so we arbitrarily choose
  2697. \key{uniquify} to come first.}
  2698. The \key{select\_instructions} and \key{assign\_homes} passes are
  2699. intertwined.
  2700. %
  2701. In chapter~\ref{ch:Lfun} we learn that in x86, registers are used for
  2702. passing arguments to functions and that it is preferable to assign
  2703. parameters to their corresponding registers. This suggests that it
  2704. would be better to start with the \key{select\_instructions} pass,
  2705. which generates the instructions for argument passing, before
  2706. performing register allocation.
  2707. %
  2708. On the other hand, by selecting instructions first we may run into a
  2709. dead end in \key{assign\_homes}. Recall that only one argument of an
  2710. x86 instruction may be a memory access, but \key{assign\_homes} might
  2711. be forced to assign both arguments to memory locations.
  2712. %
  2713. A sophisticated approach is to repeat the two passes until a solution
  2714. is found. However, to reduce implementation complexity we recommend
  2715. placing \key{select\_instructions} first, followed by the
  2716. \key{assign\_homes}, and then a third pass named \key{patch\_instructions}
  2717. that uses a reserved register to fix outstanding problems.
  2718. \begin{figure}[tbp]
  2719. \begin{tcolorbox}[colback=white]
  2720. {\if\edition\racketEd
  2721. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  2722. \node (Lvar) at (0,2) {\large \LangVar{}};
  2723. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2724. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  2725. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2726. \node (Cvar-2) at (0,0) {\large \LangCVar{}};
  2727. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  2728. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  2729. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  2730. \node (x86-5) at (11,-2) {\large \LangXInt{}};
  2731. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2732. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  2733. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize\ \ explicate\_control} (Cvar-2);
  2734. \path[->,bend right=15] (Cvar-2) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  2735. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2736. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  2737. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  2738. \end{tikzpicture}
  2739. \fi}
  2740. {\if\edition\pythonEd\pythonColor
  2741. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  2742. \node (Lvar) at (0,2) {\large \LangVar{}};
  2743. \node (Lvar-2) at (4,2) {\large \LangVarANF{}};
  2744. \node (x86-1) at (0,0) {\large \LangXVar{}};
  2745. \node (x86-2) at (4,0) {\large \LangXVar{}};
  2746. \node (x86-3) at (8,0) {\large \LangXInt{}};
  2747. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2748. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-2);
  2749. \path[->,bend left=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instructions\ \ } (x86-1);
  2750. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2751. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  2752. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  2753. \end{tikzpicture}
  2754. \fi}
  2755. \end{tcolorbox}
  2756. \caption{Diagram of the passes for compiling \LangVar{}. }
  2757. \label{fig:Lvar-passes}
  2758. \end{figure}
  2759. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2760. passes and identifies the input and output language of each pass.
  2761. %
  2762. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2763. language, which extends \LangXInt{} with an unbounded number of
  2764. program-scope variables and removes the restrictions regarding
  2765. instruction arguments.
  2766. %
  2767. The last pass, \key{prelude\_and\_conclusion}, places the program
  2768. instructions inside a \code{main} function with instructions for the
  2769. prelude and conclusion.
  2770. %
  2771. \racket{In the next section we discuss the \LangCVar{} intermediate
  2772. language that serves as the output of \code{explicate\_control}.}
  2773. %
  2774. The remainder of this chapter provides guidance on the implementation
  2775. of each of the compiler passes represented in
  2776. figure~\ref{fig:Lvar-passes}.
  2777. %% The output of \key{uniquify} and \key{remove-complex-operands}
  2778. %% are programs that are still in the \LangVar{} language, though the
  2779. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2780. %% (section~\ref{sec:remove-complex-opera-Lvar}).
  2781. %% %
  2782. %% The output of \code{explicate\_control} is in an intermediate language
  2783. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2784. %% syntax, which we introduce in the next section. The
  2785. %% \key{select-instruction} pass translates from \LangCVar{} to
  2786. %% \LangXVar{}. The \key{assign-homes} and
  2787. %% \key{patch-instructions}
  2788. %% passes input and output variants of x86 assembly.
  2789. \newcommand{\CvarGrammarRacket}{
  2790. \begin{array}{lcl}
  2791. \Atm &::=& \Int \MID \Var \\
  2792. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2793. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2794. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2795. \end{array}
  2796. }
  2797. \newcommand{\CvarASTRacket}{
  2798. \begin{array}{lcl}
  2799. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2800. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2801. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2802. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2803. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2804. \end{array}
  2805. }
  2806. {\if\edition\racketEd
  2807. \subsection{The \LangCVar{} Intermediate Language}
  2808. The output of \code{explicate\_control} is similar to the C
  2809. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2810. categories for expressions and statements, so we name it \LangCVar{}.
  2811. This style of intermediate language is also known as
  2812. \emph{three-address code}, to emphasize that the typical form of a
  2813. statement such as \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2814. addresses: \code{x}, \code{y}, and \code{z}~\citep{Aho:2006wb}.
  2815. The concrete syntax for \LangCVar{} is shown in
  2816. figure~\ref{fig:c0-concrete-syntax}, and the abstract syntax for
  2817. \LangCVar{} is shown in figure~\ref{fig:c0-syntax}.
  2818. %
  2819. The \LangCVar{} language supports the same operators as \LangVar{} but
  2820. the arguments of operators are restricted to atomic
  2821. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2822. assignment statements that can be executed in sequence using the
  2823. \key{Seq} form. A sequence of statements always ends with
  2824. \key{Return}, a guarantee that is baked into the grammar rules for
  2825. \itm{tail}. The naming of this nonterminal comes from the term
  2826. \emph{tail position}\index{subject}{tail position}, which refers to an
  2827. expression that is the last one to execute within a function or
  2828. program.
  2829. A \LangCVar{} program consists of an alist mapping labels to
  2830. tails. This is more general than necessary for the present chapter, as
  2831. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2832. us from having to change the syntax in chapter~\ref{ch:Lif}. For now
  2833. there is just one label, \key{start}, and the whole program is
  2834. its tail.
  2835. %
  2836. The $\itm{info}$ field of the \key{CProgram} form, after the
  2837. \code{explicate\_control} pass, contains an alist that associates the
  2838. symbol \key{locals} with a list of all the variables used in the
  2839. program. At the start of the program, these variables are
  2840. uninitialized; they become initialized on their first assignment.
  2841. \begin{figure}[tbp]
  2842. \begin{tcolorbox}[colback=white]
  2843. \[
  2844. \begin{array}{l}
  2845. \CvarGrammarRacket \\
  2846. \begin{array}{lcl}
  2847. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2848. \end{array}
  2849. \end{array}
  2850. \]
  2851. \end{tcolorbox}
  2852. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2853. \label{fig:c0-concrete-syntax}
  2854. \end{figure}
  2855. \begin{figure}[tbp]
  2856. \begin{tcolorbox}[colback=white]
  2857. \[
  2858. \begin{array}{l}
  2859. \CvarASTRacket \\
  2860. \begin{array}{lcl}
  2861. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2862. \end{array}
  2863. \end{array}
  2864. \]
  2865. \end{tcolorbox}
  2866. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2867. \label{fig:c0-syntax}
  2868. \end{figure}
  2869. The definitional interpreter for \LangCVar{} is in the support code,
  2870. in the file \code{interp-Cvar.rkt}.
  2871. \fi}
  2872. {\if\edition\racketEd
  2873. \section{Uniquify Variables}
  2874. \label{sec:uniquify-Lvar}
  2875. The \code{uniquify} pass replaces the variable bound by each \key{let}
  2876. with a unique name. Both the input and output of the \code{uniquify}
  2877. pass is the \LangVar{} language. For example, the \code{uniquify} pass
  2878. should translate the program on the left into the program on the
  2879. right.
  2880. \begin{transformation}
  2881. \begin{lstlisting}
  2882. (let ([x 32])
  2883. (+ (let ([x 10]) x) x))
  2884. \end{lstlisting}
  2885. \compilesto
  2886. \begin{lstlisting}
  2887. (let ([x.1 32])
  2888. (+ (let ([x.2 10]) x.2) x.1))
  2889. \end{lstlisting}
  2890. \end{transformation}
  2891. The following is another example translation, this time of a program
  2892. with a \key{let} nested inside the initializing expression of another
  2893. \key{let}.
  2894. \begin{transformation}
  2895. \begin{lstlisting}
  2896. (let ([x (let ([x 4])
  2897. (+ x 1))])
  2898. (+ x 2))
  2899. \end{lstlisting}
  2900. \compilesto
  2901. \begin{lstlisting}
  2902. (let ([x.2 (let ([x.1 4])
  2903. (+ x.1 1))])
  2904. (+ x.2 2))
  2905. \end{lstlisting}
  2906. \end{transformation}
  2907. We recommend implementing \code{uniquify} by creating a structurally
  2908. recursive function named \code{uniquify\_exp} that does little other
  2909. than copy an expression. However, when encountering a \key{let}, it
  2910. should generate a unique name for the variable and associate the old
  2911. name with the new name in an alist.\footnote{The Racket function
  2912. \code{gensym} is handy for generating unique variable names.} The
  2913. \code{uniquify\_exp} function needs to access this alist when it gets
  2914. to a variable reference, so we add a parameter to \code{uniquify\_exp}
  2915. for the alist.
  2916. The skeleton of the \code{uniquify\_exp} function is shown in
  2917. figure~\ref{fig:uniquify-Lvar}.
  2918. %% The function is curried so that it is
  2919. %% convenient to partially apply it to an alist and then apply it to
  2920. %% different expressions, as in the last case for primitive operations in
  2921. %% figure~\ref{fig:uniquify-Lvar}.
  2922. The
  2923. %
  2924. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2925. %
  2926. form of Racket is useful for transforming the element of a list to
  2927. produce a new list.\index{subject}{for/list}
  2928. \begin{figure}[tbp]
  2929. \begin{tcolorbox}[colback=white]
  2930. \begin{lstlisting}
  2931. (define (uniquify_exp env)
  2932. (lambda (e)
  2933. (match e
  2934. [(Var x) ___]
  2935. [(Int n) (Int n)]
  2936. [(Let x e body) ___]
  2937. [(Prim op es)
  2938. (Prim op (for/list ([e es]) ((uniquify_exp env) e)))])))
  2939. (define (uniquify p)
  2940. (match p
  2941. [(Program '() e) (Program '() ((uniquify_exp '()) e))]))
  2942. \end{lstlisting}
  2943. \end{tcolorbox}
  2944. \caption{Skeleton for the \key{uniquify} pass.}
  2945. \label{fig:uniquify-Lvar}
  2946. \end{figure}
  2947. \begin{exercise}
  2948. \normalfont\normalsize % I don't like the italics for exercises. -Jeremy
  2949. Complete the \code{uniquify} pass by filling in the blanks in
  2950. figure~\ref{fig:uniquify-Lvar}; that is, implement the cases for
  2951. variables and for the \key{let} form in the file \code{compiler.rkt}
  2952. in the support code.
  2953. \end{exercise}
  2954. \begin{exercise}
  2955. \normalfont\normalsize
  2956. \label{ex:Lvar}
  2957. Create five \LangVar{} programs that exercise the most interesting
  2958. parts of the \key{uniquify} pass; that is, the programs should include
  2959. \key{let} forms, variables, and variables that shadow each other.
  2960. The five programs should be placed in the subdirectory named
  2961. \key{tests}, and the file names should start with \code{var\_test\_}
  2962. followed by a unique integer and end with the file extension
  2963. \key{.rkt}.
  2964. %
  2965. The \key{run-tests.rkt} script in the support code checks whether the
  2966. output programs produce the same result as the input programs. The
  2967. script uses the \key{interp-tests} function
  2968. (appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2969. your \key{uniquify} pass on the example programs. The \code{passes}
  2970. parameter of \key{interp-tests} is a list that should have one entry
  2971. for each pass in your compiler. For now, define \code{passes} to
  2972. contain just one entry for \code{uniquify} as follows:
  2973. \begin{lstlisting}
  2974. (define passes
  2975. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2976. \end{lstlisting}
  2977. Run the \key{run-tests.rkt} script in the support code to check
  2978. whether the output programs produce the same result as the input
  2979. programs.
  2980. \end{exercise}
  2981. \fi}
  2982. \section{Remove Complex Operands}
  2983. \label{sec:remove-complex-opera-Lvar}
  2984. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2985. into a restricted form in which the arguments of operations are atomic
  2986. expressions. Put another way, this pass removes complex
  2987. operands\index{subject}{complex operand}, such as the expression
  2988. \racket{\code{(- 10)}}\python{\code{-10}}
  2989. in the following program. This is accomplished by introducing a new
  2990. temporary variable, assigning the complex operand to the new
  2991. variable, and then using the new variable in place of the complex
  2992. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2993. right.
  2994. {\if\edition\racketEd
  2995. \begin{transformation}
  2996. % var_test_19.rkt
  2997. \begin{lstlisting}
  2998. (let ([x (+ 42 (- 10))])
  2999. (+ x 10))
  3000. \end{lstlisting}
  3001. \compilesto
  3002. \begin{lstlisting}
  3003. (let ([x (let ([tmp.1 (- 10)])
  3004. (+ 42 tmp.1))])
  3005. (+ x 10))
  3006. \end{lstlisting}
  3007. \end{transformation}
  3008. \fi}
  3009. {\if\edition\pythonEd\pythonColor
  3010. \begin{transformation}
  3011. \begin{lstlisting}
  3012. x = 42 + -10
  3013. print(x + 10)
  3014. \end{lstlisting}
  3015. \compilesto
  3016. \begin{lstlisting}
  3017. tmp_0 = -10
  3018. x = 42 + tmp_0
  3019. tmp_1 = x + 10
  3020. print(tmp_1)
  3021. \end{lstlisting}
  3022. \end{transformation}
  3023. \fi}
  3024. \newcommand{\LvarMonadASTRacket}{
  3025. \begin{array}{rcl}
  3026. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  3027. \Exp &::=& \Atm \MID \READ{} \\
  3028. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm} \\
  3029. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  3030. \end{array}
  3031. }
  3032. \newcommand{\LvarMonadASTPython}{
  3033. \begin{array}{rcl}
  3034. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  3035. \Exp{} &::=& \Atm \MID \READ{} \\
  3036. &\MID& \UNIOP{\key{USub()}}{\Atm} \MID \BINOP{\Atm}{\key{Add()}}{\Atm} \\
  3037. &\MID& \BINOP{\Atm}{\key{Sub()}}{\Atm} \\
  3038. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  3039. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  3040. \end{array}
  3041. }
  3042. \begin{figure}[tp]
  3043. \centering
  3044. \begin{tcolorbox}[colback=white]
  3045. {\if\edition\racketEd
  3046. \[
  3047. \begin{array}{l}
  3048. \LvarMonadASTRacket \\
  3049. \begin{array}{rcl}
  3050. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  3051. \end{array}
  3052. \end{array}
  3053. \]
  3054. \fi}
  3055. {\if\edition\pythonEd\pythonColor
  3056. \[
  3057. \begin{array}{l}
  3058. \LvarMonadASTPython \\
  3059. \begin{array}{rcl}
  3060. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  3061. \end{array}
  3062. \end{array}
  3063. \]
  3064. \fi}
  3065. \end{tcolorbox}
  3066. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  3067. atomic expressions.}
  3068. \label{fig:Lvar-anf-syntax}
  3069. \end{figure}
  3070. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  3071. of this pass, the language \LangVarANF{}. The only difference is that
  3072. operator arguments are restricted to be atomic expressions that are
  3073. defined by the \Atm{} nonterminal. In particular, integer constants
  3074. and variables are atomic.
  3075. The atomic expressions are pure (they do not cause or depend on side
  3076. effects) whereas complex expressions may have side effects, such as
  3077. \READ{}. A language with this separation between pure expressions
  3078. versus expressions with side effects is said to be in monadic normal
  3079. form~\citep{Moggi:1991in,Danvy:2003fk}, which explains the \textit{mon}
  3080. in the name \LangVarANF{}. An important invariant of the
  3081. \code{remove\_complex\_operands} pass is that the relative ordering
  3082. among complex expressions is not changed, but the relative ordering
  3083. between atomic expressions and complex expressions can change and
  3084. often does. The reason that these changes are behavior preserving is
  3085. that the atomic expressions are pure.
  3086. {\if\edition\racketEd
  3087. Another well-known form for intermediate languages is the
  3088. \emph{administrative normal form}
  3089. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  3090. \index{subject}{administrative normal form} \index{subject}{ANF}
  3091. %
  3092. The \LangVarANF{} language is not quite in ANF because it allows the
  3093. right-hand side of a \code{let} to be a complex expression, such as
  3094. another \code{let}. The flattening of nested \code{let} expressions is
  3095. instead one of the responsibilities of the \code{explicate\_control}
  3096. pass.
  3097. \fi}
  3098. {\if\edition\racketEd
  3099. We recommend implementing this pass with two mutually recursive
  3100. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  3101. \code{rco\_atom} to subexpressions that need to become atomic and to
  3102. apply \code{rco\_exp} to subexpressions that do not. Both functions
  3103. take an \LangVar{} expression as input. The \code{rco\_exp} function
  3104. returns an expression. The \code{rco\_atom} function returns two
  3105. things: an atomic expression and an alist mapping temporary variables to
  3106. complex subexpressions. You can return multiple things from a function
  3107. using Racket's \key{values} form, and you can receive multiple things
  3108. from a function call using the \key{define-values} form.
  3109. \fi}
  3110. %
  3111. {\if\edition\pythonEd\pythonColor
  3112. %
  3113. We recommend implementing this pass with an auxiliary method named
  3114. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  3115. Boolean that specifies whether the expression needs to become atomic
  3116. or not. The \code{rco\_exp} method should return a pair consisting of
  3117. the new expression and a list of pairs, associating new temporary
  3118. variables with their initializing expressions.
  3119. %
  3120. \fi}
  3121. {\if\edition\racketEd
  3122. %
  3123. In the example program with the expression \code{(+ 42 (-
  3124. 10))}, the subexpression \code{(- 10)} should be processed using the
  3125. \code{rco\_atom} function because it is an argument of the \code{+}
  3126. operator and therefore needs to become atomic. The output of
  3127. \code{rco\_atom} applied to \code{(- 10)} is as follows:
  3128. \begin{transformation}
  3129. \begin{lstlisting}
  3130. (- 10)
  3131. \end{lstlisting}
  3132. \compilesto
  3133. \begin{lstlisting}
  3134. tmp.1
  3135. ((tmp.1 . (- 10)))
  3136. \end{lstlisting}
  3137. \end{transformation}
  3138. \fi}
  3139. %
  3140. {\if\edition\pythonEd\pythonColor
  3141. %
  3142. Returning to the example program with the expression \code{42 + -10},
  3143. the subexpression \code{-10} should be processed using the
  3144. \code{rco\_exp} function with \code{True} as the second argument,
  3145. because \code{-10} is an argument of the \code{+} operator and
  3146. therefore needs to become atomic. The output of \code{rco\_exp}
  3147. applied to \code{-10} is as follows.
  3148. \begin{transformation}
  3149. \begin{lstlisting}
  3150. -10
  3151. \end{lstlisting}
  3152. \compilesto
  3153. \begin{lstlisting}
  3154. tmp_1
  3155. [(tmp_1, -10)]
  3156. \end{lstlisting}
  3157. \end{transformation}
  3158. %
  3159. \fi}
  3160. Take special care of programs, such as the following, that
  3161. %
  3162. \racket{bind a variable to an atomic expression.}
  3163. %
  3164. \python{assign an atomic expression to a variable.}
  3165. %
  3166. You should leave such \racket{variable bindings}\python{assignments}
  3167. unchanged, as shown in the program on the right:\\
  3168. %
  3169. {\if\edition\racketEd
  3170. \begin{transformation}
  3171. % var_test_20.rkt
  3172. \begin{lstlisting}
  3173. (let ([a 42])
  3174. (let ([b a])
  3175. b))
  3176. \end{lstlisting}
  3177. \compilesto
  3178. \begin{lstlisting}
  3179. (let ([a 42])
  3180. (let ([b a])
  3181. b))
  3182. \end{lstlisting}
  3183. \end{transformation}
  3184. \fi}
  3185. {\if\edition\pythonEd\pythonColor
  3186. \begin{transformation}
  3187. \begin{lstlisting}
  3188. a = 42
  3189. b = a
  3190. print(b)
  3191. \end{lstlisting}
  3192. \compilesto
  3193. \begin{lstlisting}
  3194. a = 42
  3195. b = a
  3196. print(b)
  3197. \end{lstlisting}
  3198. \end{transformation}
  3199. \fi}
  3200. %
  3201. \noindent A careless implementation might produce the following output with
  3202. unnecessary temporary variables.
  3203. \begin{center}
  3204. \begin{minipage}{0.4\textwidth}
  3205. {\if\edition\racketEd
  3206. \begin{lstlisting}
  3207. (let ([tmp.1 42])
  3208. (let ([a tmp.1])
  3209. (let ([tmp.2 a])
  3210. (let ([b tmp.2])
  3211. b))))
  3212. \end{lstlisting}
  3213. \fi}
  3214. {\if\edition\pythonEd\pythonColor
  3215. \begin{lstlisting}
  3216. tmp_1 = 42
  3217. a = tmp_1
  3218. tmp_2 = a
  3219. b = tmp_2
  3220. print(b)
  3221. \end{lstlisting}
  3222. \fi}
  3223. \end{minipage}
  3224. \end{center}
  3225. \begin{exercise}
  3226. \normalfont\normalsize
  3227. {\if\edition\racketEd
  3228. Implement the \code{remove\_complex\_operands} function in
  3229. \code{compiler.rkt}.
  3230. %
  3231. Create three new \LangVar{} programs that exercise the interesting
  3232. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  3233. regarding file names described in exercise~\ref{ex:Lvar}.
  3234. %
  3235. In the \code{run-tests.rkt} script, add the following entry to the
  3236. list of \code{passes}, and then run the script to test your compiler.
  3237. \begin{lstlisting}
  3238. (list "remove-complex" remove_complex_operands interp_Lvar type-check-Lvar)
  3239. \end{lstlisting}
  3240. In debugging your compiler, it is often useful to see the intermediate
  3241. programs that are output from each pass. To print the intermediate
  3242. programs, place \lstinline{(debug-level 1)} before the call to
  3243. \code{interp-tests} in \code{run-tests.rkt}. \fi}
  3244. %
  3245. {\if\edition\pythonEd\pythonColor
  3246. Implement the \code{remove\_complex\_operands} pass in
  3247. \code{compiler.py}, creating auxiliary functions for each
  3248. nonterminal in the grammar, that is, \code{rco\_exp}
  3249. and \code{rco\_stmt}. We recommend that you use the function
  3250. \code{utils.generate\_name()} to generate fresh names from a stub string.
  3251. \fi}
  3252. \end{exercise}
  3253. {\if\edition\pythonEd\pythonColor
  3254. \begin{exercise}
  3255. \normalfont\normalsize
  3256. \label{ex:Lvar}
  3257. Create five \LangVar{} programs that exercise the most interesting
  3258. parts of the \code{remove\_complex\_operands} pass. The five programs
  3259. should be placed in the subdirectory named \key{tests}, and the file
  3260. names should start with \code{var\_test\_} followed by a unique
  3261. integer and end with the file extension \key{.py}.
  3262. %% The \key{run-tests.rkt} script in the support code checks whether the
  3263. %% output programs produce the same result as the input programs. The
  3264. %% script uses the \key{interp-tests} function
  3265. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  3266. %% your \key{uniquify} pass on the example programs. The \code{passes}
  3267. %% parameter of \key{interp-tests} is a list that should have one entry
  3268. %% for each pass in your compiler. For now, define \code{passes} to
  3269. %% contain just one entry for \code{uniquify} as shown below.
  3270. %% \begin{lstlisting}
  3271. %% (define passes
  3272. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3273. %% \end{lstlisting}
  3274. Run the \key{run-tests.py} script in the support code to check
  3275. whether the output programs produce the same result as the input
  3276. programs.
  3277. \end{exercise}
  3278. \fi}
  3279. {\if\edition\racketEd
  3280. \section{Explicate Control}
  3281. \label{sec:explicate-control-Lvar}
  3282. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3283. programs that make the order of execution explicit in their
  3284. syntax. For now this amounts to flattening \key{let} constructs into a
  3285. sequence of assignment statements. For example, consider the following
  3286. \LangVar{} program:\\
  3287. % var_test_11.rkt
  3288. \begin{minipage}{0.96\textwidth}
  3289. \begin{lstlisting}
  3290. (let ([y (let ([x 20])
  3291. (+ x (let ([x 22]) x)))])
  3292. y)
  3293. \end{lstlisting}
  3294. \end{minipage}\\
  3295. %
  3296. The output of the previous pass is shown next, on the left, and the
  3297. output of \code{explicate\_control} is on the right. Recall that the
  3298. right-hand side of a \key{let} executes before its body, so that the order
  3299. of evaluation for this program is to assign \code{20} to \code{x.1},
  3300. \code{22} to \code{x.2}, and \code{(+ x.1 x.2)} to \code{y}, and then to
  3301. return \code{y}. Indeed, the output of \code{explicate\_control} makes
  3302. this ordering explicit.
  3303. \begin{transformation}
  3304. \begin{lstlisting}
  3305. (let ([y (let ([x.1 20])
  3306. (let ([x.2 22])
  3307. (+ x.1 x.2)))])
  3308. y)
  3309. \end{lstlisting}
  3310. \compilesto
  3311. \begin{lstlisting}[language=C]
  3312. start:
  3313. x.1 = 20;
  3314. x.2 = 22;
  3315. y = (+ x.1 x.2);
  3316. return y;
  3317. \end{lstlisting}
  3318. \end{transformation}
  3319. \begin{figure}[tbp]
  3320. \begin{tcolorbox}[colback=white]
  3321. \begin{lstlisting}
  3322. (define (explicate_tail e)
  3323. (match e
  3324. [(Var x) ___]
  3325. [(Int n) (Return (Int n))]
  3326. [(Let x rhs body) ___]
  3327. [(Prim op es) ___]
  3328. [else (error "explicate_tail unhandled case" e)]))
  3329. (define (explicate_assign e x cont)
  3330. (match e
  3331. [(Var x) ___]
  3332. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3333. [(Let y rhs body) ___]
  3334. [(Prim op es) ___]
  3335. [else (error "explicate_assign unhandled case" e)]))
  3336. (define (explicate_control p)
  3337. (match p
  3338. [(Program info body) ___]))
  3339. \end{lstlisting}
  3340. \end{tcolorbox}
  3341. \caption{Skeleton for the \code{explicate\_control} pass.}
  3342. \label{fig:explicate-control-Lvar}
  3343. \end{figure}
  3344. The organization of this pass depends on the notion of tail position
  3345. to which we have alluded. Here is the definition.
  3346. \begin{definition}\normalfont
  3347. The following rules define when an expression is in \emph{tail
  3348. position}\index{subject}{tail position} for the language \LangVar{}.
  3349. \begin{enumerate}
  3350. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3351. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3352. \end{enumerate}
  3353. \end{definition}
  3354. We recommend implementing \code{explicate\_control} using two
  3355. recursive functions, \code{explicate\_tail} and
  3356. \code{explicate\_assign}, as suggested in the skeleton code shown in
  3357. figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3358. function should be applied to expressions in tail position, whereas the
  3359. \code{explicate\_assign} should be applied to expressions that occur on
  3360. the right-hand side of a \key{let}.
  3361. %
  3362. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3363. input and produces a \Tail{} in \LangCVar{} (see
  3364. figure~\ref{fig:c0-syntax}).
  3365. %
  3366. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3367. the variable to which it is to be assigned, and a \Tail{} in
  3368. \LangCVar{} for the code that comes after the assignment. The
  3369. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3370. The \code{explicate\_assign} function is in accumulator-passing style:
  3371. the \code{cont} parameter is used for accumulating the output. This
  3372. accumulator-passing style plays an important role in the way that we
  3373. generate high-quality code for conditional expressions in
  3374. chapter~\ref{ch:Lif}. The abbreviation \code{cont} is for
  3375. continuation because it contains the generated code that should come
  3376. after the current assignment. This code organization is also related
  3377. to continuation-passing style, except that \code{cont} is not what
  3378. happens next during compilation but is what happens next in the
  3379. generated code.
  3380. \begin{exercise}\normalfont\normalsize
  3381. %
  3382. Implement the \code{explicate\_control} function in
  3383. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3384. exercise the code in \code{explicate\_control}.
  3385. %
  3386. In the \code{run-tests.rkt} script, add the following entry to the
  3387. list of \code{passes} and then run the script to test your compiler.
  3388. \begin{lstlisting}
  3389. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3390. \end{lstlisting}
  3391. \end{exercise}
  3392. \fi}
  3393. \section{Select Instructions}
  3394. \label{sec:select-Lvar}
  3395. \index{subject}{select instructions}
  3396. In the \code{select\_instructions} pass we begin the work of
  3397. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3398. language of this pass is a variant of x86 that still uses variables,
  3399. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3400. nonterminal of the \LangXInt{} abstract syntax
  3401. (figure~\ref{fig:x86-int-ast}).
  3402. \racket{We recommend implementing the
  3403. \code{select\_instructions} with three auxiliary functions, one for
  3404. each of the nonterminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3405. $\Tail$.}
  3406. \python{We recommend implementing an auxiliary function
  3407. named \code{select\_stmt} for the $\Stmt$ nonterminal.}
  3408. \racket{The cases for $\Atm$ are straightforward; variables stay the
  3409. same and integer constants change to immediates; that is, $\INT{n}$
  3410. changes to $\IMM{n}$.}
  3411. Next consider the cases for the $\Stmt$ nonterminal, starting with
  3412. arithmetic operations. For example, consider the following addition
  3413. operation, on the left side. (Let $\Arg_1$ and $\Arg_2$ be the
  3414. translations of $\Atm_1$ and $\Atm_2$, respectively.) There is an
  3415. \key{addq} instruction in x86, but it performs an in-place update.
  3416. %
  3417. So, we could move $\Arg_1$ into the \code{rax} register, then add
  3418. $\Arg_2$ to \code{rax}, and then finally move \code{rax} into the
  3419. left-hand \itm{var}.
  3420. \begin{transformation}
  3421. {\if\edition\racketEd
  3422. \begin{lstlisting}
  3423. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3424. \end{lstlisting}
  3425. \fi}
  3426. {\if\edition\pythonEd\pythonColor
  3427. \begin{lstlisting}
  3428. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3429. \end{lstlisting}
  3430. \fi}
  3431. \compilesto
  3432. \begin{lstlisting}
  3433. movq |$\Arg_1$|, %rax
  3434. addq |$\Arg_2$|, %rax
  3435. movq %rax, |$\itm{var}$|
  3436. \end{lstlisting}
  3437. \end{transformation}
  3438. %
  3439. However, with some care we can generate shorter sequences of
  3440. instructions. Suppose that one or more of the arguments of the
  3441. addition is the same variable as the left-hand side of the assignment.
  3442. Then the assignment statement can be translated into a single
  3443. \key{addq} instruction, as follows.
  3444. \begin{transformation}
  3445. {\if\edition\racketEd
  3446. \begin{lstlisting}
  3447. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3448. \end{lstlisting}
  3449. \fi}
  3450. {\if\edition\pythonEd\pythonColor
  3451. \begin{lstlisting}
  3452. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3453. \end{lstlisting}
  3454. \fi}
  3455. \compilesto
  3456. \begin{lstlisting}
  3457. addq |$\Arg_1$|, |$\itm{var}$|
  3458. \end{lstlisting}
  3459. \end{transformation}
  3460. %
  3461. On the other hand, if $\Atm_1$ is not the same variable as the
  3462. left-hand side, then we can move $\Arg_1$ into the left-hand \itm{var}
  3463. and then add $\Arg_2$ to \itm{var}.
  3464. %
  3465. \begin{transformation}
  3466. {\if\edition\racketEd
  3467. \begin{lstlisting}
  3468. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3469. \end{lstlisting}
  3470. \fi}
  3471. {\if\edition\pythonEd\pythonColor
  3472. \begin{lstlisting}
  3473. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3474. \end{lstlisting}
  3475. \fi}
  3476. \compilesto
  3477. \begin{lstlisting}
  3478. movq |$\Arg_1$|, |$\itm{var}$|
  3479. addq |$\Arg_2$|, |$\itm{var}$|
  3480. \end{lstlisting}
  3481. \end{transformation}
  3482. The \READOP{} operation does not have a direct counterpart in x86
  3483. assembly, so we provide this functionality with the function
  3484. \code{read\_int} in the file \code{runtime.c}, written in
  3485. C~\citep{Kernighan:1988nx}. In general, we refer to all the
  3486. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3487. system}, or simply the \emph{runtime} for short. When compiling your
  3488. generated x86 assembly code, you need to compile \code{runtime.c} to
  3489. \code{runtime.o} (an \emph{object file}, using \code{gcc} with option
  3490. \code{-c}) and link it into the executable. For our purposes of code
  3491. generation, all you need to do is translate an assignment of
  3492. \READOP{} into a call to the \code{read\_int} function followed by a
  3493. move from \code{rax} to the left-hand side variable. (Recall that the
  3494. return value of a function goes into \code{rax}.)
  3495. \begin{transformation}
  3496. {\if\edition\racketEd
  3497. \begin{lstlisting}
  3498. |$\itm{var}$| = (read);
  3499. \end{lstlisting}
  3500. \fi}
  3501. {\if\edition\pythonEd\pythonColor
  3502. \begin{lstlisting}
  3503. |$\itm{var}$| = input_int();
  3504. \end{lstlisting}
  3505. \fi}
  3506. \compilesto
  3507. \begin{lstlisting}
  3508. callq read_int
  3509. movq %rax, |$\itm{var}$|
  3510. \end{lstlisting}
  3511. \end{transformation}
  3512. {\if\edition\pythonEd\pythonColor
  3513. %
  3514. Similarly, we translate the \code{print} operation, shown below, into
  3515. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3516. In x86, the first six arguments to functions are passed in registers,
  3517. with the first argument passed in register \code{rdi}. So we move the
  3518. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3519. \code{callq} instruction.
  3520. \begin{transformation}
  3521. \begin{lstlisting}
  3522. print(|$\Atm$|)
  3523. \end{lstlisting}
  3524. \compilesto
  3525. \begin{lstlisting}
  3526. movq |$\Arg$|, %rdi
  3527. callq print_int
  3528. \end{lstlisting}
  3529. \end{transformation}
  3530. %
  3531. \fi}
  3532. {\if\edition\racketEd
  3533. There are two cases for the $\Tail$ nonterminal: \key{Return} and
  3534. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3535. assignment to the \key{rax} register followed by a jump to the
  3536. conclusion of the program (so the conclusion needs to be labeled).
  3537. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3538. recursively and then append the resulting instructions.
  3539. \fi}
  3540. {\if\edition\pythonEd\pythonColor
  3541. We recommend that you use the function \code{utils.label\_name()} to
  3542. transform strings into labels, for example, in
  3543. the target of the \code{callq} instruction. This practice makes your
  3544. compiler portable across Linux and Mac OS X, which requires an underscore
  3545. prefixed to all labels.
  3546. \fi}
  3547. \begin{exercise}
  3548. \normalfont\normalsize
  3549. {\if\edition\racketEd
  3550. Implement the \code{select\_instructions} pass in
  3551. \code{compiler.rkt}. Create three new example programs that are
  3552. designed to exercise all the interesting cases in this pass.
  3553. %
  3554. In the \code{run-tests.rkt} script, add the following entry to the
  3555. list of \code{passes} and then run the script to test your compiler.
  3556. \begin{lstlisting}
  3557. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3558. \end{lstlisting}
  3559. \fi}
  3560. {\if\edition\pythonEd\pythonColor
  3561. Implement the \key{select\_instructions} pass in
  3562. \code{compiler.py}. Create three new example programs that are
  3563. designed to exercise all the interesting cases in this pass.
  3564. Run the \code{run-tests.py} script to check
  3565. whether the output programs produce the same result as the input
  3566. programs.
  3567. \fi}
  3568. \end{exercise}
  3569. \section{Assign Homes}
  3570. \label{sec:assign-Lvar}
  3571. The \code{assign\_homes} pass compiles \LangXVar{} programs to
  3572. \LangXVar{} programs that no longer use program variables. Thus, the
  3573. \code{assign\_homes} pass is responsible for placing all the program
  3574. variables in registers or on the stack. For runtime efficiency, it is
  3575. better to place variables in registers, but because there are only
  3576. sixteen registers, some programs must necessarily resort to placing
  3577. some variables on the stack. In this chapter we focus on the mechanics
  3578. of placing variables on the stack. We study an algorithm for placing
  3579. variables in registers in chapter~\ref{ch:register-allocation-Lvar}.
  3580. Consider again the following \LangVar{} program from
  3581. section~\ref{sec:remove-complex-opera-Lvar}:\\
  3582. % var_test_20.rkt
  3583. \begin{minipage}{0.96\textwidth}
  3584. {\if\edition\racketEd
  3585. \begin{lstlisting}
  3586. (let ([a 42])
  3587. (let ([b a])
  3588. b))
  3589. \end{lstlisting}
  3590. \fi}
  3591. {\if\edition\pythonEd\pythonColor
  3592. \begin{lstlisting}
  3593. a = 42
  3594. b = a
  3595. print(b)
  3596. \end{lstlisting}
  3597. \fi}
  3598. \end{minipage}\\
  3599. %
  3600. The output of \code{select\_instructions} is shown next, on the left,
  3601. and the output of \code{assign\_homes} is on the right. In this
  3602. example, we assign variable \code{a} to stack location
  3603. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3604. \begin{transformation}
  3605. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3606. movq $42, a
  3607. movq a, b
  3608. movq b, %rax
  3609. \end{lstlisting}
  3610. \compilesto
  3611. %stack-space: 16
  3612. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3613. movq $42, -8(%rbp)
  3614. movq -8(%rbp), -16(%rbp)
  3615. movq -16(%rbp), %rax
  3616. \end{lstlisting}
  3617. \end{transformation}
  3618. \racket{
  3619. The \code{assign\_homes} pass should replace all variables
  3620. with stack locations.
  3621. The list of variables can be obtained from
  3622. the \code{locals-types} entry in the $\itm{info}$ of the
  3623. \code{X86Program} node. The \code{locals-types} entry is an alist
  3624. mapping all the variables in the program to their types
  3625. (for now, just \code{Integer}).
  3626. As an aside, the \code{locals-types} entry is
  3627. computed by \code{type-check-Cvar} in the support code, which
  3628. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3629. which you should propagate to the \code{X86Program} node.}
  3630. %
  3631. \python{The \code{assign\_homes} pass should replace all uses of
  3632. variables with stack locations.}
  3633. %
  3634. In the process of assigning variables to stack locations, it is
  3635. convenient for you to compute and store the size of the frame (in
  3636. bytes) in
  3637. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space},}
  3638. %
  3639. \python{the field \code{stack\_space} of the \key{X86Program} node,}
  3640. %
  3641. which is needed later to generate the conclusion of the \code{main}
  3642. procedure. The x86-64 standard requires the frame size to be a
  3643. multiple of 16 bytes.\index{subject}{frame}
  3644. % TODO: store the number of variables instead? -Jeremy
  3645. \begin{exercise}\normalfont\normalsize
  3646. Implement the \code{assign\_homes} pass in
  3647. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3648. auxiliary functions for each of the nonterminals in the \LangXVar{}
  3649. grammar. We recommend that the auxiliary functions take an extra
  3650. parameter that maps variable names to homes (stack locations for now).
  3651. %
  3652. {\if\edition\racketEd
  3653. In the \code{run-tests.rkt} script, add the following entry to the
  3654. list of \code{passes} and then run the script to test your compiler.
  3655. \begin{lstlisting}
  3656. (list "assign homes" assign-homes interp_x86-0)
  3657. \end{lstlisting}
  3658. \fi}
  3659. {\if\edition\pythonEd\pythonColor
  3660. Run the \code{run-tests.py} script to check
  3661. whether the output programs produce the same result as the input
  3662. programs.
  3663. \fi}
  3664. \end{exercise}
  3665. \section{Patch Instructions}
  3666. \label{sec:patch-s0}
  3667. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3668. \LangXInt{} by making sure that each instruction adheres to the
  3669. restriction that at most one argument of an instruction may be a
  3670. memory reference.
  3671. We return to the following example.\\
  3672. \begin{minipage}{0.5\textwidth}
  3673. % var_test_20.rkt
  3674. {\if\edition\racketEd
  3675. \begin{lstlisting}
  3676. (let ([a 42])
  3677. (let ([b a])
  3678. b))
  3679. \end{lstlisting}
  3680. \fi}
  3681. {\if\edition\pythonEd\pythonColor
  3682. \begin{lstlisting}
  3683. a = 42
  3684. b = a
  3685. print(b)
  3686. \end{lstlisting}
  3687. \fi}
  3688. \end{minipage}\\
  3689. The \code{assign\_homes} pass produces the following translation. \\
  3690. \begin{minipage}{0.5\textwidth}
  3691. {\if\edition\racketEd
  3692. \begin{lstlisting}
  3693. movq $42, -8(%rbp)
  3694. movq -8(%rbp), -16(%rbp)
  3695. movq -16(%rbp), %rax
  3696. \end{lstlisting}
  3697. \fi}
  3698. {\if\edition\pythonEd\pythonColor
  3699. \begin{lstlisting}
  3700. movq $42, -8(%rbp)
  3701. movq -8(%rbp), -16(%rbp)
  3702. movq -16(%rbp), %rdi
  3703. callq print_int
  3704. \end{lstlisting}
  3705. \fi}
  3706. \end{minipage}\\
  3707. The second \key{movq} instruction is problematic because both
  3708. arguments are stack locations. We suggest fixing this problem by
  3709. moving from the source location to the register \key{rax} and then
  3710. from \key{rax} to the destination location, as follows.
  3711. \begin{lstlisting}
  3712. movq -8(%rbp), %rax
  3713. movq %rax, -16(%rbp)
  3714. \end{lstlisting}
  3715. There is a similar corner case that also needs to be dealt with. If
  3716. one argument is an immediate integer larger than $2^{16}$ and the
  3717. other is a memory reference, then the instruction is invalid. One can
  3718. fix this, for example, by first moving the immediate integer into
  3719. \key{rax} and then using \key{rax} in place of the integer.
  3720. \begin{exercise}
  3721. \normalfont\normalsize Implement the \key{patch\_instructions} pass in
  3722. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3723. Create three new example programs that are
  3724. designed to exercise all the interesting cases in this pass.
  3725. %
  3726. {\if\edition\racketEd
  3727. In the \code{run-tests.rkt} script, add the following entry to the
  3728. list of \code{passes} and then run the script to test your compiler.
  3729. \begin{lstlisting}
  3730. (list "patch instructions" patch_instructions interp_x86-0)
  3731. \end{lstlisting}
  3732. \fi}
  3733. {\if\edition\pythonEd\pythonColor
  3734. Run the \code{run-tests.py} script to check
  3735. whether the output programs produce the same result as the input
  3736. programs.
  3737. \fi}
  3738. \end{exercise}
  3739. \section{Generate Prelude and Conclusion}
  3740. \label{sec:print-x86}
  3741. \index{subject}{prelude}\index{subject}{conclusion}
  3742. The last step of the compiler from \LangVar{} to x86 is to generate
  3743. the \code{main} function with a prelude and conclusion wrapped around
  3744. the rest of the program, as shown in figure~\ref{fig:p1-x86} and
  3745. discussed in section~\ref{sec:x86}.
  3746. When running on Mac OS X, your compiler should prefix an underscore to
  3747. all labels (for example, changing \key{main} to \key{\_main}).
  3748. %
  3749. \racket{The Racket call \code{(system-type 'os)} is useful for
  3750. determining which operating system the compiler is running on. It
  3751. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3752. %
  3753. \python{The Python \code{platform} library includes a \code{system()}
  3754. function that returns \code{\textquotesingle Linux\textquotesingle},
  3755. \code{\textquotesingle Windows\textquotesingle}, or
  3756. \code{\textquotesingle Darwin\textquotesingle} (for Mac).}
  3757. \begin{exercise}\normalfont\normalsize
  3758. %
  3759. Implement the \key{prelude\_and\_conclusion} pass in
  3760. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3761. %
  3762. {\if\edition\racketEd
  3763. In the \code{run-tests.rkt} script, add the following entry to the
  3764. list of \code{passes} and then run the script to test your compiler.
  3765. \begin{lstlisting}
  3766. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3767. \end{lstlisting}
  3768. %
  3769. Uncomment the call to the \key{compiler-tests} function
  3770. (appendix~\ref{appendix:utilities}), which tests your complete
  3771. compiler by executing the generated x86 code. It translates the x86
  3772. AST that you produce into a string by invoking the \code{print-x86}
  3773. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3774. the provided \key{runtime.c} file to \key{runtime.o} using
  3775. \key{gcc}. Run the script to test your compiler.
  3776. %
  3777. \fi}
  3778. {\if\edition\pythonEd\pythonColor
  3779. %
  3780. Run the \code{run-tests.py} script to check whether the output
  3781. programs produce the same result as the input programs. That script
  3782. translates the x86 AST that you produce into a string by invoking the
  3783. \code{repr} method that is implemented by the x86 AST classes in
  3784. \code{x86\_ast.py}.
  3785. %
  3786. \fi}
  3787. \end{exercise}
  3788. \section{Challenge: Partial Evaluator for \LangVar{}}
  3789. \label{sec:pe-Lvar}
  3790. \index{subject}{partialevaluation@partial evaluation}
  3791. This section describes two optional challenge exercises that involve
  3792. adapting and improving the partial evaluator for \LangInt{} that was
  3793. introduced in section~\ref{sec:partial-evaluation}.
  3794. \begin{exercise}\label{ex:pe-Lvar}
  3795. \normalfont\normalsize
  3796. Adapt the partial evaluator from section~\ref{sec:partial-evaluation}
  3797. (figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3798. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3799. %
  3800. \racket{\key{let} binding}\python{assignment}
  3801. %
  3802. to the \LangInt{} language, so you will need to add cases for them in
  3803. the \code{pe\_exp}
  3804. %
  3805. \racket{function.}
  3806. %
  3807. \python{and \code{pe\_stmt} functions.}
  3808. %
  3809. Once complete, add the partial evaluation pass to the front of your
  3810. compiler, and make sure that your compiler still passes all the
  3811. tests.
  3812. \end{exercise}
  3813. \begin{exercise}
  3814. \normalfont\normalsize
  3815. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3816. \code{pe\_add} auxiliary functions with functions that know more about
  3817. arithmetic. For example, your partial evaluator should translate
  3818. {\if\edition\racketEd
  3819. \[
  3820. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3821. \code{(+ 2 (read))}
  3822. \]
  3823. \fi}
  3824. {\if\edition\pythonEd\pythonColor
  3825. \[
  3826. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3827. \code{2 + input\_int()}
  3828. \]
  3829. \fi}
  3830. %
  3831. To accomplish this, the \code{pe\_exp} function should produce output
  3832. in the form of the $\itm{residual}$ nonterminal of the following
  3833. grammar. The idea is that when processing an addition expression, we
  3834. can always produce one of the following: (1) an integer constant, (2)
  3835. an addition expression with an integer constant on the left-hand side
  3836. but not the right-hand side, or (3) an addition expression in which
  3837. neither subexpression is a constant.
  3838. %
  3839. {\if\edition\racketEd
  3840. \[
  3841. \begin{array}{lcl}
  3842. \itm{inert} &::=& \Var
  3843. \MID \LP\key{read}\RP
  3844. \MID \LP\key{-} ~\Var\RP
  3845. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3846. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3847. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3848. \itm{residual} &::=& \Int
  3849. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3850. \MID \itm{inert}
  3851. \end{array}
  3852. \]
  3853. \fi}
  3854. {\if\edition\pythonEd\pythonColor
  3855. \[
  3856. \begin{array}{lcl}
  3857. \itm{inert} &::=& \Var
  3858. \MID \key{input\_int}\LP\RP
  3859. \MID \key{-} \Var
  3860. \MID \key{-} \key{input\_int}\LP\RP
  3861. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3862. \itm{residual} &::=& \Int
  3863. \MID \Int ~ \key{+} ~ \itm{inert}
  3864. \MID \itm{inert}
  3865. \end{array}
  3866. \]
  3867. \fi}
  3868. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3869. inputs are $\itm{residual}$ expressions and they should return
  3870. $\itm{residual}$ expressions. Once the improvements are complete,
  3871. make sure that your compiler still passes all the tests. After
  3872. all, fast code is useless if it produces incorrect results!
  3873. \end{exercise}
  3874. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3875. {\if\edition\pythonEd\pythonColor
  3876. \chapter{Parsing}
  3877. \label{ch:parsing}
  3878. \setcounter{footnote}{0}
  3879. \index{subject}{parsing}
  3880. In this chapter we learn how to use the Lark parser
  3881. framework~\citep{shinan20:_lark_docs} to translate the concrete syntax
  3882. of \LangInt{} (a sequence of characters) into an abstract syntax tree.
  3883. You will then be asked to use Lark to create a parser for \LangVar{}.
  3884. We also describe the parsing algorithms used inside Lark, studying the
  3885. \citet{Earley:1970ly} and LALR(1) algorithms~\citep{DeRemer69,Anderson73}.
  3886. A parser framework such as Lark takes in a specification of the
  3887. concrete syntax and an input program and produces a parse tree. Even
  3888. though a parser framework does most of the work for us, using one
  3889. properly requires some knowledge. In particular, we must learn about
  3890. its specification languages and we must learn how to deal with
  3891. ambiguity in our language specifications. Also, some algorithms, such
  3892. as LALR(1), place restrictions on the grammars they can handle, in
  3893. which case knowing the algorithm help with trying to decipher the
  3894. error messages.
  3895. The process of parsing is traditionally subdivided into two phases:
  3896. \emph{lexical analysis} (also called scanning) and \emph{syntax
  3897. analysis} (also called parsing). The lexical analysis phase
  3898. translates the sequence of characters into a sequence of
  3899. \emph{tokens}, that is, words consisting of several characters. The
  3900. parsing phase organizes the tokens into a \emph{parse tree} that
  3901. captures how the tokens were matched by rules in the grammar of the
  3902. language. The reason for the subdivision into two phases is to enable
  3903. the use of a faster but less powerful algorithm for lexical analysis
  3904. and the use of a slower but more powerful algorithm for parsing.
  3905. %
  3906. %% Likewise, parser generators typical come in pairs, with separate
  3907. %% generators for the lexical analyzer (or lexer for short) and for the
  3908. %% parser. A particularly influential pair of generators were
  3909. %% \texttt{lex} and \texttt{yacc}. The \texttt{lex} generator was written
  3910. %% by \citet{Lesk:1975uq} at Bell Labs. The \texttt{yacc} generator was
  3911. %% written by \citet{Johnson:1979qy} at AT\&T and stands for Yet Another
  3912. %% Compiler Compiler.
  3913. %
  3914. The Lark parser framework that we use in this chapter includes both
  3915. lexical analyzers and parsers. The next section discusses lexical
  3916. analysis, and the remainder of the chapter discusses parsing.
  3917. \section{Lexical Analysis and Regular Expressions}
  3918. \label{sec:lex}
  3919. The lexical analyzers produced by Lark turn a sequence of characters
  3920. (a string) into a sequence of token objects. For example, a Lark
  3921. generated lexer for \LangInt{} converts the string
  3922. \begin{lstlisting}
  3923. 'print(1 + 3)'
  3924. \end{lstlisting}
  3925. \noindent into the following sequence of token objects:
  3926. \begin{center}
  3927. \begin{minipage}{0.95\textwidth}
  3928. \begin{lstlisting}
  3929. Token('PRINT', 'print')
  3930. Token('LPAR', '(')
  3931. Token('INT', '1')
  3932. Token('PLUS', '+')
  3933. Token('INT', '3')
  3934. Token('RPAR', ')')
  3935. Token('NEWLINE', '\n')
  3936. \end{lstlisting}
  3937. \end{minipage}
  3938. \end{center}
  3939. Each token includes a field for its \code{type}, such as \skey{INT},
  3940. and a field for its \code{value}, such as \skey{1}.
  3941. Following in the tradition of \code{lex}~\citep{Lesk:1975uq}, the
  3942. specification language for Lark's lexer is one regular expression for
  3943. each type of token. The term \emph{regular} comes from the term
  3944. \emph{regular languages}, which are the languages that can be
  3945. recognized by a finite state machine. A \emph{regular expression} is a
  3946. pattern formed of the following core elements:\index{subject}{regular
  3947. expression}\footnote{Regular expressions traditionally include the
  3948. empty regular expression that matches any zero-length part of a
  3949. string, but Lark does not support the empty regular expression.}
  3950. \begin{itemize}
  3951. \item A single character $c$ is a regular expression, and it matches
  3952. only itself. For example, the regular expression \code{a} matches
  3953. only the string \skey{a}.
  3954. \item Two regular expressions separated by a vertical bar $R_1 \ttm{|}
  3955. R_2$ form a regular expression that matches any string that matches
  3956. $R_1$ or $R_2$. For example, the regular expression \code{a|c}
  3957. matches the string \skey{a} and the string \skey{c}.
  3958. \item Two regular expressions in sequence $R_1 R_2$ form a regular
  3959. expression that matches any string that can be formed by
  3960. concatenating two strings, where the first string matches $R_1$ and
  3961. the second string matches $R_2$. For example, the regular expression
  3962. \code{(a|c)b} matches the strings \skey{ab} and \skey{cb}.
  3963. (Parentheses can be used to control the grouping of operators within
  3964. a regular expression.)
  3965. \item A regular expression followed by an asterisks $R\ttm{*}$ (called
  3966. Kleene closure) is a regular expression that matches any string that
  3967. can be formed by concatenating zero or more strings that each match
  3968. the regular expression $R$. For example, the regular expression
  3969. \code{((a|c)b)*} matches the string \skey{abcbab} but not
  3970. \skey{abc}.
  3971. \end{itemize}
  3972. For our convenience, Lark also accepts the following extended set of
  3973. regular expressions that are automatically translated into the core
  3974. regular expressions.
  3975. \begin{itemize}
  3976. \item A set of characters enclosed in square brackets $[c_1 c_2 \ldots
  3977. c_n]$ is a regular expression that matches any one of the
  3978. characters. So, $[c_1 c_2 \ldots c_n]$ is equivalent to
  3979. the regular expression $c_1\mid c_2\mid \ldots \mid c_n$.
  3980. \item A range of characters enclosed in square brackets $[c_1\ttm{-}c_2]$ is
  3981. a regular expression that matches any character between $c_1$ and
  3982. $c_2$, inclusive. For example, \code{[a-z]} matches any lowercase
  3983. letter in the alphabet.
  3984. \item A regular expression followed by the plus symbol $R\ttm{+}$
  3985. is a regular expression that matches any string that can
  3986. be formed by concatenating one or more strings that each match $R$.
  3987. So $R+$ is equivalent to $R(R*)$. For example, \code{[a-z]+}
  3988. matches \skey{b} and \skey{bzca}.
  3989. \item A regular expression followed by a question mark $R\ttm{?}$
  3990. is a regular expression that matches any string that either
  3991. matches $R$ or is the empty string.
  3992. For example, \code{a?b} matches both \skey{ab} and \skey{b}.
  3993. \end{itemize}
  3994. In a Lark grammar file, each kind of token is specified by a
  3995. \emph{terminal}\index{subject}{terminal}, which is defined by a rule
  3996. that consists of the name of the terminal followed by a colon followed
  3997. by a sequence of literals. The literals include strings such as
  3998. \code{"abc"}, regular expressions surrounded by \code{/} characters,
  3999. terminal names, and literals composed using the regular expression
  4000. operators ($+$, $*$, etc.). For example, the \code{DIGIT},
  4001. \code{INT}, and \code{NEWLINE} terminals are specified as follows:
  4002. \begin{center}
  4003. \begin{minipage}{0.95\textwidth}
  4004. \begin{lstlisting}
  4005. DIGIT: /[0-9]/
  4006. INT: "-"? DIGIT+
  4007. NEWLINE: (/\r/? /\n/)+
  4008. \end{lstlisting}
  4009. \end{minipage}
  4010. \end{center}
  4011. \section{Grammars and Parse Trees}
  4012. \label{sec:CFG}
  4013. In section~\ref{sec:grammar} we learned how to use grammar rules to
  4014. specify the abstract syntax of a language. We now take a closer look
  4015. at using grammar rules to specify the concrete syntax. Recall that
  4016. each rule has a left-hand side and a right-hand side, where the
  4017. left-hand side is a nonterminal and the right-hand side is a pattern
  4018. that defines what can be parsed as that nonterminal. For concrete
  4019. syntax, each right-hand side expresses a pattern for a string instead
  4020. of a pattern for an abstract syntax tree. In particular, each
  4021. right-hand side is a sequence of
  4022. \emph{symbols}\index{subject}{symbol}, where a symbol is either a
  4023. terminal or a nonterminal. The nonterminals play the same role as in
  4024. the abstract syntax, defining categories of syntax. The nonterminals
  4025. of a grammar include the tokens defined in the lexer and all the
  4026. nonterminals defined by the grammar rules.
  4027. As an example, let us take a closer look at the concrete syntax of the
  4028. \LangInt{} language, repeated here.
  4029. \[
  4030. \begin{array}{l}
  4031. \LintGrammarPython \\
  4032. \begin{array}{rcl}
  4033. \LangInt{} &::=& \Stmt^{*}
  4034. \end{array}
  4035. \end{array}
  4036. \]
  4037. The Lark syntax for grammar rules differs slightly from the variant of
  4038. BNF that we use in this book. In particular, the notation $::=$ is
  4039. replaced by a single colon, and the use of typewriter font for string
  4040. literals is replaced by quotation marks. The following grammar serves
  4041. as a first draft of a Lark grammar for \LangInt{}.
  4042. \begin{center}
  4043. \begin{minipage}{0.95\textwidth}
  4044. \begin{lstlisting}[escapechar=$]
  4045. exp: INT
  4046. | "input_int" "(" ")"
  4047. | "-" exp
  4048. | exp "+" exp
  4049. | exp "-" exp
  4050. | "(" exp ")"
  4051. stmt_list:
  4052. | stmt NEWLINE stmt_list
  4053. lang_int: stmt_list
  4054. \end{lstlisting}
  4055. \end{minipage}
  4056. \end{center}
  4057. Let us begin by discussing the rule \code{exp: INT}, which says that
  4058. if the lexer matches a string to \code{INT}, then the parser also
  4059. categorizes the string as an \code{exp}. Recall that in
  4060. section~\ref{sec:grammar} we defined the corresponding \Int{}
  4061. nonterminal with a sentence in English. Here we specify \code{INT}
  4062. more formally using a type of token \code{INT} and its regular
  4063. expression \code{"-"? DIGIT+}.
  4064. The rule \code{exp: exp "+" exp} says that any string that matches
  4065. \code{exp}, followed by the \code{+} character, followed by another
  4066. string that matches \code{exp}, is itself an \code{exp}. For example,
  4067. the string \lstinline{'1+3'} is an \code{exp} because \lstinline{'1'} and
  4068. \lstinline{'3'} are both \code{exp} by the rule \code{exp: INT}, and then
  4069. the rule for addition applies to categorize \lstinline{'1+3'} as an
  4070. \code{exp}. We can visualize the application of grammar rules to parse
  4071. a string using a \emph{parse tree}\index{subject}{parse tree}. Each
  4072. internal node in the tree is an application of a grammar rule and is
  4073. labeled with its left-hand side nonterminal. Each leaf node is a
  4074. substring of the input program. The parse tree for \lstinline{'1+3'} is
  4075. shown in figure~\ref{fig:simple-parse-tree}.
  4076. \begin{figure}[tbp]
  4077. \begin{tcolorbox}[colback=white]
  4078. \centering
  4079. \includegraphics[width=1.9in]{figs/simple-parse-tree}
  4080. \end{tcolorbox}
  4081. \caption{The parse tree for \lstinline{'1+3'}.}
  4082. \label{fig:simple-parse-tree}
  4083. \end{figure}
  4084. The result of parsing \lstinline{'1+3'} with this Lark grammar is the
  4085. following parse tree as represented by \code{Tree} and \code{Token}
  4086. objects.
  4087. \begin{lstlisting}
  4088. Tree('lang_int',
  4089. [Tree('stmt', [Tree('exp', [Tree('exp', [Token('INT', '1')]),
  4090. Tree('exp', [Token('INT', '3')])])]),
  4091. Token('NEWLINE', '\n')])
  4092. \end{lstlisting}
  4093. The nodes that come from the lexer are \code{Token} objects, whereas
  4094. the nodes from the parser are \code{Tree} objects. Each \code{Tree}
  4095. object has a \code{data} field containing the name of the nonterminal
  4096. for the grammar rule that was applied. Each \code{Tree} object also
  4097. has a \code{children} field that is a list containing trees and/or
  4098. tokens. Note that Lark does not produce nodes for string literals in
  4099. the grammar. For example, the \code{Tree} node for the addition
  4100. expression has only two children for the two integers but is missing
  4101. its middle child for the \code{"+"} terminal. This would be
  4102. problematic except that Lark provides a mechanism for customizing the
  4103. \code{data} field of each \code{Tree} node on the basis of which rule was
  4104. applied. Next to each alternative in a grammar rule, write \code{->}
  4105. followed by a string that you want to appear in the \code{data}
  4106. field. The following is a second draft of a Lark grammar for
  4107. \LangInt{}, this time with more specific labels on the \code{Tree}
  4108. nodes.
  4109. \begin{center}
  4110. \begin{minipage}{0.95\textwidth}
  4111. \begin{lstlisting}[escapechar=$]
  4112. exp: INT -> int
  4113. | "input_int" "(" ")" -> input_int
  4114. | "-" exp -> usub
  4115. | exp "+" exp -> add
  4116. | exp "-" exp -> sub
  4117. | "(" exp ")" -> paren
  4118. stmt: "print" "(" exp ")" -> print
  4119. | exp -> expr
  4120. stmt_list: -> empty_stmt
  4121. | stmt NEWLINE stmt_list -> add_stmt
  4122. lang_int: stmt_list -> module
  4123. \end{lstlisting}
  4124. \end{minipage}
  4125. \end{center}
  4126. Here is the resulting parse tree.
  4127. \begin{lstlisting}
  4128. Tree('module',
  4129. [Tree('expr', [Tree('add', [Tree('int', [Token('INT', '1')]),
  4130. Tree('int', [Token('INT', '3')])])]),
  4131. Token('NEWLINE', '\n')])
  4132. \end{lstlisting}
  4133. \section{Ambiguous Grammars}
  4134. A grammar is \emph{ambiguous}\index{subject}{ambiguous} when a string
  4135. can be parsed in more than one way. For example, consider the string
  4136. \lstinline{'1-2+3'}. This string can be parsed in two different ways using
  4137. our draft grammar, resulting in the two parse trees shown in
  4138. figure~\ref{fig:ambig-parse-tree}. This example is problematic because
  4139. interpreting the second parse tree would yield \code{-4} even through
  4140. the correct answer is \code{2}.
  4141. \begin{figure}[tbp]
  4142. \begin{tcolorbox}[colback=white]
  4143. \centering
  4144. \includegraphics[width=0.95\textwidth]{figs/ambig-parse-tree}
  4145. \end{tcolorbox}
  4146. \caption{The two parse trees for \lstinline{'1-2+3'}.}
  4147. \label{fig:ambig-parse-tree}
  4148. \end{figure}
  4149. To deal with this problem we can change the grammar by categorizing
  4150. the syntax in a more fine-grained fashion. In this case we want to
  4151. disallow the application of the rule \code{exp: exp "-" exp} when the
  4152. child on the right is an addition. To do this we can replace the
  4153. \code{exp} after \code{"-"} with a nonterminal that categorizes all
  4154. the expressions except for addition, as in the following.
  4155. \begin{center}
  4156. \begin{minipage}{0.95\textwidth}
  4157. \begin{lstlisting}[escapechar=$]
  4158. exp: exp "-" exp_no_add -> sub
  4159. | exp "+" exp -> add
  4160. | exp_no_add
  4161. exp_no_add: INT -> int
  4162. | "input_int" "(" ")" -> input_int
  4163. | "-" exp -> usub
  4164. | exp "-" exp_no_add -> sub
  4165. | "(" exp ")" -> paren
  4166. \end{lstlisting}
  4167. \end{minipage}
  4168. \end{center}
  4169. However, there remains some ambiguity in the grammar. For example, the
  4170. string \lstinline{'1-2-3'} can still be parsed in two different ways,
  4171. as \lstinline{'(1-2)-3'} (correct) or \lstinline{'1-(2-3)'}
  4172. (incorrect). That is, subtraction is left associative. Likewise,
  4173. addition in Python is left associative. We also need to consider the
  4174. interaction of unary subtraction with both addition and
  4175. subtraction. How should we parse \lstinline{'-1+2'}? Unary subtraction
  4176. has higher \emph{precedence}\index{subject}{precedence} than addition
  4177. and subtraction, so \lstinline{'-1+2'} should parse the same as
  4178. \lstinline{'(-1)+2'} and not \lstinline{'-(1+2)'}. The grammar in
  4179. figure~\ref{fig:Lint-lark-grammar} handles the associativity of
  4180. addition and subtraction by using the nonterminal \code{exp\_hi} for
  4181. all the other expressions, and it uses \code{exp\_hi} for the second
  4182. child in the rules for addition and subtraction. Furthermore, unary
  4183. subtraction uses \code{exp\_hi} for its child.
  4184. For languages with more operators and more precedence levels, one must
  4185. refine the \code{exp} nonterminal into several nonterminals, one for
  4186. each precedence level.
  4187. \begin{figure}[tbp]
  4188. \begin{tcolorbox}[colback=white]
  4189. \centering
  4190. \begin{lstlisting}[escapechar=$]
  4191. exp: exp "+" exp_hi -> add
  4192. | exp "-" exp_hi -> sub
  4193. | exp_hi
  4194. exp_hi: INT -> int
  4195. | "input_int" "(" ")" -> input_int
  4196. | "-" exp_hi -> usub
  4197. | "(" exp ")" -> paren
  4198. stmt: "print" "(" exp ")" -> print
  4199. | exp -> expr
  4200. stmt_list: -> empty_stmt
  4201. | stmt NEWLINE stmt_list -> add_stmt
  4202. lang_int: stmt_list -> module
  4203. \end{lstlisting}
  4204. \end{tcolorbox}
  4205. \caption{An unambiguous Lark grammar for \LangInt{}.}
  4206. \label{fig:Lint-lark-grammar}
  4207. \end{figure}
  4208. \section{From Parse Trees to Abstract Syntax Trees}
  4209. As we have seen, the output of a Lark parser is a parse tree, that is,
  4210. a tree consisting of \code{Tree} and \code{Token} nodes. So, the next
  4211. step is to convert the parse tree to an abstract syntax tree. This can
  4212. be accomplished with a recursive function that inspects the
  4213. \code{data} field of each node and then constructs the corresponding
  4214. AST node, using recursion to handle its children. The following is an
  4215. excerpt from the \code{parse\_tree\_to\_ast} function for \LangInt{}.
  4216. \begin{center}
  4217. \begin{minipage}{0.95\textwidth}
  4218. \begin{lstlisting}
  4219. def parse_tree_to_ast(e):
  4220. if e.data == 'int':
  4221. return Constant(int(e.children[0].value))
  4222. elif e.data == 'input_int':
  4223. return Call(Name('input_int'), [])
  4224. elif e.data == 'add':
  4225. e1, e2 = e.children
  4226. return BinOp(parse_tree_to_ast(e1), Add(), parse_tree_to_ast(e2))
  4227. ...
  4228. else:
  4229. raise Exception('unhandled parse tree', e)
  4230. \end{lstlisting}
  4231. \end{minipage}
  4232. \end{center}
  4233. \begin{exercise}
  4234. \normalfont\normalsize
  4235. %
  4236. Use Lark to create a lexer and parser for \LangVar{}. Use Lark's
  4237. default parsing algorithm (Earley) with the \code{ambiguity} option
  4238. set to \lstinline{'explicit'} so that if your grammar is ambiguous, the
  4239. output will include multiple parse trees that will indicate to you
  4240. that there is a problem with your grammar. Your parser should ignore
  4241. white space, so we recommend using Lark's \code{\%ignore} directive
  4242. as follows.
  4243. \begin{lstlisting}
  4244. WS: /[ \t\f\r\n]/+
  4245. %ignore WS
  4246. \end{lstlisting}
  4247. Change your compiler from chapter~\ref{ch:Lvar} to use your
  4248. Lark parser instead of using the \code{parse} function from
  4249. the \code{ast} module. Test your compiler on all the \LangVar{}
  4250. programs that you have created, and create four additional programs
  4251. that test for ambiguities in your grammar.
  4252. \end{exercise}
  4253. \section{Earley's Algorithm}
  4254. \label{sec:earley}
  4255. In this section we discuss the parsing algorithm of
  4256. \citet{Earley:1970ly}, the default algorithm used by Lark. The
  4257. algorithm is powerful in that it can handle any context-free grammar,
  4258. which makes it easy to use. However, it is not a particularly
  4259. efficient parsing algorithm. Earley's algorithm is $O(n^3)$ for
  4260. ambiguous grammars and $O(n^2)$ for unambiguous grammars, where $n$ is
  4261. the number of tokens in the input
  4262. string~\citep{Hopcroft06:_automata}. In section~\ref{sec:lalr} we
  4263. learn about the LALR(1) algorithm, which is more efficient but cannot
  4264. handle all context-free grammars.
  4265. Earley's algorithm can be viewed as an interpreter; it treats the
  4266. grammar as the program being interpreted, and it treats the concrete
  4267. syntax of the program-to-be-parsed as its input. Earley's algorithm
  4268. uses a data structure called a \emph{chart}\index{subject}{chart} to
  4269. keep track of its progress and to store its results. The chart is an
  4270. array with one slot for each position in the input string, where
  4271. position $0$ is before the first character and position $n$ is
  4272. immediately after the last character. So, the array has length $n+1$
  4273. for an input string of length $n$. Each slot in the chart contains a
  4274. set of \emph{dotted rules}. A dotted rule is simply a grammar rule
  4275. with a period indicating how much of its right-hand side has already
  4276. been parsed. For example, the dotted rule
  4277. \begin{lstlisting}
  4278. exp: exp "+" . exp_hi
  4279. \end{lstlisting}
  4280. represents a partial parse that has matched an \code{exp} followed by
  4281. \code{+} but has not yet parsed an \code{exp} to the right of
  4282. \code{+}.
  4283. %
  4284. Earley's algorithm starts with an initialization phase and then
  4285. repeats three actions---prediction, scanning, and completion---for as
  4286. long as opportunities arise. We demonstrate Earley's algorithm on a
  4287. running example, parsing the following program:
  4288. \begin{lstlisting}
  4289. print(1 + 3)
  4290. \end{lstlisting}
  4291. The algorithm's initialization phase creates dotted rules for all the
  4292. grammar rules whose left-hand side is the start symbol and places them
  4293. in slot $0$ of the chart. We also record the starting position of the
  4294. dotted rule in parentheses on the right. For example, given the
  4295. grammar in figure~\ref{fig:Lint-lark-grammar}, we place
  4296. \begin{lstlisting}
  4297. lang_int: . stmt_list (0)
  4298. \end{lstlisting}
  4299. in slot $0$ of the chart. The algorithm then proceeds with
  4300. \emph{prediction} actions in which it adds more dotted rules to the
  4301. chart based on the nonterminals that come immediately after a period. In
  4302. the dotted rule above, the nonterminal \code{stmt\_list} appears after a period,
  4303. so we add all the rules for \code{stmt\_list} to slot $0$, with a
  4304. period at the beginning of their right-hand sides, as follows:
  4305. \begin{lstlisting}
  4306. stmt_list: . (0)
  4307. stmt_list: . stmt NEWLINE stmt_list (0)
  4308. \end{lstlisting}
  4309. We continue to perform prediction actions as more opportunities
  4310. arise. For example, the \code{stmt} nonterminal now appears after a
  4311. period, so we add all the rules for \code{stmt}.
  4312. \begin{lstlisting}
  4313. stmt: . "print" "(" exp ")" (0)
  4314. stmt: . exp (0)
  4315. \end{lstlisting}
  4316. This reveals yet more opportunities for prediction, so we add the grammar
  4317. rules for \code{exp} and \code{exp\_hi} to slot $0$.
  4318. \begin{lstlisting}[escapechar=$]
  4319. exp: . exp "+" exp_hi (0)
  4320. exp: . exp "-" exp_hi (0)
  4321. exp: . exp_hi (0)
  4322. exp_hi: . INT (0)
  4323. exp_hi: . "input_int" "(" ")" (0)
  4324. exp_hi: . "-" exp_hi (0)
  4325. exp_hi: . "(" exp ")" (0)
  4326. \end{lstlisting}
  4327. We have exhausted the opportunities for prediction, so the algorithm
  4328. proceeds to \emph{scanning}, in which we inspect the next input token
  4329. and look for a dotted rule at the current position that has a matching
  4330. terminal immediately following the period. In our running example, the
  4331. first input token is \code{"print"}, so we identify the rule in slot
  4332. $0$ of the chart where \code{"print"} follows the period:
  4333. \begin{lstlisting}
  4334. stmt: . "print" "(" exp ")" (0)
  4335. \end{lstlisting}
  4336. We advance the period past \code{"print"} and add the resulting rule
  4337. to slot $1$ of the chart:
  4338. \begin{lstlisting}
  4339. stmt: "print" . "(" exp ")" (0)
  4340. \end{lstlisting}
  4341. If the new dotted rule had a nonterminal after the period, we would
  4342. need to carry out a prediction action, adding more dotted rules to
  4343. slot $1$. That is not the case, so we continue scanning. The next
  4344. input token is \code{"("}, so we add the following to slot $2$ of the
  4345. chart.
  4346. \begin{lstlisting}
  4347. stmt: "print" "(" . exp ")" (0)
  4348. \end{lstlisting}
  4349. Now we have a nonterminal after the period, so we carry out several
  4350. prediction actions, adding dotted rules for \code{exp} and
  4351. \code{exp\_hi} to slot $2$ with a period at the beginning and with
  4352. starting position $2$.
  4353. \begin{lstlisting}[escapechar=$]
  4354. exp: . exp "+" exp_hi (2)
  4355. exp: . exp "-" exp_hi (2)
  4356. exp: . exp_hi (2)
  4357. exp_hi: . INT (2)
  4358. exp_hi: . "input_int" "(" ")" (2)
  4359. exp_hi: . "-" exp_hi (2)
  4360. exp_hi: . "(" exp ")" (2)
  4361. \end{lstlisting}
  4362. With this prediction complete, we return to scanning, noting that the
  4363. next input token is \code{"1"}, which the lexer parses as an
  4364. \code{INT}. There is a matching rule in slot $2$:
  4365. \begin{lstlisting}
  4366. exp_hi: . INT (2)
  4367. \end{lstlisting}
  4368. so we advance the period and put the following rule into slot $3$.
  4369. \begin{lstlisting}
  4370. exp_hi: INT . (2)
  4371. \end{lstlisting}
  4372. This brings us to \emph{completion} actions. When the period reaches
  4373. the end of a dotted rule, we recognize that the substring
  4374. has matched the nonterminal on the left-hand side of the rule, in this case
  4375. \code{exp\_hi}. We therefore need to advance the periods in any dotted
  4376. rules into slot $2$ (the starting position for the finished rule) if
  4377. the period is immediately followed by \code{exp\_hi}. So we identify
  4378. \begin{lstlisting}
  4379. exp: . exp_hi (2)
  4380. \end{lstlisting}
  4381. and add the following dotted rule to slot $3$
  4382. \begin{lstlisting}
  4383. exp: exp_hi . (2)
  4384. \end{lstlisting}
  4385. This triggers another completion step for the nonterminal \code{exp},
  4386. adding two more dotted rules to slot $3$.
  4387. \begin{lstlisting}[escapechar=$]
  4388. exp: exp . "+" exp_hi (2)
  4389. exp: exp . "-" exp_hi (2)
  4390. \end{lstlisting}
  4391. Returning to scanning, the next input token is \code{"+"}, so
  4392. we add the following to slot $4$.
  4393. \begin{lstlisting}[escapechar=$]
  4394. exp: exp "+" . exp_hi (2)
  4395. \end{lstlisting}
  4396. The period precedes the nonterminal \code{exp\_hi}, so prediction adds
  4397. the following dotted rules to slot $4$ of the chart.
  4398. \begin{lstlisting}[escapechar=$]
  4399. exp_hi: . INT (4)
  4400. exp_hi: . "input_int" "(" ")" (4)
  4401. exp_hi: . "-" exp_hi (4)
  4402. exp_hi: . "(" exp ")" (4)
  4403. \end{lstlisting}
  4404. The next input token is \code{"3"} which the lexer categorized as an
  4405. \code{INT}, so we advance the period past \code{INT} for the rules in
  4406. slot $4$, of which there is just one, and put the following into slot $5$.
  4407. \begin{lstlisting}[escapechar=$]
  4408. exp_hi: INT . (4)
  4409. \end{lstlisting}
  4410. The period at the end of the rule triggers a completion action for the
  4411. rules in slot $4$, one of which has a period before \code{exp\_hi}.
  4412. So we advance the period and put the following into slot $5$.
  4413. \begin{lstlisting}[escapechar=$]
  4414. exp: exp "+" exp_hi . (2)
  4415. \end{lstlisting}
  4416. This triggers another completion action for the rules in slot $2$ that
  4417. have a period before \code{exp}.
  4418. \begin{lstlisting}[escapechar=$]
  4419. stmt: "print" "(" exp . ")" (0)
  4420. exp: exp . "+" exp_hi (2)
  4421. exp: exp . "-" exp_hi (2)
  4422. \end{lstlisting}
  4423. We scan the next input token \code{")"}, placing the following dotted
  4424. rule into slot $6$.
  4425. \begin{lstlisting}[escapechar=$]
  4426. stmt: "print" "(" exp ")" . (0)
  4427. \end{lstlisting}
  4428. This triggers the completion of \code{stmt} in slot $0$
  4429. \begin{lstlisting}
  4430. stmt_list: stmt . NEWLINE stmt_list (0)
  4431. \end{lstlisting}
  4432. The last input token is a \code{NEWLINE}, so we advance the period
  4433. and place the new dotted rule into slot $7$.
  4434. \begin{lstlisting}
  4435. stmt_list: stmt NEWLINE . stmt_list (0)
  4436. \end{lstlisting}
  4437. We are close to the end of parsing the input!
  4438. The period is before the \code{stmt\_list} nonterminal, so we
  4439. apply prediction for \code{stmt\_list} and then \code{stmt}.
  4440. \begin{lstlisting}
  4441. stmt_list: . (7)
  4442. stmt_list: . stmt NEWLINE stmt_list (7)
  4443. stmt: . "print" "(" exp ")" (7)
  4444. stmt: . exp (7)
  4445. \end{lstlisting}
  4446. There is immediately an opportunity for completion of \code{stmt\_list},
  4447. so we add the following to slot $7$.
  4448. \begin{lstlisting}
  4449. stmt_list: stmt NEWLINE stmt_list . (0)
  4450. \end{lstlisting}
  4451. This triggers another completion action for \code{stmt\_list} in slot $0$
  4452. \begin{lstlisting}
  4453. lang_int: stmt_list . (0)
  4454. \end{lstlisting}
  4455. which in turn completes \code{lang\_int}, the start symbol of the
  4456. grammar, so the parsing of the input is complete.
  4457. For reference, we give a general description of Earley's
  4458. algorithm.
  4459. \begin{enumerate}
  4460. \item The algorithm begins by initializing slot $0$ of the chart with the
  4461. grammar rule for the start symbol, placing a period at the beginning
  4462. of the right-hand side, and recording its starting position as $0$.
  4463. \item The algorithm repeatedly applies the following three kinds of
  4464. actions for as long as there are opportunities to do so.
  4465. \begin{itemize}
  4466. \item Prediction: If there is a rule in slot $k$ whose period comes
  4467. before a nonterminal, add the rules for that nonterminal into slot
  4468. $k$, placing a period at the beginning of their right-hand sides
  4469. and recording their starting position as $k$.
  4470. \item Scanning: If the token at position $k$ of the input string
  4471. matches the symbol after the period in a dotted rule in slot $k$
  4472. of the chart, advance the period in the dotted rule, adding
  4473. the result to slot $k+1$.
  4474. \item Completion: If a dotted rule in slot $k$ has a period at the
  4475. end, inspect the rules in the slot corresponding to the starting
  4476. position of the completed rule. If any of those rules have a
  4477. nonterminal following their period that matches the left-hand side
  4478. of the completed rule, then advance their period, placing the new
  4479. dotted rule in slot $k$.
  4480. \end{itemize}
  4481. While repeating these three actions, take care never to add
  4482. duplicate dotted rules to the chart.
  4483. \end{enumerate}
  4484. We have described how Earley's algorithm recognizes that an input
  4485. string matches a grammar, but we have not described how it builds a
  4486. parse tree. The basic idea is simple, but building parse trees in an
  4487. efficient way is more complex, requiring a data structure called a
  4488. shared packed parse forest~\citep{Tomita:1985qr}. The simple idea is
  4489. to attach a partial parse tree to every dotted rule in the chart.
  4490. Initially, the tree node associated with a dotted rule has no
  4491. children. As the period moves to the right, the nodes from the
  4492. subparses are added as children to the tree node.
  4493. As mentioned at the beginning of this section, Earley's algorithm is
  4494. $O(n^2)$ for unambiguous grammars, which means that it can parse input
  4495. files that contain thousands of tokens in a reasonable amount of time,
  4496. but not millions.
  4497. %
  4498. In the next section we discuss the LALR(1) parsing algorithm, which is
  4499. efficient enough to use with even the largest of input files.
  4500. \section{The LALR(1) Algorithm}
  4501. \label{sec:lalr}
  4502. The LALR(1) algorithm~\citep{DeRemer69,Anderson73} can be viewed as a
  4503. two-phase approach in which it first compiles the grammar into a state
  4504. machine and then runs the state machine to parse an input string. The
  4505. second phase has time complexity $O(n)$ where $n$ is the number of
  4506. tokens in the input, so LALR(1) is the best one could hope for with
  4507. respect to efficiency.
  4508. %
  4509. A particularly influential implementation of LALR(1) is the
  4510. \texttt{yacc} parser generator by \citet{Johnson:1979qy};
  4511. \texttt{yacc} stands for ``yet another compiler compiler.''
  4512. %
  4513. The LALR(1) state machine uses a stack to record its progress in
  4514. parsing the input string. Each element of the stack is a pair: a
  4515. state number and a grammar symbol (a terminal or a nonterminal). The
  4516. symbol characterizes the input that has been parsed so far, and the
  4517. state number is used to remember how to proceed once the next
  4518. symbol's worth of input has been parsed. Each state in the machine
  4519. represents where the parser stands in the parsing process with respect
  4520. to certain grammar rules. In particular, each state is associated with
  4521. a set of dotted rules.
  4522. Figure~\ref{fig:shift-reduce} shows an example LALR(1) state machine
  4523. (also called parse table) for the following simple but ambiguous
  4524. grammar:
  4525. \begin{lstlisting}[escapechar=$]
  4526. exp: INT
  4527. | exp "+" exp
  4528. stmt: "print" exp
  4529. start: stmt
  4530. \end{lstlisting}
  4531. Consider state 1 in figure~\ref{fig:shift-reduce}. The parser has just
  4532. read in a \lstinline{"print"} token, so the top of the stack is
  4533. \lstinline{(1,"print")}. The parser is part of the way through parsing
  4534. the input according to grammar rule 1, which is signified by showing
  4535. rule 1 with a period after the \code{"print"} token and before the
  4536. \code{exp} nonterminal. There are two rules that could apply next,
  4537. rules 2 and 3, so state 1 also shows those rules with a period at
  4538. the beginning of their right-hand sides. The edges between states
  4539. indicate which transitions the machine should make depending on the
  4540. next input token. So, for example, if the next input token is
  4541. \code{INT} then the parser will push \code{INT} and the target state 4
  4542. on the stack and transition to state 4. Suppose that we are now at the end
  4543. of the input. State 4 says that we should reduce by rule 3, so we pop
  4544. from the stack the same number of items as the number of symbols in
  4545. the right-hand side of the rule, in this case just one. We then
  4546. momentarily jump to the state at the top of the stack (state 1) and
  4547. then follow the goto edge that corresponds to the left-hand side of
  4548. the rule we just reduced by, in this case \code{exp}, so we arrive at
  4549. state 3. (A slightly longer example parse is shown in
  4550. figure~\ref{fig:shift-reduce}.)
  4551. \begin{figure}[htbp]
  4552. \centering
  4553. \includegraphics[width=5.0in]{figs/shift-reduce-conflict}
  4554. \caption{An LALR(1) parse table and a trace of an example run.}
  4555. \label{fig:shift-reduce}
  4556. \end{figure}
  4557. In general, the algorithm works as follows. First, set the current state to
  4558. state $0$. Then repeat the following, looking at the next input token.
  4559. \begin{itemize}
  4560. \item If there there is a shift edge for the input token in the
  4561. current state, push the edge's target state and the input token onto
  4562. the stack and proceed to the edge's target state.
  4563. \item If there is a reduce action for the input token in the current
  4564. state, pop $k$ elements from the stack, where $k$ is the number of
  4565. symbols in the right-hand side of the rule being reduced. Jump to
  4566. the state at the top of the stack and then follow the goto edge for
  4567. the nonterminal that matches the left-hand side of the rule that we
  4568. are reducing by. Push the edge's target state and the nonterminal on the
  4569. stack.
  4570. \end{itemize}
  4571. Notice that in state 6 of figure~\ref{fig:shift-reduce} there is both
  4572. a shift and a reduce action for the token \lstinline{PLUS}, so the
  4573. algorithm does not know which action to take in this case. When a
  4574. state has both a shift and a reduce action for the same token, we say
  4575. there is a \emph{shift/reduce conflict}. In this case, the conflict
  4576. will arise, for example, in trying to parse the input
  4577. \lstinline{print 1 + 2 + 3}. After having consumed \lstinline{print 1 + 2},
  4578. the parser will be in state 6 and will not know whether to
  4579. reduce to form an \code{exp} of \lstinline{1 + 2} or
  4580. to proceed by shifting the next \lstinline{+} from the input.
  4581. A similar kind of problem, known as a \emph{reduce/reduce} conflict,
  4582. arises when there are two reduce actions in a state for the same
  4583. token. To understand which grammars give rise to shift/reduce and
  4584. reduce/reduce conflicts, it helps to know how the parse table is
  4585. generated from the grammar, which we discuss next.
  4586. The parse table is generated one state at a time. State 0 represents
  4587. the start of the parser. We add the grammar rule for the start symbol
  4588. to this state with a period at the beginning of the right-hand side,
  4589. similarly to the initialization phase of the Earley parser. If the
  4590. period appears immediately before another nonterminal, we add all the
  4591. rules with that nonterminal on the left-hand side. Again, we place a
  4592. period at the beginning of the right-hand side of each new
  4593. rule. This process, called \emph{state closure}, is continued
  4594. until there are no more rules to add (similarly to the prediction
  4595. actions of an Earley parser). We then examine each dotted rule in the
  4596. current state $I$. Suppose that a dotted rule has the form $A ::=
  4597. s_1.\,X \,s_2$, where $A$ and $X$ are symbols and $s_1$ and $s_2$
  4598. are sequences of symbols. We create a new state and call it $J$. If $X$
  4599. is a terminal, we create a shift edge from $I$ to $J$ (analogously to
  4600. scanning in Earley), whereas if $X$ is a nonterminal, we create a
  4601. goto edge from $I$ to $J$. We then need to add some dotted rules to
  4602. state $J$. We start by adding all dotted rules from state $I$ that
  4603. have the form $B ::= s_1.\,X\,s_2$ (where $B$ is any nonterminal and
  4604. $s_1$ and $s_2$ are arbitrary sequences of symbols), with
  4605. the period moved past the $X$. (This is analogous to completion in
  4606. Earley's algorithm.) We then perform state closure on $J$. This
  4607. process repeats until there are no more states or edges to add.
  4608. We then mark states as accepting states if they have a dotted rule
  4609. that is the start rule with a period at the end. Also, to add
  4610. the reduce actions, we look for any state containing a dotted rule
  4611. with a period at the end. Let $n$ be the rule number for this dotted
  4612. rule. We then put a reduce $n$ action into that state for every token
  4613. $Y$. For example, in figure~\ref{fig:shift-reduce} state 4 has a
  4614. dotted rule with a period at the end. We therefore put a reduce by
  4615. rule 3 action into state 4 for every
  4616. token.
  4617. When inserting reduce actions, take care to spot any shift/reduce or
  4618. reduce/reduce conflicts. If there are any, abort the construction of
  4619. the parse table.
  4620. \begin{exercise}
  4621. \normalfont\normalsize
  4622. %
  4623. Working on paper, walk through the parse table generation process for
  4624. the grammar at the top of figure~\ref{fig:shift-reduce}, and check
  4625. your results against the parse table shown in
  4626. figure~\ref{fig:shift-reduce}.
  4627. \end{exercise}
  4628. \begin{exercise}
  4629. \normalfont\normalsize
  4630. %
  4631. Change the parser in your compiler for \LangVar{} to set the
  4632. \code{parser} option of Lark to \lstinline{'lalr'}. Test your compiler on
  4633. all the \LangVar{} programs that you have created. In doing so, Lark
  4634. may signal an error due to shift/reduce or reduce/reduce conflicts
  4635. in your grammar. If so, change your Lark grammar for \LangVar{} to
  4636. remove those conflicts.
  4637. \end{exercise}
  4638. \section{Further Reading}
  4639. In this chapter we have just scratched the surface of the field of
  4640. parsing, with the study of a very general but less efficient algorithm
  4641. (Earley) and with a more limited but highly efficient algorithm
  4642. (LALR). There are many more algorithms and classes of grammars that
  4643. fall between these two ends of the spectrum. We recommend to the reader
  4644. \citet{Aho:2006wb} for a thorough treatment of parsing.
  4645. Regarding lexical analysis, we have described the specification
  4646. language, which are the regular expressions, but not the algorithms
  4647. for recognizing them. In short, regular expressions can be translated
  4648. to nondeterministic finite automata, which in turn are translated to
  4649. finite automata. We refer the reader again to \citet{Aho:2006wb} for
  4650. all the details on lexical analysis.
  4651. \fi}
  4652. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4653. \chapter{Register Allocation}
  4654. \label{ch:register-allocation-Lvar}
  4655. \setcounter{footnote}{0}
  4656. \index{subject}{register allocation}
  4657. In chapter~\ref{ch:Lvar} we learned how to compile \LangVar{} to x86,
  4658. storing variables on the procedure call stack. The CPU may require tens
  4659. to hundreds of cycles to access a location on the stack, whereas
  4660. accessing a register takes only a single cycle. In this chapter we
  4661. improve the efficiency of our generated code by storing some variables
  4662. in registers. The goal of register allocation is to fit as many
  4663. variables into registers as possible. Some programs have more
  4664. variables than registers, so we cannot always map each variable to a
  4665. different register. Fortunately, it is common for different variables
  4666. to be in use during different periods of time during program
  4667. execution, and in those cases we can map multiple variables to the
  4668. same register.
  4669. The program shown in figure~\ref{fig:reg-eg} serves as a running
  4670. example. The source program is on the left and the output of
  4671. instruction selection\index{subject}{instruction selection}
  4672. is on the right. The program is almost
  4673. completely in the x86 assembly language, but it still uses variables.
  4674. Consider variables \code{x} and \code{z}. After the variable \code{x}
  4675. has been moved to \code{z}, it is no longer in use. Variable \code{z}, on
  4676. the other hand, is used only after this point, so \code{x} and
  4677. \code{z} could share the same register.
  4678. \begin{figure}
  4679. \begin{tcolorbox}[colback=white]
  4680. \begin{minipage}{0.45\textwidth}
  4681. Example \LangVar{} program:
  4682. % var_test_28.rkt
  4683. {\if\edition\racketEd
  4684. \begin{lstlisting}
  4685. (let ([v 1])
  4686. (let ([w 42])
  4687. (let ([x (+ v 7)])
  4688. (let ([y x])
  4689. (let ([z (+ x w)])
  4690. (+ z (- y)))))))
  4691. \end{lstlisting}
  4692. \fi}
  4693. {\if\edition\pythonEd\pythonColor
  4694. \begin{lstlisting}
  4695. v = 1
  4696. w = 42
  4697. x = v + 7
  4698. y = x
  4699. z = x + w
  4700. print(z + (- y))
  4701. \end{lstlisting}
  4702. \fi}
  4703. \end{minipage}
  4704. \begin{minipage}{0.45\textwidth}
  4705. After instruction selection:
  4706. {\if\edition\racketEd
  4707. \begin{lstlisting}
  4708. locals-types:
  4709. x : Integer, y : Integer,
  4710. z : Integer, t : Integer,
  4711. v : Integer, w : Integer
  4712. start:
  4713. movq $1, v
  4714. movq $42, w
  4715. movq v, x
  4716. addq $7, x
  4717. movq x, y
  4718. movq x, z
  4719. addq w, z
  4720. movq y, t
  4721. negq t
  4722. movq z, %rax
  4723. addq t, %rax
  4724. jmp conclusion
  4725. \end{lstlisting}
  4726. \fi}
  4727. {\if\edition\pythonEd\pythonColor
  4728. \begin{lstlisting}
  4729. movq $1, v
  4730. movq $42, w
  4731. movq v, x
  4732. addq $7, x
  4733. movq x, y
  4734. movq x, z
  4735. addq w, z
  4736. movq y, tmp_0
  4737. negq tmp_0
  4738. movq z, tmp_1
  4739. addq tmp_0, tmp_1
  4740. movq tmp_1, %rdi
  4741. callq print_int
  4742. \end{lstlisting}
  4743. \fi}
  4744. \end{minipage}
  4745. \end{tcolorbox}
  4746. \caption{A running example for register allocation.}
  4747. \label{fig:reg-eg}
  4748. \end{figure}
  4749. The topic of section~\ref{sec:liveness-analysis-Lvar} is how to
  4750. compute where a variable is in use. Once we have that information, we
  4751. compute which variables are in use at the same time, that is, which ones
  4752. \emph{interfere}\index{subject}{interfere} with each other, and
  4753. represent this relation as an undirected graph whose vertices are
  4754. variables and edges indicate when two variables interfere
  4755. (section~\ref{sec:build-interference}). We then model register
  4756. allocation as a graph coloring problem
  4757. (section~\ref{sec:graph-coloring}).
  4758. If we run out of registers despite these efforts, we place the
  4759. remaining variables on the stack, similarly to how we handled
  4760. variables in chapter~\ref{ch:Lvar}. It is common to use the verb
  4761. \emph{spill}\index{subject}{spill} for assigning a variable to a stack
  4762. location. The decision to spill a variable is handled as part of the
  4763. graph coloring process.
  4764. We make the simplifying assumption that each variable is assigned to
  4765. one location (a register or stack address). A more sophisticated
  4766. approach is to assign a variable to one or more locations in different
  4767. regions of the program. For example, if a variable is used many times
  4768. in short sequence and then used again only after many other
  4769. instructions, it could be more efficient to assign the variable to a
  4770. register during the initial sequence and then move it to the stack for
  4771. the rest of its lifetime. We refer the interested reader to
  4772. \citet{Cooper:2011aa} (chapter 13) for more information about that
  4773. approach.
  4774. % discuss prioritizing variables based on how much they are used.
  4775. \section{Registers and Calling Conventions}
  4776. \label{sec:calling-conventions}
  4777. \index{subject}{calling conventions}
  4778. As we perform register allocation, we must be aware of the
  4779. \emph{calling conventions} \index{subject}{calling conventions} that
  4780. govern how function calls are performed in x86.
  4781. %
  4782. Even though \LangVar{} does not include programmer-defined functions,
  4783. our generated code includes a \code{main} function that is called by
  4784. the operating system and our generated code contains calls to the
  4785. \code{read\_int} function.
  4786. Function calls require coordination between two pieces of code that
  4787. may be written by different programmers or generated by different
  4788. compilers. Here we follow the System V calling conventions that are
  4789. used by the GNU C compiler on Linux and
  4790. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  4791. %
  4792. The calling conventions include rules about how functions share the
  4793. use of registers. In particular, the caller is responsible for freeing
  4794. some registers prior to the function call for use by the callee.
  4795. These are called the \emph{caller-saved registers}
  4796. \index{subject}{caller-saved registers}
  4797. and they are
  4798. \begin{lstlisting}
  4799. rax rcx rdx rsi rdi r8 r9 r10 r11
  4800. \end{lstlisting}
  4801. On the other hand, the callee is responsible for preserving the values
  4802. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  4803. which are
  4804. \begin{lstlisting}
  4805. rsp rbp rbx r12 r13 r14 r15
  4806. \end{lstlisting}
  4807. We can think about this caller/callee convention from two points of
  4808. view, the caller view and the callee view, as follows:
  4809. \begin{itemize}
  4810. \item The caller should assume that all the caller-saved registers get
  4811. overwritten with arbitrary values by the callee. On the other hand,
  4812. the caller can safely assume that all the callee-saved registers
  4813. retain their original values.
  4814. \item The callee can freely use any of the caller-saved registers.
  4815. However, if the callee wants to use a callee-saved register, the
  4816. callee must arrange to put the original value back in the register
  4817. prior to returning to the caller. This can be accomplished by saving
  4818. the value to the stack in the prelude of the function and restoring
  4819. the value in the conclusion of the function.
  4820. \end{itemize}
  4821. In x86, registers are also used for passing arguments to a function
  4822. and for the return value. In particular, the first six arguments of a
  4823. function are passed in the following six registers, in this order.
  4824. \begin{lstlisting}
  4825. rdi rsi rdx rcx r8 r9
  4826. \end{lstlisting}
  4827. We refer to these six registers are the argument-passing registers
  4828. \index{subject}{argument-passing registers}.
  4829. If there are more than six arguments, the convention is to use space
  4830. on the frame of the caller for the rest of the arguments. In
  4831. chapter~\ref{ch:Lfun}, we instead pass a tuple containing the sixth
  4832. argument and the rest of the arguments, which simplifies the treatment
  4833. of efficient tail calls.
  4834. %
  4835. \racket{For now, the only function we care about is \code{read\_int},
  4836. which takes zero arguments.}
  4837. %
  4838. \python{For now, the only functions we care about are \code{read\_int}
  4839. and \code{print\_int}, which take zero and one argument, respectively.}
  4840. %
  4841. The register \code{rax} is used for the return value of a function.
  4842. The next question is how these calling conventions impact register
  4843. allocation. Consider the \LangVar{} program presented in
  4844. figure~\ref{fig:example-calling-conventions}. We first analyze this
  4845. example from the caller point of view and then from the callee point
  4846. of view. We refer to a variable that is in use during a function call
  4847. as a \emph{call-live variable}\index{subject}{call-live variable}.
  4848. The program makes two calls to \READOP{}. The variable \code{x} is
  4849. call-live because it is in use during the second call to \READOP{}; we
  4850. must ensure that the value in \code{x} does not get overwritten during
  4851. the call to \READOP{}. One obvious approach is to save all the values
  4852. that reside in caller-saved registers to the stack prior to each
  4853. function call and to restore them after each call. That way, if the
  4854. register allocator chooses to assign \code{x} to a caller-saved
  4855. register, its value will be preserved across the call to \READOP{}.
  4856. However, saving and restoring to the stack is relatively slow. If
  4857. \code{x} is not used many times, it may be better to assign \code{x}
  4858. to a stack location in the first place. Or better yet, if we can
  4859. arrange for \code{x} to be placed in a callee-saved register, then it
  4860. won't need to be saved and restored during function calls.
  4861. We recommend an approach that captures these issues in the
  4862. interference graph, without complicating the graph coloring algorithm.
  4863. During liveness analysis we know which variables are call-live because
  4864. we compute which variables are in use at every instruction
  4865. (section~\ref{sec:liveness-analysis-Lvar}). When we build the
  4866. interference graph (section~\ref{sec:build-interference}), we can
  4867. place an edge in the interference graph between each call-live
  4868. variable and the caller-saved registers. This will prevent the graph
  4869. coloring algorithm from assigning call-live variables to caller-saved
  4870. registers.
  4871. On the other hand, for variables that are not call-live, we prefer
  4872. placing them in caller-saved registers to leave more room for
  4873. call-live variables in the callee-saved registers. This can also be
  4874. implemented without complicating the graph coloring algorithm. We
  4875. recommend that the graph coloring algorithm assign variables to
  4876. natural numbers, choosing the lowest number for which there is no
  4877. interference. After the coloring is complete, we map the numbers to
  4878. registers and stack locations: mapping the lowest numbers to
  4879. caller-saved registers, the next lowest to callee-saved registers, and
  4880. the largest numbers to stack locations. This ordering gives preference
  4881. to registers over stack locations and to caller-saved registers over
  4882. callee-saved registers.
  4883. Returning to the example in
  4884. figure~\ref{fig:example-calling-conventions}, let us analyze the
  4885. generated x86 code on the right-hand side. Variable \code{x} is
  4886. assigned to \code{rbx}, a callee-saved register. Thus, it is already
  4887. in a safe place during the second call to \code{read\_int}. Next,
  4888. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  4889. because \code{y} is not a call-live variable.
  4890. We have completed the analysis from the caller point of view, so now
  4891. we switch to the callee point of view, focusing on the prelude and
  4892. conclusion of the \code{main} function. As usual, the prelude begins
  4893. with saving the \code{rbp} register to the stack and setting the
  4894. \code{rbp} to the current stack pointer. We now know why it is
  4895. necessary to save the \code{rbp}: it is a callee-saved register. The
  4896. prelude then pushes \code{rbx} to the stack because (1) \code{rbx} is
  4897. a callee-saved register and (2) \code{rbx} is assigned to a variable
  4898. (\code{x}). The other callee-saved registers are not saved in the
  4899. prelude because they are not used. The prelude subtracts 8 bytes from
  4900. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  4901. conclusion, we see that \code{rbx} is restored from the stack with a
  4902. \code{popq} instruction.
  4903. \index{subject}{prelude}\index{subject}{conclusion}
  4904. \begin{figure}[tp]
  4905. \begin{tcolorbox}[colback=white]
  4906. \begin{minipage}{0.45\textwidth}
  4907. Example \LangVar{} program:
  4908. %var_test_14.rkt
  4909. {\if\edition\racketEd
  4910. \begin{lstlisting}
  4911. (let ([x (read)])
  4912. (let ([y (read)])
  4913. (+ (+ x y) 42)))
  4914. \end{lstlisting}
  4915. \fi}
  4916. {\if\edition\pythonEd\pythonColor
  4917. \begin{lstlisting}
  4918. x = input_int()
  4919. y = input_int()
  4920. print((x + y) + 42)
  4921. \end{lstlisting}
  4922. \fi}
  4923. \end{minipage}
  4924. \begin{minipage}{0.45\textwidth}
  4925. Generated x86 assembly:
  4926. {\if\edition\racketEd
  4927. \begin{lstlisting}
  4928. start:
  4929. callq read_int
  4930. movq %rax, %rbx
  4931. callq read_int
  4932. movq %rax, %rcx
  4933. addq %rcx, %rbx
  4934. movq %rbx, %rax
  4935. addq $42, %rax
  4936. jmp _conclusion
  4937. .globl main
  4938. main:
  4939. pushq %rbp
  4940. movq %rsp, %rbp
  4941. pushq %rbx
  4942. subq $8, %rsp
  4943. jmp start
  4944. conclusion:
  4945. addq $8, %rsp
  4946. popq %rbx
  4947. popq %rbp
  4948. retq
  4949. \end{lstlisting}
  4950. \fi}
  4951. {\if\edition\pythonEd\pythonColor
  4952. \begin{lstlisting}
  4953. .globl main
  4954. main:
  4955. pushq %rbp
  4956. movq %rsp, %rbp
  4957. pushq %rbx
  4958. subq $8, %rsp
  4959. callq read_int
  4960. movq %rax, %rbx
  4961. callq read_int
  4962. movq %rax, %rcx
  4963. movq %rbx, %rdx
  4964. addq %rcx, %rdx
  4965. movq %rdx, %rcx
  4966. addq $42, %rcx
  4967. movq %rcx, %rdi
  4968. callq print_int
  4969. addq $8, %rsp
  4970. popq %rbx
  4971. popq %rbp
  4972. retq
  4973. \end{lstlisting}
  4974. \fi}
  4975. \end{minipage}
  4976. \end{tcolorbox}
  4977. \caption{An example with function calls.}
  4978. \label{fig:example-calling-conventions}
  4979. \end{figure}
  4980. %\clearpage
  4981. \section{Liveness Analysis}
  4982. \label{sec:liveness-analysis-Lvar}
  4983. \index{subject}{liveness analysis}
  4984. The \code{uncover\_live} \racket{pass}\python{function} performs
  4985. \emph{liveness analysis}; that is, it discovers which variables are
  4986. in use in different regions of a program.
  4987. %
  4988. A variable or register is \emph{live} at a program point if its
  4989. current value is used at some later point in the program. We refer to
  4990. variables, stack locations, and registers collectively as
  4991. \emph{locations}.
  4992. %
  4993. Consider the following code fragment in which there are two writes to
  4994. \code{b}. Are variables \code{a} and \code{b} both live at the same
  4995. time?
  4996. \begin{center}
  4997. \begin{minipage}{0.85\textwidth}
  4998. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4999. movq $5, a
  5000. movq $30, b
  5001. movq a, c
  5002. movq $10, b
  5003. addq b, c
  5004. \end{lstlisting}
  5005. \end{minipage}
  5006. \end{center}
  5007. The answer is no, because \code{a} is live from line 1 to 3 and
  5008. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  5009. line 2 is never used because it is overwritten (line 4) before the
  5010. next read (line 5).
  5011. The live locations for each instruction can be computed by traversing
  5012. the instruction sequence back to front (i.e., backward in execution
  5013. order). Let $I_1,\ldots, I_n$ be the instruction sequence. We write
  5014. $L_{\mathsf{after}}(k)$ for the set of live locations after
  5015. instruction $I_k$ and write $L_{\mathsf{before}}(k)$ for the set of live
  5016. locations before instruction $I_k$. \racket{We recommend representing
  5017. these sets with the Racket \code{set} data structure described in
  5018. figure~\ref{fig:set}.} \python{We recommend representing these sets
  5019. with the Python
  5020. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  5021. data structure.}
  5022. {\if\edition\racketEd
  5023. \begin{figure}[tp]
  5024. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  5025. \small
  5026. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  5027. A \emph{set} is an unordered collection of elements without duplicates.
  5028. Here are some of the operations defined on sets.
  5029. \index{subject}{set}
  5030. \begin{description}
  5031. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  5032. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  5033. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  5034. difference of the two sets.
  5035. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  5036. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  5037. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  5038. \end{description}
  5039. \end{tcolorbox}
  5040. %\end{wrapfigure}
  5041. \caption{The \code{set} data structure.}
  5042. \label{fig:set}
  5043. \end{figure}
  5044. \fi}
  5045. The locations that are live after an instruction are its
  5046. \emph{live-after}\index{subject}{live-after} set, and the locations
  5047. that are live before an instruction are its
  5048. \emph{live-before}\index{subject}{live-before} set. The live-after
  5049. set of an instruction is always the same as the live-before set of the
  5050. next instruction.
  5051. \begin{equation} \label{eq:live-after-before-next}
  5052. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  5053. \end{equation}
  5054. To start things off, there are no live locations after the last
  5055. instruction, so
  5056. \begin{equation}\label{eq:live-last-empty}
  5057. L_{\mathsf{after}}(n) = \emptyset
  5058. \end{equation}
  5059. We then apply the following rule repeatedly, traversing the
  5060. instruction sequence back to front.
  5061. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  5062. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  5063. \end{equation}
  5064. where $W(k)$ are the locations written to by instruction $I_k$, and
  5065. $R(k)$ are the locations read by instruction $I_k$.
  5066. {\if\edition\racketEd
  5067. %
  5068. There is a special case for \code{jmp} instructions. The locations
  5069. that are live before a \code{jmp} should be the locations in
  5070. $L_{\mathsf{before}}$ at the target of the jump. So, we recommend
  5071. maintaining an alist named \code{label->live} that maps each label to
  5072. the $L_{\mathsf{before}}$ for the first instruction in its block. For
  5073. now the only \code{jmp} in a \LangXVar{} program is the jump to the
  5074. conclusion. (For example, see figure~\ref{fig:reg-eg}.) The
  5075. conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should map
  5076. \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  5077. %
  5078. \fi}
  5079. Let us walk through the previous example, applying these formulas
  5080. starting with the instruction on line 5 of the code fragment. We
  5081. collect the answers in figure~\ref{fig:liveness-example-0}. The
  5082. $L_{\mathsf{after}}$ for the \code{addq b, c} instruction is
  5083. $\emptyset$ because it is the last instruction
  5084. (formula~\eqref{eq:live-last-empty}). The $L_{\mathsf{before}}$ for
  5085. this instruction is $\{\ttm{b},\ttm{c}\}$ because it reads from
  5086. variables \code{b} and \code{c}
  5087. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}):
  5088. \[
  5089. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  5090. \]
  5091. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  5092. the live-before set from line 5 to be the live-after set for this
  5093. instruction (formula~\eqref{eq:live-after-before-next}).
  5094. \[
  5095. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  5096. \]
  5097. This move instruction writes to \code{b} and does not read from any
  5098. variables, so we have the following live-before set
  5099. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}).
  5100. \[
  5101. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  5102. \]
  5103. The live-before for instruction \code{movq a, c}
  5104. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  5105. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}). The
  5106. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  5107. variable that is not live and does not read from a variable.
  5108. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  5109. because it writes to variable \code{a}.
  5110. \begin{figure}[tbp]
  5111. \centering
  5112. \begin{tcolorbox}[colback=white]
  5113. \hspace{10pt}
  5114. \begin{minipage}{0.4\textwidth}
  5115. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  5116. movq $5, a
  5117. movq $30, b
  5118. movq a, c
  5119. movq $10, b
  5120. addq b, c
  5121. \end{lstlisting}
  5122. \end{minipage}
  5123. \vrule\hspace{10pt}
  5124. \begin{minipage}{0.45\textwidth}
  5125. \begin{align*}
  5126. L_{\mathsf{before}}(1)= \emptyset,
  5127. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  5128. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  5129. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  5130. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  5131. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  5132. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  5133. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  5134. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  5135. L_{\mathsf{after}}(5)= \emptyset
  5136. \end{align*}
  5137. \end{minipage}
  5138. \end{tcolorbox}
  5139. \caption{Example output of liveness analysis on a short example.}
  5140. \label{fig:liveness-example-0}
  5141. \end{figure}
  5142. \begin{exercise}\normalfont\normalsize
  5143. Perform liveness analysis by hand on the running example in
  5144. figure~\ref{fig:reg-eg}, computing the live-before and live-after
  5145. sets for each instruction. Compare your answers to the solution
  5146. shown in figure~\ref{fig:live-eg}.
  5147. \end{exercise}
  5148. \begin{figure}[tp]
  5149. \hspace{20pt}
  5150. \begin{minipage}{0.55\textwidth}
  5151. \begin{tcolorbox}[colback=white]
  5152. {\if\edition\racketEd
  5153. \begin{lstlisting}
  5154. |$\{\ttm{rsp}\}$|
  5155. movq $1, v
  5156. |$\{\ttm{v},\ttm{rsp}\}$|
  5157. movq $42, w
  5158. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  5159. movq v, x
  5160. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5161. addq $7, x
  5162. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5163. movq x, y
  5164. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  5165. movq x, z
  5166. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5167. addq w, z
  5168. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5169. movq y, t
  5170. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5171. negq t
  5172. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5173. movq z, %rax
  5174. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  5175. addq t, %rax
  5176. |$\{\ttm{rax},\ttm{rsp}\}$|
  5177. jmp conclusion
  5178. \end{lstlisting}
  5179. \fi}
  5180. {\if\edition\pythonEd\pythonColor
  5181. \begin{lstlisting}
  5182. movq $1, v
  5183. |$\{\ttm{v}\}$|
  5184. movq $42, w
  5185. |$\{\ttm{w}, \ttm{v}\}$|
  5186. movq v, x
  5187. |$\{\ttm{w}, \ttm{x}\}$|
  5188. addq $7, x
  5189. |$\{\ttm{w}, \ttm{x}\}$|
  5190. movq x, y
  5191. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  5192. movq x, z
  5193. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  5194. addq w, z
  5195. |$\{\ttm{y}, \ttm{z}\}$|
  5196. movq y, tmp_0
  5197. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5198. negq tmp_0
  5199. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5200. movq z, tmp_1
  5201. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  5202. addq tmp_0, tmp_1
  5203. |$\{\ttm{tmp\_1}\}$|
  5204. movq tmp_1, %rdi
  5205. |$\{\ttm{rdi}\}$|
  5206. callq print_int
  5207. |$\{\}$|
  5208. \end{lstlisting}
  5209. \fi}
  5210. \end{tcolorbox}
  5211. \end{minipage}
  5212. \caption{The running example annotated with live-after sets.}
  5213. \label{fig:live-eg}
  5214. \end{figure}
  5215. \begin{exercise}\normalfont\normalsize
  5216. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  5217. %
  5218. \racket{Store the sequence of live-after sets in the $\itm{info}$
  5219. field of the \code{Block} structure.}
  5220. %
  5221. \python{Return a dictionary that maps each instruction to its
  5222. live-after set.}
  5223. %
  5224. \racket{We recommend creating an auxiliary function that takes a list
  5225. of instructions and an initial live-after set (typically empty) and
  5226. returns the list of live-after sets.}
  5227. %
  5228. We recommend creating auxiliary functions to (1) compute the set
  5229. of locations that appear in an \Arg{}, (2) compute the locations read
  5230. by an instruction (the $R$ function), and (3) the locations written by
  5231. an instruction (the $W$ function). The \code{callq} instruction should
  5232. include all the caller-saved registers in its write set $W$ because
  5233. the calling convention says that those registers may be written to
  5234. during the function call. Likewise, the \code{callq} instruction
  5235. should include the appropriate argument-passing registers in its
  5236. read set $R$, depending on the arity of the function being
  5237. called. (This is why the abstract syntax for \code{callq} includes the
  5238. arity.)
  5239. \end{exercise}
  5240. %\clearpage
  5241. \section{Build the Interference Graph}
  5242. \label{sec:build-interference}
  5243. {\if\edition\racketEd
  5244. \begin{figure}[tp]
  5245. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  5246. \small
  5247. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  5248. A \emph{graph} is a collection of vertices and edges where each
  5249. edge connects two vertices. A graph is \emph{directed} if each
  5250. edge points from a source to a target. Otherwise the graph is
  5251. \emph{undirected}.
  5252. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  5253. \begin{description}
  5254. %% We currently don't use directed graphs. We instead use
  5255. %% directed multi-graphs. -Jeremy
  5256. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  5257. directed graph from a list of edges. Each edge is a list
  5258. containing the source and target vertex.
  5259. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  5260. undirected graph from a list of edges. Each edge is represented by
  5261. a list containing two vertices.
  5262. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  5263. inserts a vertex into the graph.
  5264. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  5265. inserts an edge between the two vertices.
  5266. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  5267. returns a sequence of vertices adjacent to the vertex.
  5268. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  5269. returns a sequence of all vertices in the graph.
  5270. \end{description}
  5271. \end{tcolorbox}
  5272. %\end{wrapfigure}
  5273. \caption{The Racket \code{graph} package.}
  5274. \label{fig:graph}
  5275. \end{figure}
  5276. \fi}
  5277. On the basis of the liveness analysis, we know where each location is
  5278. live. However, during register allocation, we need to answer
  5279. questions of the specific form: are locations $u$ and $v$ live at the
  5280. same time? (If so, they cannot be assigned to the same register.) To
  5281. make this question more efficient to answer, we create an explicit
  5282. data structure, an \emph{interference
  5283. graph}\index{subject}{interference graph}. An interference graph is
  5284. an undirected graph that has a node for every variable and register
  5285. and has an edge between two nodes if they are
  5286. live at the same time, that is, if they interfere with each other.
  5287. %
  5288. \racket{We recommend using the Racket \code{graph} package
  5289. (figure~\ref{fig:graph}) to represent the interference graph.}
  5290. %
  5291. \python{We provide implementations of directed and undirected graph
  5292. data structures in the file \code{graph.py} of the support code.}
  5293. A straightforward way to compute the interference graph is to look at
  5294. the set of live locations between each instruction and add an edge to
  5295. the graph for every pair of variables in the same set. This approach
  5296. is less than ideal for two reasons. First, it can be expensive because
  5297. it takes $O(n^2)$ time to consider every pair in a set of $n$ live
  5298. locations. Second, in the special case in which two locations hold the
  5299. same value (because one was assigned to the other), they can be live
  5300. at the same time without interfering with each other.
  5301. A better way to compute the interference graph is to focus on
  5302. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  5303. must not overwrite something in a live location. So for each
  5304. instruction, we create an edge between the locations being written to
  5305. and the live locations. (However, a location never interferes with
  5306. itself.) For the \key{callq} instruction, we consider all the
  5307. caller-saved registers to have been written to, so an edge is added
  5308. between every live variable and every caller-saved register. Also, for
  5309. \key{movq} there is the special case of two variables holding the same
  5310. value. If a live variable $v$ is the same as the source of the
  5311. \key{movq}, then there is no need to add an edge between $v$ and the
  5312. destination, because they both hold the same value.
  5313. %
  5314. Hence we have the following two rules:
  5315. \begin{enumerate}
  5316. \item If instruction $I_k$ is a move instruction of the form
  5317. \key{movq} $s$\key{,} $d$, then for every $v \in
  5318. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  5319. $(d,v)$.
  5320. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  5321. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  5322. $(d,v)$.
  5323. \end{enumerate}
  5324. Working from the top to bottom of figure~\ref{fig:live-eg}, we apply
  5325. these rules to each instruction. We highlight a few of the
  5326. instructions. \racket{The first instruction is \lstinline{movq $1, v},
  5327. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  5328. so \code{v} interferes with \code{rsp}.}
  5329. %
  5330. \python{The first instruction is \lstinline{movq $1, v}, and the
  5331. live-after set is $\{\ttm{v}\}$. Rule 1 applies, but there is
  5332. no interference because $\ttm{v}$ is the destination of the move.}
  5333. %
  5334. \racket{The fourth instruction is \lstinline{addq $7, x}, and the
  5335. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies, so
  5336. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  5337. %
  5338. \python{The fourth instruction is \lstinline{addq $7, x}, and the
  5339. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies, so
  5340. $\ttm{x}$ interferes with \ttm{w}.}
  5341. %
  5342. \racket{The next instruction is \lstinline{movq x, y}, and the
  5343. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  5344. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  5345. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5346. \ttm{x} and \ttm{y} hold the same value.}
  5347. %
  5348. \python{The next instruction is \lstinline{movq x, y}, and the
  5349. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  5350. applies, so \ttm{y} interferes with \ttm{w} but not
  5351. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5352. \ttm{x} and \ttm{y} hold the same value.}
  5353. %
  5354. Figure~\ref{fig:interference-results} lists the interference results
  5355. for all the instructions, and the resulting interference graph is
  5356. shown in figure~\ref{fig:interfere}. We elide the register nodes from
  5357. the interference graph in figure~\ref{fig:interfere} because there
  5358. were no interference edges involving registers and we did not wish to
  5359. clutter the graph, but in general one needs to include all the
  5360. registers in the interference graph.
  5361. \begin{figure}[tbp]
  5362. \begin{tcolorbox}[colback=white]
  5363. \begin{quote}
  5364. {\if\edition\racketEd
  5365. \begin{tabular}{ll}
  5366. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  5367. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  5368. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5369. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5370. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  5371. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  5372. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  5373. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5374. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5375. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  5376. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  5377. \lstinline!jmp conclusion!& no interference.
  5378. \end{tabular}
  5379. \fi}
  5380. {\if\edition\pythonEd\pythonColor
  5381. \begin{tabular}{ll}
  5382. \lstinline!movq $1, v!& no interference\\
  5383. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  5384. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  5385. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  5386. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  5387. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  5388. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  5389. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5390. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5391. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  5392. \lstinline!addq tmp_0, tmp_1! & no interference\\
  5393. \lstinline!movq tmp_1, %rdi! & no interference \\
  5394. \lstinline!callq print_int!& no interference.
  5395. \end{tabular}
  5396. \fi}
  5397. \end{quote}
  5398. \end{tcolorbox}
  5399. \caption{Interference results for the running example.}
  5400. \label{fig:interference-results}
  5401. \end{figure}
  5402. \begin{figure}[tbp]
  5403. \begin{tcolorbox}[colback=white]
  5404. \large
  5405. {\if\edition\racketEd
  5406. \[
  5407. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5408. \node (rax) at (0,0) {$\ttm{rax}$};
  5409. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5410. \node (t1) at (0,2) {$\ttm{t}$};
  5411. \node (z) at (3,2) {$\ttm{z}$};
  5412. \node (x) at (6,2) {$\ttm{x}$};
  5413. \node (y) at (3,0) {$\ttm{y}$};
  5414. \node (w) at (6,0) {$\ttm{w}$};
  5415. \node (v) at (9,0) {$\ttm{v}$};
  5416. \draw (t1) to (rax);
  5417. \draw (t1) to (z);
  5418. \draw (z) to (y);
  5419. \draw (z) to (w);
  5420. \draw (x) to (w);
  5421. \draw (y) to (w);
  5422. \draw (v) to (w);
  5423. \draw (v) to (rsp);
  5424. \draw (w) to (rsp);
  5425. \draw (x) to (rsp);
  5426. \draw (y) to (rsp);
  5427. \path[-.,bend left=15] (z) edge node {} (rsp);
  5428. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5429. \draw (rax) to (rsp);
  5430. \end{tikzpicture}
  5431. \]
  5432. \fi}
  5433. {\if\edition\pythonEd\pythonColor
  5434. \[
  5435. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5436. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5437. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5438. \node (z) at (3,2) {$\ttm{z}$};
  5439. \node (x) at (6,2) {$\ttm{x}$};
  5440. \node (y) at (3,0) {$\ttm{y}$};
  5441. \node (w) at (6,0) {$\ttm{w}$};
  5442. \node (v) at (9,0) {$\ttm{v}$};
  5443. \draw (t0) to (t1);
  5444. \draw (t0) to (z);
  5445. \draw (z) to (y);
  5446. \draw (z) to (w);
  5447. \draw (x) to (w);
  5448. \draw (y) to (w);
  5449. \draw (v) to (w);
  5450. \end{tikzpicture}
  5451. \]
  5452. \fi}
  5453. \end{tcolorbox}
  5454. \caption{The interference graph of the example program.}
  5455. \label{fig:interfere}
  5456. \end{figure}
  5457. \begin{exercise}\normalfont\normalsize
  5458. \racket{Implement the compiler pass named \code{build\_interference} according
  5459. to the algorithm suggested here. We recommend using the Racket
  5460. \code{graph} package to create and inspect the interference graph.
  5461. The output graph of this pass should be stored in the $\itm{info}$ field of
  5462. the program, under the key \code{conflicts}.}
  5463. %
  5464. \python{Implement a function named \code{build\_interference}
  5465. according to the algorithm suggested above that
  5466. returns the interference graph.}
  5467. \end{exercise}
  5468. \section{Graph Coloring via Sudoku}
  5469. \label{sec:graph-coloring}
  5470. \index{subject}{graph coloring}
  5471. \index{subject}{sudoku}
  5472. \index{subject}{color}
  5473. We come to the main event discussed in this chapter, mapping variables
  5474. to registers and stack locations. Variables that interfere with each
  5475. other must be mapped to different locations. In terms of the
  5476. interference graph, this means that adjacent vertices must be mapped
  5477. to different locations. If we think of locations as colors, the
  5478. register allocation problem becomes the graph coloring
  5479. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  5480. The reader may be more familiar with the graph coloring problem than he
  5481. or she realizes; the popular game of sudoku is an instance of the
  5482. graph coloring problem. The following describes how to build a graph
  5483. out of an initial sudoku board.
  5484. \begin{itemize}
  5485. \item There is one vertex in the graph for each sudoku square.
  5486. \item There is an edge between two vertices if the corresponding squares
  5487. are in the same row, in the same column, or in the same $3\times 3$ region.
  5488. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  5489. \item On the basis of the initial assignment of numbers to squares on the
  5490. sudoku board, assign the corresponding colors to the corresponding
  5491. vertices in the graph.
  5492. \end{itemize}
  5493. If you can color the remaining vertices in the graph with the nine
  5494. colors, then you have also solved the corresponding game of sudoku.
  5495. Figure~\ref{fig:sudoku-graph} shows an initial sudoku game board and
  5496. the corresponding graph with colored vertices. Here we use a
  5497. monochrome representation of colors, mapping the sudoku number 1 to
  5498. black, 2 to white, and 3 to gray. We show edges for only a sampling
  5499. of the vertices (the colored ones) because showing edges for all the
  5500. vertices would make the graph unreadable.
  5501. \begin{figure}[tbp]
  5502. \begin{tcolorbox}[colback=white]
  5503. \includegraphics[width=0.5\textwidth]{figs/sudoku}
  5504. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  5505. \end{tcolorbox}
  5506. \caption{A sudoku game board and the corresponding colored graph.}
  5507. \label{fig:sudoku-graph}
  5508. \end{figure}
  5509. Some techniques for playing sudoku correspond to heuristics used in
  5510. graph coloring algorithms. For example, one of the basic techniques
  5511. for sudoku is called Pencil Marks. The idea is to use a process of
  5512. elimination to determine what numbers are no longer available for a
  5513. square and to write those numbers in the square (writing very
  5514. small). For example, if the number $1$ is assigned to a square, then
  5515. write the pencil mark $1$ in all the squares in the same row, column,
  5516. and region to indicate that $1$ is no longer an option for those other
  5517. squares.
  5518. %
  5519. The Pencil Marks technique corresponds to the notion of
  5520. \emph{saturation}\index{subject}{saturation} due to \citet{Brelaz:1979eu}. The
  5521. saturation of a vertex, in sudoku terms, is the set of numbers that
  5522. are no longer available. In graph terminology, we have the following
  5523. definition:
  5524. \begin{equation*}
  5525. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  5526. \text{ and } \mathrm{color}(v) = c \}
  5527. \end{equation*}
  5528. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  5529. edge with $u$.
  5530. The Pencil Marks technique leads to a simple strategy for filling in
  5531. numbers: if there is a square with only one possible number left, then
  5532. choose that number! But what if there are no squares with only one
  5533. possibility left? One brute-force approach is to try them all: choose
  5534. the first one, and if that ultimately leads to a solution, great. If
  5535. not, backtrack and choose the next possibility. One good thing about
  5536. Pencil Marks is that it reduces the degree of branching in the search
  5537. tree. Nevertheless, backtracking can be terribly time consuming. One
  5538. way to reduce the amount of backtracking is to use the
  5539. most-constrained-first heuristic (aka minimum remaining
  5540. values)~\citep{Russell2003}. That is, in choosing a square, always
  5541. choose one with the fewest possibilities left (the vertex with the
  5542. highest saturation). The idea is that choosing highly constrained
  5543. squares earlier rather than later is better, because later on there may
  5544. not be any possibilities left in the highly saturated squares.
  5545. However, register allocation is easier than sudoku, because the
  5546. register allocator can fall back to assigning variables to stack
  5547. locations when the registers run out. Thus, it makes sense to replace
  5548. backtracking with greedy search: make the best choice at the time and
  5549. keep going. We still wish to minimize the number of colors needed, so
  5550. we use the most-constrained-first heuristic in the greedy search.
  5551. Figure~\ref{fig:satur-algo} gives the pseudocode for a simple greedy
  5552. algorithm for register allocation based on saturation and the
  5553. most-constrained-first heuristic. It is roughly equivalent to the
  5554. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}. Just as in
  5555. sudoku, the algorithm represents colors with integers. The integers
  5556. $0$ through $k-1$ correspond to the $k$ registers that we use for
  5557. register allocation. In particular, we recommend the following
  5558. correspondence, with $k=11$.
  5559. \begin{lstlisting}
  5560. 0: rcx, 1: rdx, 2: rsi, 3: rdi, 4: r8, 5: r9,
  5561. 6: r10, 7: rbx, 8: r12, 9: r13, 10: r14
  5562. \end{lstlisting}
  5563. The integers $k$ and larger correspond to stack locations. The
  5564. registers that are not used for register allocation, such as
  5565. \code{rax}, are assigned to negative integers. In particular, we
  5566. recommend the following correspondence.
  5567. \begin{lstlisting}
  5568. -1: rax, -2: rsp, -3: rbp, -4: r11, -5: r15
  5569. \end{lstlisting}
  5570. %% One might wonder why we include registers at all in the liveness
  5571. %% analysis and interference graph. For example, we never allocate a
  5572. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  5573. %% leave them out. As we see in chapter~\ref{ch:Lvec}, when we begin
  5574. %% to use register for passing arguments to functions, it will be
  5575. %% necessary for those registers to appear in the interference graph
  5576. %% because those registers will also be assigned to variables, and we
  5577. %% don't want those two uses to encroach on each other. Regarding
  5578. %% registers such as \code{rax} and \code{rsp} that are not used for
  5579. %% variables, we could omit them from the interference graph but that
  5580. %% would require adding special cases to our algorithm, which would
  5581. %% complicate the logic for little gain.
  5582. \begin{figure}[btp]
  5583. \begin{tcolorbox}[colback=white]
  5584. \centering
  5585. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  5586. Algorithm: DSATUR
  5587. Input: A graph |$G$|
  5588. Output: An assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  5589. |$W \gets \mathrm{vertices}(G)$|
  5590. while |$W \neq \emptyset$| do
  5591. pick a vertex |$u$| from |$W$| with the highest saturation,
  5592. breaking ties randomly
  5593. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  5594. |$\mathrm{color}[u] \gets c$|
  5595. |$W \gets W - \{u\}$|
  5596. \end{lstlisting}
  5597. \end{tcolorbox}
  5598. \caption{The saturation-based greedy graph coloring algorithm.}
  5599. \label{fig:satur-algo}
  5600. \end{figure}
  5601. {\if\edition\racketEd
  5602. With the DSATUR algorithm in hand, let us return to the running
  5603. example and consider how to color the interference graph shown in
  5604. figure~\ref{fig:interfere}.
  5605. %
  5606. We start by assigning each register node to its own color. For
  5607. example, \code{rax} is assigned the color $-1$, \code{rsp} is assign
  5608. $-2$, \code{rcx} is assigned $0$, and \code{rdx} is assigned $1$.
  5609. (To reduce clutter in the interference graph, we elide nodes
  5610. that do not have interference edges, such as \code{rcx}.)
  5611. The variables are not yet colored, so they are annotated with a dash. We
  5612. then update the saturation for vertices that are adjacent to a
  5613. register, obtaining the following annotated graph. For example, the
  5614. saturation for \code{t} is $\{-1,-2\}$ because it interferes with both
  5615. \code{rax} and \code{rsp}.
  5616. \[
  5617. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5618. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  5619. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  5620. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  5621. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  5622. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5623. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5624. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5625. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5626. \draw (t1) to (rax);
  5627. \draw (t1) to (z);
  5628. \draw (z) to (y);
  5629. \draw (z) to (w);
  5630. \draw (x) to (w);
  5631. \draw (y) to (w);
  5632. \draw (v) to (w);
  5633. \draw (v) to (rsp);
  5634. \draw (w) to (rsp);
  5635. \draw (x) to (rsp);
  5636. \draw (y) to (rsp);
  5637. \path[-.,bend left=15] (z) edge node {} (rsp);
  5638. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5639. \draw (rax) to (rsp);
  5640. \end{tikzpicture}
  5641. \]
  5642. The algorithm says to select a maximally saturated vertex. So, we pick
  5643. $\ttm{t}$ and color it with the first available integer, which is
  5644. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  5645. and \ttm{rsp} because they interfere with $\ttm{t}$.
  5646. \[
  5647. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5648. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5649. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  5650. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  5651. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  5652. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5653. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5654. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5655. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5656. \draw (t1) to (rax);
  5657. \draw (t1) to (z);
  5658. \draw (z) to (y);
  5659. \draw (z) to (w);
  5660. \draw (x) to (w);
  5661. \draw (y) to (w);
  5662. \draw (v) to (w);
  5663. \draw (v) to (rsp);
  5664. \draw (w) to (rsp);
  5665. \draw (x) to (rsp);
  5666. \draw (y) to (rsp);
  5667. \path[-.,bend left=15] (z) edge node {} (rsp);
  5668. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5669. \draw (rax) to (rsp);
  5670. \end{tikzpicture}
  5671. \]
  5672. We repeat the process, selecting a maximally saturated vertex,
  5673. choosing \code{z}, and coloring it with the first available number, which
  5674. is $1$. We add $1$ to the saturation for the neighboring vertices
  5675. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  5676. \[
  5677. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5678. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5679. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5680. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5681. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5682. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5683. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5684. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5685. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5686. \draw (t1) to (rax);
  5687. \draw (t1) to (z);
  5688. \draw (z) to (y);
  5689. \draw (z) to (w);
  5690. \draw (x) to (w);
  5691. \draw (y) to (w);
  5692. \draw (v) to (w);
  5693. \draw (v) to (rsp);
  5694. \draw (w) to (rsp);
  5695. \draw (x) to (rsp);
  5696. \draw (y) to (rsp);
  5697. \path[-.,bend left=15] (z) edge node {} (rsp);
  5698. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5699. \draw (rax) to (rsp);
  5700. \end{tikzpicture}
  5701. \]
  5702. The most saturated vertices are now \code{w} and \code{y}. We color
  5703. \code{w} with the first available color, which is $0$.
  5704. \[
  5705. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5706. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5707. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5708. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5709. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5710. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5711. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  5712. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  5713. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5714. \draw (t1) to (rax);
  5715. \draw (t1) to (z);
  5716. \draw (z) to (y);
  5717. \draw (z) to (w);
  5718. \draw (x) to (w);
  5719. \draw (y) to (w);
  5720. \draw (v) to (w);
  5721. \draw (v) to (rsp);
  5722. \draw (w) to (rsp);
  5723. \draw (x) to (rsp);
  5724. \draw (y) to (rsp);
  5725. \path[-.,bend left=15] (z) edge node {} (rsp);
  5726. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5727. \draw (rax) to (rsp);
  5728. \end{tikzpicture}
  5729. \]
  5730. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  5731. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  5732. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  5733. and \code{z}, whose colors are $0$ and $1$ respectively.
  5734. \[
  5735. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5736. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5737. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5738. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5739. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5740. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5741. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5742. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5743. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5744. \draw (t1) to (rax);
  5745. \draw (t1) to (z);
  5746. \draw (z) to (y);
  5747. \draw (z) to (w);
  5748. \draw (x) to (w);
  5749. \draw (y) to (w);
  5750. \draw (v) to (w);
  5751. \draw (v) to (rsp);
  5752. \draw (w) to (rsp);
  5753. \draw (x) to (rsp);
  5754. \draw (y) to (rsp);
  5755. \path[-.,bend left=15] (z) edge node {} (rsp);
  5756. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5757. \draw (rax) to (rsp);
  5758. \end{tikzpicture}
  5759. \]
  5760. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  5761. \[
  5762. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5763. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5764. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5765. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5766. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5767. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5768. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5769. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5770. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5771. \draw (t1) to (rax);
  5772. \draw (t1) to (z);
  5773. \draw (z) to (y);
  5774. \draw (z) to (w);
  5775. \draw (x) to (w);
  5776. \draw (y) to (w);
  5777. \draw (v) to (w);
  5778. \draw (v) to (rsp);
  5779. \draw (w) to (rsp);
  5780. \draw (x) to (rsp);
  5781. \draw (y) to (rsp);
  5782. \path[-.,bend left=15] (z) edge node {} (rsp);
  5783. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5784. \draw (rax) to (rsp);
  5785. \end{tikzpicture}
  5786. \]
  5787. In the last step of the algorithm, we color \code{x} with $1$.
  5788. \[
  5789. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5790. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5791. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5792. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5793. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5794. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  5795. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5796. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5797. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5798. \draw (t1) to (rax);
  5799. \draw (t1) to (z);
  5800. \draw (z) to (y);
  5801. \draw (z) to (w);
  5802. \draw (x) to (w);
  5803. \draw (y) to (w);
  5804. \draw (v) to (w);
  5805. \draw (v) to (rsp);
  5806. \draw (w) to (rsp);
  5807. \draw (x) to (rsp);
  5808. \draw (y) to (rsp);
  5809. \path[-.,bend left=15] (z) edge node {} (rsp);
  5810. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5811. \draw (rax) to (rsp);
  5812. \end{tikzpicture}
  5813. \]
  5814. So, we obtain the following coloring:
  5815. \[
  5816. \{
  5817. \ttm{rax} \mapsto -1,
  5818. \ttm{rsp} \mapsto -2,
  5819. \ttm{t} \mapsto 0,
  5820. \ttm{z} \mapsto 1,
  5821. \ttm{x} \mapsto 1,
  5822. \ttm{y} \mapsto 2,
  5823. \ttm{w} \mapsto 0,
  5824. \ttm{v} \mapsto 1
  5825. \}
  5826. \]
  5827. \fi}
  5828. %
  5829. {\if\edition\pythonEd\pythonColor
  5830. %
  5831. With the DSATUR algorithm in hand, let us return to the running
  5832. example and consider how to color the interference graph shown in
  5833. figure~\ref{fig:interfere}, again mapping 1 to blank, 2 to white, and
  5834. 3 to gray. We annotate each variable node with a dash to indicate that
  5835. it has not yet been assigned a color. Each register node (not shown)
  5836. should be assigned the number that the register corresponds to, for
  5837. example, color \code{rcx} with the number \code{0} and \code{rdx} with
  5838. \code{1}. The saturation sets are also shown for each node; all of
  5839. them start as the empty set. We do not show the register nodes in the
  5840. following graph because there were no interference edges involving
  5841. registers in this program; however, in general there can be inference
  5842. edges that involve registers.
  5843. %
  5844. \[
  5845. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5846. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  5847. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  5848. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  5849. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5850. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5851. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5852. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5853. \draw (t0) to (t1);
  5854. \draw (t0) to (z);
  5855. \draw (z) to (y);
  5856. \draw (z) to (w);
  5857. \draw (x) to (w);
  5858. \draw (y) to (w);
  5859. \draw (v) to (w);
  5860. \end{tikzpicture}
  5861. \]
  5862. The algorithm says to select a maximally saturated vertex, but they
  5863. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  5864. and then we color it with the first available integer, which is $0$. We mark
  5865. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  5866. they interfere with $\ttm{tmp\_0}$.
  5867. \[
  5868. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5869. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  5870. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5871. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  5872. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5873. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5874. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5875. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5876. \draw (t0) to (t1);
  5877. \draw (t0) to (z);
  5878. \draw (z) to (y);
  5879. \draw (z) to (w);
  5880. \draw (x) to (w);
  5881. \draw (y) to (w);
  5882. \draw (v) to (w);
  5883. \end{tikzpicture}
  5884. \]
  5885. We repeat the process. The most saturated vertices are \code{z} and
  5886. \code{tmp\_1}, so we choose \code{z} and color it with the first
  5887. available number, which is $1$. We add $1$ to the saturation for the
  5888. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  5889. \[
  5890. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5891. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5892. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5893. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5894. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5895. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5896. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5897. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5898. \draw (t0) to (t1);
  5899. \draw (t0) to (z);
  5900. \draw (z) to (y);
  5901. \draw (z) to (w);
  5902. \draw (x) to (w);
  5903. \draw (y) to (w);
  5904. \draw (v) to (w);
  5905. \end{tikzpicture}
  5906. \]
  5907. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  5908. \code{y}. We color \code{w} with the first available color, which
  5909. is $0$.
  5910. \[
  5911. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5912. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5913. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5914. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5915. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5916. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  5917. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  5918. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5919. \draw (t0) to (t1);
  5920. \draw (t0) to (z);
  5921. \draw (z) to (y);
  5922. \draw (z) to (w);
  5923. \draw (x) to (w);
  5924. \draw (y) to (w);
  5925. \draw (v) to (w);
  5926. \end{tikzpicture}
  5927. \]
  5928. Now \code{y} is the most saturated, so we color it with $2$.
  5929. \[
  5930. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5931. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5932. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5933. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5934. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5935. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5936. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5937. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5938. \draw (t0) to (t1);
  5939. \draw (t0) to (z);
  5940. \draw (z) to (y);
  5941. \draw (z) to (w);
  5942. \draw (x) to (w);
  5943. \draw (y) to (w);
  5944. \draw (v) to (w);
  5945. \end{tikzpicture}
  5946. \]
  5947. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  5948. We choose to color \code{v} with $1$.
  5949. \[
  5950. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5951. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5952. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5953. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5954. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5955. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5956. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5957. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5958. \draw (t0) to (t1);
  5959. \draw (t0) to (z);
  5960. \draw (z) to (y);
  5961. \draw (z) to (w);
  5962. \draw (x) to (w);
  5963. \draw (y) to (w);
  5964. \draw (v) to (w);
  5965. \end{tikzpicture}
  5966. \]
  5967. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  5968. \[
  5969. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5970. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5971. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5972. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5973. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  5974. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5975. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5976. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5977. \draw (t0) to (t1);
  5978. \draw (t0) to (z);
  5979. \draw (z) to (y);
  5980. \draw (z) to (w);
  5981. \draw (x) to (w);
  5982. \draw (y) to (w);
  5983. \draw (v) to (w);
  5984. \end{tikzpicture}
  5985. \]
  5986. So, we obtain the following coloring:
  5987. \[
  5988. \{ \ttm{tmp\_0} \mapsto 0,
  5989. \ttm{tmp\_1} \mapsto 1,
  5990. \ttm{z} \mapsto 1,
  5991. \ttm{x} \mapsto 1,
  5992. \ttm{y} \mapsto 2,
  5993. \ttm{w} \mapsto 0,
  5994. \ttm{v} \mapsto 1 \}
  5995. \]
  5996. \fi}
  5997. We recommend creating an auxiliary function named \code{color\_graph}
  5998. that takes an interference graph and a list of all the variables in
  5999. the program. This function should return a mapping of variables to
  6000. their colors (represented as natural numbers). By creating this helper
  6001. function, you will be able to reuse it in chapter~\ref{ch:Lfun}
  6002. when we add support for functions.
  6003. To prioritize the processing of highly saturated nodes inside the
  6004. \code{color\_graph} function, we recommend using the priority queue
  6005. data structure \racket{described in figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  6006. addition, you will need to maintain a mapping from variables to their
  6007. handles in the priority queue so that you can notify the priority
  6008. queue when their saturation changes.}
  6009. {\if\edition\racketEd
  6010. \begin{figure}[tp]
  6011. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  6012. \small
  6013. \begin{tcolorbox}[title=Priority Queue]
  6014. A \emph{priority queue}\index{subject}{priority queue}
  6015. is a collection of items in which the
  6016. removal of items is governed by priority. In a \emph{min} queue,
  6017. lower priority items are removed first. An implementation is in
  6018. \code{priority\_queue.rkt} of the support code.\index{subject}{min queue}
  6019. \begin{description}
  6020. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  6021. priority queue that uses the $\itm{cmp}$ predicate to determine
  6022. whether its first argument has lower or equal priority to its
  6023. second argument.
  6024. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  6025. items in the queue.
  6026. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  6027. the item into the queue and returns a handle for the item in the
  6028. queue.
  6029. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  6030. the lowest priority.
  6031. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  6032. notifies the queue that the priority has decreased for the item
  6033. associated with the given handle.
  6034. \end{description}
  6035. \end{tcolorbox}
  6036. %\end{wrapfigure}
  6037. \caption{The priority queue data structure.}
  6038. \label{fig:priority-queue}
  6039. \end{figure}
  6040. \fi}
  6041. With the coloring complete, we finalize the assignment of variables to
  6042. registers and stack locations. We map the first $k$ colors to the $k$
  6043. registers and the rest of the colors to stack locations. Suppose for
  6044. the moment that we have just one register to use for register
  6045. allocation, \key{rcx}. Then we have the following map from colors to
  6046. locations.
  6047. \[
  6048. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  6049. \]
  6050. Composing this mapping with the coloring, we arrive at the following
  6051. assignment of variables to locations.
  6052. {\if\edition\racketEd
  6053. \begin{gather*}
  6054. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6055. \ttm{w} \mapsto \key{\%rcx}, \,
  6056. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6057. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6058. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6059. \ttm{t} \mapsto \key{\%rcx} \}
  6060. \end{gather*}
  6061. \fi}
  6062. {\if\edition\pythonEd\pythonColor
  6063. \begin{gather*}
  6064. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6065. \ttm{w} \mapsto \key{\%rcx}, \,
  6066. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6067. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6068. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6069. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6070. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6071. \end{gather*}
  6072. \fi}
  6073. Adapt the code from the \code{assign\_homes} pass
  6074. (section~\ref{sec:assign-Lvar}) to replace the variables with their
  6075. assigned location. Applying this assignment to our running
  6076. example shown next, on the left, yields the program on the right.
  6077. % why frame size of 32? -JGS
  6078. \begin{center}
  6079. {\if\edition\racketEd
  6080. \begin{minipage}{0.35\textwidth}
  6081. \begin{lstlisting}
  6082. movq $1, v
  6083. movq $42, w
  6084. movq v, x
  6085. addq $7, x
  6086. movq x, y
  6087. movq x, z
  6088. addq w, z
  6089. movq y, t
  6090. negq t
  6091. movq z, %rax
  6092. addq t, %rax
  6093. jmp conclusion
  6094. \end{lstlisting}
  6095. \end{minipage}
  6096. $\Rightarrow\qquad$
  6097. \begin{minipage}{0.45\textwidth}
  6098. \begin{lstlisting}
  6099. movq $1, -8(%rbp)
  6100. movq $42, %rcx
  6101. movq -8(%rbp), -8(%rbp)
  6102. addq $7, -8(%rbp)
  6103. movq -8(%rbp), -16(%rbp)
  6104. movq -8(%rbp), -8(%rbp)
  6105. addq %rcx, -8(%rbp)
  6106. movq -16(%rbp), %rcx
  6107. negq %rcx
  6108. movq -8(%rbp), %rax
  6109. addq %rcx, %rax
  6110. jmp conclusion
  6111. \end{lstlisting}
  6112. \end{minipage}
  6113. \fi}
  6114. {\if\edition\pythonEd\pythonColor
  6115. \begin{minipage}{0.35\textwidth}
  6116. \begin{lstlisting}
  6117. movq $1, v
  6118. movq $42, w
  6119. movq v, x
  6120. addq $7, x
  6121. movq x, y
  6122. movq x, z
  6123. addq w, z
  6124. movq y, tmp_0
  6125. negq tmp_0
  6126. movq z, tmp_1
  6127. addq tmp_0, tmp_1
  6128. movq tmp_1, %rdi
  6129. callq print_int
  6130. \end{lstlisting}
  6131. \end{minipage}
  6132. $\Rightarrow\qquad$
  6133. \begin{minipage}{0.45\textwidth}
  6134. \begin{lstlisting}
  6135. movq $1, -8(%rbp)
  6136. movq $42, %rcx
  6137. movq -8(%rbp), -8(%rbp)
  6138. addq $7, -8(%rbp)
  6139. movq -8(%rbp), -16(%rbp)
  6140. movq -8(%rbp), -8(%rbp)
  6141. addq %rcx, -8(%rbp)
  6142. movq -16(%rbp), %rcx
  6143. negq %rcx
  6144. movq -8(%rbp), -8(%rbp)
  6145. addq %rcx, -8(%rbp)
  6146. movq -8(%rbp), %rdi
  6147. callq print_int
  6148. \end{lstlisting}
  6149. \end{minipage}
  6150. \fi}
  6151. \end{center}
  6152. \begin{exercise}\normalfont\normalsize
  6153. Implement the \code{allocate\_registers} pass.
  6154. Create five programs that exercise all aspects of the register
  6155. allocation algorithm, including spilling variables to the stack.
  6156. %
  6157. {\if\edition\racketEd
  6158. Replace \code{assign\_homes} in the list of \code{passes} in the
  6159. \code{run-tests.rkt} script with the three new passes:
  6160. \code{uncover\_live}, \code{build\_interference}, and
  6161. \code{allocate\_registers}.
  6162. Temporarily remove the call to \code{compiler-tests}.
  6163. Run the script to test the register allocator.
  6164. \fi}
  6165. %
  6166. {\if\edition\pythonEd\pythonColor
  6167. Run the \code{run-tests.py} script to check whether the
  6168. output programs produce the same result as the input programs.
  6169. \fi}
  6170. \end{exercise}
  6171. \section{Patch Instructions}
  6172. \label{sec:patch-instructions}
  6173. The remaining step in the compilation to x86 is to ensure that the
  6174. instructions have at most one argument that is a memory access.
  6175. %
  6176. In the running example, the instruction \code{movq -8(\%rbp),
  6177. -16(\%rbp)} is problematic. Recall from section~\ref{sec:patch-s0}
  6178. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  6179. then move \code{rax} into \code{-16(\%rbp)}.
  6180. %
  6181. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  6182. problematic, but they can simply be deleted. In general, we recommend
  6183. deleting all the trivial moves whose source and destination are the
  6184. same location.
  6185. %
  6186. The following is the output of \code{patch\_instructions} on the
  6187. running example.
  6188. \begin{center}
  6189. {\if\edition\racketEd
  6190. \begin{minipage}{0.35\textwidth}
  6191. \begin{lstlisting}
  6192. movq $1, -8(%rbp)
  6193. movq $42, %rcx
  6194. movq -8(%rbp), -8(%rbp)
  6195. addq $7, -8(%rbp)
  6196. movq -8(%rbp), -16(%rbp)
  6197. movq -8(%rbp), -8(%rbp)
  6198. addq %rcx, -8(%rbp)
  6199. movq -16(%rbp), %rcx
  6200. negq %rcx
  6201. movq -8(%rbp), %rax
  6202. addq %rcx, %rax
  6203. jmp conclusion
  6204. \end{lstlisting}
  6205. \end{minipage}
  6206. $\Rightarrow\qquad$
  6207. \begin{minipage}{0.45\textwidth}
  6208. \begin{lstlisting}
  6209. movq $1, -8(%rbp)
  6210. movq $42, %rcx
  6211. addq $7, -8(%rbp)
  6212. movq -8(%rbp), %rax
  6213. movq %rax, -16(%rbp)
  6214. addq %rcx, -8(%rbp)
  6215. movq -16(%rbp), %rcx
  6216. negq %rcx
  6217. movq -8(%rbp), %rax
  6218. addq %rcx, %rax
  6219. jmp conclusion
  6220. \end{lstlisting}
  6221. \end{minipage}
  6222. \fi}
  6223. {\if\edition\pythonEd\pythonColor
  6224. \begin{minipage}{0.35\textwidth}
  6225. \begin{lstlisting}
  6226. movq $1, -8(%rbp)
  6227. movq $42, %rcx
  6228. movq -8(%rbp), -8(%rbp)
  6229. addq $7, -8(%rbp)
  6230. movq -8(%rbp), -16(%rbp)
  6231. movq -8(%rbp), -8(%rbp)
  6232. addq %rcx, -8(%rbp)
  6233. movq -16(%rbp), %rcx
  6234. negq %rcx
  6235. movq -8(%rbp), -8(%rbp)
  6236. addq %rcx, -8(%rbp)
  6237. movq -8(%rbp), %rdi
  6238. callq print_int
  6239. \end{lstlisting}
  6240. \end{minipage}
  6241. $\Rightarrow\qquad$
  6242. \begin{minipage}{0.45\textwidth}
  6243. \begin{lstlisting}
  6244. movq $1, -8(%rbp)
  6245. movq $42, %rcx
  6246. addq $7, -8(%rbp)
  6247. movq -8(%rbp), %rax
  6248. movq %rax, -16(%rbp)
  6249. addq %rcx, -8(%rbp)
  6250. movq -16(%rbp), %rcx
  6251. negq %rcx
  6252. addq %rcx, -8(%rbp)
  6253. movq -8(%rbp), %rdi
  6254. callq print_int
  6255. \end{lstlisting}
  6256. \end{minipage}
  6257. \fi}
  6258. \end{center}
  6259. \begin{exercise}\normalfont\normalsize
  6260. %
  6261. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  6262. %
  6263. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  6264. %in the \code{run-tests.rkt} script.
  6265. %
  6266. Run the script to test the \code{patch\_instructions} pass.
  6267. \end{exercise}
  6268. \section{Prelude and Conclusion}
  6269. \label{sec:print-x86-reg-alloc}
  6270. \index{subject}{calling conventions}
  6271. \index{subject}{prelude}\index{subject}{conclusion}
  6272. Recall that this pass generates the prelude and conclusion
  6273. instructions to satisfy the x86 calling conventions
  6274. (section~\ref{sec:calling-conventions}). With the addition of the
  6275. register allocator, the callee-saved registers used by the register
  6276. allocator must be saved in the prelude and restored in the conclusion.
  6277. In the \code{allocate\_registers} pass,
  6278. %
  6279. \racket{add an entry to the \itm{info}
  6280. of \code{X86Program} named \code{used\_callee}}
  6281. %
  6282. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  6283. %
  6284. that stores the set of callee-saved registers that were assigned to
  6285. variables. The \code{prelude\_and\_conclusion} pass can then access
  6286. this information to decide which callee-saved registers need to be
  6287. saved and restored.
  6288. %
  6289. When calculating the amount to adjust the \code{rsp} in the prelude,
  6290. make sure to take into account the space used for saving the
  6291. callee-saved registers. Also, remember that the frame needs to be a
  6292. multiple of 16 bytes! We recommend using the following equation for
  6293. the amount $A$ to subtract from the \code{rsp}. Let $S$ be the number
  6294. of stack locations used by spilled variables\footnote{Sometimes two or
  6295. more spilled variables are assigned to the same stack location, so
  6296. $S$ can be less than the number of spilled variables.} and $C$ be
  6297. the number of callee-saved registers that were
  6298. allocated\index{subject}{allocate} to
  6299. variables. The $\itm{align}$ function rounds a number up to the
  6300. nearest 16 bytes.
  6301. \[
  6302. \itm{A} = \itm{align}(8\itm{S} + 8\itm{C}) - 8\itm{C}
  6303. \]
  6304. The reason we subtract $8\itm{C}$ in this equation is that the
  6305. prelude uses \code{pushq} to save each of the callee-saved registers,
  6306. and \code{pushq} subtracts $8$ from the \code{rsp}.
  6307. \racket{An overview of all the passes involved in register
  6308. allocation is shown in figure~\ref{fig:reg-alloc-passes}.}
  6309. {\if\edition\racketEd
  6310. \begin{figure}[tbp]
  6311. \begin{tcolorbox}[colback=white]
  6312. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6313. \node (Lvar) at (0,2) {\large \LangVar{}};
  6314. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  6315. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  6316. \node (Cvar-1) at (0,0) {\large \LangCVar{}};
  6317. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  6318. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  6319. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  6320. \node (x86-5) at (7,-4) {\large \LangXInt{}};
  6321. \node (x86-2-1) at (0,-4) {\large \LangXVar{}};
  6322. \node (x86-2-2) at (3,-4) {\large \LangXVar{}};
  6323. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  6324. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  6325. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (Cvar-1);
  6326. \path[->,bend right=15] (Cvar-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  6327. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  6328. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  6329. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  6330. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  6331. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  6332. \end{tikzpicture}
  6333. \end{tcolorbox}
  6334. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  6335. \label{fig:reg-alloc-passes}
  6336. \end{figure}
  6337. \fi}
  6338. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  6339. the running example (figure~\ref{fig:reg-eg}). To demonstrate both the
  6340. use of registers and the stack, we limit the register allocator for
  6341. this example to use just two registers: \code{rcx} (color $0$) and
  6342. \code{rbx} (color $1$). In the prelude\index{subject}{prelude} of the
  6343. \code{main} function, we push \code{rbx} onto the stack because it is
  6344. a callee-saved register and it was assigned to a variable by the
  6345. register allocator. We subtract \code{8} from the \code{rsp} at the
  6346. end of the prelude to reserve space for the one spilled variable.
  6347. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  6348. Moving on to the program proper, we see how the registers were
  6349. allocated.
  6350. %
  6351. \racket{Variables \code{v}, \code{x}, and \code{z} were assigned to
  6352. \code{rbx}, and variables \code{w} and \code{t} was assigned to \code{rcx}.}
  6353. %
  6354. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  6355. were assigned to \code{rcx}, and variables \code{w} and \code{tmp\_1}
  6356. were assigned to \code{rbx}.}
  6357. %
  6358. Variable \racket{\code{y}}\python{\code{z}} was spilled to the stack
  6359. location \code{-16(\%rbp)}. Recall that the prelude saved the
  6360. callee-save register \code{rbx} onto the stack. The spilled variables
  6361. must be placed lower on the stack than the saved callee-save
  6362. registers, so in this case \racket{\code{y}}\python{z} is placed at
  6363. \code{-16(\%rbp)}.
  6364. In the conclusion\index{subject}{conclusion}, we undo the work that was
  6365. done in the prelude. We move the stack pointer up by \code{8} bytes
  6366. (the room for spilled variables), then pop the old values of
  6367. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  6368. \code{retq} to return control to the operating system.
  6369. \begin{figure}[tbp]
  6370. \begin{minipage}{0.55\textwidth}
  6371. \begin{tcolorbox}[colback=white]
  6372. % var_test_28.rkt
  6373. % (use-minimal-set-of-registers! #t)
  6374. % 0 -> rcx
  6375. % 1 -> rbx
  6376. %
  6377. % t 0 rcx
  6378. % z 1 rbx
  6379. % w 0 rcx
  6380. % y 2 rbp -16
  6381. % v 1 rbx
  6382. % x 1 rbx
  6383. {\if\edition\racketEd
  6384. \begin{lstlisting}
  6385. start:
  6386. movq $1, %rbx
  6387. movq $42, %rcx
  6388. addq $7, %rbx
  6389. movq %rbx, -16(%rbp)
  6390. addq %rcx, %rbx
  6391. movq -16(%rbp), %rcx
  6392. negq %rcx
  6393. movq %rbx, %rax
  6394. addq %rcx, %rax
  6395. jmp conclusion
  6396. .globl main
  6397. main:
  6398. pushq %rbp
  6399. movq %rsp, %rbp
  6400. pushq %rbx
  6401. subq $8, %rsp
  6402. jmp start
  6403. conclusion:
  6404. addq $8, %rsp
  6405. popq %rbx
  6406. popq %rbp
  6407. retq
  6408. \end{lstlisting}
  6409. \fi}
  6410. {\if\edition\pythonEd\pythonColor
  6411. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  6412. \begin{lstlisting}
  6413. .globl main
  6414. main:
  6415. pushq %rbp
  6416. movq %rsp, %rbp
  6417. pushq %rbx
  6418. subq $8, %rsp
  6419. movq $1, %rcx
  6420. movq $42, %rbx
  6421. addq $7, %rcx
  6422. movq %rcx, -16(%rbp)
  6423. addq %rbx, -16(%rbp)
  6424. negq %rcx
  6425. movq -16(%rbp), %rbx
  6426. addq %rcx, %rbx
  6427. movq %rbx, %rdi
  6428. callq print_int
  6429. addq $8, %rsp
  6430. popq %rbx
  6431. popq %rbp
  6432. retq
  6433. \end{lstlisting}
  6434. \fi}
  6435. \end{tcolorbox}
  6436. \end{minipage}
  6437. \caption{The x86 output from the running example
  6438. (figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  6439. and \code{rcx}.}
  6440. \label{fig:running-example-x86}
  6441. \end{figure}
  6442. \begin{exercise}\normalfont\normalsize
  6443. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  6444. %
  6445. \racket{
  6446. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  6447. list of passes and the call to \code{compiler-tests}.}
  6448. %
  6449. Run the script to test the complete compiler for \LangVar{} that
  6450. performs register allocation.
  6451. \end{exercise}
  6452. \section{Challenge: Move Biasing}
  6453. \label{sec:move-biasing}
  6454. \index{subject}{move biasing}
  6455. This section describes an enhancement to the register allocator,
  6456. called move biasing, for students who are looking for an extra
  6457. challenge.
  6458. {\if\edition\racketEd
  6459. To motivate the need for move biasing we return to the running example,
  6460. but this time we use all the general purpose registers. So, we have
  6461. the following mapping of color numbers to registers.
  6462. \[
  6463. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi}, \ldots \}
  6464. \]
  6465. Using the same assignment of variables to color numbers that was
  6466. produced by the register allocator described in the last section, we
  6467. get the following program.
  6468. \begin{center}
  6469. \begin{minipage}{0.35\textwidth}
  6470. \begin{lstlisting}
  6471. movq $1, v
  6472. movq $42, w
  6473. movq v, x
  6474. addq $7, x
  6475. movq x, y
  6476. movq x, z
  6477. addq w, z
  6478. movq y, t
  6479. negq t
  6480. movq z, %rax
  6481. addq t, %rax
  6482. jmp conclusion
  6483. \end{lstlisting}
  6484. \end{minipage}
  6485. $\Rightarrow\qquad$
  6486. \begin{minipage}{0.45\textwidth}
  6487. \begin{lstlisting}
  6488. movq $1, %rdx
  6489. movq $42, %rcx
  6490. movq %rdx, %rdx
  6491. addq $7, %rdx
  6492. movq %rdx, %rsi
  6493. movq %rdx, %rdx
  6494. addq %rcx, %rdx
  6495. movq %rsi, %rcx
  6496. negq %rcx
  6497. movq %rdx, %rax
  6498. addq %rcx, %rax
  6499. jmp conclusion
  6500. \end{lstlisting}
  6501. \end{minipage}
  6502. \end{center}
  6503. In this output code there are two \key{movq} instructions that
  6504. can be removed because their source and target are the same. However,
  6505. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  6506. register, we could instead remove three \key{movq} instructions. We
  6507. can accomplish this by taking into account which variables appear in
  6508. \key{movq} instructions with which other variables.
  6509. \fi}
  6510. {\if\edition\pythonEd\pythonColor
  6511. %
  6512. To motivate the need for move biasing we return to the running example
  6513. and recall that in section~\ref{sec:patch-instructions} we were able to
  6514. remove three trivial move instructions from the running
  6515. example. However, we could remove another trivial move if we were able
  6516. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  6517. We say that two variables $p$ and $q$ are \emph{move
  6518. related}\index{subject}{move related} if they participate together in
  6519. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  6520. \key{movq} $q$\key{,} $p$.
  6521. %
  6522. Recall that we color variables that are more saturated before coloring
  6523. variables that are less saturated, and in the case of equally
  6524. saturated variables, we choose randomly. Now we break such ties by
  6525. giving preference to variables that have an available color that is
  6526. the same as the color of a move-related variable.
  6527. %
  6528. Furthermore, when the register allocator chooses a color for a
  6529. variable, it should prefer a color that has already been used for a
  6530. move-related variable if one exists (and assuming that they do not
  6531. interfere). This preference should not override the preference for
  6532. registers over stack locations. So, this preference should be used as
  6533. a tie breaker in choosing between two registers or in choosing between
  6534. two stack locations.
  6535. We recommend representing the move relationships in a graph, similarly
  6536. to how we represented interference. The following is the \emph{move
  6537. graph} for our running example.
  6538. {\if\edition\racketEd
  6539. \[
  6540. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6541. \node (rax) at (0,0) {$\ttm{rax}$};
  6542. \node (rsp) at (9,2) {$\ttm{rsp}$};
  6543. \node (t) at (0,2) {$\ttm{t}$};
  6544. \node (z) at (3,2) {$\ttm{z}$};
  6545. \node (x) at (6,2) {$\ttm{x}$};
  6546. \node (y) at (3,0) {$\ttm{y}$};
  6547. \node (w) at (6,0) {$\ttm{w}$};
  6548. \node (v) at (9,0) {$\ttm{v}$};
  6549. \draw (v) to (x);
  6550. \draw (x) to (y);
  6551. \draw (x) to (z);
  6552. \draw (y) to (t);
  6553. \end{tikzpicture}
  6554. \]
  6555. \fi}
  6556. %
  6557. {\if\edition\pythonEd\pythonColor
  6558. \[
  6559. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6560. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  6561. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  6562. \node (z) at (3,2) {$\ttm{z}$};
  6563. \node (x) at (6,2) {$\ttm{x}$};
  6564. \node (y) at (3,0) {$\ttm{y}$};
  6565. \node (w) at (6,0) {$\ttm{w}$};
  6566. \node (v) at (9,0) {$\ttm{v}$};
  6567. \draw (y) to (t0);
  6568. \draw (z) to (x);
  6569. \draw (z) to (t1);
  6570. \draw (x) to (y);
  6571. \draw (x) to (v);
  6572. \end{tikzpicture}
  6573. \]
  6574. \fi}
  6575. {\if\edition\racketEd
  6576. Now we replay the graph coloring, pausing to see the coloring of
  6577. \code{y}. Recall the following configuration. The most saturated vertices
  6578. were \code{w} and \code{y}.
  6579. \[
  6580. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6581. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6582. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6583. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6584. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6585. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6586. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  6587. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  6588. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6589. \draw (t1) to (rax);
  6590. \draw (t1) to (z);
  6591. \draw (z) to (y);
  6592. \draw (z) to (w);
  6593. \draw (x) to (w);
  6594. \draw (y) to (w);
  6595. \draw (v) to (w);
  6596. \draw (v) to (rsp);
  6597. \draw (w) to (rsp);
  6598. \draw (x) to (rsp);
  6599. \draw (y) to (rsp);
  6600. \path[-.,bend left=15] (z) edge node {} (rsp);
  6601. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6602. \draw (rax) to (rsp);
  6603. \end{tikzpicture}
  6604. \]
  6605. %
  6606. The last time, we chose to color \code{w} with $0$. This time, we see
  6607. that \code{w} is not move-related to any vertex, but \code{y} is
  6608. move-related to \code{t}. So we choose to color \code{y} with $0$,
  6609. the same color as \code{t}.
  6610. \[
  6611. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6612. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6613. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6614. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6615. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6616. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6617. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  6618. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  6619. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6620. \draw (t1) to (rax);
  6621. \draw (t1) to (z);
  6622. \draw (z) to (y);
  6623. \draw (z) to (w);
  6624. \draw (x) to (w);
  6625. \draw (y) to (w);
  6626. \draw (v) to (w);
  6627. \draw (v) to (rsp);
  6628. \draw (w) to (rsp);
  6629. \draw (x) to (rsp);
  6630. \draw (y) to (rsp);
  6631. \path[-.,bend left=15] (z) edge node {} (rsp);
  6632. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6633. \draw (rax) to (rsp);
  6634. \end{tikzpicture}
  6635. \]
  6636. Now \code{w} is the most saturated, so we color it $2$.
  6637. \[
  6638. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6639. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6640. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6641. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6642. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6643. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  6644. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6645. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6646. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  6647. \draw (t1) to (rax);
  6648. \draw (t1) to (z);
  6649. \draw (z) to (y);
  6650. \draw (z) to (w);
  6651. \draw (x) to (w);
  6652. \draw (y) to (w);
  6653. \draw (v) to (w);
  6654. \draw (v) to (rsp);
  6655. \draw (w) to (rsp);
  6656. \draw (x) to (rsp);
  6657. \draw (y) to (rsp);
  6658. \path[-.,bend left=15] (z) edge node {} (rsp);
  6659. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6660. \draw (rax) to (rsp);
  6661. \end{tikzpicture}
  6662. \]
  6663. At this point, vertices \code{x} and \code{v} are most saturated, but
  6664. \code{x} is move related to \code{y} and \code{z}, so we color
  6665. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  6666. \[
  6667. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6668. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6669. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6670. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6671. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6672. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  6673. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6674. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6675. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  6676. \draw (t1) to (rax);
  6677. \draw (t) to (z);
  6678. \draw (z) to (y);
  6679. \draw (z) to (w);
  6680. \draw (x) to (w);
  6681. \draw (y) to (w);
  6682. \draw (v) to (w);
  6683. \draw (v) to (rsp);
  6684. \draw (w) to (rsp);
  6685. \draw (x) to (rsp);
  6686. \draw (y) to (rsp);
  6687. \path[-.,bend left=15] (z) edge node {} (rsp);
  6688. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6689. \draw (rax) to (rsp);
  6690. \end{tikzpicture}
  6691. \]
  6692. \fi}
  6693. %
  6694. {\if\edition\pythonEd\pythonColor
  6695. Now we replay the graph coloring, pausing before the coloring of
  6696. \code{w}. Recall the following configuration. The most saturated vertices
  6697. were \code{tmp\_1}, \code{w}, and \code{y}.
  6698. \[
  6699. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6700. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6701. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6702. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6703. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6704. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  6705. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  6706. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6707. \draw (t0) to (t1);
  6708. \draw (t0) to (z);
  6709. \draw (z) to (y);
  6710. \draw (z) to (w);
  6711. \draw (x) to (w);
  6712. \draw (y) to (w);
  6713. \draw (v) to (w);
  6714. \end{tikzpicture}
  6715. \]
  6716. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  6717. or \code{y}. Note, however, that \code{w} is not move related to any
  6718. variables, whereas \code{y} and \code{tmp\_1} are move related to
  6719. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  6720. \code{y} and color it $0$, we can delete another move instruction.
  6721. \[
  6722. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6723. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6724. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6725. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6726. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6727. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  6728. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  6729. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6730. \draw (t0) to (t1);
  6731. \draw (t0) to (z);
  6732. \draw (z) to (y);
  6733. \draw (z) to (w);
  6734. \draw (x) to (w);
  6735. \draw (y) to (w);
  6736. \draw (v) to (w);
  6737. \end{tikzpicture}
  6738. \]
  6739. Now \code{w} is the most saturated, so we color it $2$.
  6740. \[
  6741. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6742. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6743. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6744. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6745. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  6746. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6747. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6748. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  6749. \draw (t0) to (t1);
  6750. \draw (t0) to (z);
  6751. \draw (z) to (y);
  6752. \draw (z) to (w);
  6753. \draw (x) to (w);
  6754. \draw (y) to (w);
  6755. \draw (v) to (w);
  6756. \end{tikzpicture}
  6757. \]
  6758. To finish the coloring, \code{x} and \code{v} get $0$ and
  6759. \code{tmp\_1} gets $1$.
  6760. \[
  6761. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6762. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6763. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  6764. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6765. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  6766. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6767. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6768. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  6769. \draw (t0) to (t1);
  6770. \draw (t0) to (z);
  6771. \draw (z) to (y);
  6772. \draw (z) to (w);
  6773. \draw (x) to (w);
  6774. \draw (y) to (w);
  6775. \draw (v) to (w);
  6776. \end{tikzpicture}
  6777. \]
  6778. \fi}
  6779. So, we have the following assignment of variables to registers.
  6780. {\if\edition\racketEd
  6781. \begin{gather*}
  6782. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6783. \ttm{w} \mapsto \key{\%rsi}, \,
  6784. \ttm{x} \mapsto \key{\%rcx}, \,
  6785. \ttm{y} \mapsto \key{\%rcx}, \,
  6786. \ttm{z} \mapsto \key{\%rdx}, \,
  6787. \ttm{t} \mapsto \key{\%rcx} \}
  6788. \end{gather*}
  6789. \fi}
  6790. {\if\edition\pythonEd\pythonColor
  6791. \begin{gather*}
  6792. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6793. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  6794. \ttm{x} \mapsto \key{\%rcx}, \,
  6795. \ttm{y} \mapsto \key{\%rcx}, \\
  6796. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6797. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6798. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6799. \end{gather*}
  6800. \fi}
  6801. %
  6802. We apply this register assignment to the running example shown next,
  6803. on the left, to obtain the code in the middle. The
  6804. \code{patch\_instructions} then deletes the trivial moves to obtain
  6805. the code on the right.
  6806. {\if\edition\racketEd
  6807. \begin{center}
  6808. \begin{minipage}{0.2\textwidth}
  6809. \begin{lstlisting}
  6810. movq $1, v
  6811. movq $42, w
  6812. movq v, x
  6813. addq $7, x
  6814. movq x, y
  6815. movq x, z
  6816. addq w, z
  6817. movq y, t
  6818. negq t
  6819. movq z, %rax
  6820. addq t, %rax
  6821. jmp conclusion
  6822. \end{lstlisting}
  6823. \end{minipage}
  6824. $\Rightarrow\qquad$
  6825. \begin{minipage}{0.25\textwidth}
  6826. \begin{lstlisting}
  6827. movq $1, %rcx
  6828. movq $42, %rsi
  6829. movq %rcx, %rcx
  6830. addq $7, %rcx
  6831. movq %rcx, %rcx
  6832. movq %rcx, %rdx
  6833. addq %rsi, %rdx
  6834. movq %rcx, %rcx
  6835. negq %rcx
  6836. movq %rdx, %rax
  6837. addq %rcx, %rax
  6838. jmp conclusion
  6839. \end{lstlisting}
  6840. \end{minipage}
  6841. $\Rightarrow\qquad$
  6842. \begin{minipage}{0.23\textwidth}
  6843. \begin{lstlisting}
  6844. movq $1, %rcx
  6845. movq $42, %rsi
  6846. addq $7, %rcx
  6847. movq %rcx, %rdx
  6848. addq %rsi, %rdx
  6849. negq %rcx
  6850. movq %rdx, %rax
  6851. addq %rcx, %rax
  6852. jmp conclusion
  6853. \end{lstlisting}
  6854. \end{minipage}
  6855. \end{center}
  6856. \fi}
  6857. {\if\edition\pythonEd\pythonColor
  6858. \begin{center}
  6859. \begin{minipage}{0.20\textwidth}
  6860. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6861. movq $1, v
  6862. movq $42, w
  6863. movq v, x
  6864. addq $7, x
  6865. movq x, y
  6866. movq x, z
  6867. addq w, z
  6868. movq y, tmp_0
  6869. negq tmp_0
  6870. movq z, tmp_1
  6871. addq tmp_0, tmp_1
  6872. movq tmp_1, %rdi
  6873. callq _print_int
  6874. \end{lstlisting}
  6875. \end{minipage}
  6876. ${\Rightarrow\qquad}$
  6877. \begin{minipage}{0.35\textwidth}
  6878. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6879. movq $1, %rcx
  6880. movq $42, -16(%rbp)
  6881. movq %rcx, %rcx
  6882. addq $7, %rcx
  6883. movq %rcx, %rcx
  6884. movq %rcx, -8(%rbp)
  6885. addq -16(%rbp), -8(%rbp)
  6886. movq %rcx, %rcx
  6887. negq %rcx
  6888. movq -8(%rbp), -8(%rbp)
  6889. addq %rcx, -8(%rbp)
  6890. movq -8(%rbp), %rdi
  6891. callq _print_int
  6892. \end{lstlisting}
  6893. \end{minipage}
  6894. ${\Rightarrow\qquad}$
  6895. \begin{minipage}{0.20\textwidth}
  6896. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6897. movq $1, %rcx
  6898. movq $42, -16(%rbp)
  6899. addq $7, %rcx
  6900. movq %rcx, -8(%rbp)
  6901. movq -16(%rbp), %rax
  6902. addq %rax, -8(%rbp)
  6903. negq %rcx
  6904. addq %rcx, -8(%rbp)
  6905. movq -8(%rbp), %rdi
  6906. callq print_int
  6907. \end{lstlisting}
  6908. \end{minipage}
  6909. \end{center}
  6910. \fi}
  6911. \begin{exercise}\normalfont\normalsize
  6912. Change your implementation of \code{allocate\_registers} to take move
  6913. biasing into account. Create two new tests that include at least one
  6914. opportunity for move biasing, and visually inspect the output x86
  6915. programs to make sure that your move biasing is working properly. Make
  6916. sure that your compiler still passes all the tests.
  6917. \end{exercise}
  6918. %To do: another neat challenge would be to do
  6919. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  6920. %% \subsection{Output of the Running Example}
  6921. %% \label{sec:reg-alloc-output}
  6922. % challenge: prioritize variables based on execution frequencies
  6923. % and the number of uses of a variable
  6924. % challenge: enhance the coloring algorithm using Chaitin's
  6925. % approach of prioritizing high-degree variables
  6926. % by removing low-degree variables (coloring them later)
  6927. % from the interference graph
  6928. \section{Further Reading}
  6929. \label{sec:register-allocation-further-reading}
  6930. Early register allocation algorithms were developed for Fortran
  6931. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  6932. of graph coloring began in the late 1970s and early 1980s with the
  6933. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  6934. algorithm is based on the following observation of
  6935. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  6936. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  6937. $v$ removed is also $k$ colorable. To see why, suppose that the
  6938. subgraph is $k$ colorable. At worst, the neighbors of $v$ are assigned
  6939. different colors, but because there are fewer than $k$ neighbors, there
  6940. will be one or more colors left over to use for coloring $v$ in $G$.
  6941. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  6942. less than $k$ from the graph and recursively colors the rest of the
  6943. graph. Upon returning from the recursion, it colors $v$ with one of
  6944. the available colors and returns. \citet{Chaitin:1982vn} augments
  6945. this algorithm to handle spilling as follows. If there are no vertices
  6946. of degree lower than $k$ then pick a vertex at random, spill it,
  6947. remove it from the graph, and proceed recursively to color the rest of
  6948. the graph.
  6949. Prior to coloring, \citet{Chaitin:1981vl} merged variables that are
  6950. move-related and that don't interfere with each other, in a process
  6951. called \emph{coalescing}. Although coalescing decreases the number of
  6952. moves, it can make the graph more difficult to
  6953. color. \citet{Briggs:1994kx} proposed \emph{conservative coalescing} in
  6954. which two variables are merged only if they have fewer than $k$
  6955. neighbors of high degree. \citet{George:1996aa} observes that
  6956. conservative coalescing is sometimes too conservative and made it more
  6957. aggressive by iterating the coalescing with the removal of low-degree
  6958. vertices.
  6959. %
  6960. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  6961. also proposed \emph{biased coloring}, in which a variable is assigned to
  6962. the same color as another move-related variable if possible, as
  6963. discussed in section~\ref{sec:move-biasing}.
  6964. %
  6965. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  6966. performs coalescing, graph coloring, and spill code insertion until
  6967. all variables have been assigned a location.
  6968. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  6969. spilled variables that don't have to be: a high-degree variable can be
  6970. colorable if many of its neighbors are assigned the same color.
  6971. \citet{Briggs:1994kx} proposed \emph{optimistic coloring}, in which a
  6972. high-degree vertex is not immediately spilled. Instead the decision is
  6973. deferred until after the recursive call, when it is apparent whether
  6974. there is an available color or not. We observe that this algorithm is
  6975. equivalent to the smallest-last ordering
  6976. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  6977. be registers and the rest to be stack locations.
  6978. %% biased coloring
  6979. Earlier editions of the compiler course at Indiana University
  6980. \citep{Dybvig:2010aa} were based on the algorithm of
  6981. \citet{Briggs:1994kx}.
  6982. The smallest-last ordering algorithm is one of many \emph{greedy}
  6983. coloring algorithms. A greedy coloring algorithm visits all the
  6984. vertices in a particular order and assigns each one the first
  6985. available color. An \emph{offline} greedy algorithm chooses the
  6986. ordering up front, prior to assigning colors. The algorithm of
  6987. \citet{Chaitin:1981vl} should be considered offline because the vertex
  6988. ordering does not depend on the colors assigned. Other orderings are
  6989. possible. For example, \citet{Chow:1984ys} ordered variables according
  6990. to an estimate of runtime cost.
  6991. An \emph{online} greedy coloring algorithm uses information about the
  6992. current assignment of colors to influence the order in which the
  6993. remaining vertices are colored. The saturation-based algorithm
  6994. described in this chapter is one such algorithm. We choose to use
  6995. saturation-based coloring because it is fun to introduce graph
  6996. coloring via sudoku!
  6997. A register allocator may choose to map each variable to just one
  6998. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  6999. variable to one or more locations. The latter can be achieved by
  7000. \emph{live range splitting}, where a variable is replaced by several
  7001. variables that each handle part of its live
  7002. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  7003. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  7004. %% replacement algorithm, bottom-up local
  7005. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  7006. %% Cooper: top-down (priority bassed), bottom-up
  7007. %% top-down
  7008. %% order variables by priority (estimated cost)
  7009. %% caveat: split variables into two groups:
  7010. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  7011. %% color the constrained ones first
  7012. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  7013. %% cite J. Cocke for an algorithm that colors variables
  7014. %% in a high-degree first ordering
  7015. %Register Allocation via Usage Counts, Freiburghouse CACM
  7016. \citet{Palsberg:2007si} observes that many of the interference graphs
  7017. that arise from Java programs in the JoeQ compiler are \emph{chordal};
  7018. that is, every cycle with four or more edges has an edge that is not
  7019. part of the cycle but that connects two vertices on the cycle. Such
  7020. graphs can be optimally colored by the greedy algorithm with a vertex
  7021. ordering determined by maximum cardinality search.
  7022. In situations in which compile time is of utmost importance, such as
  7023. in just-in-time compilers, graph coloring algorithms can be too
  7024. expensive, and the linear scan algorithm of \citet{Poletto:1999uq} may
  7025. be more appropriate.
  7026. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  7027. {\if\edition\racketEd
  7028. \addtocontents{toc}{\newpage}
  7029. \fi}
  7030. \chapter{Booleans and Conditionals}
  7031. \label{ch:Lif}
  7032. \setcounter{footnote}{0}
  7033. The \LangVar{} language has only a single kind of value, the
  7034. integers. In this chapter we add a second kind of value, the Booleans,
  7035. to create the \LangIf{} language. In \racket{Racket}\python{Python},
  7036. the Boolean\index{subject}{Boolean} values \emph{true} and \emph{false}
  7037. are written
  7038. \TRUE{}\index{subject}{True@\TRUE{}} and
  7039. \FALSE{}\index{subject}{False@\FALSE{}}, respectively. The \LangIf{}
  7040. language includes several operations that involve Booleans
  7041. (\key{and}\index{subject}{and@\ANDNAME{}},
  7042. \key{or}\index{subject}{or@\ORNAME{}},
  7043. \key{not}\index{subject}{not@\NOTNAME{}},
  7044. \racket{\key{eq?}\index{subject}{equal@\EQNAME{}}}\python{==},
  7045. \key{<}\index{subject}{lessthan@\texttt{<}}, etc.) and the
  7046. \key{if}\index{subject}{IfExp@\IFNAME{}}
  7047. conditional expression\index{subject}{conditional expression}
  7048. \python{ and statement\index{subject}{IfStmt@\IFSTMTNAME{}}}.
  7049. With the addition of \key{if}, programs can have
  7050. nontrivial control flow\index{subject}{control flow}, which
  7051. %
  7052. \racket{impacts \code{explicate\_control} and liveness analysis.}
  7053. %
  7054. \python{impacts liveness analysis and motivates a new pass named
  7055. \code{explicate\_control}.}
  7056. %
  7057. Also, because we now have two kinds of values, we need to handle
  7058. programs that apply an operation to the wrong kind of value, such as
  7059. \racket{\code{(not 1)}}\python{\code{not 1}}.
  7060. There are two language design options for such situations. One option
  7061. is to signal an error and the other is to provide a wider
  7062. interpretation of the operation. \racket{The Racket
  7063. language}\python{Python} uses a mixture of these two options,
  7064. depending on the operation and the kind of value. For example, the
  7065. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  7066. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  7067. treats nonzero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  7068. %
  7069. \racket{On the other hand, \code{(car 1)} results in a runtime error
  7070. in Racket because \code{car} expects a pair.}
  7071. %
  7072. \python{On the other hand, \code{1[0]} results in a runtime error
  7073. in Python because an ``\code{int} object is not subscriptable.''}
  7074. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  7075. design choices as \racket{Racket}\python{Python}, except that much of the
  7076. error detection happens at compile time instead of runtime\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  7077. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  7078. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed Racket}
  7079. \python{MyPy} reports a compile-time error
  7080. %
  7081. \racket{because Racket expects the type of the argument to be of the form
  7082. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  7083. %
  7084. \python{stating that a ``value of type \code{int} is not indexable.''}
  7085. The \LangIf{} language performs type checking during compilation just as
  7086. \racket{Typed Racket}\python{MyPy}. In chapter~\ref{ch:Ldyn} we study
  7087. the alternative choice, that is, a dynamically typed language like
  7088. \racket{Racket}\python{Python}. The \LangIf{} language is a subset of
  7089. \racket{Typed Racket}\python{MyPy}; for some operations we are more
  7090. restrictive, for example, rejecting \racket{\code{(not
  7091. 1)}}\python{\code{not 1}}. We keep the type checker for \LangIf{}
  7092. fairly simple because the focus of this book is on compilation and not
  7093. type systems, about which there are already several excellent
  7094. books~\citep{Pierce:2002hj,Pierce:2004fk,Harper2016,Pierce:SF2}.
  7095. This chapter is organized as follows. We begin by defining the syntax
  7096. and interpreter for the \LangIf{} language
  7097. (section~\ref{sec:lang-if}). We then introduce the idea of type
  7098. checking (aka semantic analysis\index{subject}{semantic analysis})
  7099. and define a type checker for \LangIf{}
  7100. (section~\ref{sec:type-check-Lif}).
  7101. %
  7102. \racket{To compile \LangIf{} we need to enlarge the intermediate
  7103. language \LangCVar{} into \LangCIf{} (section~\ref{sec:Cif}) and
  7104. \LangXInt{} into \LangXIf{} (section~\ref{sec:x86-if}).}
  7105. %
  7106. The remaining sections of this chapter discuss how Booleans and
  7107. conditional control flow require changes to the existing compiler
  7108. passes and the addition of new ones. We introduce the \code{shrink}
  7109. pass to translate some operators into others, thereby reducing the
  7110. number of operators that need to be handled in later passes.
  7111. %
  7112. The main event of this chapter is the \code{explicate\_control} pass
  7113. that is responsible for translating \code{if}s into conditional
  7114. \code{goto}s (section~\ref{sec:explicate-control-Lif}).
  7115. %
  7116. Regarding register allocation, there is the interesting question of
  7117. how to handle conditional \code{goto}s during liveness analysis.
  7118. \section{The \LangIf{} Language}
  7119. \label{sec:lang-if}
  7120. Definitions of the concrete syntax and abstract syntax of the
  7121. \LangIf{} language are shown in figures~\ref{fig:Lif-concrete-syntax}
  7122. and~\ref{fig:Lif-syntax}, respectively. The \LangIf{} language
  7123. includes all of \LangVar{} {(shown in gray)}, the Boolean
  7124. literals\index{subject}{literals}
  7125. \TRUE{} and \FALSE{}, \racket{and} the \code{if} expression%
  7126. \python{, and the \code{if} statement}. We expand the set of
  7127. operators to include
  7128. \begin{enumerate}
  7129. \item the logical operators \key{and}, \key{or}, and \key{not},
  7130. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  7131. for comparing integers or Booleans for equality, and
  7132. \item the \key{<}, \key{<=}\index{subject}{lessthaneq@\texttt{<=}},
  7133. \key{>}\index{subject}{greaterthan@\texttt{>}}, and
  7134. \key{>=}\index{subject}{greaterthaneq@\texttt{>=}} operations for
  7135. comparing integers.
  7136. \end{enumerate}
  7137. \racket{We reorganize the abstract syntax for the primitive
  7138. operations given in figure~\ref{fig:Lif-syntax}, using only one grammar
  7139. rule for all of them. This means that the grammar no longer checks
  7140. whether the arity of an operator matches the number of
  7141. arguments. That responsibility is moved to the type checker for
  7142. \LangIf{} (section~\ref{sec:type-check-Lif}).}
  7143. \newcommand{\LifGrammarRacket}{
  7144. \begin{array}{lcl}
  7145. \Type &::=& \key{Boolean} \\
  7146. \itm{bool} &::=& \TRUE \MID \FALSE \\
  7147. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7148. \Exp &::=& \itm{bool}
  7149. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  7150. \MID (\key{not}\;\Exp) \\
  7151. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  7152. \end{array}
  7153. }
  7154. \newcommand{\LifASTRacket}{
  7155. \begin{array}{lcl}
  7156. \Type &::=& \key{Boolean} \\
  7157. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  7158. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7159. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  7160. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  7161. \end{array}
  7162. }
  7163. \newcommand{\LintOpAST}{
  7164. \begin{array}{rcl}
  7165. \Type &::=& \key{Integer} \\
  7166. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  7167. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  7168. \end{array}
  7169. }
  7170. \newcommand{\LifGrammarPython}{
  7171. \begin{array}{rcl}
  7172. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7173. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  7174. \MID \key{not}~\Exp \\
  7175. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  7176. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  7177. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  7178. \end{array}
  7179. }
  7180. \newcommand{\LifASTPython}{
  7181. \begin{array}{lcl}
  7182. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  7183. \itm{unaryop} &::=& \code{Not()} \\
  7184. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7185. \itm{bool} &::=& \code{True} \MID \code{False} \\
  7186. \Exp &::=& \BOOL{\itm{bool}}
  7187. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  7188. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  7189. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  7190. \end{array}
  7191. }
  7192. \begin{figure}[tp]
  7193. \centering
  7194. \begin{tcolorbox}[colback=white]
  7195. {\if\edition\racketEd
  7196. \[
  7197. \begin{array}{l}
  7198. \gray{\LintGrammarRacket{}} \\ \hline
  7199. \gray{\LvarGrammarRacket{}} \\ \hline
  7200. \LifGrammarRacket{} \\
  7201. \begin{array}{lcl}
  7202. \LangIfM{} &::=& \Exp
  7203. \end{array}
  7204. \end{array}
  7205. \]
  7206. \fi}
  7207. {\if\edition\pythonEd\pythonColor
  7208. \[
  7209. \begin{array}{l}
  7210. \gray{\LintGrammarPython} \\ \hline
  7211. \gray{\LvarGrammarPython} \\ \hline
  7212. \LifGrammarPython \\
  7213. \begin{array}{rcl}
  7214. \LangIfM{} &::=& \Stmt^{*}
  7215. \end{array}
  7216. \end{array}
  7217. \]
  7218. \fi}
  7219. \end{tcolorbox}
  7220. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  7221. (figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  7222. \label{fig:Lif-concrete-syntax}
  7223. \end{figure}
  7224. \begin{figure}[tp]
  7225. %\begin{minipage}{0.66\textwidth}
  7226. \begin{tcolorbox}[colback=white]
  7227. \centering
  7228. {\if\edition\racketEd
  7229. \[
  7230. \begin{array}{l}
  7231. \gray{\LintOpAST} \\ \hline
  7232. \gray{\LvarASTRacket{}} \\ \hline
  7233. \LifASTRacket{} \\
  7234. \begin{array}{lcl}
  7235. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  7236. \end{array}
  7237. \end{array}
  7238. \]
  7239. \fi}
  7240. {\if\edition\pythonEd\pythonColor
  7241. \[
  7242. \begin{array}{l}
  7243. \gray{\LintASTPython} \\ \hline
  7244. \gray{\LvarASTPython} \\ \hline
  7245. \LifASTPython \\
  7246. \begin{array}{lcl}
  7247. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  7248. \end{array}
  7249. \end{array}
  7250. \]
  7251. \fi}
  7252. \end{tcolorbox}
  7253. %\end{minipage}
  7254. \python{\index{subject}{not equal@\NOTEQNAME{}}}
  7255. \python{
  7256. \index{subject}{BoolOp@\texttt{BoolOp}}
  7257. \index{subject}{Compare@\texttt{Compare}}
  7258. \index{subject}{Lt@\texttt{Lt}}
  7259. \index{subject}{LtE@\texttt{LtE}}
  7260. \index{subject}{Gt@\texttt{Gt}}
  7261. \index{subject}{GtE@\texttt{GtE}}
  7262. }
  7263. \caption{The abstract syntax of \LangIf{}.}
  7264. \label{fig:Lif-syntax}
  7265. \end{figure}
  7266. Figure~\ref{fig:interp-Lif} shows the definition of the interpreter
  7267. for \LangIf{}, which inherits from the interpreter for \LangVar{}
  7268. (figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  7269. evaluate to the corresponding Boolean values. The conditional
  7270. expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates expression $e_1$ and
  7271. then either evaluates $e_2$ or $e_3$, depending on whether $e_1$
  7272. produced \TRUE{} or \FALSE{}. The logical operations \code{and},
  7273. \code{or}, and \code{not} behave according to propositional logic. In
  7274. addition, the \code{and} and \code{or} operations perform
  7275. \emph{short-circuit evaluation}.
  7276. %
  7277. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  7278. is not evaluated if $e_1$ evaluates to \FALSE{}.
  7279. %
  7280. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  7281. evaluated if $e_1$ evaluates to \TRUE{}.
  7282. \racket{With the increase in the number of primitive operations, the
  7283. interpreter would become repetitive without some care. We refactor
  7284. the case for \code{Prim}, moving the code that differs with each
  7285. operation into the \code{interp\_op} method shown in
  7286. figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  7287. \code{or} operations separately because of their short-circuiting
  7288. behavior.}
  7289. \begin{figure}[tbp]
  7290. \begin{tcolorbox}[colback=white]
  7291. {\if\edition\racketEd
  7292. \begin{lstlisting}
  7293. (define interp-Lif-class
  7294. (class interp-Lvar-class
  7295. (super-new)
  7296. (define/public (interp_op op) ...)
  7297. (define/override ((interp_exp env) e)
  7298. (define recur (interp_exp env))
  7299. (match e
  7300. [(Bool b) b]
  7301. [(If cnd thn els)
  7302. (match (recur cnd)
  7303. [#t (recur thn)]
  7304. [#f (recur els)])]
  7305. [(Prim 'and (list e1 e2))
  7306. (match (recur e1)
  7307. [#t (match (recur e2) [#t #t] [#f #f])]
  7308. [#f #f])]
  7309. [(Prim 'or (list e1 e2))
  7310. (define v1 (recur e1))
  7311. (match v1
  7312. [#t #t]
  7313. [#f (match (recur e2) [#t #t] [#f #f])])]
  7314. [(Prim op args)
  7315. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  7316. [else ((super interp_exp env) e)]))
  7317. ))
  7318. (define (interp_Lif p)
  7319. (send (new interp-Lif-class) interp_program p))
  7320. \end{lstlisting}
  7321. \fi}
  7322. {\if\edition\pythonEd\pythonColor
  7323. \begin{lstlisting}
  7324. class InterpLif(InterpLvar):
  7325. def interp_exp(self, e, env):
  7326. match e:
  7327. case IfExp(test, body, orelse):
  7328. if self.interp_exp(test, env):
  7329. return self.interp_exp(body, env)
  7330. else:
  7331. return self.interp_exp(orelse, env)
  7332. case UnaryOp(Not(), v):
  7333. return not self.interp_exp(v, env)
  7334. case BoolOp(And(), values):
  7335. if self.interp_exp(values[0], env):
  7336. return self.interp_exp(values[1], env)
  7337. else:
  7338. return False
  7339. case BoolOp(Or(), values):
  7340. if self.interp_exp(values[0], env):
  7341. return True
  7342. else:
  7343. return self.interp_exp(values[1], env)
  7344. case Compare(left, [cmp], [right]):
  7345. l = self.interp_exp(left, env)
  7346. r = self.interp_exp(right, env)
  7347. return self.interp_cmp(cmp)(l, r)
  7348. case _:
  7349. return super().interp_exp(e, env)
  7350. def interp_stmt(self, s, env, cont):
  7351. match s:
  7352. case If(test, body, orelse):
  7353. match self.interp_exp(test, env):
  7354. case True:
  7355. return self.interp_stmts(body + cont, env)
  7356. case False:
  7357. return self.interp_stmts(orelse + cont, env)
  7358. case _:
  7359. return super().interp_stmt(s, env, cont)
  7360. ...
  7361. \end{lstlisting}
  7362. \fi}
  7363. \end{tcolorbox}
  7364. \caption{Interpreter for the \LangIf{} language. \racket{(See
  7365. figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  7366. \python{(See figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  7367. \label{fig:interp-Lif}
  7368. \end{figure}
  7369. {\if\edition\racketEd
  7370. \begin{figure}[tbp]
  7371. \begin{tcolorbox}[colback=white]
  7372. \begin{lstlisting}
  7373. (define/public (interp_op op)
  7374. (match op
  7375. ['+ fx+]
  7376. ['- fx-]
  7377. ['read read-fixnum]
  7378. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  7379. ['eq? (lambda (v1 v2)
  7380. (cond [(or (and (fixnum? v1) (fixnum? v2))
  7381. (and (boolean? v1) (boolean? v2))
  7382. (and (vector? v1) (vector? v2)))
  7383. (eq? v1 v2)]))]
  7384. ['< (lambda (v1 v2)
  7385. (cond [(and (fixnum? v1) (fixnum? v2))
  7386. (< v1 v2)]))]
  7387. ['<= (lambda (v1 v2)
  7388. (cond [(and (fixnum? v1) (fixnum? v2))
  7389. (<= v1 v2)]))]
  7390. ['> (lambda (v1 v2)
  7391. (cond [(and (fixnum? v1) (fixnum? v2))
  7392. (> v1 v2)]))]
  7393. ['>= (lambda (v1 v2)
  7394. (cond [(and (fixnum? v1) (fixnum? v2))
  7395. (>= v1 v2)]))]
  7396. [else (error 'interp_op "unknown operator")]))
  7397. \end{lstlisting}
  7398. \end{tcolorbox}
  7399. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  7400. \label{fig:interp-op-Lif}
  7401. \end{figure}
  7402. \fi}
  7403. {\if\edition\pythonEd\pythonColor
  7404. \begin{figure}
  7405. \begin{tcolorbox}[colback=white]
  7406. \begin{lstlisting}
  7407. class InterpLif(InterpLvar):
  7408. ...
  7409. def interp_cmp(self, cmp):
  7410. match cmp:
  7411. case Lt():
  7412. return lambda x, y: x < y
  7413. case LtE():
  7414. return lambda x, y: x <= y
  7415. case Gt():
  7416. return lambda x, y: x > y
  7417. case GtE():
  7418. return lambda x, y: x >= y
  7419. case Eq():
  7420. return lambda x, y: x == y
  7421. case NotEq():
  7422. return lambda x, y: x != y
  7423. \end{lstlisting}
  7424. \end{tcolorbox}
  7425. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  7426. \label{fig:interp-cmp-Lif}
  7427. \end{figure}
  7428. \fi}
  7429. \section{Type Checking \LangIf{} Programs}
  7430. \label{sec:type-check-Lif}
  7431. It is helpful to think about type checking\index{subject}{type
  7432. checking} in two complementary ways. A type checker predicts the
  7433. type of value that will be produced by each expression in the program.
  7434. For \LangIf{}, we have just two types, \INTTY{} and \BOOLTY{}. So, a
  7435. type checker should predict that {\if\edition\racketEd
  7436. \begin{lstlisting}
  7437. (+ 10 (- (+ 12 20)))
  7438. \end{lstlisting}
  7439. \fi}
  7440. {\if\edition\pythonEd\pythonColor
  7441. \begin{lstlisting}
  7442. 10 + -(12 + 20)
  7443. \end{lstlisting}
  7444. \fi}
  7445. \noindent produces a value of type \INTTY{}, whereas
  7446. {\if\edition\racketEd
  7447. \begin{lstlisting}
  7448. (and (not #f) #t)
  7449. \end{lstlisting}
  7450. \fi}
  7451. {\if\edition\pythonEd\pythonColor
  7452. \begin{lstlisting}
  7453. (not False) and True
  7454. \end{lstlisting}
  7455. \fi}
  7456. \noindent produces a value of type \BOOLTY{}.
  7457. A second way to think about type checking is that it enforces a set of
  7458. rules about which operators can be applied to which kinds of
  7459. values. For example, our type checker for \LangIf{} signals an error
  7460. for the following expression:
  7461. %
  7462. {\if\edition\racketEd
  7463. \begin{lstlisting}
  7464. (not (+ 10 (- (+ 12 20))))
  7465. \end{lstlisting}
  7466. \fi}
  7467. {\if\edition\pythonEd\pythonColor
  7468. \begin{lstlisting}
  7469. not (10 + -(12 + 20))
  7470. \end{lstlisting}
  7471. \fi}
  7472. \noindent The subexpression
  7473. \racket{\code{(+ 10 (- (+ 12 20)))}}
  7474. \python{\code{(10 + -(12 + 20))}}
  7475. has type \INTTY{}, but the type checker enforces the rule that the
  7476. argument of \code{not} must be an expression of type \BOOLTY{}.
  7477. We implement type checking using classes and methods because they
  7478. provide the open recursion needed to reuse code as we extend the type
  7479. checker in subsequent chapters, analogous to the use of classes and methods
  7480. for the interpreters (section~\ref{sec:extensible-interp}).
  7481. We separate the type checker for the \LangVar{} subset into its own
  7482. class, shown in figure~\ref{fig:type-check-Lvar}. The type checker for
  7483. \LangIf{} is shown in figure~\ref{fig:type-check-Lif}, and it inherits
  7484. from the type checker for \LangVar{}. These type checkers are in the
  7485. files
  7486. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  7487. and
  7488. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  7489. of the support code.
  7490. %
  7491. Each type checker is a structurally recursive function over the AST.
  7492. Given an input expression \code{e}, the type checker either signals an
  7493. error or returns \racket{an expression and} its type.
  7494. %
  7495. \racket{It returns an expression because there are situations in which
  7496. we want to change or update the expression.}
  7497. Next we discuss the \code{type\_check\_exp} function of \LangVar{}
  7498. shown in figure~\ref{fig:type-check-Lvar}. The type of an integer
  7499. constant is \INTTY{}. To handle variables, the type checker uses the
  7500. environment \code{env} to map variables to types.
  7501. %
  7502. \racket{Consider the case for \key{let}. We type check the
  7503. initializing expression to obtain its type \key{T} and then
  7504. associate type \code{T} with the variable \code{x} in the
  7505. environment used to type check the body of the \key{let}. Thus,
  7506. when the type checker encounters a use of variable \code{x}, it can
  7507. find its type in the environment.}
  7508. %
  7509. \python{Consider the case for assignment. We type check the
  7510. initializing expression to obtain its type \key{t}. If the variable
  7511. \code{lhs.id} is already in the environment because there was a
  7512. prior assignment, we check that this initializer has the same type
  7513. as the prior one. If this is the first assignment to the variable,
  7514. we associate type \code{t} with the variable \code{lhs.id} in the
  7515. environment. Thus, when the type checker encounters a use of
  7516. variable \code{x}, it can find its type in the environment.}
  7517. %
  7518. \racket{Regarding primitive operators, we recursively analyze the
  7519. arguments and then invoke \code{type\_check\_op} to check whether
  7520. the argument types are allowed.}
  7521. %
  7522. \python{Regarding addition, subtraction, and negation, we recursively analyze the
  7523. arguments, check that they have type \INTTY{}, and return \INTTY{}.}
  7524. \racket{Several auxiliary methods are used in the type checker. The
  7525. method \code{operator-types} defines a dictionary that maps the
  7526. operator names to their parameter and return types. The
  7527. \code{type-equal?} method determines whether two types are equal,
  7528. which for now simply dispatches to \code{equal?} (deep
  7529. equality). The \code{check-type-equal?} method triggers an error if
  7530. the two types are not equal. The \code{type-check-op} method looks
  7531. up the operator in the \code{operator-types} dictionary and then
  7532. checks whether the argument types are equal to the parameter types.
  7533. The result is the return type of the operator.}
  7534. %
  7535. \python{The auxiliary method \code{check\_type\_equal} triggers
  7536. an error if the two types are not equal.}
  7537. \begin{figure}[tbp]
  7538. \begin{tcolorbox}[colback=white]
  7539. {\if\edition\racketEd
  7540. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7541. (define type-check-Lvar-class
  7542. (class object%
  7543. (super-new)
  7544. (define/public (operator-types)
  7545. '((+ . ((Integer Integer) . Integer))
  7546. (- . ((Integer Integer) . Integer))
  7547. (read . (() . Integer))))
  7548. (define/public (type-equal? t1 t2) (equal? t1 t2))
  7549. (define/public (check-type-equal? t1 t2 e)
  7550. (unless (type-equal? t1 t2)
  7551. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  7552. (define/public (type-check-op op arg-types e)
  7553. (match (dict-ref (operator-types) op)
  7554. [`(,param-types . ,return-type)
  7555. (for ([at arg-types] [pt param-types])
  7556. (check-type-equal? at pt e))
  7557. return-type]
  7558. [else (error 'type-check-op "unrecognized ~a" op)]))
  7559. (define/public (type-check-exp env)
  7560. (lambda (e)
  7561. (match e
  7562. [(Int n) (values (Int n) 'Integer)]
  7563. [(Var x) (values (Var x) (dict-ref env x))]
  7564. [(Let x e body)
  7565. (define-values (e^ Te) ((type-check-exp env) e))
  7566. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  7567. (values (Let x e^ b) Tb)]
  7568. [(Prim op es)
  7569. (define-values (new-es ts)
  7570. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  7571. (values (Prim op new-es) (type-check-op op ts e))]
  7572. [else (error 'type-check-exp "couldn't match" e)])))
  7573. (define/public (type-check-program e)
  7574. (match e
  7575. [(Program info body)
  7576. (define-values (body^ Tb) ((type-check-exp '()) body))
  7577. (check-type-equal? Tb 'Integer body)
  7578. (Program info body^)]
  7579. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  7580. ))
  7581. (define (type-check-Lvar p)
  7582. (send (new type-check-Lvar-class) type-check-program p))
  7583. \end{lstlisting}
  7584. \fi}
  7585. {\if\edition\pythonEd\pythonColor
  7586. \begin{lstlisting}[escapechar=`]
  7587. class TypeCheckLvar:
  7588. def check_type_equal(self, t1, t2, e):
  7589. if t1 != t2:
  7590. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  7591. raise Exception(msg)
  7592. def type_check_exp(self, e, env):
  7593. match e:
  7594. case BinOp(left, (Add() | Sub()), right):
  7595. l = self.type_check_exp(left, env)
  7596. check_type_equal(l, int, left)
  7597. r = self.type_check_exp(right, env)
  7598. check_type_equal(r, int, right)
  7599. return int
  7600. case UnaryOp(USub(), v):
  7601. t = self.type_check_exp(v, env)
  7602. check_type_equal(t, int, v)
  7603. return int
  7604. case Name(id):
  7605. return env[id]
  7606. case Constant(value) if isinstance(value, int):
  7607. return int
  7608. case Call(Name('input_int'), []):
  7609. return int
  7610. def type_check_stmts(self, ss, env):
  7611. if len(ss) == 0:
  7612. return
  7613. match ss[0]:
  7614. case Assign([lhs], value):
  7615. t = self.type_check_exp(value, env)
  7616. if lhs.id in env:
  7617. check_type_equal(env[lhs.id], t, value)
  7618. else:
  7619. env[lhs.id] = t
  7620. return self.type_check_stmts(ss[1:], env)
  7621. case Expr(Call(Name('print'), [arg])):
  7622. t = self.type_check_exp(arg, env)
  7623. check_type_equal(t, int, arg)
  7624. return self.type_check_stmts(ss[1:], env)
  7625. case Expr(value):
  7626. self.type_check_exp(value, env)
  7627. return self.type_check_stmts(ss[1:], env)
  7628. def type_check_P(self, p):
  7629. match p:
  7630. case Module(body):
  7631. self.type_check_stmts(body, {})
  7632. \end{lstlisting}
  7633. \fi}
  7634. \end{tcolorbox}
  7635. \caption{Type checker for the \LangVar{} language.}
  7636. \label{fig:type-check-Lvar}
  7637. \end{figure}
  7638. \begin{figure}[tbp]
  7639. \begin{tcolorbox}[colback=white]
  7640. {\if\edition\racketEd
  7641. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7642. (define type-check-Lif-class
  7643. (class type-check-Lvar-class
  7644. (super-new)
  7645. (inherit check-type-equal?)
  7646. (define/override (operator-types)
  7647. (append '((and . ((Boolean Boolean) . Boolean))
  7648. (or . ((Boolean Boolean) . Boolean))
  7649. (< . ((Integer Integer) . Boolean))
  7650. (<= . ((Integer Integer) . Boolean))
  7651. (> . ((Integer Integer) . Boolean))
  7652. (>= . ((Integer Integer) . Boolean))
  7653. (not . ((Boolean) . Boolean)))
  7654. (super operator-types)))
  7655. (define/override (type-check-exp env)
  7656. (lambda (e)
  7657. (match e
  7658. [(Bool b) (values (Bool b) 'Boolean)]
  7659. [(Prim 'eq? (list e1 e2))
  7660. (define-values (e1^ T1) ((type-check-exp env) e1))
  7661. (define-values (e2^ T2) ((type-check-exp env) e2))
  7662. (check-type-equal? T1 T2 e)
  7663. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  7664. [(If cnd thn els)
  7665. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  7666. (define-values (thn^ Tt) ((type-check-exp env) thn))
  7667. (define-values (els^ Te) ((type-check-exp env) els))
  7668. (check-type-equal? Tc 'Boolean e)
  7669. (check-type-equal? Tt Te e)
  7670. (values (If cnd^ thn^ els^) Te)]
  7671. [else ((super type-check-exp env) e)])))
  7672. ))
  7673. (define (type-check-Lif p)
  7674. (send (new type-check-Lif-class) type-check-program p))
  7675. \end{lstlisting}
  7676. \fi}
  7677. {\if\edition\pythonEd\pythonColor
  7678. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7679. class TypeCheckLif(TypeCheckLvar):
  7680. def type_check_exp(self, e, env):
  7681. match e:
  7682. case Constant(value) if isinstance(value, bool):
  7683. return bool
  7684. case BinOp(left, Sub(), right):
  7685. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7686. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7687. return int
  7688. case UnaryOp(Not(), v):
  7689. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  7690. return bool
  7691. case BoolOp(op, values):
  7692. left = values[0] ; right = values[1]
  7693. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  7694. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  7695. return bool
  7696. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  7697. or isinstance(cmp, NotEq):
  7698. l = self.type_check_exp(left, env)
  7699. r = self.type_check_exp(right, env)
  7700. check_type_equal(l, r, e)
  7701. return bool
  7702. case Compare(left, [cmp], [right]):
  7703. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7704. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7705. return bool
  7706. case IfExp(test, body, orelse):
  7707. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7708. b = self.type_check_exp(body, env)
  7709. o = self.type_check_exp(orelse, env)
  7710. check_type_equal(b, o, e)
  7711. return b
  7712. case _:
  7713. return super().type_check_exp(e, env)
  7714. def type_check_stmts(self, ss, env):
  7715. if len(ss) == 0:
  7716. return
  7717. match ss[0]:
  7718. case If(test, body, orelse):
  7719. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7720. b = self.type_check_stmts(body, env)
  7721. o = self.type_check_stmts(orelse, env)
  7722. check_type_equal(b, o, ss[0])
  7723. return self.type_check_stmts(ss[1:], env)
  7724. case _:
  7725. return super().type_check_stmts(ss, env)
  7726. \end{lstlisting}
  7727. \fi}
  7728. \end{tcolorbox}
  7729. \caption{Type checker for the \LangIf{} language.}
  7730. \label{fig:type-check-Lif}
  7731. \end{figure}
  7732. The definition of the type checker for \LangIf{} is shown in
  7733. figure~\ref{fig:type-check-Lif}.
  7734. %
  7735. The type of a Boolean constant is \BOOLTY{}.
  7736. %
  7737. \racket{The \code{operator-types} function adds dictionary entries for
  7738. the new operators.}
  7739. %
  7740. \python{The logical \code{not} operator requires its argument to be a
  7741. \BOOLTY{} and produces a \BOOLTY{}. Similarly for the logical \code{and}
  7742. and logical \code{or} operators.}
  7743. %
  7744. The equality operator requires the two arguments to have the same type,
  7745. and therefore we handle it separately from the other operators.
  7746. %
  7747. \python{The other comparisons (less-than, etc.) require their
  7748. arguments to be of type \INTTY{}, and they produce a \BOOLTY{}.}
  7749. %
  7750. The condition of an \code{if} must
  7751. be of \BOOLTY{} type, and the two branches must have the same type.
  7752. \begin{exercise}\normalfont\normalsize
  7753. Create ten new test programs in \LangIf{}. Half the programs should
  7754. have a type error. For those programs, create an empty file with the
  7755. same base name and with file extension \code{.tyerr}. For example, if
  7756. the test
  7757. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  7758. is expected to error, then create
  7759. an empty file named \code{cond\_test\_14.tyerr}.
  7760. %
  7761. \racket{This indicates to \code{interp-tests} and
  7762. \code{compiler-tests} that a type error is expected. }
  7763. %
  7764. The other half of the test programs should not have type errors.
  7765. %
  7766. \racket{In the \code{run-tests.rkt} script, change the second argument
  7767. of \code{interp-tests} and \code{compiler-tests} to
  7768. \code{type-check-Lif}, which causes the type checker to run prior to
  7769. the compiler passes. Temporarily change the \code{passes} to an
  7770. empty list and run the script, thereby checking that the new test
  7771. programs either type check or do not, as intended.}
  7772. %
  7773. Run the test script to check that these test programs type check as
  7774. expected.
  7775. \end{exercise}
  7776. \clearpage
  7777. \section{The \LangCIf{} Intermediate Language}
  7778. \label{sec:Cif}
  7779. {\if\edition\racketEd
  7780. %
  7781. The \LangCIf{} language builds on \LangCVar{} by adding logical and
  7782. comparison operators to the \Exp{} nonterminal and the literals
  7783. \TRUE{} and \FALSE{} to the \Arg{} nonterminal. Regarding control
  7784. flow, \LangCIf{} adds \key{goto} and \code{if} statements to the
  7785. \Tail{} nonterminal. The condition of an \code{if} statement is a
  7786. comparison operation and the branches are \code{goto} statements,
  7787. making it straightforward to compile \code{if} statements to x86. The
  7788. \key{CProgram} construct contains an alist mapping labels to $\Tail$
  7789. expressions. A \code{goto} statement transfers control to the $\Tail$
  7790. expression corresponding to its label.
  7791. %
  7792. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  7793. \LangCIf{} intermediate language, and figure~\ref{fig:c1-syntax}
  7794. defines its abstract syntax.
  7795. %
  7796. \fi}
  7797. %
  7798. {\if\edition\pythonEd\pythonColor
  7799. %
  7800. The output of \key{explicate\_control} is a language similar to the
  7801. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  7802. \code{goto} statements, so we name it \LangCIf{}.
  7803. %
  7804. The \LangCIf{} language supports the same operators as \LangIf{}, but
  7805. the arguments of operators are restricted to atomic expressions. The
  7806. \LangCIf{} language does not include \code{if} expressions, but it does
  7807. include a restricted form of \code{if} statement. The condition must be
  7808. a comparison, and the two branches may contain only \code{goto}
  7809. statements. These restrictions make it easier to translate \code{if}
  7810. statements to x86. The \LangCIf{} language also adds a \code{return}
  7811. statement to finish the program with a specified value.
  7812. %
  7813. The \key{CProgram} construct contains a dictionary mapping labels to
  7814. lists of statements that end with a \emph{tail} statement, which is
  7815. either a \code{return} statement, a \code{goto}, or an
  7816. \code{if} statement.
  7817. %
  7818. A \code{goto} transfers control to the sequence of statements
  7819. associated with its label.
  7820. %
  7821. Figure~\ref{fig:c1-concrete-syntax} shows the concrete syntax for \LangCIf{},
  7822. and figure~\ref{fig:c1-syntax} shows its
  7823. abstract syntax.
  7824. %
  7825. \fi}
  7826. %
  7827. \newcommand{\CifGrammarRacket}{
  7828. \begin{array}{lcl}
  7829. \Atm &::=& \itm{bool} \\
  7830. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7831. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  7832. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  7833. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  7834. \end{array}
  7835. }
  7836. \newcommand{\CifASTRacket}{
  7837. \begin{array}{lcl}
  7838. \Atm &::=& \BOOL{\itm{bool}} \\
  7839. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7840. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  7841. \Tail &::= & \GOTO{\itm{label}} \\
  7842. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  7843. \end{array}
  7844. }
  7845. \newcommand{\CifGrammarPython}{
  7846. \begin{array}{lcl}
  7847. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  7848. \Exp &::= & \Atm \MID \CREAD{}
  7849. \MID \CUNIOP{\key{-}}{\Atm}
  7850. \MID \CBINOP{\key{+}}{\Atm}{\Atm}
  7851. \MID \CBINOP{\key{-}}{\Atm}{\Atm}
  7852. \MID \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  7853. \Stmt &::=& \CPRINT{\Atm} \MID \Exp \MID \CASSIGN{\Var}{\Exp} \\
  7854. \Tail &::=& \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  7855. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  7856. \end{array}
  7857. }
  7858. \newcommand{\CifASTPython}{
  7859. \begin{array}{lcl}
  7860. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  7861. \Exp &::= & \Atm \MID \READ{}
  7862. \MID \UNIOP{\key{USub()}}{\Atm} \\
  7863. &\MID& \BINOP{\Atm}{\key{Sub()}}{\Atm}
  7864. \MID \BINOP{\Atm}{\key{Add()}}{\Atm} \\
  7865. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  7866. \Stmt &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  7867. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  7868. \Tail &::= & \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  7869. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  7870. \end{array}
  7871. }
  7872. \begin{figure}[tbp]
  7873. \begin{tcolorbox}[colback=white]
  7874. \small
  7875. {\if\edition\racketEd
  7876. \[
  7877. \begin{array}{l}
  7878. \gray{\CvarGrammarRacket} \\ \hline
  7879. \CifGrammarRacket \\
  7880. \begin{array}{lcl}
  7881. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  7882. \end{array}
  7883. \end{array}
  7884. \]
  7885. \fi}
  7886. {\if\edition\pythonEd\pythonColor
  7887. \[
  7888. \begin{array}{l}
  7889. \CifGrammarPython \\
  7890. \begin{array}{lcl}
  7891. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}\;\Tail) \ldots
  7892. \end{array}
  7893. \end{array}
  7894. \]
  7895. \fi}
  7896. \end{tcolorbox}
  7897. \caption{The concrete syntax of the \LangCIf{} intermediate language%
  7898. \racket{, an extension of \LangCVar{} (figure~\ref{fig:c0-concrete-syntax})}.}
  7899. \label{fig:c1-concrete-syntax}
  7900. \end{figure}
  7901. \begin{figure}[tp]
  7902. \begin{tcolorbox}[colback=white]
  7903. \small
  7904. {\if\edition\racketEd
  7905. \[
  7906. \begin{array}{l}
  7907. \gray{\CvarASTRacket} \\ \hline
  7908. \CifASTRacket \\
  7909. \begin{array}{lcl}
  7910. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  7911. \end{array}
  7912. \end{array}
  7913. \]
  7914. \fi}
  7915. {\if\edition\pythonEd\pythonColor
  7916. \[
  7917. \begin{array}{l}
  7918. \CifASTPython \\
  7919. \begin{array}{lcl}
  7920. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\LS\Stmt,\ldots,\Tail\RS, \ldots \RC}
  7921. \end{array}
  7922. \end{array}
  7923. \]
  7924. \fi}
  7925. \end{tcolorbox}
  7926. \racket{
  7927. \index{subject}{IfStmt@\IFSTMTNAME{}}
  7928. }
  7929. \index{subject}{Goto@\texttt{Goto}}
  7930. \index{subject}{Return@\texttt{Return}}
  7931. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  7932. (figure~\ref{fig:c0-syntax})}.}
  7933. \label{fig:c1-syntax}
  7934. \end{figure}
  7935. \section{The \LangXIf{} Language}
  7936. \label{sec:x86-if}
  7937. \index{subject}{x86}
  7938. To implement Booleans, the new logical operations, the
  7939. comparison operations, and the \key{if} expression\python{ and
  7940. statement}, we delve further into the x86
  7941. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} present
  7942. the definitions of the concrete and abstract syntax for the \LangXIf{}
  7943. subset of x86, which includes instructions for logical operations,
  7944. comparisons, and \racket{conditional} jumps.
  7945. %
  7946. \python{The abstract syntax for an \LangXIf{} program contains a
  7947. dictionary mapping labels to sequences of instructions, each of
  7948. which we refer to as a \emph{basic block}\index{subject}{basic
  7949. block}.}
  7950. As x86 does not provide direct support for Booleans, we take the usual
  7951. approach of encoding Booleans as integers, with \code{True} as $1$ and
  7952. \code{False} as $0$.
  7953. Furthermore, x86 does not provide an instruction that directly
  7954. implements logical negation (\code{not} in \LangIf{} and \LangCIf{}).
  7955. However, the \code{xorq} instruction can be used to encode \code{not}.
  7956. The \key{xorq} instruction takes two arguments, performs a pairwise
  7957. exclusive-or ($\mathrm{XOR}$) operation on each bit of its arguments,
  7958. and writes the results into its second argument. Recall the following
  7959. truth table for exclusive-or:
  7960. \begin{center}
  7961. \begin{tabular}{l|cc}
  7962. & 0 & 1 \\ \hline
  7963. 0 & 0 & 1 \\
  7964. 1 & 1 & 0
  7965. \end{tabular}
  7966. \end{center}
  7967. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  7968. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  7969. for the bit $1$, the result is the opposite of the second bit. Thus,
  7970. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  7971. the first argument, as follows, where $\Arg$ is the translation of
  7972. $\Atm$ to x86:
  7973. \[
  7974. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  7975. \qquad\Rightarrow\qquad
  7976. \begin{array}{l}
  7977. \key{movq}~ \Arg\key{,} \Var\\
  7978. \key{xorq}~ \key{\$1,} \Var
  7979. \end{array}
  7980. \]
  7981. \newcommand{\GrammarXIf}{
  7982. \begin{array}{lcl}
  7983. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7984. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7985. \Arg &::=& \key{\%}\itm{bytereg}\\
  7986. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7987. \Instr &::=& \key{xorq}~\Arg\key{,}~\Arg
  7988. \MID \key{cmpq}~\Arg\key{,}~\Arg
  7989. \MID \key{set}cc~\Arg
  7990. \MID \key{movzbq}~\Arg\key{,}~\Arg \\
  7991. &\MID& \key{j}cc~\itm{label} \\
  7992. \end{array}
  7993. }
  7994. \begin{figure}[tp]
  7995. \begin{tcolorbox}[colback=white]
  7996. \[
  7997. \begin{array}{l}
  7998. \gray{\GrammarXInt} \\ \hline
  7999. \GrammarXIf \\
  8000. \begin{array}{lcl}
  8001. \LangXIfM{} &::= & \key{.globl main} \\
  8002. & & \key{main:} \; \Instr\ldots
  8003. \end{array}
  8004. \end{array}
  8005. \]
  8006. \end{tcolorbox}
  8007. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of figure~\ref{fig:x86-int-concrete}).}
  8008. \label{fig:x86-1-concrete}
  8009. \end{figure}
  8010. \newcommand{\ASTXIfRacket}{
  8011. \begin{array}{lcl}
  8012. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  8013. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  8014. \Arg &::=& \BYTEREG{\itm{bytereg}} \\
  8015. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  8016. \Instr &::=& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  8017. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  8018. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  8019. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  8020. &\MID& \JMPIF{\itm{cc}}{\itm{label}}
  8021. \end{array}
  8022. }
  8023. \newcommand{\ASTXIfPython}{
  8024. \begin{array}{lcl}
  8025. \itm{bytereg} &::=& \skey{ah} \MID \skey{al} \MID \skey{bh} \MID \skey{bl}
  8026. \MID \skey{ch} \MID \skey{cl} \MID \skey{dh} \MID \skey{dl} \\
  8027. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  8028. \MID \BYTEREG{\itm{bytereg}} \\
  8029. \itm{cc} & ::= & \skey{e} \MID \skey{ne} \MID \skey{l} \MID \skey{le} \MID \skey{g} \MID \skey{ge} \\
  8030. \Instr &::=& \python{\JMP{\itm{label}}}\\
  8031. &\MID& \BININSTR{\scode{xorq}}{\Arg}{\Arg}
  8032. \MID \BININSTR{\scode{cmpq}}{\Arg}{\Arg}\\
  8033. &\MID& \UNIINSTR{\scode{set}\code{+}\itm{cc}}{\Arg}
  8034. \MID \BININSTR{\scode{movzbq}}{\Arg}{\Arg}\\
  8035. &\MID& \JMPIF{\itm{cc}}{\itm{label}}
  8036. \end{array}
  8037. }
  8038. \begin{figure}[tp]
  8039. \begin{tcolorbox}[colback=white]
  8040. \small
  8041. {\if\edition\racketEd
  8042. \[\arraycolsep=3pt
  8043. \begin{array}{l}
  8044. \gray{\ASTXIntRacket} \\ \hline
  8045. \ASTXIfRacket \\
  8046. \begin{array}{lcl}
  8047. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  8048. \end{array}
  8049. \end{array}
  8050. \]
  8051. \fi}
  8052. %
  8053. {\if\edition\pythonEd\pythonColor
  8054. \[
  8055. \begin{array}{l}
  8056. \gray{\ASTXIntPython} \\ \hline
  8057. \ASTXIfPython \\
  8058. \begin{array}{lcl}
  8059. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  8060. \end{array}
  8061. \end{array}
  8062. \]
  8063. \fi}
  8064. \end{tcolorbox}
  8065. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} shown in figure~\ref{fig:x86-int-ast}).}
  8066. \label{fig:x86-1}
  8067. \end{figure}
  8068. Next we consider the x86 instructions that are relevant for compiling
  8069. the comparison operations. The \key{cmpq} instruction compares its two
  8070. arguments to determine whether one argument is less than, equal to, or
  8071. greater than the other argument. The \key{cmpq} instruction is unusual
  8072. regarding the order of its arguments and where the result is
  8073. placed. The argument order is backward: if you want to test whether
  8074. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  8075. \key{cmpq} is placed in the special EFLAGS register. This register
  8076. cannot be accessed directly, but it can be queried by a number of
  8077. instructions, including the \key{set} instruction. The instruction
  8078. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$,
  8079. depending on whether the contents of the EFLAGS register matches the
  8080. condition code \itm{cc}: \key{e} for equal, \key{l} for less, \key{le}
  8081. for less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal.
  8082. The \key{set} instruction has a quirk in that its destination argument
  8083. must be a single-byte register, such as \code{al} (\code{l} for lower bits) or
  8084. \code{ah} (\code{h} for higher bits), which are part of the \code{rax}
  8085. register. Thankfully, the \key{movzbq} instruction can be used to
  8086. move from a single-byte register to a normal 64-bit register. The
  8087. abstract syntax for the \code{set} instruction differs from the
  8088. concrete syntax in that it separates the instruction name from the
  8089. condition code.
  8090. \python{The x86 instructions for jumping are relevant to the
  8091. compilation of \key{if} expressions.}
  8092. %
  8093. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  8094. counter to the address of the instruction after the specified
  8095. label.}
  8096. %
  8097. \racket{The x86 instruction for conditional jump is relevant to the
  8098. compilation of \key{if} expressions.}
  8099. %
  8100. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  8101. counter to point to the instruction after \itm{label}, depending on
  8102. whether the result in the EFLAGS register matches the condition code
  8103. \itm{cc}; otherwise, the jump instruction falls through to the next
  8104. instruction. Like the abstract syntax for \code{set}, the abstract
  8105. syntax for conditional jump separates the instruction name from the
  8106. condition code. For example, \JMPIF{\QUOTE{\code{le}}}{\QUOTE{\code{foo}}}
  8107. corresponds to \code{jle foo}. Because the conditional jump instruction
  8108. relies on the EFLAGS register, it is common for it to be immediately preceded by
  8109. a \key{cmpq} instruction to set the EFLAGS register.
  8110. \section{Shrink the \LangIf{} Language}
  8111. \label{sec:shrink-Lif}
  8112. The \code{shrink} pass translates some of the language features into
  8113. other features, thereby reducing the kinds of expressions in the
  8114. language. For example, the short-circuiting nature of the \code{and}
  8115. and \code{or} logical operators can be expressed using \code{if} as
  8116. follows.
  8117. \begin{align*}
  8118. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  8119. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  8120. \end{align*}
  8121. By performing these translations in the front end of the compiler,
  8122. subsequent passes of the compiler can be shorter.
  8123. On the other hand, translations sometimes reduce the efficiency of the
  8124. generated code by increasing the number of instructions. For example,
  8125. expressing subtraction in terms of addition and negation
  8126. \[
  8127. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  8128. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  8129. \]
  8130. produces code with two x86 instructions (\code{negq} and \code{addq})
  8131. instead of just one (\code{subq}). Thus, we do not recommend
  8132. translating subtraction into addition and negation.
  8133. \begin{exercise}\normalfont\normalsize
  8134. %
  8135. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  8136. the language by translating them to \code{if} expressions in \LangIf{}.
  8137. %
  8138. Create four test programs that involve these operators.
  8139. %
  8140. {\if\edition\racketEd
  8141. In the \code{run-tests.rkt} script, add the following entry for
  8142. \code{shrink} to the list of passes (it should be the only pass at
  8143. this point).
  8144. \begin{lstlisting}
  8145. (list "shrink" shrink interp_Lif type-check-Lif)
  8146. \end{lstlisting}
  8147. This instructs \code{interp-tests} to run the interpreter
  8148. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  8149. output of \code{shrink}.
  8150. \fi}
  8151. %
  8152. Run the script to test your compiler on all the test programs.
  8153. \end{exercise}
  8154. {\if\edition\racketEd
  8155. \section{Uniquify Variables}
  8156. \label{sec:uniquify-Lif}
  8157. Add cases to \code{uniquify\_exp} to handle Boolean constants and
  8158. \code{if} expressions.
  8159. \begin{exercise}\normalfont\normalsize
  8160. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  8161. entry to the list of \code{passes} in the \code{run-tests.rkt} script:
  8162. \begin{lstlisting}
  8163. (list "uniquify" uniquify interp_Lif type_check_Lif)
  8164. \end{lstlisting}
  8165. Run the script to test your compiler.
  8166. \end{exercise}
  8167. \fi}
  8168. \section{Remove Complex Operands}
  8169. \label{sec:remove-complex-opera-Lif}
  8170. The output language of \code{remove\_complex\_operands} is
  8171. \LangIfANF{} (figure~\ref{fig:Lif-anf-syntax}), the monadic
  8172. normal form of \LangIf{}. A Boolean constant is an atomic expression,
  8173. but the \code{if} expression is not. All three subexpressions of an
  8174. \code{if} are allowed to be complex expressions, but the operands of
  8175. the \code{not} operator and comparison operators must be atomic.
  8176. %
  8177. \python{We add a new language form, the \code{Begin} expression, to aid
  8178. in the translation of \code{if} expressions. When we recursively
  8179. process the two branches of the \code{if}, we generate temporary
  8180. variables and their initializing expressions. However, these
  8181. expressions may contain side effects and should be executed only
  8182. when the condition of the \code{if} is true (for the ``then''
  8183. branch) or false (for the ``else'' branch). The \code{Begin} provides
  8184. a way to initialize the temporary variables within the two branches
  8185. of the \code{if} expression. In general, the $\BEGIN{ss}{e}$
  8186. form executes the statements $ss$ and then returns the result of
  8187. expression $e$.}
  8188. Add cases to the \code{rco\_exp} and \code{rco\_atom} functions for
  8189. the new features in \LangIf{}. In recursively processing
  8190. subexpressions, recall that you should invoke \code{rco\_atom} when
  8191. the output needs to be an \Atm{} (as specified in the grammar for
  8192. \LangIfANF{}) and invoke \code{rco\_exp} when the output should be
  8193. \Exp{}. Regarding \code{if}, it is particularly important
  8194. \emph{not} to replace its condition with a temporary variable, because
  8195. that would interfere with the generation of high-quality output in the
  8196. upcoming \code{explicate\_control} pass.
  8197. \newcommand{\LifMonadASTRacket}{
  8198. \begin{array}{rcl}
  8199. \Atm &::=& \BOOL{\itm{bool}}\\
  8200. \Exp &::=& \UNIOP{\key{not}}{\Atm}
  8201. \MID \BINOP{\itm{cmp}}{\Atm}{\Atm}
  8202. \MID \IF{\Exp}{\Exp}{\Exp}
  8203. \end{array}
  8204. }
  8205. \newcommand{\LifMonadASTPython}{
  8206. \begin{array}{rcl}
  8207. \Atm &::=& \BOOL{\itm{bool}}\\
  8208. \Exp &::=& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  8209. &\MID& \BEGIN{\Stmt^{*}}{\Exp}\\
  8210. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}
  8211. \end{array}
  8212. }
  8213. \begin{figure}[tp]
  8214. \centering
  8215. \begin{tcolorbox}[colback=white]
  8216. {\if\edition\racketEd
  8217. \[
  8218. \begin{array}{l}
  8219. \gray{\LvarMonadASTRacket} \\ \hline
  8220. \LifMonadASTRacket \\
  8221. \begin{array}{rcl}
  8222. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  8223. \end{array}
  8224. \end{array}
  8225. \]
  8226. \fi}
  8227. {\if\edition\pythonEd\pythonColor
  8228. \[
  8229. \begin{array}{l}
  8230. \gray{\LvarMonadASTPython} \\ \hline
  8231. \LifMonadASTPython \\
  8232. \begin{array}{rcl}
  8233. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  8234. \end{array}
  8235. \end{array}
  8236. \]
  8237. \fi}
  8238. \end{tcolorbox}
  8239. \python{\index{subject}{Begin@\texttt{Begin}}}
  8240. \caption{\LangIfANF{} is \LangIf{} in monadic normal form
  8241. (extends \LangVarANF in figure~\ref{fig:Lvar-anf-syntax}).}
  8242. \label{fig:Lif-anf-syntax}
  8243. \end{figure}
  8244. \begin{exercise}\normalfont\normalsize
  8245. %
  8246. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  8247. and \code{rco\_exp} functions.
  8248. %
  8249. Create three new \LangIf{} programs that exercise the interesting
  8250. code in this pass.
  8251. %
  8252. {\if\edition\racketEd
  8253. In the \code{run-tests.rkt} script, add the following entry to the
  8254. list of \code{passes} and then run the script to test your compiler.
  8255. \begin{lstlisting}
  8256. (list "remove-complex" remove_complex_operands interp-Lif type-check-Lif)
  8257. \end{lstlisting}
  8258. \fi}
  8259. \end{exercise}
  8260. \section{Explicate Control}
  8261. \label{sec:explicate-control-Lif}
  8262. \racket{Recall that the purpose of \code{explicate\_control} is to
  8263. make the order of evaluation explicit in the syntax of the program.
  8264. With the addition of \key{if}, this becomes more interesting.}
  8265. %
  8266. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  8267. %
  8268. The main challenge to overcome is that the condition of an \key{if}
  8269. can be an arbitrary expression in \LangIf{}, whereas in \LangCIf{} the
  8270. condition must be a comparison.
  8271. As a motivating example, consider the following program that has an
  8272. \key{if} expression nested in the condition of another \key{if}:%
  8273. \python{\footnote{Programmers rarely write nested \code{if}
  8274. expressions, but they do write nested expressions involving
  8275. logical \code{and}, which, as we have seen, translates to
  8276. \code{if}.}}
  8277. % cond_test_41.rkt, if_lt_eq.py
  8278. \begin{center}
  8279. \begin{minipage}{0.96\textwidth}
  8280. {\if\edition\racketEd
  8281. \begin{lstlisting}
  8282. (let ([x (read)])
  8283. (let ([y (read)])
  8284. (if (if (< x 1) (eq? x 0) (eq? x 2))
  8285. (+ y 2)
  8286. (+ y 10))))
  8287. \end{lstlisting}
  8288. \fi}
  8289. {\if\edition\pythonEd\pythonColor
  8290. \begin{lstlisting}
  8291. x = input_int()
  8292. y = input_int()
  8293. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  8294. \end{lstlisting}
  8295. \fi}
  8296. \end{minipage}
  8297. \end{center}
  8298. %
  8299. The naive way to compile \key{if} and the comparison operations would
  8300. be to handle each of them in isolation, regardless of their context.
  8301. Each comparison would be translated into a \key{cmpq} instruction
  8302. followed by several instructions to move the result from the EFLAGS
  8303. register into a general purpose register or stack location. Each
  8304. \key{if} would be translated into a \key{cmpq} instruction followed by
  8305. a conditional jump. The generated code for the inner \key{if} in this
  8306. example would be as follows:
  8307. \begin{center}
  8308. \begin{minipage}{0.96\textwidth}
  8309. \begin{lstlisting}
  8310. cmpq $1, x
  8311. setl %al
  8312. movzbq %al, tmp
  8313. cmpq $1, tmp
  8314. je then_branch_1
  8315. jmp else_branch_1
  8316. \end{lstlisting}
  8317. \end{minipage}
  8318. \end{center}
  8319. Notice that the three instructions starting with \code{setl} are
  8320. redundant; the conditional jump could come immediately after the first
  8321. \code{cmpq}.
  8322. Our goal is to compile \key{if} expressions so that the relevant
  8323. comparison instruction appears directly before the conditional jump.
  8324. For example, we want to generate the following code for the inner
  8325. \code{if}:
  8326. \begin{center}
  8327. \begin{minipage}{0.96\textwidth}
  8328. \begin{lstlisting}
  8329. cmpq $1, x
  8330. jl then_branch_1
  8331. jmp else_branch_1
  8332. \end{lstlisting}
  8333. \end{minipage}
  8334. \end{center}
  8335. One way to achieve this goal is to reorganize the code at the level of
  8336. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  8337. the following code:
  8338. \begin{center}
  8339. \begin{minipage}{0.96\textwidth}
  8340. {\if\edition\racketEd
  8341. \begin{lstlisting}
  8342. (let ([x (read)])
  8343. (let ([y (read)])
  8344. (if (< x 1)
  8345. (if (eq? x 0)
  8346. (+ y 2)
  8347. (+ y 10))
  8348. (if (eq? x 2)
  8349. (+ y 2)
  8350. (+ y 10)))))
  8351. \end{lstlisting}
  8352. \fi}
  8353. {\if\edition\pythonEd\pythonColor
  8354. \begin{lstlisting}
  8355. x = input_int()
  8356. y = input_int()
  8357. print(((y + 2) if x == 0 else (y + 10)) \
  8358. if (x < 1) \
  8359. else ((y + 2) if (x == 2) else (y + 10)))
  8360. \end{lstlisting}
  8361. \fi}
  8362. \end{minipage}
  8363. \end{center}
  8364. Unfortunately, this approach duplicates the two branches from the
  8365. outer \code{if}, and a compiler must never duplicate code! After all,
  8366. the two branches could be very large expressions.
  8367. How can we apply this transformation without duplicating code? In
  8368. other words, how can two different parts of a program refer to one
  8369. piece of code?
  8370. %
  8371. The answer is that we must move away from abstract syntax \emph{trees}
  8372. and instead use \emph{graphs}.
  8373. %
  8374. At the level of x86 assembly, this is straightforward because we can
  8375. label the code for each branch and insert jumps in all the places that
  8376. need to execute the branch. In this way, jump instructions are edges
  8377. in the graph and the basic blocks are the nodes.
  8378. %
  8379. Likewise, our language \LangCIf{} provides the ability to label a
  8380. sequence of statements and to jump to a label via \code{goto}.
  8381. As a preview of what \code{explicate\_control} will do,
  8382. figure~\ref{fig:explicate-control-s1-38} shows the output of
  8383. \code{explicate\_control} on this example. Note how the condition of
  8384. every \code{if} is a comparison operation and that we have not
  8385. duplicated any code but instead have used labels and \code{goto} to
  8386. enable sharing of code.
  8387. \begin{figure}[tbp]
  8388. \begin{tcolorbox}[colback=white]
  8389. {\if\edition\racketEd
  8390. \begin{tabular}{lll}
  8391. \begin{minipage}{0.4\textwidth}
  8392. % cond_test_41.rkt
  8393. \begin{lstlisting}
  8394. (let ([x (read)])
  8395. (let ([y (read)])
  8396. (if (if (< x 1)
  8397. (eq? x 0)
  8398. (eq? x 2))
  8399. (+ y 2)
  8400. (+ y 10))))
  8401. \end{lstlisting}
  8402. \end{minipage}
  8403. &
  8404. $\Rightarrow$
  8405. &
  8406. \begin{minipage}{0.55\textwidth}
  8407. \begin{lstlisting}
  8408. start:
  8409. x = (read);
  8410. y = (read);
  8411. if (< x 1)
  8412. goto block_4;
  8413. else
  8414. goto block_5;
  8415. block_4:
  8416. if (eq? x 0)
  8417. goto block_2;
  8418. else
  8419. goto block_3;
  8420. block_5:
  8421. if (eq? x 2)
  8422. goto block_2;
  8423. else
  8424. goto block_3;
  8425. block_2:
  8426. return (+ y 2);
  8427. block_3:
  8428. return (+ y 10);
  8429. \end{lstlisting}
  8430. \end{minipage}
  8431. \end{tabular}
  8432. \fi}
  8433. {\if\edition\pythonEd\pythonColor
  8434. \begin{tabular}{lll}
  8435. \begin{minipage}{0.4\textwidth}
  8436. % cond_test_41.rkt
  8437. \begin{lstlisting}
  8438. x = input_int()
  8439. y = input_int()
  8440. print(y + 2 \
  8441. if (x == 0 \
  8442. if x < 1 \
  8443. else x == 2) \
  8444. else y + 10)
  8445. \end{lstlisting}
  8446. \end{minipage}
  8447. &
  8448. $\Rightarrow$
  8449. &
  8450. \begin{minipage}{0.55\textwidth}
  8451. \begin{lstlisting}
  8452. start:
  8453. x = input_int()
  8454. y = input_int()
  8455. if x < 1:
  8456. goto block_8
  8457. else:
  8458. goto block_9
  8459. block_8:
  8460. if x == 0:
  8461. goto block_4
  8462. else:
  8463. goto block_5
  8464. block_9:
  8465. if x == 2:
  8466. goto block_6
  8467. else:
  8468. goto block_7
  8469. block_4:
  8470. goto block_2
  8471. block_5:
  8472. goto block_3
  8473. block_6:
  8474. goto block_2
  8475. block_7:
  8476. goto block_3
  8477. block_2:
  8478. tmp_0 = y + 2
  8479. goto block_1
  8480. block_3:
  8481. tmp_0 = y + 10
  8482. goto block_1
  8483. block_1:
  8484. print(tmp_0)
  8485. return 0
  8486. \end{lstlisting}
  8487. \end{minipage}
  8488. \end{tabular}
  8489. \fi}
  8490. \end{tcolorbox}
  8491. \caption{Translation from \LangIf{} to \LangCIf{}
  8492. via the \code{explicate\_control}.}
  8493. \label{fig:explicate-control-s1-38}
  8494. \end{figure}
  8495. {\if\edition\racketEd
  8496. %
  8497. Recall that in section~\ref{sec:explicate-control-Lvar} we implement
  8498. \code{explicate\_control} for \LangVar{} using two recursive
  8499. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  8500. former function translates expressions in tail position, whereas the
  8501. latter function translates expressions on the right-hand side of a
  8502. \key{let}. With the addition of \key{if} expression to \LangIf{} we
  8503. have a new kind of position to deal with: the predicate position of
  8504. the \key{if}. We need another function, \code{explicate\_pred}, that
  8505. decides how to compile an \key{if} by analyzing its condition. So,
  8506. \code{explicate\_pred} takes an \LangIf{} expression and two
  8507. \LangCIf{} tails for the \emph{then} branch and \emph{else} branch
  8508. and outputs a tail. In the following paragraphs we discuss specific
  8509. cases in the \code{explicate\_tail}, \code{explicate\_assign}, and
  8510. \code{explicate\_pred} functions.
  8511. %
  8512. \fi}
  8513. %
  8514. {\if\edition\pythonEd\pythonColor
  8515. %
  8516. We recommend implementing \code{explicate\_control} using the
  8517. following four auxiliary functions.
  8518. \begin{description}
  8519. \item[\code{explicate\_effect}] generates code for expressions as
  8520. statements, so their result is ignored and only their side effects
  8521. matter.
  8522. \item[\code{explicate\_assign}] generates code for expressions
  8523. on the right-hand side of an assignment.
  8524. \item[\code{explicate\_pred}] generates code for an \code{if}
  8525. expression or statement by analyzing the condition expression.
  8526. \item[\code{explicate\_stmt}] generates code for statements.
  8527. \end{description}
  8528. These four functions should build the dictionary of basic blocks. The
  8529. following auxiliary function can be used to create a new basic block
  8530. from a list of statements. It returns a \code{goto} statement that
  8531. jumps to the new basic block.
  8532. \begin{center}
  8533. \begin{minipage}{\textwidth}
  8534. \begin{lstlisting}
  8535. def create_block(stmts, basic_blocks):
  8536. label = label_name(generate_name('block'))
  8537. basic_blocks[label] = stmts
  8538. return [Goto(label)]
  8539. \end{lstlisting}
  8540. \end{minipage}
  8541. \end{center}
  8542. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  8543. \code{explicate\_control} pass.
  8544. The \code{explicate\_effect} function has three parameters: (1) the
  8545. expression to be compiled; (2) the already-compiled code for this
  8546. expression's \emph{continuation}, that is, the list of statements that
  8547. should execute after this expression; and (3) the dictionary of
  8548. generated basic blocks. The \code{explicate\_effect} function returns
  8549. a list of \LangCIf{} statements and it may add to the dictionary of
  8550. basic blocks.
  8551. %
  8552. Let's consider a few of the cases for the expression to be compiled.
  8553. If the expression to be compiled is a constant, then it can be
  8554. discarded because it has no side effects. If it's a \CREAD{}, then it
  8555. has a side effect and should be preserved. So the expression should be
  8556. translated into a statement using the \code{Expr} AST class. If the
  8557. expression to be compiled is an \code{if} expression, we translate the
  8558. two branches using \code{explicate\_effect} and then translate the
  8559. condition expression using \code{explicate\_pred}, which generates
  8560. code for the entire \code{if}.
  8561. The \code{explicate\_assign} function has four parameters: (1) the
  8562. right-hand side of the assignment, (2) the left-hand side of the
  8563. assignment (the variable), (3) the continuation, and (4) the dictionary
  8564. of basic blocks. The \code{explicate\_assign} function returns a list
  8565. of \LangCIf{} statements, and it may add to the dictionary of basic
  8566. blocks.
  8567. When the right-hand side is an \code{if} expression, there is some
  8568. work to do. In particular, the two branches should be translated using
  8569. \code{explicate\_assign}, and the condition expression should be
  8570. translated using \code{explicate\_pred}. Otherwise we can simply
  8571. generate an assignment statement, with the given left- and right-hand
  8572. sides, concatenated with its continuation.
  8573. \begin{figure}[tbp]
  8574. \begin{tcolorbox}[colback=white]
  8575. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8576. def explicate_effect(e, cont, basic_blocks):
  8577. match e:
  8578. case IfExp(test, body, orelse):
  8579. ...
  8580. case Call(func, args):
  8581. ...
  8582. case Begin(body, result):
  8583. ...
  8584. case _:
  8585. ...
  8586. def explicate_assign(rhs, lhs, cont, basic_blocks):
  8587. match rhs:
  8588. case IfExp(test, body, orelse):
  8589. ...
  8590. case Begin(body, result):
  8591. ...
  8592. case _:
  8593. return [Assign([lhs], rhs)] + cont
  8594. def explicate_pred(cnd, thn, els, basic_blocks):
  8595. match cnd:
  8596. case Compare(left, [op], [right]):
  8597. goto_thn = create_block(thn, basic_blocks)
  8598. goto_els = create_block(els, basic_blocks)
  8599. return [If(cnd, goto_thn, goto_els)]
  8600. case Constant(True):
  8601. return thn;
  8602. case Constant(False):
  8603. return els;
  8604. case UnaryOp(Not(), operand):
  8605. ...
  8606. case IfExp(test, body, orelse):
  8607. ...
  8608. case Begin(body, result):
  8609. ...
  8610. case _:
  8611. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  8612. create_block(els, basic_blocks),
  8613. create_block(thn, basic_blocks))]
  8614. def explicate_stmt(s, cont, basic_blocks):
  8615. match s:
  8616. case Assign([lhs], rhs):
  8617. return explicate_assign(rhs, lhs, cont, basic_blocks)
  8618. case Expr(value):
  8619. return explicate_effect(value, cont, basic_blocks)
  8620. case If(test, body, orelse):
  8621. ...
  8622. def explicate_control(p):
  8623. match p:
  8624. case Module(body):
  8625. new_body = [Return(Constant(0))]
  8626. basic_blocks = {}
  8627. for s in reversed(body):
  8628. new_body = explicate_stmt(s, new_body, basic_blocks)
  8629. basic_blocks[label_name('start')] = new_body
  8630. return CProgram(basic_blocks)
  8631. \end{lstlisting}
  8632. \end{tcolorbox}
  8633. \caption{Skeleton for the \code{explicate\_control} pass.}
  8634. \label{fig:explicate-control-Lif}
  8635. \end{figure}
  8636. \fi}
  8637. {\if\edition\racketEd
  8638. \subsection{Explicate Tail and Assign}
  8639. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  8640. additional cases for Boolean constants and \key{if}. The cases for
  8641. \code{if} should recursively compile the two branches using either
  8642. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  8643. cases should then invoke \code{explicate\_pred} on the condition
  8644. expression, passing in the generated code for the two branches. For
  8645. example, consider the following program with an \code{if} in tail
  8646. position.
  8647. % cond_test_6.rkt
  8648. \begin{lstlisting}
  8649. (let ([x (read)])
  8650. (if (eq? x 0) 42 777))
  8651. \end{lstlisting}
  8652. The two branches are recursively compiled to return statements. We
  8653. then delegate to \code{explicate\_pred}, passing the condition
  8654. \code{(eq? x 0)} and the two return statements. We return to this
  8655. example shortly when we discuss \code{explicate\_pred}.
  8656. Next let us consider a program with an \code{if} on the right-hand
  8657. side of a \code{let}.
  8658. \begin{lstlisting}
  8659. (let ([y (read)])
  8660. (let ([x (if (eq? y 0) 40 777)])
  8661. (+ x 2)))
  8662. \end{lstlisting}
  8663. Note that the body of the inner \code{let} will have already been
  8664. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  8665. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  8666. to recursively process both branches of the \code{if}, and we do not
  8667. want to duplicate code, so we generate the following block using an
  8668. auxiliary function named \code{create\_block}, discussed in the next
  8669. section.
  8670. \begin{lstlisting}
  8671. block_6:
  8672. return (+ x 2)
  8673. \end{lstlisting}
  8674. We then use \code{goto block\_6;} as the \code{cont} argument for
  8675. compiling the branches. So the two branches compile to
  8676. \begin{center}
  8677. \begin{minipage}{0.2\textwidth}
  8678. \begin{lstlisting}
  8679. x = 40;
  8680. goto block_6;
  8681. \end{lstlisting}
  8682. \end{minipage}
  8683. \hspace{0.5in} and \hspace{0.5in}
  8684. \begin{minipage}{0.2\textwidth}
  8685. \begin{lstlisting}
  8686. x = 777;
  8687. goto block_6;
  8688. \end{lstlisting}
  8689. \end{minipage}
  8690. \end{center}
  8691. Finally, we delegate to \code{explicate\_pred}, passing the condition
  8692. \code{(eq? y 0)} and the previously presented code for the branches.
  8693. \subsection{Create Block}
  8694. We recommend implementing the \code{create\_block} auxiliary function
  8695. as follows, using a global variable \code{basic-blocks} to store a
  8696. dictionary that maps labels to $\Tail$ expressions. The main idea is
  8697. that \code{create\_block} generates a new label and then associates
  8698. the given \code{tail} with the new label in the \code{basic-blocks}
  8699. dictionary. The result of \code{create\_block} is a \code{Goto} to the
  8700. new label. However, if the given \code{tail} is already a \code{Goto},
  8701. then there is no need to generate a new label and entry in
  8702. \code{basic-blocks}; we can simply return that \code{Goto}.
  8703. %
  8704. \begin{lstlisting}
  8705. (define (create_block tail)
  8706. (match tail
  8707. [(Goto label) (Goto label)]
  8708. [else
  8709. (let ([label (gensym 'block)])
  8710. (set! basic-blocks (cons (cons label tail) basic-blocks))
  8711. (Goto label))]))
  8712. \end{lstlisting}
  8713. \fi}
  8714. {\if\edition\racketEd
  8715. \subsection{Explicate Predicate}
  8716. The skeleton for the \code{explicate\_pred} function is given in
  8717. figure~\ref{fig:explicate-pred}. It takes three parameters: (1)
  8718. \code{cnd}, the condition expression of the \code{if}; (2) \code{thn},
  8719. the code generated by explicate for the \emph{then} branch; and (3)
  8720. \code{els}, the code generated by explicate for the \emph{else}
  8721. branch. The \code{explicate\_pred} function should match on
  8722. \code{cnd} with a case for every kind of expression that can have type
  8723. \BOOLTY{}.
  8724. \begin{figure}[tbp]
  8725. \begin{tcolorbox}[colback=white]
  8726. \begin{lstlisting}
  8727. (define (explicate_pred cnd thn els)
  8728. (match cnd
  8729. [(Var x) ___]
  8730. [(Let x rhs body) ___]
  8731. [(Prim 'not (list e)) ___]
  8732. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  8733. (IfStmt (Prim op es) (create_block thn)
  8734. (create_block els))]
  8735. [(Bool b) (if b thn els)]
  8736. [(If cnd^ thn^ els^) ___]
  8737. [else (error "explicate_pred unhandled case" cnd)]))
  8738. \end{lstlisting}
  8739. \end{tcolorbox}
  8740. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  8741. \label{fig:explicate-pred}
  8742. \end{figure}
  8743. \fi}
  8744. %
  8745. {\if\edition\pythonEd\pythonColor
  8746. The \code{explicate\_pred} function has four parameters: (1) the
  8747. condition expression, (2) the generated statements for the ``then''
  8748. branch, (3) the generated statements for the ``else'' branch, and (4)
  8749. the dictionary of basic blocks. The \code{explicate\_pred} function
  8750. returns a list of \LangCIf{} statements, and it may add to the
  8751. dictionary of basic blocks.
  8752. \fi}
  8753. Consider the case for comparison operators. We translate the
  8754. comparison to an \code{if} statement whose branches are \code{goto}
  8755. statements created by applying \code{create\_block} to the code
  8756. generated for the \code{thn} and \code{els} branches. Let us
  8757. illustrate this translation by returning to the program with an
  8758. \code{if} expression in tail position, shown next. We invoke
  8759. \code{explicate\_pred} on its condition
  8760. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}.
  8761. %
  8762. {\if\edition\racketEd
  8763. \begin{lstlisting}
  8764. (let ([x (read)])
  8765. (if (eq? x 0) 42 777))
  8766. \end{lstlisting}
  8767. \fi}
  8768. %
  8769. {\if\edition\pythonEd\pythonColor
  8770. \begin{lstlisting}
  8771. x = input_int()
  8772. 42 if x == 0 else 777
  8773. \end{lstlisting}
  8774. \fi}
  8775. %
  8776. \noindent The two branches \code{42} and \code{777} were already
  8777. compiled to \code{return} statements, from which we now create the
  8778. following blocks:
  8779. %
  8780. \begin{center}
  8781. \begin{minipage}{\textwidth}
  8782. \begin{lstlisting}
  8783. block_1:
  8784. return 42;
  8785. block_2:
  8786. return 777;
  8787. \end{lstlisting}
  8788. \end{minipage}
  8789. \end{center}
  8790. %
  8791. After that, \code{explicate\_pred} compiles the comparison
  8792. \racket{\code{(eq? x 0)}}
  8793. \python{\code{x == 0}}
  8794. to the following \code{if} statement:
  8795. %
  8796. {\if\edition\racketEd
  8797. \begin{center}
  8798. \begin{minipage}{\textwidth}
  8799. \begin{lstlisting}
  8800. if (eq? x 0)
  8801. goto block_1;
  8802. else
  8803. goto block_2;
  8804. \end{lstlisting}
  8805. \end{minipage}
  8806. \end{center}
  8807. \fi}
  8808. {\if\edition\pythonEd\pythonColor
  8809. \begin{center}
  8810. \begin{minipage}{\textwidth}
  8811. \begin{lstlisting}
  8812. if x == 0:
  8813. goto block_1;
  8814. else
  8815. goto block_2;
  8816. \end{lstlisting}
  8817. \end{minipage}
  8818. \end{center}
  8819. \fi}
  8820. Next consider the case for Boolean constants. We perform a kind of
  8821. partial evaluation\index{subject}{partialevaluation@partial evaluation} and output
  8822. either the \code{thn} or \code{els} branch, depending on whether the
  8823. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  8824. following program:
  8825. {\if\edition\racketEd
  8826. \begin{lstlisting}
  8827. (if #t 42 777)
  8828. \end{lstlisting}
  8829. \fi}
  8830. {\if\edition\pythonEd\pythonColor
  8831. \begin{lstlisting}
  8832. 42 if True else 777
  8833. \end{lstlisting}
  8834. \fi}
  8835. %
  8836. \noindent Again, the two branches \code{42} and \code{777} were
  8837. compiled to \code{return} statements, so \code{explicate\_pred}
  8838. compiles the constant \racket{\code{\#t}} \python{\code{True}} to the
  8839. code for the \emph{then} branch.
  8840. \begin{lstlisting}
  8841. return 42;
  8842. \end{lstlisting}
  8843. This case demonstrates that we sometimes discard the \code{thn} or
  8844. \code{els} blocks that are input to \code{explicate\_pred}.
  8845. The case for \key{if} expressions in \code{explicate\_pred} is
  8846. particularly illuminating because it deals with the challenges
  8847. discussed previously regarding nested \key{if} expressions
  8848. (figure~\ref{fig:explicate-control-s1-38}). The
  8849. \racket{\lstinline{thn^}}\python{\code{body}} and
  8850. \racket{\lstinline{els^}}\python{\code{orelse}} branches of the
  8851. \key{if} inherit their context from the current one, that is,
  8852. predicate context. So, you should recursively apply
  8853. \code{explicate\_pred} to the
  8854. \racket{\lstinline{thn^}}\python{\code{body}} and
  8855. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  8856. those recursive calls, pass \code{thn} and \code{els} as the extra
  8857. parameters. Thus, \code{thn} and \code{els} may be used twice, once
  8858. inside each recursive call. As discussed previously, to avoid
  8859. duplicating code, we need to add them to the dictionary of basic
  8860. blocks so that we can instead refer to them by name and execute them
  8861. with a \key{goto}.
  8862. {\if\edition\pythonEd\pythonColor
  8863. %
  8864. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  8865. three parameters: (1) the statement to be compiled, (2) the code for its
  8866. continuation, and (3) the dictionary of basic blocks. The
  8867. \code{explicate\_stmt} returns a list of statements, and it may add to
  8868. the dictionary of basic blocks. The cases for assignment and an
  8869. expression-statement are given in full in the skeleton code: they
  8870. simply dispatch to \code{explicate\_assign} and
  8871. \code{explicate\_effect}, respectively. The case for \code{if}
  8872. statements is not given; it is similar to the case for \code{if}
  8873. expressions.
  8874. The \code{explicate\_control} function itself is given in
  8875. figure~\ref{fig:explicate-control-Lif}. It applies
  8876. \code{explicate\_stmt} to each statement in the program, from back to
  8877. front. Thus, the result so far, stored in \code{new\_body}, can be
  8878. used as the continuation parameter in the next call to
  8879. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  8880. \code{Return} statement. Once complete, we add the \code{new\_body} to
  8881. the dictionary of basic blocks, labeling it the ``start'' block.
  8882. %
  8883. \fi}
  8884. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  8885. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  8886. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  8887. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  8888. %% results from the two recursive calls. We complete the case for
  8889. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  8890. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  8891. %% the result $B_5$.
  8892. %% \[
  8893. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  8894. %% \quad\Rightarrow\quad
  8895. %% B_5
  8896. %% \]
  8897. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  8898. %% inherit the current context, so they are in tail position. Thus, the
  8899. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  8900. %% \code{explicate\_tail}.
  8901. %% %
  8902. %% We need to pass $B_0$ as the accumulator argument for both of these
  8903. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  8904. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  8905. %% to the control-flow graph and obtain a promised goto $G_0$.
  8906. %% %
  8907. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  8908. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  8909. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  8910. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  8911. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  8912. %% \[
  8913. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  8914. %% \]
  8915. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  8916. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  8917. %% should not be confused with the labels for the blocks that appear in
  8918. %% the generated code. We initially construct unlabeled blocks; we only
  8919. %% attach labels to blocks when we add them to the control-flow graph, as
  8920. %% we see in the next case.
  8921. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  8922. %% function. The context of the \key{if} is an assignment to some
  8923. %% variable $x$ and then the control continues to some promised block
  8924. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  8925. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  8926. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  8927. %% branches of the \key{if} inherit the current context, so they are in
  8928. %% assignment positions. Let $B_2$ be the result of applying
  8929. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  8930. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  8931. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  8932. %% the result of applying \code{explicate\_pred} to the predicate
  8933. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  8934. %% translates to the promise $B_4$.
  8935. %% \[
  8936. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  8937. %% \]
  8938. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  8939. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  8940. \code{remove\_complex\_operands} pass and then the
  8941. \code{explicate\_control} pass on the example program. We walk through
  8942. the output program.
  8943. %
  8944. Following the order of evaluation in the output of
  8945. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  8946. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  8947. in the predicate of the inner \key{if}. In the output of
  8948. \code{explicate\_control}, in the
  8949. block labeled \code{start}, two assignment statements are followed by an
  8950. \code{if} statement that branches to \code{block\_4} or
  8951. \code{block\_5}. The blocks associated with those labels contain the
  8952. translations of the code
  8953. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8954. and
  8955. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  8956. respectively. In particular, we start \code{block\_4} with the
  8957. comparison
  8958. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8959. and then branch to \code{block\_2} or \code{block\_3},
  8960. which correspond to the two branches of the outer \key{if}, that is,
  8961. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  8962. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  8963. %
  8964. The story for \code{block\_5} is similar to that of \code{block\_4}.
  8965. %
  8966. \python{The \code{block\_1} corresponds to the \code{print} statement
  8967. at the end of the program.}
  8968. {\if\edition\racketEd
  8969. \subsection{Interactions between Explicate and Shrink}
  8970. The way in which the \code{shrink} pass transforms logical operations
  8971. such as \code{and} and \code{or} can impact the quality of code
  8972. generated by \code{explicate\_control}. For example, consider the
  8973. following program:
  8974. % cond_test_21.rkt, and_eq_input.py
  8975. \begin{lstlisting}
  8976. (if (and (eq? (read) 0) (eq? (read) 1))
  8977. 0
  8978. 42)
  8979. \end{lstlisting}
  8980. The \code{and} operation should transform into something that the
  8981. \code{explicate\_pred} function can analyze and descend through to
  8982. reach the underlying \code{eq?} conditions. Ideally, for this program
  8983. your \code{explicate\_control} pass should generate code similar to
  8984. the following:
  8985. \begin{center}
  8986. \begin{minipage}{\textwidth}
  8987. \begin{lstlisting}
  8988. start:
  8989. tmp1 = (read);
  8990. if (eq? tmp1 0) goto block40;
  8991. else goto block39;
  8992. block40:
  8993. tmp2 = (read);
  8994. if (eq? tmp2 1) goto block38;
  8995. else goto block39;
  8996. block38:
  8997. return 0;
  8998. block39:
  8999. return 42;
  9000. \end{lstlisting}
  9001. \end{minipage}
  9002. \end{center}
  9003. \fi}
  9004. \begin{exercise}\normalfont\normalsize
  9005. \racket{
  9006. Implement the pass \code{explicate\_control} by adding the cases for
  9007. Boolean constants and \key{if} to the \code{explicate\_tail} and
  9008. \code{explicate\_assign} functions. Implement the auxiliary function
  9009. \code{explicate\_pred} for predicate contexts.}
  9010. \python{Implement \code{explicate\_control} pass with its
  9011. four auxiliary functions.}
  9012. %
  9013. Create test cases that exercise all the new cases in the code for
  9014. this pass.
  9015. %
  9016. {\if\edition\racketEd
  9017. Add the following entry to the list of \code{passes} in
  9018. \code{run-tests.rkt}:
  9019. \begin{lstlisting}
  9020. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  9021. \end{lstlisting}
  9022. and then run \code{run-tests.rkt} to test your compiler.
  9023. \fi}
  9024. \end{exercise}
  9025. \section{Select Instructions}
  9026. \label{sec:select-Lif}
  9027. \index{subject}{select instructions}
  9028. The \code{select\_instructions} pass translates \LangCIf{} to
  9029. \LangXIfVar{}.
  9030. %
  9031. \racket{Recall that we implement this pass using three auxiliary
  9032. functions, one for each of the nonterminals $\Atm$, $\Stmt$, and
  9033. $\Tail$ in \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  9034. %
  9035. \racket{For $\Atm$, we have new cases for the Booleans.}
  9036. %
  9037. \python{We begin with the Boolean constants.}
  9038. As previously discussed, we encode them as integers.
  9039. \[
  9040. \TRUE{} \quad\Rightarrow\quad \key{1}
  9041. \qquad\qquad
  9042. \FALSE{} \quad\Rightarrow\quad \key{0}
  9043. \]
  9044. For translating statements, we discuss some of the cases. The
  9045. \code{not} operation can be implemented in terms of \code{xorq}, as we
  9046. discussed at the beginning of this section. Given an assignment, if
  9047. the left-hand-side variable is the same as the argument of \code{not},
  9048. then just the \code{xorq} instruction suffices.
  9049. \[
  9050. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  9051. \quad\Rightarrow\quad
  9052. \key{xorq}~\key{\$}1\key{,}~\Var
  9053. \]
  9054. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  9055. semantics of x86. In the following translation, let $\Arg$ be the
  9056. result of translating $\Atm$ to x86.
  9057. \[
  9058. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  9059. \quad\Rightarrow\quad
  9060. \begin{array}{l}
  9061. \key{movq}~\Arg\key{,}~\Var\\
  9062. \key{xorq}~\key{\$}1\key{,}~\Var
  9063. \end{array}
  9064. \]
  9065. Next consider the cases for equality comparisons. Translating this
  9066. operation to x86 is slightly involved due to the unusual nature of the
  9067. \key{cmpq} instruction that we discussed in section~\ref{sec:x86-if}.
  9068. We recommend translating an assignment with an equality on the
  9069. right-hand side into a sequence of three instructions. \\
  9070. \begin{tabular}{lll}
  9071. \begin{minipage}{0.4\textwidth}
  9072. $\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$
  9073. \end{minipage}
  9074. &
  9075. $\Rightarrow$
  9076. &
  9077. \begin{minipage}{0.4\textwidth}
  9078. \begin{lstlisting}
  9079. cmpq |$\Arg_2$|, |$\Arg_1$|
  9080. sete %al
  9081. movzbq %al, |$\Var$|
  9082. \end{lstlisting}
  9083. \end{minipage}
  9084. \end{tabular} \\
  9085. The translations for the other comparison operators are similar to
  9086. this but use different condition codes for the \code{set} instruction.
  9087. \racket{Regarding the $\Tail$ nonterminal, we have two new cases:
  9088. \key{goto} and \key{if} statements. Both are straightforward to
  9089. translate to x86.}
  9090. %
  9091. A \key{goto} statement becomes a jump instruction.
  9092. \[
  9093. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  9094. \]
  9095. %
  9096. An \key{if} statement becomes a compare instruction followed by a
  9097. conditional jump (for the \emph{then} branch), and the fall-through is to
  9098. a regular jump (for the \emph{else} branch).\\
  9099. \begin{tabular}{lll}
  9100. \begin{minipage}{0.4\textwidth}
  9101. \begin{lstlisting}
  9102. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  9103. goto |$\ell_1$||$\racket{\key{;}}$|
  9104. else|$\python{\key{:}}$|
  9105. goto |$\ell_2$||$\racket{\key{;}}$|
  9106. \end{lstlisting}
  9107. \end{minipage}
  9108. &
  9109. $\Rightarrow$
  9110. &
  9111. \begin{minipage}{0.4\textwidth}
  9112. \begin{lstlisting}
  9113. cmpq |$\Arg_2$|, |$\Arg_1$|
  9114. je |$\ell_1$|
  9115. jmp |$\ell_2$|
  9116. \end{lstlisting}
  9117. \end{minipage}
  9118. \end{tabular} \\
  9119. Again, the translations for the other comparison operators are similar to this
  9120. but use different condition codes for the conditional jump instruction.
  9121. \python{Regarding the \key{return} statement, we recommend treating it
  9122. as an assignment to the \key{rax} register followed by a jump to the
  9123. conclusion of the \code{main} function. (See section~\ref{sec:prelude-conclusion-cond} for more about the conclusion of \code{main}.)}
  9124. \begin{exercise}\normalfont\normalsize
  9125. Expand your \code{select\_instructions} pass to handle the new
  9126. features of the \LangCIf{} language.
  9127. %
  9128. {\if\edition\racketEd
  9129. Add the following entry to the list of \code{passes} in
  9130. \code{run-tests.rkt}
  9131. \begin{lstlisting}
  9132. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  9133. \end{lstlisting}
  9134. \fi}
  9135. %
  9136. Run the script to test your compiler on all the test programs.
  9137. \end{exercise}
  9138. \section{Register Allocation}
  9139. \label{sec:register-allocation-Lif}
  9140. \index{subject}{register allocation}
  9141. The changes required for compiling \LangIf{} affect liveness analysis,
  9142. building the interference graph, and assigning homes, but the graph
  9143. coloring algorithm itself does not change.
  9144. \subsection{Liveness Analysis}
  9145. \label{sec:liveness-analysis-Lif}
  9146. \index{subject}{liveness analysis}
  9147. Recall that for \LangVar{} we implemented liveness analysis for a
  9148. single basic block (section~\ref{sec:liveness-analysis-Lvar}). With
  9149. the addition of \key{if} expressions to \LangIf{},
  9150. \code{explicate\_control} produces many basic blocks.
  9151. %% We recommend that you create a new auxiliary function named
  9152. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  9153. %% control-flow graph.
  9154. The first question is, in what order should we process the basic blocks?
  9155. Recall that to perform liveness analysis on a basic block we need to
  9156. know the live-after set for the last instruction in the block. If a
  9157. basic block has no successors (i.e., contains no jumps to other
  9158. blocks), then it has an empty live-after set and we can immediately
  9159. apply liveness analysis to it. If a basic block has some successors,
  9160. then we need to complete liveness analysis on those blocks
  9161. first. These ordering constraints are the reverse of a
  9162. \emph{topological order}\index{subject}{topological order} on a graph
  9163. representation of the program. In particular, the \emph{control flow
  9164. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  9165. of a program has a node for each basic block and an edge for each jump
  9166. from one block to another. It is straightforward to generate a CFG
  9167. from the dictionary of basic blocks. One then transposes the CFG and
  9168. applies the topological sort algorithm.
  9169. %
  9170. %
  9171. \racket{We recommend using the \code{tsort} and \code{transpose}
  9172. functions of the Racket \code{graph} package to accomplish this.}
  9173. %
  9174. \python{We provide implementations of \code{topological\_sort} and
  9175. \code{transpose} in the file \code{graph.py} of the support code.}
  9176. %
  9177. As an aside, a topological ordering is only guaranteed to exist if the
  9178. graph does not contain any cycles. This is the case for the
  9179. control-flow graphs that we generate from \LangIf{} programs.
  9180. However, in chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  9181. and learn how to handle cycles in the control-flow graph.
  9182. \racket{You need to construct a directed graph to represent the
  9183. control-flow graph. Do not use the \code{directed-graph} of the
  9184. \code{graph} package because that allows at most one edge
  9185. between each pair of vertices, whereas a control-flow graph may have
  9186. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  9187. file in the support code implements a graph representation that
  9188. allows multiple edges between a pair of vertices.}
  9189. {\if\edition\racketEd
  9190. The next question is how to analyze jump instructions. Recall that in
  9191. section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  9192. \code{label->live} that maps each label to the set of live locations
  9193. at the beginning of its block. We use \code{label->live} to determine
  9194. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  9195. that we have many basic blocks, \code{label->live} needs to be updated
  9196. as we process the blocks. In particular, after performing liveness
  9197. analysis on a block, we take the live-before set of its first
  9198. instruction and associate that with the block's label in the
  9199. \code{label->live} alist.
  9200. \fi}
  9201. %
  9202. {\if\edition\pythonEd\pythonColor
  9203. %
  9204. The next question is how to analyze jump instructions. The locations
  9205. that are live before a \code{jmp} should be the locations in
  9206. $L_{\mathsf{before}}$ at the target of the jump. So we recommend
  9207. maintaining a dictionary named \code{live\_before\_block} that maps each
  9208. label to the $L_{\mathsf{before}}$ for the first instruction in its
  9209. block. After performing liveness analysis on each block, we take the
  9210. live-before set of its first instruction and associate that with the
  9211. block's label in the \code{live\_before\_block} dictionary.
  9212. %
  9213. \fi}
  9214. In \LangXIfVar{} we also have the conditional jump
  9215. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  9216. this instruction is particularly interesting because during
  9217. compilation, we do not know which way a conditional jump will go. Thus
  9218. we do not know whether to use the live-before set for the block
  9219. associated with the $\itm{label}$ or the live-before set for the
  9220. following instruction. So we use both, by taking the union of the
  9221. live-before sets from the following instruction and from the mapping
  9222. for $\itm{label}$ in
  9223. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  9224. The auxiliary functions for computing the variables in an
  9225. instruction's argument and for computing the variables read-from ($R$)
  9226. or written-to ($W$) by an instruction need to be updated to handle the
  9227. new kinds of arguments and instructions in \LangXIfVar{}.
  9228. \begin{exercise}\normalfont\normalsize
  9229. {\if\edition\racketEd
  9230. %
  9231. Update the \code{uncover\_live} pass to apply liveness analysis to
  9232. every basic block in the program.
  9233. %
  9234. Add the following entry to the list of \code{passes} in the
  9235. \code{run-tests.rkt} script:
  9236. \begin{lstlisting}
  9237. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  9238. \end{lstlisting}
  9239. \fi}
  9240. {\if\edition\pythonEd\pythonColor
  9241. %
  9242. Update the \code{uncover\_live} function to perform liveness analysis,
  9243. in reverse topological order, on all the basic blocks in the
  9244. program.
  9245. %
  9246. \fi}
  9247. % Check that the live-after sets that you generate for
  9248. % example X matches the following... -Jeremy
  9249. \end{exercise}
  9250. \subsection{Build the Interference Graph}
  9251. \label{sec:build-interference-Lif}
  9252. Many of the new instructions in \LangXIfVar{} can be handled in the
  9253. same way as the instructions in \LangXVar{}.
  9254. % Thus, if your code was
  9255. % already quite general, it will not need to be changed to handle the
  9256. % new instructions. If your code is not general enough, we recommend that
  9257. % you change your code to be more general. For example, you can factor
  9258. % out the computing of the the read and write sets for each kind of
  9259. % instruction into auxiliary functions.
  9260. %
  9261. Some instructions, such as the \key{movzbq} instruction, require special care,
  9262. similar to the \key{movq} instruction. Refer to rule number 1 in
  9263. section~\ref{sec:build-interference}.
  9264. \begin{exercise}\normalfont\normalsize
  9265. Update the \code{build\_interference} pass for \LangXIfVar{}.
  9266. {\if\edition\racketEd
  9267. Add the following entries to the list of \code{passes} in the
  9268. \code{run-tests.rkt} script:
  9269. \begin{lstlisting}
  9270. (list "build_interference" build_interference interp-pseudo-x86-1)
  9271. (list "allocate_registers" allocate_registers interp-pseudo-x86-1)
  9272. \end{lstlisting}
  9273. \fi}
  9274. % Check that the interference graph that you generate for
  9275. % example X matches the following graph G... -Jeremy
  9276. \end{exercise}
  9277. \section{Patch Instructions}
  9278. The new instructions \key{cmpq} and \key{movzbq} have some special
  9279. restrictions that need to be handled in the \code{patch\_instructions}
  9280. pass.
  9281. %
  9282. The second argument of the \key{cmpq} instruction must not be an
  9283. immediate value (such as an integer). So, if you are comparing two
  9284. immediates, we recommend inserting a \key{movq} instruction to put the
  9285. second argument in \key{rax}. On the other hand, if you implemented
  9286. the partial evaluator (section~\ref{sec:pe-Lvar}), you could
  9287. update it for \LangIf{} and then this situation would not arise.
  9288. %
  9289. As usual, \key{cmpq} may have at most one memory reference.
  9290. %
  9291. The second argument of the \key{movzbq} must be a register.
  9292. \begin{exercise}\normalfont\normalsize
  9293. %
  9294. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  9295. %
  9296. {\if\edition\racketEd
  9297. Add the following entry to the list of \code{passes} in
  9298. \code{run-tests.rkt}, and then run this script to test your compiler.
  9299. \begin{lstlisting}
  9300. (list "patch_instructions" patch_instructions interp-x86-1)
  9301. \end{lstlisting}
  9302. \fi}
  9303. \end{exercise}
  9304. {\if\edition\pythonEd\pythonColor
  9305. \section{Prelude and Conclusion}
  9306. \label{sec:prelude-conclusion-cond}
  9307. The generation of the \code{main} function with its prelude and
  9308. conclusion must change to accommodate how the program now consists of
  9309. one or more basic blocks. After the prelude in \code{main}, jump to
  9310. the \code{start} block. Place the conclusion in a basic block labeled
  9311. with \code{conclusion}.
  9312. \fi}
  9313. Figure~\ref{fig:if-example-x86} shows a simple example program in
  9314. \LangIf{} translated to x86, showing the results of
  9315. \code{explicate\_control}, \code{select\_instructions}, and the final
  9316. x86 assembly.
  9317. \begin{figure}[tbp]
  9318. \begin{tcolorbox}[colback=white]
  9319. {\if\edition\racketEd
  9320. \begin{tabular}{lll}
  9321. \begin{minipage}{0.4\textwidth}
  9322. % cond_test_20.rkt, eq_input.py
  9323. \begin{lstlisting}
  9324. (if (eq? (read) 1) 42 0)
  9325. \end{lstlisting}
  9326. $\Downarrow$
  9327. \begin{lstlisting}
  9328. start:
  9329. tmp7951 = (read);
  9330. if (eq? tmp7951 1)
  9331. goto block7952;
  9332. else
  9333. goto block7953;
  9334. block7952:
  9335. return 42;
  9336. block7953:
  9337. return 0;
  9338. \end{lstlisting}
  9339. $\Downarrow$
  9340. \begin{lstlisting}
  9341. start:
  9342. callq read_int
  9343. movq %rax, tmp7951
  9344. cmpq $1, tmp7951
  9345. je block7952
  9346. jmp block7953
  9347. block7953:
  9348. movq $0, %rax
  9349. jmp conclusion
  9350. block7952:
  9351. movq $42, %rax
  9352. jmp conclusion
  9353. \end{lstlisting}
  9354. \end{minipage}
  9355. &
  9356. $\Rightarrow\qquad$
  9357. \begin{minipage}{0.4\textwidth}
  9358. \begin{lstlisting}
  9359. start:
  9360. callq read_int
  9361. movq %rax, %rcx
  9362. cmpq $1, %rcx
  9363. je block7952
  9364. jmp block7953
  9365. block7953:
  9366. movq $0, %rax
  9367. jmp conclusion
  9368. block7952:
  9369. movq $42, %rax
  9370. jmp conclusion
  9371. .globl main
  9372. main:
  9373. pushq %rbp
  9374. movq %rsp, %rbp
  9375. pushq %r13
  9376. pushq %r12
  9377. pushq %rbx
  9378. pushq %r14
  9379. subq $0, %rsp
  9380. jmp start
  9381. conclusion:
  9382. addq $0, %rsp
  9383. popq %r14
  9384. popq %rbx
  9385. popq %r12
  9386. popq %r13
  9387. popq %rbp
  9388. retq
  9389. \end{lstlisting}
  9390. \end{minipage}
  9391. \end{tabular}
  9392. \fi}
  9393. {\if\edition\pythonEd\pythonColor
  9394. \begin{tabular}{lll}
  9395. \begin{minipage}{0.4\textwidth}
  9396. % cond_test_20.rkt, eq_input.py
  9397. \begin{lstlisting}
  9398. print(42 if input_int() == 1 else 0)
  9399. \end{lstlisting}
  9400. $\Downarrow$
  9401. \begin{lstlisting}
  9402. start:
  9403. tmp_0 = input_int()
  9404. if tmp_0 == 1:
  9405. goto block_3
  9406. else:
  9407. goto block_4
  9408. block_3:
  9409. tmp_1 = 42
  9410. goto block_2
  9411. block_4:
  9412. tmp_1 = 0
  9413. goto block_2
  9414. block_2:
  9415. print(tmp_1)
  9416. return 0
  9417. \end{lstlisting}
  9418. $\Downarrow$
  9419. \begin{lstlisting}
  9420. start:
  9421. callq read_int
  9422. movq %rax, tmp_0
  9423. cmpq 1, tmp_0
  9424. je block_3
  9425. jmp block_4
  9426. block_3:
  9427. movq 42, tmp_1
  9428. jmp block_2
  9429. block_4:
  9430. movq 0, tmp_1
  9431. jmp block_2
  9432. block_2:
  9433. movq tmp_1, %rdi
  9434. callq print_int
  9435. movq 0, %rax
  9436. jmp conclusion
  9437. \end{lstlisting}
  9438. \end{minipage}
  9439. &
  9440. $\Rightarrow\qquad$
  9441. \begin{minipage}{0.4\textwidth}
  9442. \begin{lstlisting}
  9443. .globl main
  9444. main:
  9445. pushq %rbp
  9446. movq %rsp, %rbp
  9447. subq $0, %rsp
  9448. jmp start
  9449. start:
  9450. callq read_int
  9451. movq %rax, %rcx
  9452. cmpq $1, %rcx
  9453. je block_3
  9454. jmp block_4
  9455. block_3:
  9456. movq $42, %rcx
  9457. jmp block_2
  9458. block_4:
  9459. movq $0, %rcx
  9460. jmp block_2
  9461. block_2:
  9462. movq %rcx, %rdi
  9463. callq print_int
  9464. movq $0, %rax
  9465. jmp conclusion
  9466. conclusion:
  9467. addq $0, %rsp
  9468. popq %rbp
  9469. retq
  9470. \end{lstlisting}
  9471. \end{minipage}
  9472. \end{tabular}
  9473. \fi}
  9474. \end{tcolorbox}
  9475. \caption{Example compilation of an \key{if} expression to x86, showing
  9476. the results of \code{explicate\_control},
  9477. \code{select\_instructions}, and the final x86 assembly code. }
  9478. \label{fig:if-example-x86}
  9479. \end{figure}
  9480. \begin{figure}[tbp]
  9481. \begin{tcolorbox}[colback=white]
  9482. {\if\edition\racketEd
  9483. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9484. \node (Lif-2) at (0,2) {\large \LangIf{}};
  9485. \node (Lif-3) at (3,2) {\large \LangIf{}};
  9486. \node (Lif-4) at (6,2) {\large \LangIf{}};
  9487. \node (Lif-5) at (10,2) {\large \LangIfANF{}};
  9488. \node (C1-1) at (0,0) {\large \LangCIf{}};
  9489. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  9490. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  9491. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  9492. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  9493. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  9494. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  9495. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  9496. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  9497. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-5);
  9498. \path[->,bend left=10] (Lif-5) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C1-1);
  9499. \path[->,bend right=15] (C1-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  9500. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9501. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  9502. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  9503. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  9504. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion } (x86-5);
  9505. \end{tikzpicture}
  9506. \fi}
  9507. {\if\edition\pythonEd\pythonColor
  9508. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9509. \node (Lif-1) at (0,2) {\large \LangIf{}};
  9510. \node (Lif-2) at (4,2) {\large \LangIf{}};
  9511. \node (Lif-3) at (8,2) {\large \LangIfANF{}};
  9512. \node (C-1) at (0,0) {\large \LangCIf{}};
  9513. \node (x86-1) at (0,-2) {\large \LangXIfVar{}};
  9514. \node (x86-2) at (4,-2) {\large \LangXIfVar{}};
  9515. \node (x86-3) at (8,-2) {\large \LangXIf{}};
  9516. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  9517. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  9518. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-3);
  9519. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (C-1);
  9520. \path[->,bend right=15] (C-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-1);
  9521. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  9522. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  9523. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  9524. \end{tikzpicture}
  9525. \fi}
  9526. \end{tcolorbox}
  9527. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  9528. \label{fig:Lif-passes}
  9529. \end{figure}
  9530. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  9531. compilation of \LangIf{}.
  9532. \section{Challenge: Optimize Blocks and Remove Jumps}
  9533. \label{sec:opt-jumps}
  9534. We discuss two challenges that involve optimizing the control-flow of
  9535. the program.
  9536. \subsection{Optimize Blocks}
  9537. The algorithm for \code{explicate\_control} that we discussed in
  9538. section~\ref{sec:explicate-control-Lif} sometimes generates too many
  9539. blocks. It creates a block whenever a continuation \emph{might} get
  9540. used more than once (for example, whenever the \code{cont} parameter
  9541. is passed into two or more recursive calls). However, some
  9542. continuation arguments may not be used at all. Consider the case for
  9543. the constant \TRUE{} in \code{explicate\_pred}, in which we discard
  9544. the \code{els} continuation.
  9545. %
  9546. {\if\edition\racketEd
  9547. The following example program falls into this
  9548. case, and it creates two unused blocks.
  9549. \begin{center}
  9550. \begin{tabular}{lll}
  9551. \begin{minipage}{0.4\textwidth}
  9552. % cond_test_82.rkt
  9553. \begin{lstlisting}
  9554. (let ([y (if #t
  9555. (read)
  9556. (if (eq? (read) 0)
  9557. 777
  9558. (let ([x (read)])
  9559. (+ 1 x))))])
  9560. (+ y 2))
  9561. \end{lstlisting}
  9562. \end{minipage}
  9563. &
  9564. $\Rightarrow$
  9565. &
  9566. \begin{minipage}{0.55\textwidth}
  9567. \begin{lstlisting}
  9568. start:
  9569. y = (read);
  9570. goto block_5;
  9571. block_5:
  9572. return (+ y 2);
  9573. block_6:
  9574. y = 777;
  9575. goto block_5;
  9576. block_7:
  9577. x = (read);
  9578. y = (+ 1 x2);
  9579. goto block_5;
  9580. \end{lstlisting}
  9581. \end{minipage}
  9582. \end{tabular}
  9583. \end{center}
  9584. \fi}
  9585. The question is, how can we decide whether to create a basic block?
  9586. \emph{Lazy evaluation}\index{subject}{lazy
  9587. evaluation}~\citep{Friedman:1976aa} can solve this conundrum by
  9588. delaying the creation of a basic block until the point in time at which
  9589. we know that it will be used.
  9590. %
  9591. {\if\edition\racketEd
  9592. %
  9593. Racket provides support for
  9594. lazy evaluation with the
  9595. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  9596. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  9597. \index{subject}{delay} creates a
  9598. \emph{promise}\index{subject}{promise} in which the evaluation of the
  9599. expressions is postponed. When \key{(force}
  9600. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  9601. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  9602. result of $e_n$ is cached in the promise and returned. If \code{force}
  9603. is applied again to the same promise, then the cached result is
  9604. returned. If \code{force} is applied to an argument that is not a
  9605. promise, \code{force} simply returns the argument.
  9606. %
  9607. \fi}
  9608. %
  9609. {\if\edition\pythonEd\pythonColor
  9610. %
  9611. Although Python does not provide direct support for lazy evaluation,
  9612. it is easy to mimic. We \emph{delay} the evaluation of a computation
  9613. by wrapping it inside a function with no parameters. We \emph{force}
  9614. its evaluation by calling the function. However, we might need to
  9615. force multiple times, so we store the result of calling the
  9616. function instead of recomputing it each time. The following
  9617. \code{Promise} class handles this memoization process.
  9618. %
  9619. \begin{lstlisting}
  9620. @dataclass
  9621. class Promise:
  9622. fun : typing.Any
  9623. cache : list[stmt] = None
  9624. def force(self):
  9625. if self.cache is None:
  9626. self.cache = self.fun(); return self.cache
  9627. else:
  9628. return self.cache
  9629. \end{lstlisting}
  9630. %
  9631. However, in some cases of \code{explicate\_pred}, we return a list
  9632. of statements, and in other cases we return a function that
  9633. computes a list of statements. To uniformly deal with both regular
  9634. data and promises, we define the following \code{force} function that
  9635. checks whether its input is delayed (i.e., whether it is a
  9636. \code{Promise}) and then either (1) forces the promise or (2) returns
  9637. the input.
  9638. %
  9639. \begin{lstlisting}
  9640. def force(promise):
  9641. if isinstance(promise, Promise):
  9642. return promise.force()
  9643. else:
  9644. return promise
  9645. \end{lstlisting}
  9646. %
  9647. \fi}
  9648. We use promises for the input and output of the functions
  9649. \code{explicate\_pred}, \code{explicate\_assign},
  9650. %
  9651. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  9652. %
  9653. So, instead of taking and returning \racket{$\Tail$
  9654. expressions}\python{lists of statements}, they take and return
  9655. promises. Furthermore, when we come to a situation in which a
  9656. continuation might be used more than once, as in the case for
  9657. \code{if} in \code{explicate\_pred}, we create a delayed computation
  9658. that creates a basic block for each continuation (if there is not
  9659. already one) and then returns a \code{goto} statement to that basic
  9660. block. When we come to a situation in which we have a promise but need an
  9661. actual piece of code, for example, to create a larger piece of code with a
  9662. constructor such as \code{Seq}, then insert a call to \code{force}.
  9663. %
  9664. {\if\edition\racketEd
  9665. %
  9666. Also, we must modify the \code{create\_block} function to begin with
  9667. \code{delay} to create a promise. When forced, this promise forces the
  9668. original promise. If that returns a \code{Goto} (because the block was
  9669. already added to \code{basic-blocks}), then we return the
  9670. \code{Goto}. Otherwise, we add the block to \code{basic-blocks} and
  9671. return a \code{Goto} to the new label.
  9672. \begin{center}
  9673. \begin{minipage}{\textwidth}
  9674. \begin{lstlisting}
  9675. (define (create_block tail)
  9676. (delay
  9677. (define t (force tail))
  9678. (match t
  9679. [(Goto label) (Goto label)]
  9680. [else
  9681. (let ([label (gensym 'block)])
  9682. (set! basic-blocks (cons (cons label t) basic-blocks))
  9683. (Goto label))])))
  9684. \end{lstlisting}
  9685. \end{minipage}
  9686. \end{center}
  9687. \fi}
  9688. {\if\edition\pythonEd\pythonColor
  9689. %
  9690. Here is the new version of the \code{create\_block} auxiliary function
  9691. that works on promises and that checks whether the block consists of a
  9692. solitary \code{goto} statement.\\
  9693. \begin{minipage}{\textwidth}
  9694. \begin{lstlisting}
  9695. def create_block(promise, basic_blocks):
  9696. def delay():
  9697. stmts = force(promise)
  9698. match stmts:
  9699. case [Goto(l)]:
  9700. return [Goto(l)]
  9701. case _:
  9702. label = label_name(generate_name('block'))
  9703. basic_blocks[label] = stmts
  9704. return [Goto(label)]
  9705. return Promise(delay)
  9706. \end{lstlisting}
  9707. \end{minipage}
  9708. \fi}
  9709. Figure~\ref{fig:explicate-control-challenge} shows the output of
  9710. improved \code{explicate\_control} on this example. As you can
  9711. see, the number of basic blocks has been reduced from four blocks (see
  9712. figure~\ref{fig:explicate-control-s1-38}) to two blocks.
  9713. \begin{figure}[tbp]
  9714. \begin{tcolorbox}[colback=white]
  9715. {\if\edition\racketEd
  9716. \begin{tabular}{lll}
  9717. \begin{minipage}{0.4\textwidth}
  9718. % cond_test_82.rkt
  9719. \begin{lstlisting}
  9720. (let ([y (if #t
  9721. (read)
  9722. (if (eq? (read) 0)
  9723. 777
  9724. (let ([x (read)])
  9725. (+ 1 x))))])
  9726. (+ y 2))
  9727. \end{lstlisting}
  9728. \end{minipage}
  9729. &
  9730. $\Rightarrow$
  9731. &
  9732. \begin{minipage}{0.55\textwidth}
  9733. \begin{lstlisting}
  9734. start:
  9735. y = (read);
  9736. goto block_5;
  9737. block_5:
  9738. return (+ y 2);
  9739. \end{lstlisting}
  9740. \end{minipage}
  9741. \end{tabular}
  9742. \fi}
  9743. {\if\edition\pythonEd\pythonColor
  9744. \begin{tabular}{lll}
  9745. \begin{minipage}{0.4\textwidth}
  9746. % cond_test_41.rkt
  9747. \begin{lstlisting}
  9748. x = input_int()
  9749. y = input_int()
  9750. print(y + 2 \
  9751. if (x == 0 \
  9752. if x < 1 \
  9753. else x == 2) \
  9754. else y + 10)
  9755. \end{lstlisting}
  9756. \end{minipage}
  9757. &
  9758. $\Rightarrow$
  9759. &
  9760. \begin{minipage}{0.55\textwidth}
  9761. \begin{lstlisting}
  9762. start:
  9763. x = input_int()
  9764. y = input_int()
  9765. if x < 1:
  9766. goto block_4
  9767. else:
  9768. goto block_5
  9769. block_4:
  9770. if x == 0:
  9771. goto block_2
  9772. else:
  9773. goto block_3
  9774. block_5:
  9775. if x == 2:
  9776. goto block_2
  9777. else:
  9778. goto block_3
  9779. block_2:
  9780. tmp_0 = y + 2
  9781. goto block_1
  9782. block_3:
  9783. tmp_0 = y + 10
  9784. goto block_1
  9785. block_1:
  9786. print(tmp_0)
  9787. return 0
  9788. \end{lstlisting}
  9789. \end{minipage}
  9790. \end{tabular}
  9791. \fi}
  9792. \end{tcolorbox}
  9793. \caption{Translation from \LangIf{} to \LangCIf{}
  9794. via the improved \code{explicate\_control}.}
  9795. \label{fig:explicate-control-challenge}
  9796. \end{figure}
  9797. %% Recall that in the example output of \code{explicate\_control} in
  9798. %% figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  9799. %% \code{block60} are trivial blocks, they do nothing but jump to another
  9800. %% block. The first goal of this challenge assignment is to remove those
  9801. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  9802. %% \code{explicate\_control} on the left and shows the result of bypassing
  9803. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  9804. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  9805. %% \code{block55}. The optimized code on the right of
  9806. %% figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  9807. %% \code{then} branch jumping directly to \code{block55}. The story is
  9808. %% similar for the \code{else} branch, as well as for the two branches in
  9809. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  9810. %% have been optimized in this way, there are no longer any jumps to
  9811. %% blocks \code{block57} through \code{block60}, so they can be removed.
  9812. %% \begin{figure}[tbp]
  9813. %% \begin{tabular}{lll}
  9814. %% \begin{minipage}{0.4\textwidth}
  9815. %% \begin{lstlisting}
  9816. %% block62:
  9817. %% tmp54 = (read);
  9818. %% if (eq? tmp54 2) then
  9819. %% goto block59;
  9820. %% else
  9821. %% goto block60;
  9822. %% block61:
  9823. %% tmp53 = (read);
  9824. %% if (eq? tmp53 0) then
  9825. %% goto block57;
  9826. %% else
  9827. %% goto block58;
  9828. %% block60:
  9829. %% goto block56;
  9830. %% block59:
  9831. %% goto block55;
  9832. %% block58:
  9833. %% goto block56;
  9834. %% block57:
  9835. %% goto block55;
  9836. %% block56:
  9837. %% return (+ 700 77);
  9838. %% block55:
  9839. %% return (+ 10 32);
  9840. %% start:
  9841. %% tmp52 = (read);
  9842. %% if (eq? tmp52 1) then
  9843. %% goto block61;
  9844. %% else
  9845. %% goto block62;
  9846. %% \end{lstlisting}
  9847. %% \end{minipage}
  9848. %% &
  9849. %% $\Rightarrow$
  9850. %% &
  9851. %% \begin{minipage}{0.55\textwidth}
  9852. %% \begin{lstlisting}
  9853. %% block62:
  9854. %% tmp54 = (read);
  9855. %% if (eq? tmp54 2) then
  9856. %% goto block55;
  9857. %% else
  9858. %% goto block56;
  9859. %% block61:
  9860. %% tmp53 = (read);
  9861. %% if (eq? tmp53 0) then
  9862. %% goto block55;
  9863. %% else
  9864. %% goto block56;
  9865. %% block56:
  9866. %% return (+ 700 77);
  9867. %% block55:
  9868. %% return (+ 10 32);
  9869. %% start:
  9870. %% tmp52 = (read);
  9871. %% if (eq? tmp52 1) then
  9872. %% goto block61;
  9873. %% else
  9874. %% goto block62;
  9875. %% \end{lstlisting}
  9876. %% \end{minipage}
  9877. %% \end{tabular}
  9878. %% \caption{Optimize jumps by removing trivial blocks.}
  9879. %% \label{fig:optimize-jumps}
  9880. %% \end{figure}
  9881. %% The name of this pass is \code{optimize-jumps}. We recommend
  9882. %% implementing this pass in two phases. The first phrase builds a hash
  9883. %% table that maps labels to possibly improved labels. The second phase
  9884. %% changes the target of each \code{goto} to use the improved label. If
  9885. %% the label is for a trivial block, then the hash table should map the
  9886. %% label to the first non-trivial block that can be reached from this
  9887. %% label by jumping through trivial blocks. If the label is for a
  9888. %% non-trivial block, then the hash table should map the label to itself;
  9889. %% we do not want to change jumps to non-trivial blocks.
  9890. %% The first phase can be accomplished by constructing an empty hash
  9891. %% table, call it \code{short-cut}, and then iterating over the control
  9892. %% flow graph. Each time you encounter a block that is just a \code{goto},
  9893. %% then update the hash table, mapping the block's source to the target
  9894. %% of the \code{goto}. Also, the hash table may already have mapped some
  9895. %% labels to the block's source, to you must iterate through the hash
  9896. %% table and update all of those so that they instead map to the target
  9897. %% of the \code{goto}.
  9898. %% For the second phase, we recommend iterating through the $\Tail$ of
  9899. %% each block in the program, updating the target of every \code{goto}
  9900. %% according to the mapping in \code{short-cut}.
  9901. \begin{exercise}\normalfont\normalsize
  9902. Implement the improvements to the \code{explicate\_control} pass.
  9903. Check that it removes trivial blocks in a few example programs. Then
  9904. check that your compiler still passes all your tests.
  9905. \end{exercise}
  9906. \subsection{Remove Jumps}
  9907. There is an opportunity for removing jumps that is apparent in the
  9908. example of figure~\ref{fig:if-example-x86}. The \code{start} block
  9909. ends with a jump to \code{block\_5}, and there are no other jumps to
  9910. \code{block\_5} in the rest of the program. In this situation we can
  9911. avoid the runtime overhead of this jump by merging \code{block\_5}
  9912. into the preceding block, which in this case is the \code{start} block.
  9913. Figure~\ref{fig:remove-jumps} shows the output of
  9914. \code{allocate\_registers} on the left and the result of this
  9915. optimization on the right.
  9916. \begin{figure}[tbp]
  9917. \begin{tcolorbox}[colback=white]
  9918. {\if\edition\racketEd
  9919. \begin{tabular}{lll}
  9920. \begin{minipage}{0.5\textwidth}
  9921. % cond_test_82.rkt
  9922. \begin{lstlisting}
  9923. start:
  9924. callq read_int
  9925. movq %rax, %rcx
  9926. jmp block_5
  9927. block_5:
  9928. movq %rcx, %rax
  9929. addq $2, %rax
  9930. jmp conclusion
  9931. \end{lstlisting}
  9932. \end{minipage}
  9933. &
  9934. $\Rightarrow\qquad$
  9935. \begin{minipage}{0.4\textwidth}
  9936. \begin{lstlisting}
  9937. start:
  9938. callq read_int
  9939. movq %rax, %rcx
  9940. movq %rcx, %rax
  9941. addq $2, %rax
  9942. jmp conclusion
  9943. \end{lstlisting}
  9944. \end{minipage}
  9945. \end{tabular}
  9946. \fi}
  9947. {\if\edition\pythonEd\pythonColor
  9948. \begin{tabular}{lll}
  9949. \begin{minipage}{0.5\textwidth}
  9950. % cond_test_20.rkt
  9951. \begin{lstlisting}
  9952. start:
  9953. callq read_int
  9954. movq %rax, tmp_0
  9955. cmpq 1, tmp_0
  9956. je block_3
  9957. jmp block_4
  9958. block_3:
  9959. movq 42, tmp_1
  9960. jmp block_2
  9961. block_4:
  9962. movq 0, tmp_1
  9963. jmp block_2
  9964. block_2:
  9965. movq tmp_1, %rdi
  9966. callq print_int
  9967. movq 0, %rax
  9968. jmp conclusion
  9969. \end{lstlisting}
  9970. \end{minipage}
  9971. &
  9972. $\Rightarrow\qquad$
  9973. \begin{minipage}{0.4\textwidth}
  9974. \begin{lstlisting}
  9975. start:
  9976. callq read_int
  9977. movq %rax, tmp_0
  9978. cmpq 1, tmp_0
  9979. je block_3
  9980. movq 0, tmp_1
  9981. jmp block_2
  9982. block_3:
  9983. movq 42, tmp_1
  9984. jmp block_2
  9985. block_2:
  9986. movq tmp_1, %rdi
  9987. callq print_int
  9988. movq 0, %rax
  9989. jmp conclusion
  9990. \end{lstlisting}
  9991. \end{minipage}
  9992. \end{tabular}
  9993. \fi}
  9994. \end{tcolorbox}
  9995. \caption{Merging basic blocks by removing unnecessary jumps.}
  9996. \label{fig:remove-jumps}
  9997. \end{figure}
  9998. \begin{exercise}\normalfont\normalsize
  9999. %
  10000. Implement a pass named \code{remove\_jumps} that merges basic blocks
  10001. into their preceding basic block, when there is only one preceding
  10002. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  10003. %
  10004. {\if\edition\racketEd
  10005. In the \code{run-tests.rkt} script, add the following entry to the
  10006. list of \code{passes} between \code{allocate\_registers}
  10007. and \code{patch\_instructions}:
  10008. \begin{lstlisting}
  10009. (list "remove_jumps" remove_jumps interp-pseudo-x86-1)
  10010. \end{lstlisting}
  10011. \fi}
  10012. %
  10013. Run the script to test your compiler.
  10014. %
  10015. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  10016. blocks on several test programs.
  10017. \end{exercise}
  10018. \section{Further Reading}
  10019. \label{sec:cond-further-reading}
  10020. The algorithm for the \code{explicate\_control} pass is based on the
  10021. \code{expose-basic-blocks} pass in the course notes of
  10022. \citet{Dybvig:2010aa}.
  10023. %
  10024. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  10025. \citet{Appel:2003fk}, and is related to translations into continuation
  10026. passing
  10027. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  10028. %
  10029. The treatment of conditionals in the \code{explicate\_control} pass is
  10030. similar to short-cut Boolean
  10031. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  10032. and the case-of-case transformation~\citep{PeytonJones:1998}.
  10033. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  10034. \chapter{Loops and Dataflow Analysis}
  10035. \label{ch:Lwhile}
  10036. \setcounter{footnote}{0}
  10037. % TODO: define R'_8
  10038. % TODO: multi-graph
  10039. {\if\edition\racketEd
  10040. %
  10041. In this chapter we study two features that are the hallmarks of
  10042. imperative programming languages: loops and assignments to local
  10043. variables. The following example demonstrates these new features by
  10044. computing the sum of the first five positive integers:
  10045. % similar to loop_test_1.rkt
  10046. \begin{lstlisting}
  10047. (let ([sum 0])
  10048. (let ([i 5])
  10049. (begin
  10050. (while (> i 0)
  10051. (begin
  10052. (set! sum (+ sum i))
  10053. (set! i (- i 1))))
  10054. sum)))
  10055. \end{lstlisting}
  10056. The \code{while} loop consists of a condition and a
  10057. body.\footnote{The \code{while} loop is not a built-in
  10058. feature of the Racket language, but Racket includes many looping
  10059. constructs and it is straightforward to define \code{while} as a
  10060. macro.} The body is evaluated repeatedly so long as the condition
  10061. remains true.
  10062. %
  10063. The \code{set!} consists of a variable and a right-hand side
  10064. expression. The \code{set!} updates value of the variable to the
  10065. value of the right-hand side.
  10066. %
  10067. The primary purpose of both the \code{while} loop and \code{set!} is
  10068. to cause side effects, so they do not give a meaningful result
  10069. value. Instead, their result is the \code{\#<void>} value. The
  10070. expression \code{(void)} is an explicit way to create the
  10071. \code{\#<void>} value, and it has type \code{Void}. The
  10072. \code{\#<void>} value can be passed around just like other values
  10073. inside an \LangLoop{} program, and it can be compared for equality with
  10074. another \code{\#<void>} value. However, there are no other operations
  10075. specific to the \code{\#<void>} value in \LangLoop{}. In contrast,
  10076. Racket defines the \code{void?} predicate that returns \code{\#t}
  10077. when applied to \code{\#<void>} and \code{\#f} otherwise.%
  10078. %
  10079. \footnote{Racket's \code{Void} type corresponds to what is often
  10080. called the \code{Unit} type. Racket's \code{Void} type is inhabited
  10081. by a single value \code{\#<void>}, which corresponds to \code{unit}
  10082. or \code{()} in the literature~\citep{Pierce:2002hj}.}
  10083. %
  10084. With the addition of side effect-producing features such as
  10085. \code{while} loop and \code{set!}, it is helpful to include a language
  10086. feature for sequencing side effects: the \code{begin} expression. It
  10087. consists of one or more subexpressions that are evaluated
  10088. left to right.
  10089. %
  10090. \fi}
  10091. {\if\edition\pythonEd\pythonColor
  10092. %
  10093. In this chapter we study loops, one of the hallmarks of imperative
  10094. programming languages. The following example demonstrates the
  10095. \code{while} loop by computing the sum of the first five positive
  10096. integers.
  10097. \begin{lstlisting}
  10098. sum = 0
  10099. i = 5
  10100. while i > 0:
  10101. sum = sum + i
  10102. i = i - 1
  10103. print(sum)
  10104. \end{lstlisting}
  10105. The \code{while} loop consists of a condition expression and a body (a
  10106. sequence of statements). The body is evaluated repeatedly so long as
  10107. the condition remains true.
  10108. %
  10109. \fi}
  10110. \section{The \LangLoop{} Language}
  10111. \newcommand{\LwhileGrammarRacket}{
  10112. \begin{array}{lcl}
  10113. \Type &::=& \key{Void}\\
  10114. \Exp &::=& \CSETBANG{\Var}{\Exp}
  10115. \MID \CBEGIN{\Exp^{*}}{\Exp}
  10116. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  10117. \end{array}
  10118. }
  10119. \newcommand{\LwhileASTRacket}{
  10120. \begin{array}{lcl}
  10121. \Type &::=& \key{Void}\\
  10122. \Exp &::=& \SETBANG{\Var}{\Exp}
  10123. \MID \BEGIN{\Exp^{*}}{\Exp}
  10124. \MID \WHILE{\Exp}{\Exp}
  10125. \MID \VOID{}
  10126. \end{array}
  10127. }
  10128. \newcommand{\LwhileGrammarPython}{
  10129. \begin{array}{rcl}
  10130. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  10131. \end{array}
  10132. }
  10133. \newcommand{\LwhileASTPython}{
  10134. \begin{array}{lcl}
  10135. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10136. \end{array}
  10137. }
  10138. \begin{figure}[tp]
  10139. \centering
  10140. \begin{tcolorbox}[colback=white]
  10141. \small
  10142. {\if\edition\racketEd
  10143. \[
  10144. \begin{array}{l}
  10145. \gray{\LintGrammarRacket{}} \\ \hline
  10146. \gray{\LvarGrammarRacket{}} \\ \hline
  10147. \gray{\LifGrammarRacket{}} \\ \hline
  10148. \LwhileGrammarRacket \\
  10149. \begin{array}{lcl}
  10150. \LangLoopM{} &::=& \Exp
  10151. \end{array}
  10152. \end{array}
  10153. \]
  10154. \fi}
  10155. {\if\edition\pythonEd\pythonColor
  10156. \[
  10157. \begin{array}{l}
  10158. \gray{\LintGrammarPython} \\ \hline
  10159. \gray{\LvarGrammarPython} \\ \hline
  10160. \gray{\LifGrammarPython} \\ \hline
  10161. \LwhileGrammarPython \\
  10162. \begin{array}{rcl}
  10163. \LangLoopM{} &::=& \Stmt^{*}
  10164. \end{array}
  10165. \end{array}
  10166. \]
  10167. \fi}
  10168. \end{tcolorbox}
  10169. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-concrete-syntax}).}
  10170. \label{fig:Lwhile-concrete-syntax}
  10171. \end{figure}
  10172. \begin{figure}[tp]
  10173. \centering
  10174. \begin{tcolorbox}[colback=white]
  10175. \small
  10176. {\if\edition\racketEd
  10177. \[
  10178. \begin{array}{l}
  10179. \gray{\LintOpAST} \\ \hline
  10180. \gray{\LvarASTRacket{}} \\ \hline
  10181. \gray{\LifASTRacket{}} \\ \hline
  10182. \LwhileASTRacket{} \\
  10183. \begin{array}{lcl}
  10184. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10185. \end{array}
  10186. \end{array}
  10187. \]
  10188. \fi}
  10189. {\if\edition\pythonEd\pythonColor
  10190. \[
  10191. \begin{array}{l}
  10192. \gray{\LintASTPython} \\ \hline
  10193. \gray{\LvarASTPython} \\ \hline
  10194. \gray{\LifASTPython} \\ \hline
  10195. \LwhileASTPython \\
  10196. \begin{array}{lcl}
  10197. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10198. \end{array}
  10199. \end{array}
  10200. \]
  10201. \fi}
  10202. \end{tcolorbox}
  10203. \python{
  10204. \index{subject}{While@\texttt{While}}
  10205. }
  10206. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-syntax}).}
  10207. \label{fig:Lwhile-syntax}
  10208. \end{figure}
  10209. Figure~\ref{fig:Lwhile-concrete-syntax} shows the definition of the
  10210. concrete syntax of \LangLoop{}, and figure~\ref{fig:Lwhile-syntax}
  10211. shows the definition of its abstract syntax.
  10212. %
  10213. The definitional interpreter for \LangLoop{} is shown in
  10214. figure~\ref{fig:interp-Lwhile}.
  10215. %
  10216. {\if\edition\racketEd
  10217. %
  10218. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  10219. and \code{Void}, and we make changes to the cases for \code{Var} and
  10220. \code{Let} regarding variables. To support assignment to variables and
  10221. to make their lifetimes indefinite (see the second example in
  10222. section~\ref{sec:assignment-scoping}), we box the value that is bound
  10223. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  10224. value.
  10225. %
  10226. Now we discuss the new cases. For \code{SetBang}, we find the
  10227. variable in the environment to obtain a boxed value, and then we change
  10228. it using \code{set-box!} to the result of evaluating the right-hand
  10229. side. The result value of a \code{SetBang} is \code{\#<void>}.
  10230. %
  10231. For the \code{WhileLoop}, we repeatedly (1) evaluate the condition, and
  10232. if the result is true, (2) evaluate the body.
  10233. The result value of a \code{while} loop is also \code{\#<void>}.
  10234. %
  10235. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  10236. subexpressions \itm{es} for their effects and then evaluates
  10237. and returns the result from \itm{body}.
  10238. %
  10239. The $\VOID{}$ expression produces the \code{\#<void>} value.
  10240. %
  10241. \fi}
  10242. {\if\edition\pythonEd\pythonColor
  10243. %
  10244. We add a new case for \code{While} in the \code{interp\_stmts}
  10245. function, in which we repeatedly interpret the \code{body} so long as the
  10246. \code{test} expression remains true.
  10247. %
  10248. \fi}
  10249. \begin{figure}[tbp]
  10250. \begin{tcolorbox}[colback=white]
  10251. {\if\edition\racketEd
  10252. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10253. (define interp-Lwhile-class
  10254. (class interp-Lif-class
  10255. (super-new)
  10256. (define/override ((interp-exp env) e)
  10257. (define recur (interp-exp env))
  10258. (match e
  10259. [(Let x e body)
  10260. (define new-env (dict-set env x (box (recur e))))
  10261. ((interp-exp new-env) body)]
  10262. [(Var x) (unbox (dict-ref env x))]
  10263. [(SetBang x rhs)
  10264. (set-box! (dict-ref env x) (recur rhs))]
  10265. [(WhileLoop cnd body)
  10266. (define (loop)
  10267. (cond [(recur cnd) (recur body) (loop)]
  10268. [else (void)]))
  10269. (loop)]
  10270. [(Begin es body)
  10271. (for ([e es]) (recur e))
  10272. (recur body)]
  10273. [(Void) (void)]
  10274. [else ((super interp-exp env) e)]))
  10275. ))
  10276. (define (interp-Lwhile p)
  10277. (send (new interp-Lwhile-class) interp-program p))
  10278. \end{lstlisting}
  10279. \fi}
  10280. {\if\edition\pythonEd\pythonColor
  10281. \begin{lstlisting}
  10282. class InterpLwhile(InterpLif):
  10283. def interp_stmt(self, s, env, cont):
  10284. match s:
  10285. case While(test, body, []):
  10286. if self.interp_exp(test, env):
  10287. self.interp_stmts(body + [s] + cont, env)
  10288. else:
  10289. return self.interp_stmts(cont, env)
  10290. case _:
  10291. return super().interp_stmt(s, env, cont)
  10292. \end{lstlisting}
  10293. \fi}
  10294. \end{tcolorbox}
  10295. \caption{Interpreter for \LangLoop{}.}
  10296. \label{fig:interp-Lwhile}
  10297. \end{figure}
  10298. The definition of the type checker for \LangLoop{} is shown in
  10299. figure~\ref{fig:type-check-Lwhile}.
  10300. %
  10301. {\if\edition\racketEd
  10302. %
  10303. The type checking of the \code{SetBang} expression requires the type
  10304. of the variable and the right-hand side to agree. The result type is
  10305. \code{Void}. For \code{while}, the condition must be a \BOOLTY{}
  10306. and the result type is \code{Void}. For \code{Begin}, the result type
  10307. is the type of its last subexpression.
  10308. %
  10309. \fi}
  10310. %
  10311. {\if\edition\pythonEd\pythonColor
  10312. %
  10313. A \code{while} loop is well typed if the type of the \code{test}
  10314. expression is \code{bool} and the statements in the \code{body} are
  10315. well typed.
  10316. %
  10317. \fi}
  10318. \begin{figure}[tbp]
  10319. \begin{tcolorbox}[colback=white]
  10320. {\if\edition\racketEd
  10321. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10322. (define type-check-Lwhile-class
  10323. (class type-check-Lif-class
  10324. (super-new)
  10325. (inherit check-type-equal?)
  10326. (define/override (type-check-exp env)
  10327. (lambda (e)
  10328. (define recur (type-check-exp env))
  10329. (match e
  10330. [(SetBang x rhs)
  10331. (define-values (rhs^ rhsT) (recur rhs))
  10332. (define varT (dict-ref env x))
  10333. (check-type-equal? rhsT varT e)
  10334. (values (SetBang x rhs^) 'Void)]
  10335. [(WhileLoop cnd body)
  10336. (define-values (cnd^ Tc) (recur cnd))
  10337. (check-type-equal? Tc 'Boolean e)
  10338. (define-values (body^ Tbody) ((type-check-exp env) body))
  10339. (values (WhileLoop cnd^ body^) 'Void)]
  10340. [(Begin es body)
  10341. (define-values (es^ ts)
  10342. (for/lists (l1 l2) ([e es]) (recur e)))
  10343. (define-values (body^ Tbody) (recur body))
  10344. (values (Begin es^ body^) Tbody)]
  10345. [else ((super type-check-exp env) e)])))
  10346. ))
  10347. (define (type-check-Lwhile p)
  10348. (send (new type-check-Lwhile-class) type-check-program p))
  10349. \end{lstlisting}
  10350. \fi}
  10351. {\if\edition\pythonEd\pythonColor
  10352. \begin{lstlisting}
  10353. class TypeCheckLwhile(TypeCheckLif):
  10354. def type_check_stmts(self, ss, env):
  10355. if len(ss) == 0:
  10356. return
  10357. match ss[0]:
  10358. case While(test, body, []):
  10359. test_t = self.type_check_exp(test, env)
  10360. check_type_equal(bool, test_t, test)
  10361. body_t = self.type_check_stmts(body, env)
  10362. return self.type_check_stmts(ss[1:], env)
  10363. case _:
  10364. return super().type_check_stmts(ss, env)
  10365. \end{lstlisting}
  10366. \fi}
  10367. \end{tcolorbox}
  10368. \caption{Type checker for the \LangLoop{} language.}
  10369. \label{fig:type-check-Lwhile}
  10370. \end{figure}
  10371. {\if\edition\racketEd
  10372. %
  10373. At first glance, the translation of these language features to x86
  10374. seems straightforward because the \LangCIf{} intermediate language
  10375. already supports all the ingredients that we need: assignment,
  10376. \code{goto}, conditional branching, and sequencing. However,
  10377. complications arise, which we discuss in the next section. After
  10378. that we introduce the changes necessary to the existing passes.
  10379. %
  10380. \fi}
  10381. {\if\edition\pythonEd\pythonColor
  10382. %
  10383. At first glance, the translation of \code{while} loops to x86 seems
  10384. straightforward because the \LangCIf{} intermediate language already
  10385. supports \code{goto} and conditional branching. However, there are
  10386. complications that arise, which we discuss in the next section. After
  10387. that we introduce the changes necessary to the existing passes.
  10388. %
  10389. \fi}
  10390. \section{Cyclic Control Flow and Dataflow Analysis}
  10391. \label{sec:dataflow-analysis}
  10392. Up until this point, the programs generated in
  10393. \code{explicate\_control} were guaranteed to be acyclic. However, each
  10394. \code{while} loop introduces a cycle. Does that matter?
  10395. %
  10396. Indeed, it does. Recall that for register allocation, the compiler
  10397. performs liveness analysis to determine which variables can share the
  10398. same register. To accomplish this, we analyzed the control-flow graph
  10399. in reverse topological order
  10400. (section~\ref{sec:liveness-analysis-Lif}), but topological order is
  10401. well defined only for acyclic graphs.
  10402. Let us return to the example of computing the sum of the first five
  10403. positive integers. Here is the program after instruction
  10404. selection\index{subject}{instruction selection} but before register
  10405. allocation.
  10406. \begin{center}
  10407. {\if\edition\racketEd
  10408. \begin{minipage}{0.45\textwidth}
  10409. \begin{lstlisting}
  10410. (define (main) : Integer
  10411. mainstart:
  10412. movq $0, sum
  10413. movq $5, i
  10414. jmp block5
  10415. block5:
  10416. movq i, tmp3
  10417. cmpq tmp3, $0
  10418. jl block7
  10419. jmp block8
  10420. \end{lstlisting}
  10421. \end{minipage}
  10422. \begin{minipage}{0.45\textwidth}
  10423. \begin{lstlisting}
  10424. block7:
  10425. addq i, sum
  10426. movq $1, tmp4
  10427. negq tmp4
  10428. addq tmp4, i
  10429. jmp block5
  10430. block8:
  10431. movq $27, %rax
  10432. addq sum, %rax
  10433. jmp mainconclusion)
  10434. \end{lstlisting}
  10435. \end{minipage}
  10436. \fi}
  10437. {\if\edition\pythonEd\pythonColor
  10438. \begin{minipage}{0.45\textwidth}
  10439. \begin{lstlisting}
  10440. mainstart:
  10441. movq $0, sum
  10442. movq $5, i
  10443. jmp block5
  10444. block5:
  10445. cmpq $0, i
  10446. jg block7
  10447. jmp block8
  10448. \end{lstlisting}
  10449. \end{minipage}
  10450. \begin{minipage}{0.45\textwidth}
  10451. \begin{lstlisting}
  10452. block7:
  10453. addq i, sum
  10454. subq $1, i
  10455. jmp block5
  10456. block8:
  10457. movq sum, %rdi
  10458. callq print_int
  10459. movq $0, %rax
  10460. jmp mainconclusion
  10461. \end{lstlisting}
  10462. \end{minipage}
  10463. \fi}
  10464. \end{center}
  10465. Recall that liveness analysis works backward, starting at the end
  10466. of each function. For this example we could start with \code{block8}
  10467. because we know what is live at the beginning of the conclusion:
  10468. only \code{rax} and \code{rsp}. So the live-before set
  10469. for \code{block8} is \code{\{rsp,sum\}}.
  10470. %
  10471. Next we might try to analyze \code{block5} or \code{block7}, but
  10472. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  10473. we are stuck.
  10474. The way out of this impasse is to realize that we can compute an
  10475. underapproximation of each live-before set by starting with empty
  10476. live-after sets. By \emph{underapproximation}, we mean that the set
  10477. contains only variables that are live for some execution of the
  10478. program, but the set may be missing some variables that are live.
  10479. Next, the underapproximations for each block can be improved by (1)
  10480. updating the live-after set for each block using the approximate
  10481. live-before sets from the other blocks, and (2) performing liveness
  10482. analysis again on each block. In fact, by iterating this process, the
  10483. underapproximations eventually become the correct solutions!
  10484. %
  10485. This approach of iteratively analyzing a control-flow graph is
  10486. applicable to many static analysis problems and goes by the name
  10487. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  10488. \citet{Kildall:1973vn} in his PhD thesis at the University of
  10489. Washington.
  10490. Let us apply this approach to the previously presented example. We use
  10491. the empty set for the initial live-before set for each block. Let
  10492. $m_0$ be the following mapping from label names to sets of locations
  10493. (variables and registers):
  10494. \begin{center}
  10495. \begin{lstlisting}
  10496. mainstart: {}, block5: {}, block7: {}, block8: {}
  10497. \end{lstlisting}
  10498. \end{center}
  10499. Using the above live-before approximations, we determine the
  10500. live-after for each block and then apply liveness analysis to each
  10501. block. This produces our next approximation $m_1$ of the live-before
  10502. sets.
  10503. \begin{center}
  10504. \begin{lstlisting}
  10505. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  10506. \end{lstlisting}
  10507. \end{center}
  10508. For the second round, the live-after for \code{mainstart} is the
  10509. current live-before for \code{block5}, which is \code{\{i\}}. Therefore
  10510. the liveness analysis for \code{mainstart} computes the empty set. The
  10511. live-after for \code{block5} is the union of the live-before sets for
  10512. \code{block7} and \code{block8}, which is \code{\{i, rsp, sum\}}.
  10513. So the liveness analysis for \code{block5} computes \code{\{i, rsp,
  10514. sum\}}. The live-after for \code{block7} is the live-before for
  10515. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  10516. So the liveness analysis for \code{block7} remains \code{\{i, sum\}}.
  10517. Together these yield the following approximation $m_2$ of
  10518. the live-before sets:
  10519. \begin{center}
  10520. \begin{lstlisting}
  10521. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  10522. \end{lstlisting}
  10523. \end{center}
  10524. In the preceding iteration, only \code{block5} changed, so we can
  10525. limit our attention to \code{mainstart} and \code{block7}, the two
  10526. blocks that jump to \code{block5}. As a result, the live-before sets
  10527. for \code{mainstart} and \code{block7} are updated to include
  10528. \code{rsp}, yielding the following approximation $m_3$:
  10529. \begin{center}
  10530. \begin{lstlisting}
  10531. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  10532. \end{lstlisting}
  10533. \end{center}
  10534. Because \code{block7} changed, we analyze \code{block5} once more, but
  10535. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  10536. our approximations have converged, so $m_3$ is the solution.
  10537. This iteration process is guaranteed to converge to a solution by the
  10538. Kleene fixed-point theorem, a general theorem about functions on
  10539. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  10540. any collection that comes with a partial ordering\index{subject}{partialordering@partial ordering} $\sqsubseteq$ on its
  10541. elements, a least element $\bot$ (pronounced \emph{bottom}), and a
  10542. join operator
  10543. $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{join}\footnote{Technically speaking, we
  10544. will be working with join semilattices.} When two elements are
  10545. ordered $m_i \sqsubseteq m_j$, it means that $m_j$ contains at least
  10546. as much information as $m_i$, so we can think of $m_j$ as a
  10547. better-than-or-equal-to approximation in relation to $m_i$. The
  10548. bottom element $\bot$ represents the complete lack of information,
  10549. that is, the worst approximation. The join operator takes two lattice
  10550. elements and combines their information; that is, it produces the
  10551. least upper bound of the two.\index{subject}{least upper bound}
  10552. A dataflow analysis typically involves two lattices: one lattice to
  10553. represent abstract states and another lattice that aggregates the
  10554. abstract states of all the blocks in the control-flow graph. For
  10555. liveness analysis, an abstract state is a set of locations. We form
  10556. the lattice $L$ by taking its elements to be sets of locations, the
  10557. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  10558. set, and the join operator to be set union.
  10559. %
  10560. We form a second lattice $M$ by taking its elements to be mappings
  10561. from the block labels to sets of locations (elements of $L$). We
  10562. order the mappings point-wise, using the ordering of $L$. So, given any
  10563. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  10564. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  10565. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  10566. to the empty set; that is, $\bot_M(\ell) = \emptyset$.
  10567. We can think of one iteration of liveness analysis applied to the
  10568. whole program as being a function $f$ on the lattice $M$. It takes a
  10569. mapping as input and computes a new mapping.
  10570. \[
  10571. f(m_i) = m_{i+1}
  10572. \]
  10573. Next let us think for a moment about what a final solution $m_s$
  10574. should look like. If we perform liveness analysis using the solution
  10575. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  10576. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  10577. \[
  10578. f(m_s) = m_s
  10579. \]
  10580. Furthermore, the solution should include only locations that are
  10581. forced to be there by performing liveness analysis on the program, so
  10582. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  10583. The Kleene fixed-point theorem states that if a function $f$ is
  10584. monotone (better inputs produce better outputs), then the least fixed
  10585. point of $f$ is the least upper bound of the \emph{ascending Kleene
  10586. chain} obtained by starting at $\bot$ and iterating $f$, as
  10587. follows:\index{subject}{Kleene fixed-point theorem}
  10588. \[
  10589. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10590. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  10591. \]
  10592. When a lattice contains only finitely long ascending chains, then
  10593. every Kleene chain tops out at some fixed point after some number of
  10594. iterations of $f$.
  10595. \[
  10596. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10597. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  10598. \]
  10599. The liveness analysis is indeed a monotone function and the lattice
  10600. $M$ has finitely long ascending chains because there are only a
  10601. finite number of variables and blocks in the program. Thus we are
  10602. guaranteed that iteratively applying liveness analysis to all blocks
  10603. in the program will eventually produce the least fixed point solution.
  10604. Next let us consider dataflow analysis in general and discuss the
  10605. generic work list algorithm (figure~\ref{fig:generic-dataflow}).
  10606. %
  10607. The algorithm has four parameters: the control-flow graph \code{G}, a
  10608. function \code{transfer} that applies the analysis to one block, and the
  10609. \code{bottom} and \code{join} operators for the lattice of abstract
  10610. states. The \code{analyze\_dataflow} function is formulated as a
  10611. \emph{forward} dataflow analysis; that is, the inputs to the transfer
  10612. function come from the predecessor nodes in the control-flow
  10613. graph. However, liveness analysis is a \emph{backward} dataflow
  10614. analysis, so in that case one must supply the \code{analyze\_dataflow}
  10615. function with the transpose of the control-flow graph.
  10616. The algorithm begins by creating the bottom mapping, represented by a
  10617. hash table. It then pushes all the nodes in the control-flow graph
  10618. onto the work list (a queue). The algorithm repeats the \code{while}
  10619. loop as long as there are items in the work list. In each iteration, a
  10620. node is popped from the work list and processed. The \code{input} for
  10621. the node is computed by taking the join of the abstract states of all
  10622. the predecessor nodes. The \code{transfer} function is then applied to
  10623. obtain the \code{output} abstract state. If the output differs from
  10624. the previous state for this block, the mapping for this block is
  10625. updated and its successor nodes are pushed onto the work list.
  10626. \begin{figure}[tb]
  10627. \begin{tcolorbox}[colback=white]
  10628. {\if\edition\racketEd
  10629. \begin{lstlisting}
  10630. (define (analyze_dataflow G transfer bottom join)
  10631. (define mapping (make-hash))
  10632. (for ([v (in-vertices G)])
  10633. (dict-set! mapping v bottom))
  10634. (define worklist (make-queue))
  10635. (for ([v (in-vertices G)])
  10636. (enqueue! worklist v))
  10637. (define trans-G (transpose G))
  10638. (while (not (queue-empty? worklist))
  10639. (define node (dequeue! worklist))
  10640. (define input (for/fold ([state bottom])
  10641. ([pred (in-neighbors trans-G node)])
  10642. (join state (dict-ref mapping pred))))
  10643. (define output (transfer node input))
  10644. (cond [(not (equal? output (dict-ref mapping node)))
  10645. (dict-set! mapping node output)
  10646. (for ([v (in-neighbors G node)])
  10647. (enqueue! worklist v))]))
  10648. mapping)
  10649. \end{lstlisting}
  10650. \fi}
  10651. {\if\edition\pythonEd\pythonColor
  10652. \begin{lstlisting}
  10653. def analyze_dataflow(G, transfer, bottom, join):
  10654. trans_G = transpose(G)
  10655. mapping = dict((v, bottom) for v in G.vertices())
  10656. worklist = deque(G.vertices)
  10657. while worklist:
  10658. node = worklist.pop()
  10659. inputs = [mapping[v] for v in trans_G.adjacent(node)]
  10660. input = reduce(join, inputs, bottom)
  10661. output = transfer(node, input)
  10662. if output != mapping[node]:
  10663. mapping[node] = output
  10664. worklist.extend(G.adjacent(node))
  10665. \end{lstlisting}
  10666. \fi}
  10667. \end{tcolorbox}
  10668. \caption{Generic work list algorithm for dataflow analysis.}
  10669. \label{fig:generic-dataflow}
  10670. \end{figure}
  10671. {\if\edition\racketEd
  10672. \section{Mutable Variables and Remove Complex Operands}
  10673. There is a subtle interaction between the
  10674. \code{remove\_complex\_operands} pass, the addition of \code{set!},
  10675. and the left-to-right order of evaluation of Racket. Consider the
  10676. following example:
  10677. \begin{lstlisting}
  10678. (let ([x 2])
  10679. (+ x (begin (set! x 40) x)))
  10680. \end{lstlisting}
  10681. The result of this program is \code{42} because the first read from
  10682. \code{x} produces \code{2} and the second produces \code{40}. However,
  10683. if we naively apply the \code{remove\_complex\_operands} pass to this
  10684. example we obtain the following program whose result is \code{80}!
  10685. \begin{lstlisting}
  10686. (let ([x 2])
  10687. (let ([tmp (begin (set! x 40) x)])
  10688. (+ x tmp)))
  10689. \end{lstlisting}
  10690. The problem is that with mutable variables, the ordering between
  10691. reads and writes is important, and the
  10692. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  10693. before the first read of \code{x}.
  10694. We recommend solving this problem by giving special treatment to reads
  10695. from mutable variables, that is, variables that occur on the left-hand
  10696. side of a \code{set!}. We mark each read from a mutable variable with
  10697. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  10698. that the read operation is effectful in that it can produce different
  10699. results at different points in time. Let's apply this idea to the
  10700. following variation that also involves a variable that is not mutated:
  10701. % loop_test_24.rkt
  10702. \begin{lstlisting}
  10703. (let ([x 2])
  10704. (let ([y 0])
  10705. (+ y (+ x (begin (set! x 40) x)))))
  10706. \end{lstlisting}
  10707. We first analyze this program to discover that variable \code{x}
  10708. is mutable but \code{y} is not. We then transform the program as
  10709. follows, replacing each occurrence of \code{x} with \code{(get! x)}:
  10710. \begin{lstlisting}
  10711. (let ([x 2])
  10712. (let ([y 0])
  10713. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  10714. \end{lstlisting}
  10715. Now that we have a clear distinction between reads from mutable and
  10716. immutable variables, we can apply the \code{remove\_complex\_operands}
  10717. pass, where reads from immutable variables are still classified as
  10718. atomic expressions but reads from mutable variables are classified as
  10719. complex. Thus, \code{remove\_complex\_operands} yields the following
  10720. program:\\
  10721. \begin{minipage}{\textwidth}
  10722. \begin{lstlisting}
  10723. (let ([x 2])
  10724. (let ([y 0])
  10725. (let ([t1 x])
  10726. (let ([t2 (begin (set! x 40) x)])
  10727. (let ([t3 (+ t1 t2)])
  10728. (+ y t3))))))
  10729. \end{lstlisting}
  10730. \end{minipage}
  10731. The temporary variable \code{t1} gets the value of \code{x} before the
  10732. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  10733. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  10734. do not generate a temporary variable for the occurrence of \code{y}
  10735. because it's an immutable variable. We want to avoid such unnecessary
  10736. extra temporaries because they would needlessly increase the number of
  10737. variables, making it more likely for some of them to be spilled. The
  10738. result of this program is \code{42}, the same as the result prior to
  10739. \code{remove\_complex\_operands}.
  10740. The approach that we've sketched requires only a small
  10741. modification to \code{remove\_complex\_operands} to handle
  10742. \code{get!}. However, it requires a new pass, called
  10743. \code{uncover-get!}, that we discuss in
  10744. section~\ref{sec:uncover-get-bang}.
  10745. As an aside, this problematic interaction between \code{set!} and the
  10746. pass \code{remove\_complex\_operands} is particular to Racket and not
  10747. its predecessor, the Scheme language. The key difference is that
  10748. Scheme does not specify an order of evaluation for the arguments of an
  10749. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  10750. Scheme is free to choose any ordering: both \code{42} and \code{80}
  10751. would be correct results for the example program. Interestingly,
  10752. Racket is implemented on top of the Chez Scheme
  10753. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  10754. presented in this section (using extra \code{let} bindings to control
  10755. the order of evaluation) is used in the translation from Racket to
  10756. Scheme~\citep{Flatt:2019tb}.
  10757. \fi} % racket
  10758. Having discussed the complications that arise from adding support for
  10759. assignment and loops, we turn to discussing the individual compilation
  10760. passes.
  10761. {\if\edition\racketEd
  10762. \section{Uncover \texttt{get!}}
  10763. \label{sec:uncover-get-bang}
  10764. The goal of this pass is to mark uses of mutable variables so that
  10765. \code{remove\_complex\_operands} can treat them as complex expressions
  10766. and thereby preserve their ordering relative to the side effects in
  10767. other operands. So, the first step is to collect all the mutable
  10768. variables. We recommend creating an auxiliary function for this,
  10769. named \code{collect-set!}, that recursively traverses expressions,
  10770. returning the set of all variables that occur on the left-hand side of a
  10771. \code{set!}. Here's an excerpt of its implementation.
  10772. \begin{center}
  10773. \begin{minipage}{\textwidth}
  10774. \begin{lstlisting}
  10775. (define (collect-set! e)
  10776. (match e
  10777. [(Var x) (set)]
  10778. [(Int n) (set)]
  10779. [(Let x rhs body)
  10780. (set-union (collect-set! rhs) (collect-set! body))]
  10781. [(SetBang var rhs)
  10782. (set-union (set var) (collect-set! rhs))]
  10783. ...))
  10784. \end{lstlisting}
  10785. \end{minipage}
  10786. \end{center}
  10787. By placing this pass after \code{uniquify}, we need not worry about
  10788. variable shadowing, and our logic for \code{Let} can remain simple, as
  10789. in this excerpt.
  10790. The second step is to mark the occurrences of the mutable variables
  10791. with the new \code{GetBang} AST node (\code{get!} in concrete
  10792. syntax). The following is an excerpt of the \code{uncover-get!-exp}
  10793. function, which takes two parameters: the set of mutable variables
  10794. \code{set!-vars} and the expression \code{e} to be processed. The
  10795. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  10796. mutable variable or leaves it alone if not.
  10797. \begin{center}
  10798. \begin{minipage}{\textwidth}
  10799. \begin{lstlisting}
  10800. (define ((uncover-get!-exp set!-vars) e)
  10801. (match e
  10802. [(Var x)
  10803. (if (set-member? set!-vars x)
  10804. (GetBang x)
  10805. (Var x))]
  10806. ...))
  10807. \end{lstlisting}
  10808. \end{minipage}
  10809. \end{center}
  10810. To wrap things up, define the \code{uncover-get!} function for
  10811. processing a whole program, using \code{collect-set!} to obtain the
  10812. set of mutable variables and then \code{uncover-get!-exp} to replace
  10813. their occurrences with \code{GetBang}.
  10814. \fi}
  10815. \section{Remove Complex Operands}
  10816. \label{sec:rco-loop}
  10817. {\if\edition\racketEd
  10818. %
  10819. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  10820. \code{while} are all complex expressions. The subexpressions of
  10821. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  10822. %
  10823. \fi}
  10824. {\if\edition\pythonEd\pythonColor
  10825. %
  10826. The change needed for this pass is to add a case for the \code{while}
  10827. statement. The condition of a \code{while} loop is allowed to be a
  10828. complex expression, just like the condition of the \code{if}
  10829. statement.
  10830. %
  10831. \fi}
  10832. %
  10833. Figure~\ref{fig:Lwhile-anf-syntax} defines the output language
  10834. \LangLoopANF{} of this pass.
  10835. \newcommand{\LwhileMonadASTRacket}{
  10836. \begin{array}{rcl}
  10837. \Atm &::=& \VOID{} \\
  10838. \Exp &::=& \GETBANG{\Var}
  10839. \MID \SETBANG{\Var}{\Exp}
  10840. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  10841. &\MID& \WHILE{\Exp}{\Exp}
  10842. \end{array}
  10843. }
  10844. \newcommand{\LwhileMonadASTPython}{
  10845. \begin{array}{rcl}
  10846. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10847. \end{array}
  10848. }
  10849. \begin{figure}[tp]
  10850. \centering
  10851. \begin{tcolorbox}[colback=white]
  10852. \small
  10853. {\if\edition\racketEd
  10854. \[
  10855. \begin{array}{l}
  10856. \gray{\LvarMonadASTRacket} \\ \hline
  10857. \gray{\LifMonadASTRacket} \\ \hline
  10858. \LwhileMonadASTRacket \\
  10859. \begin{array}{rcl}
  10860. \LangLoopANF &::=& \PROGRAM{\code{'()}}{\Exp}
  10861. \end{array}
  10862. \end{array}
  10863. \]
  10864. \fi}
  10865. {\if\edition\pythonEd\pythonColor
  10866. \[
  10867. \begin{array}{l}
  10868. \gray{\LvarMonadASTPython} \\ \hline
  10869. \gray{\LifMonadASTPython} \\ \hline
  10870. \LwhileMonadASTPython \\
  10871. \begin{array}{rcl}
  10872. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  10873. \end{array}
  10874. \end{array}
  10875. \]
  10876. \fi}
  10877. \end{tcolorbox}
  10878. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  10879. \label{fig:Lwhile-anf-syntax}
  10880. \end{figure}
  10881. {\if\edition\racketEd
  10882. %
  10883. As usual, when a complex expression appears in a grammar position that
  10884. needs to be atomic, such as the argument of a primitive operator, we
  10885. must introduce a temporary variable and bind it to the complex
  10886. expression. This approach applies, unchanged, to handle the new
  10887. language forms. For example, in the following code there are two
  10888. \code{begin} expressions appearing as arguments to the \code{+}
  10889. operator. The output of \code{rco\_exp} is then shown, in which the
  10890. \code{begin} expressions have been bound to temporary
  10891. variables. Recall that \code{let} expressions in \LangLoopANF{} are
  10892. allowed to have arbitrary expressions in their right-hand side
  10893. expression, so it is fine to place \code{begin} there.
  10894. %
  10895. \begin{center}
  10896. \begin{tabular}{lcl}
  10897. \begin{minipage}{0.4\textwidth}
  10898. \begin{lstlisting}
  10899. (let ([x2 10])
  10900. (let ([y3 0])
  10901. (+ (+ (begin
  10902. (set! y3 (read))
  10903. (get! x2))
  10904. (begin
  10905. (set! x2 (read))
  10906. (get! y3)))
  10907. (get! x2))))
  10908. \end{lstlisting}
  10909. \end{minipage}
  10910. &
  10911. $\Rightarrow$
  10912. &
  10913. \begin{minipage}{0.4\textwidth}
  10914. \begin{lstlisting}
  10915. (let ([x2 10])
  10916. (let ([y3 0])
  10917. (let ([tmp4 (begin
  10918. (set! y3 (read))
  10919. x2)])
  10920. (let ([tmp5 (begin
  10921. (set! x2 (read))
  10922. y3)])
  10923. (let ([tmp6 (+ tmp4 tmp5)])
  10924. (let ([tmp7 x2])
  10925. (+ tmp6 tmp7)))))))
  10926. \end{lstlisting}
  10927. \end{minipage}
  10928. \end{tabular}
  10929. \end{center}
  10930. \fi}
  10931. \section{Explicate Control \racket{and \LangCLoop{}}}
  10932. \label{sec:explicate-loop}
  10933. \newcommand{\CloopASTRacket}{
  10934. \begin{array}{lcl}
  10935. \Atm &::=& \VOID \\
  10936. \Stmt &::=& \READ{}
  10937. \end{array}
  10938. }
  10939. {\if\edition\racketEd
  10940. Recall that in the \code{explicate\_control} pass we define one helper
  10941. function for each kind of position in the program. For the \LangVar{}
  10942. language of integers and variables, we needed assignment and tail
  10943. positions. The \code{if} expressions of \LangIf{} introduced predicate
  10944. positions. For \LangLoop{}, the \code{begin} expression introduces yet
  10945. another kind of position: effect position. Except for the last
  10946. subexpression, the subexpressions inside a \code{begin} are evaluated
  10947. only for their effect. Their result values are discarded. We can
  10948. generate better code by taking this fact into account.
  10949. The output language of \code{explicate\_control} is \LangCLoop{}
  10950. (figure~\ref{fig:c7-syntax}), which is nearly identical to
  10951. \LangCIf{}. The only syntactic differences are the addition of \VOID{}
  10952. and that \code{read} may appear as a statement. The most significant
  10953. difference between the programs generated by \code{explicate\_control}
  10954. in chapter~\ref{ch:Lif} versus \code{explicate\_control} in this
  10955. chapter is that the control-flow graphs of the latter may contain
  10956. cycles.
  10957. \begin{figure}[tp]
  10958. \begin{tcolorbox}[colback=white]
  10959. \small
  10960. \[
  10961. \begin{array}{l}
  10962. \gray{\CvarASTRacket} \\ \hline
  10963. \gray{\CifASTRacket} \\ \hline
  10964. \CloopASTRacket \\
  10965. \begin{array}{lcl}
  10966. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  10967. \end{array}
  10968. \end{array}
  10969. \]
  10970. \end{tcolorbox}
  10971. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  10972. \label{fig:c7-syntax}
  10973. \end{figure}
  10974. The new auxiliary function \code{explicate\_effect} takes an
  10975. expression (in an effect position) and the code for its
  10976. continuation. The function returns a $\Tail$ that includes the
  10977. generated code for the input expression followed by the
  10978. continuation. If the expression is obviously pure, that is, never
  10979. causes side effects, then the expression can be removed, so the result
  10980. is just the continuation.
  10981. %
  10982. The case for $\WHILE{\itm{cnd}}{\itm{body}}$ expressions is
  10983. interesting; the generated code is depicted in the following diagram:
  10984. \begin{center}
  10985. \begin{minipage}{0.3\textwidth}
  10986. \xymatrix{
  10987. *+[F=]{\txt{\code{goto} \itm{loop}}} \ar[r]
  10988. & *+[F]{\txt{\itm{loop}: \\ \itm{cnd'}}} \ar[r]^{else} \ar[d]^{then}
  10989. & *+[F]{\txt{\itm{cont}}} \\
  10990. & *+[F]{\txt{\itm{body'} \\ \code{goto} \itm{loop}}} \ar@/^50pt/[u]
  10991. }
  10992. \end{minipage}
  10993. \end{center}
  10994. We start by creating a fresh label $\itm{loop}$ for the top of the
  10995. loop. Next, recursively process the \itm{body} (in effect position)
  10996. with a \code{goto} to $\itm{loop}$ as the continuation, producing
  10997. \itm{body'}. Process the \itm{cnd} (in predicate position) with
  10998. \itm{body'} as the \emph{then} branch and the continuation block as the
  10999. \emph{else} branch. The result should be added to the dictionary of
  11000. \code{basic-blocks} with the label \itm{loop}. The result for the
  11001. whole \code{while} loop is a \code{goto} to the \itm{loop} label.
  11002. The auxiliary functions for tail, assignment, and predicate positions
  11003. need to be updated. The three new language forms, \code{while},
  11004. \code{set!}, and \code{begin}, can appear in assignment and tail
  11005. positions. Only \code{begin} may appear in predicate positions; the
  11006. other two have result type \code{Void}.
  11007. \fi}
  11008. %
  11009. {\if\edition\pythonEd\pythonColor
  11010. %
  11011. The output of this pass is the language \LangCIf{}. No new language
  11012. features are needed in the output, because a \code{while} loop can be
  11013. expressed in terms of \code{goto} and \code{if} statements, which are
  11014. already in \LangCIf{}.
  11015. %
  11016. Add a case for the \code{while} statement to the
  11017. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  11018. the condition expression.
  11019. %
  11020. \fi}
  11021. {\if\edition\racketEd
  11022. \section{Select Instructions}
  11023. \label{sec:select-instructions-loop}
  11024. \index{subject}{select instructions}
  11025. Only two small additions are needed in the \code{select\_instructions}
  11026. pass to handle the changes to \LangCLoop{}. First, to handle the
  11027. addition of \VOID{} we simply translate it to \code{0}. Second,
  11028. \code{read} may appear as a stand-alone statement instead of
  11029. appearing only on the right-hand side of an assignment statement. The code
  11030. generation is nearly identical to the one for assignment; just leave
  11031. off the instruction for moving the result into the left-hand side.
  11032. \fi}
  11033. \section{Register Allocation}
  11034. \label{sec:register-allocation-loop}
  11035. As discussed in section~\ref{sec:dataflow-analysis}, the presence of
  11036. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  11037. which complicates the liveness analysis needed for register
  11038. allocation.
  11039. %
  11040. We recommend using the generic \code{analyze\_dataflow} function that
  11041. was presented at the end of section~\ref{sec:dataflow-analysis} to
  11042. perform liveness analysis, replacing the code in
  11043. \code{uncover\_live} that processed the basic blocks in topological
  11044. order (section~\ref{sec:liveness-analysis-Lif}).
  11045. The \code{analyze\_dataflow} function has the following four parameters.
  11046. \begin{enumerate}
  11047. \item The first parameter \code{G} should be passed the transpose
  11048. of the control-flow graph.
  11049. \item The second parameter \code{transfer} should be passed a function
  11050. that applies liveness analysis to a basic block. It takes two
  11051. parameters: the label for the block to analyze and the live-after
  11052. set for that block. The transfer function should return the
  11053. live-before set for the block.
  11054. %
  11055. \racket{Also, as a side effect, it should update the block's
  11056. $\itm{info}$ with the liveness information for each instruction.}
  11057. %
  11058. \python{Also, as a side effect, it should update the live-before and
  11059. live-after sets for each instruction.}
  11060. %
  11061. To implement the \code{transfer} function, you should be able to
  11062. reuse the code you already have for analyzing basic blocks.
  11063. \item The third and fourth parameters of \code{analyze\_dataflow} are
  11064. \code{bottom} and \code{join} for the lattice of abstract states,
  11065. that is, sets of locations. For liveness analysis, the bottom of the
  11066. lattice is the empty set, and the join operator is set union.
  11067. \end{enumerate}
  11068. \begin{figure}[tp]
  11069. \begin{tcolorbox}[colback=white]
  11070. {\if\edition\racketEd
  11071. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11072. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11073. \node (Lfun-2) at (3,2) {\large \LangLoop{}};
  11074. \node (F1-4) at (6,2) {\large \LangLoop{}};
  11075. \node (F1-5) at (9,2) {\large \LangLoop{}};
  11076. \node (F1-6) at (9,0) {\large \LangLoopANF{}};
  11077. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11078. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11079. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  11080. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  11081. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11082. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11083. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  11084. \path[->,bend left=15] (Lfun) edge [above] node
  11085. {\ttfamily\footnotesize shrink} (Lfun-2);
  11086. \path[->,bend left=15] (Lfun-2) edge [above] node
  11087. {\ttfamily\footnotesize uniquify} (F1-4);
  11088. \path[->,bend left=15] (F1-4) edge [above] node
  11089. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  11090. \path[->,bend left=15] (F1-5) edge [left] node
  11091. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11092. \path[->,bend left=10] (F1-6) edge [above] node
  11093. {\ttfamily\footnotesize explicate\_control} (C3-2);
  11094. \path[->,bend left=15] (C3-2) edge [right] node
  11095. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11096. \path[->,bend right=15] (x86-2) edge [right] node
  11097. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11098. \path[->,bend right=15] (x86-2-1) edge [below] node
  11099. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  11100. \path[->,bend right=15] (x86-2-2) edge [right] node
  11101. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  11102. \path[->,bend left=15] (x86-3) edge [above] node
  11103. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11104. \path[->,bend left=15] (x86-4) edge [right] node
  11105. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11106. \end{tikzpicture}
  11107. \fi}
  11108. {\if\edition\pythonEd\pythonColor
  11109. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11110. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11111. \node (Lfun-2) at (4,2) {\large \LangLoop{}};
  11112. \node (F1-6) at (8,2) {\large \LangLoopANF{}};
  11113. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11114. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11115. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11116. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11117. \node (x86-5) at (12,-2) {\large \LangXIf{}};
  11118. \path[->,bend left=15] (Lfun) edge [above] node
  11119. {\ttfamily\footnotesize shrink} (Lfun-2);
  11120. \path[->,bend left=15] (Lfun-2) edge [above] node
  11121. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11122. \path[->,bend left=10] (F1-6) edge [right] node
  11123. {\ttfamily\footnotesize \ \ explicate\_control} (C3-2);
  11124. \path[->,bend right=15] (C3-2) edge [right] node
  11125. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11126. \path[->,bend right=15] (x86-2) edge [below] node
  11127. {\ttfamily\footnotesize assign\_homes} (x86-3);
  11128. \path[->,bend left=15] (x86-3) edge [above] node
  11129. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11130. \path[->,bend right=15] (x86-4) edge [below] node
  11131. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11132. \end{tikzpicture}
  11133. \fi}
  11134. \end{tcolorbox}
  11135. \caption{Diagram of the passes for \LangLoop{}.}
  11136. \label{fig:Lwhile-passes}
  11137. \end{figure}
  11138. Figure~\ref{fig:Lwhile-passes} provides an overview of all the passes needed
  11139. for the compilation of \LangLoop{}.
  11140. % Further Reading: dataflow analysis
  11141. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11142. \chapter{Tuples and Garbage Collection}
  11143. \label{ch:Lvec}
  11144. \index{subject}{tuple}
  11145. \index{subject}{vector}
  11146. \setcounter{footnote}{0}
  11147. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  11148. %% all the IR grammars are spelled out! \\ --Jeremy}
  11149. %% \margincomment{\scriptsize Be more explicit about how to deal with
  11150. %% the root stack. \\ --Jeremy}
  11151. In this chapter we study the implementation of tuples\racket{, called
  11152. vectors in Racket}. A tuple is a fixed-length sequence of elements
  11153. in which each element may have a different type.
  11154. %
  11155. This language feature is the first to use the computer's
  11156. \emph{heap}\index{subject}{heap}, because the lifetime of a tuple is
  11157. indefinite; that is, a tuple lives forever from the programmer's
  11158. viewpoint. Of course, from an implementer's viewpoint, it is important
  11159. to reclaim the space associated with a tuple when it is no longer
  11160. needed, which is why we also study \emph{garbage collection}
  11161. \index{subject}{garbage collection} techniques in this chapter.
  11162. Section~\ref{sec:r3} introduces the \LangVec{} language, including its
  11163. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  11164. language (chapter~\ref{ch:Lwhile}) with tuples.
  11165. %
  11166. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  11167. copying live tuples back and forth between two halves of the heap. The
  11168. garbage collector requires coordination with the compiler so that it
  11169. can find all the live tuples.
  11170. %
  11171. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  11172. discuss the necessary changes and additions to the compiler passes,
  11173. including a new compiler pass named \code{expose\_allocation}.
  11174. \section{The \LangVec{} Language}
  11175. \label{sec:r3}
  11176. Figure~\ref{fig:Lvec-concrete-syntax} shows the definition of the
  11177. concrete syntax for \LangVec{}, and figure~\ref{fig:Lvec-syntax} shows
  11178. the definition of the abstract syntax.
  11179. %
  11180. \racket{The \LangVec{} language includes the forms \code{vector} for
  11181. creating a tuple, \code{vector-ref} for reading an element of a
  11182. tuple, \code{vector-set!} for writing to an element of a tuple, and
  11183. \code{vector-length} for obtaining the number of elements of a
  11184. tuple.}
  11185. %
  11186. \python{The \LangVec{} language adds (1) tuple creation via a
  11187. comma-separated list of expressions; (2) accessing an element of a
  11188. tuple with the square bracket notation (i.e., \code{t[n]} returns
  11189. the element at index \code{n} of tuple \code{t}); (3) the \code{is}
  11190. comparison operator; and (4) obtaining the number of elements (the
  11191. length) of a tuple. In this chapter, we restrict access indices to
  11192. constant integers.}
  11193. %
  11194. The following program shows an example of the use of tuples. It creates a tuple
  11195. \code{t} containing the elements \code{40},
  11196. \racket{\code{\#t}}\python{\code{True}}, and another tuple that
  11197. contains just \code{2}. The element at index $1$ of \code{t} is
  11198. \racket{\code{\#t}}\python{\code{True}}, so the \emph{then} branch of the
  11199. \key{if} is taken. The element at index $0$ of \code{t} is \code{40},
  11200. to which we add \code{2}, the element at index $0$ of the tuple.
  11201. The result of the program is \code{42}.
  11202. %
  11203. {\if\edition\racketEd
  11204. \begin{lstlisting}
  11205. (let ([t (vector 40 #t (vector 2))])
  11206. (if (vector-ref t 1)
  11207. (+ (vector-ref t 0)
  11208. (vector-ref (vector-ref t 2) 0))
  11209. 44))
  11210. \end{lstlisting}
  11211. \fi}
  11212. {\if\edition\pythonEd\pythonColor
  11213. \begin{lstlisting}
  11214. t = 40, True, (2,)
  11215. print(t[0] + t[2][0] if t[1] else 44)
  11216. \end{lstlisting}
  11217. \fi}
  11218. \newcommand{\LtupGrammarRacket}{
  11219. \begin{array}{lcl}
  11220. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11221. \Exp &::=& \LP\key{vector}\;\Exp^{*}\RP
  11222. \MID \LP\key{vector-length}\;\Exp\RP \\
  11223. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  11224. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  11225. \end{array}
  11226. }
  11227. \newcommand{\LtupASTRacket}{
  11228. \begin{array}{lcl}
  11229. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11230. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  11231. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  11232. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp}
  11233. % &\MID& \LP\key{HasType}~\Exp~\Type \RP
  11234. \end{array}
  11235. }
  11236. \newcommand{\LtupGrammarPython}{
  11237. \begin{array}{rcl}
  11238. \itm{cmp} &::= & \key{is} \\
  11239. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Int} \MID \CLEN{\Exp}
  11240. \end{array}
  11241. }
  11242. \newcommand{\LtupASTPython}{
  11243. \begin{array}{lcl}
  11244. \itm{cmp} &::= & \code{Is()} \\
  11245. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\INT{\Int}} \\
  11246. &\MID& \LEN{\Exp}
  11247. \end{array}
  11248. }
  11249. \begin{figure}[tbp]
  11250. \centering
  11251. \begin{tcolorbox}[colback=white]
  11252. \small
  11253. {\if\edition\racketEd
  11254. \[
  11255. \begin{array}{l}
  11256. \gray{\LintGrammarRacket{}} \\ \hline
  11257. \gray{\LvarGrammarRacket{}} \\ \hline
  11258. \gray{\LifGrammarRacket{}} \\ \hline
  11259. \gray{\LwhileGrammarRacket} \\ \hline
  11260. \LtupGrammarRacket \\
  11261. \begin{array}{lcl}
  11262. \LangVecM{} &::=& \Exp
  11263. \end{array}
  11264. \end{array}
  11265. \]
  11266. \fi}
  11267. {\if\edition\pythonEd\pythonColor
  11268. \[
  11269. \begin{array}{l}
  11270. \gray{\LintGrammarPython{}} \\ \hline
  11271. \gray{\LvarGrammarPython{}} \\ \hline
  11272. \gray{\LifGrammarPython{}} \\ \hline
  11273. \gray{\LwhileGrammarPython} \\ \hline
  11274. \LtupGrammarPython \\
  11275. \begin{array}{rcl}
  11276. \LangVecM{} &::=& \Stmt^{*}
  11277. \end{array}
  11278. \end{array}
  11279. \]
  11280. \fi}
  11281. \end{tcolorbox}
  11282. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  11283. (figure~\ref{fig:Lwhile-concrete-syntax}).}
  11284. \label{fig:Lvec-concrete-syntax}
  11285. \end{figure}
  11286. \begin{figure}[tp]
  11287. \centering
  11288. \begin{tcolorbox}[colback=white]
  11289. \small
  11290. {\if\edition\racketEd
  11291. \[
  11292. \begin{array}{l}
  11293. \gray{\LintOpAST} \\ \hline
  11294. \gray{\LvarASTRacket{}} \\ \hline
  11295. \gray{\LifASTRacket{}} \\ \hline
  11296. \gray{\LwhileASTRacket{}} \\ \hline
  11297. \LtupASTRacket{} \\
  11298. \begin{array}{lcl}
  11299. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  11300. \end{array}
  11301. \end{array}
  11302. \]
  11303. \fi}
  11304. {\if\edition\pythonEd\pythonColor
  11305. \[
  11306. \begin{array}{l}
  11307. \gray{\LintASTPython} \\ \hline
  11308. \gray{\LvarASTPython} \\ \hline
  11309. \gray{\LifASTPython} \\ \hline
  11310. \gray{\LwhileASTPython} \\ \hline
  11311. \LtupASTPython \\
  11312. \begin{array}{lcl}
  11313. \LangVecM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  11314. \end{array}
  11315. \end{array}
  11316. \]
  11317. \fi}
  11318. \end{tcolorbox}
  11319. \caption{The abstract syntax of \LangVec{}.}
  11320. \label{fig:Lvec-syntax}
  11321. \end{figure}
  11322. Tuples raise several interesting new issues. First, variable binding
  11323. performs a shallow copy in dealing with tuples, which means that
  11324. different variables can refer to the same tuple; that is, two
  11325. variables can be \emph{aliases}\index{subject}{alias} for the same
  11326. entity. Consider the following example, in which \code{t1} and
  11327. \code{t2} refer to the same tuple value and \code{t3} refers to a
  11328. different tuple value with equal elements. The result of the
  11329. program is \code{42}.
  11330. \begin{center}
  11331. \begin{minipage}{0.96\textwidth}
  11332. {\if\edition\racketEd
  11333. \begin{lstlisting}
  11334. (let ([t1 (vector 3 7)])
  11335. (let ([t2 t1])
  11336. (let ([t3 (vector 3 7)])
  11337. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  11338. 42
  11339. 0))))
  11340. \end{lstlisting}
  11341. \fi}
  11342. {\if\edition\pythonEd\pythonColor
  11343. \begin{lstlisting}
  11344. t1 = 3, 7
  11345. t2 = t1
  11346. t3 = 3, 7
  11347. print(42 if (t1 is t2) and not (t1 is t3) else 0)
  11348. \end{lstlisting}
  11349. \fi}
  11350. \end{minipage}
  11351. \end{center}
  11352. {\if\edition\racketEd
  11353. Whether two variables are aliased or not affects what happens
  11354. when the underlying tuple is mutated\index{subject}{mutation}.
  11355. Consider the following example in which \code{t1} and \code{t2}
  11356. again refer to the same tuple value.
  11357. \begin{center}
  11358. \begin{minipage}{0.96\textwidth}
  11359. \begin{lstlisting}
  11360. (let ([t1 (vector 3 7)])
  11361. (let ([t2 t1])
  11362. (let ([_ (vector-set! t2 0 42)])
  11363. (vector-ref t1 0))))
  11364. \end{lstlisting}
  11365. \end{minipage}
  11366. \end{center}
  11367. The mutation through \code{t2} is visible in referencing the tuple
  11368. from \code{t1}, so the result of this program is \code{42}.
  11369. \fi}
  11370. The next issue concerns the lifetime of tuples. When does a tuple's
  11371. lifetime end? Notice that \LangVec{} does not include an operation
  11372. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  11373. to any notion of static scoping.
  11374. %
  11375. {\if\edition\racketEd
  11376. %
  11377. For example, the following program returns \code{42} even though the
  11378. variable \code{w} goes out of scope prior to the \code{vector-ref}
  11379. that reads from the vector to which it was bound.
  11380. \begin{center}
  11381. \begin{minipage}{0.96\textwidth}
  11382. \begin{lstlisting}
  11383. (let ([v (vector (vector 44))])
  11384. (let ([x (let ([w (vector 42)])
  11385. (let ([_ (vector-set! v 0 w)])
  11386. 0))])
  11387. (+ x (vector-ref (vector-ref v 0) 0))))
  11388. \end{lstlisting}
  11389. \end{minipage}
  11390. \end{center}
  11391. \fi}
  11392. %
  11393. {\if\edition\pythonEd\pythonColor
  11394. %
  11395. For example, the following program returns \code{42} even though the
  11396. variable \code{x} goes out of scope when the function returns, prior
  11397. to reading the tuple element at index $0$. (We study the compilation
  11398. of functions in chapter~\ref{ch:Lfun}.)
  11399. %
  11400. \begin{center}
  11401. \begin{minipage}{0.96\textwidth}
  11402. \begin{lstlisting}
  11403. def f():
  11404. x = 42, 43
  11405. return x
  11406. t = f()
  11407. print(t[0])
  11408. \end{lstlisting}
  11409. \end{minipage}
  11410. \end{center}
  11411. \fi}
  11412. %
  11413. From the perspective of programmer-observable behavior, tuples live
  11414. forever. However, if they really lived forever then many long-running
  11415. programs would run out of memory. To solve this problem, the
  11416. language's runtime system performs automatic garbage collection.
  11417. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  11418. \LangVec{} language.
  11419. %
  11420. \racket{We define the \code{vector}, \code{vector-ref},
  11421. \code{vector-set!}, and \code{vector-length} operations for
  11422. \LangVec{} in terms of the corresponding operations in Racket. One
  11423. subtle point is that the \code{vector-set!} operation returns the
  11424. \code{\#<void>} value.}
  11425. %
  11426. \python{We represent tuples with Python lists in the interpreter
  11427. because we need to write to them
  11428. (section~\ref{sec:expose-allocation}). (Python tuples are
  11429. immutable.) We define element access, the \code{is} operator, and
  11430. the \code{len} operator for \LangVec{} in terms of the corresponding
  11431. operations in Python.}
  11432. \begin{figure}[tbp]
  11433. \begin{tcolorbox}[colback=white]
  11434. {\if\edition\racketEd
  11435. \begin{lstlisting}
  11436. (define interp-Lvec-class
  11437. (class interp-Lwhile-class
  11438. (super-new)
  11439. (define/override (interp-op op)
  11440. (match op
  11441. ['eq? (lambda (v1 v2)
  11442. (cond [(or (and (fixnum? v1) (fixnum? v2))
  11443. (and (boolean? v1) (boolean? v2))
  11444. (and (vector? v1) (vector? v2))
  11445. (and (void? v1) (void? v2)))
  11446. (eq? v1 v2)]))]
  11447. ['vector vector]
  11448. ['vector-length vector-length]
  11449. ['vector-ref vector-ref]
  11450. ['vector-set! vector-set!]
  11451. [else (super interp-op op)]
  11452. ))
  11453. (define/override ((interp-exp env) e)
  11454. (match e
  11455. [(HasType e t) ((interp-exp env) e)]
  11456. [else ((super interp-exp env) e)]
  11457. ))
  11458. ))
  11459. (define (interp-Lvec p)
  11460. (send (new interp-Lvec-class) interp-program p))
  11461. \end{lstlisting}
  11462. \fi}
  11463. %
  11464. {\if\edition\pythonEd\pythonColor
  11465. \begin{lstlisting}
  11466. class InterpLtup(InterpLwhile):
  11467. def interp_cmp(self, cmp):
  11468. match cmp:
  11469. case Is():
  11470. return lambda x, y: x is y
  11471. case _:
  11472. return super().interp_cmp(cmp)
  11473. def interp_exp(self, e, env):
  11474. match e:
  11475. case Tuple(es, Load()):
  11476. return tuple([self.interp_exp(e, env) for e in es])
  11477. case Subscript(tup, index, Load()):
  11478. t = self.interp_exp(tup, env)
  11479. n = self.interp_exp(index, env)
  11480. return t[n]
  11481. case _:
  11482. return super().interp_exp(e, env)
  11483. \end{lstlisting}
  11484. \fi}
  11485. \end{tcolorbox}
  11486. \caption{Interpreter for the \LangVec{} language.}
  11487. \label{fig:interp-Lvec}
  11488. \end{figure}
  11489. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  11490. \LangVec{}.
  11491. %
  11492. The type of a tuple is a
  11493. \racket{\code{Vector}}\python{\code{TupleType}} type that contains a
  11494. type for each of its elements.
  11495. %
  11496. \racket{To create the s-expression for the \code{Vector} type, we use the
  11497. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  11498. operator} \code{,@} to insert the list \code{t*} without its usual
  11499. start and end parentheses. \index{subject}{unquote-splicing}}
  11500. %
  11501. The type of accessing the ith element of a tuple is the ith element
  11502. type of the tuple's type, if there is one. If not, an error is
  11503. signaled. Note that the index \code{i} is required to be a constant
  11504. integer (and not, for example, a call to
  11505. \racket{\code{read}}\python{input\_int}) so that the type checker
  11506. can determine the element's type given the tuple type.
  11507. %
  11508. \racket{
  11509. Regarding writing an element to a tuple, the element's type must
  11510. be equal to the ith element type of the tuple's type.
  11511. The result type is \code{Void}.}
  11512. %% When allocating a tuple,
  11513. %% we need to know which elements of the tuple are themselves tuples for
  11514. %% the purposes of garbage collection. We can obtain this information
  11515. %% during type checking. The type checker shown in
  11516. %% figure~\ref{fig:type-check-Lvec} not only computes the type of an
  11517. %% expression; it also
  11518. %% %
  11519. %% \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  11520. %% where $T$ is the tuple's type.
  11521. %
  11522. %records the type of each tuple expression in a new field named \code{has\_type}.
  11523. \begin{figure}[tp]
  11524. \begin{tcolorbox}[colback=white]
  11525. {\if\edition\racketEd
  11526. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11527. (define type-check-Lvec-class
  11528. (class type-check-Lif-class
  11529. (super-new)
  11530. (inherit check-type-equal?)
  11531. (define/override (type-check-exp env)
  11532. (lambda (e)
  11533. (define recur (type-check-exp env))
  11534. (match e
  11535. [(Prim 'vector es)
  11536. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  11537. (define t `(Vector ,@t*))
  11538. (values (Prim 'vector e*) t)]
  11539. [(Prim 'vector-ref (list e1 (Int i)))
  11540. (define-values (e1^ t) (recur e1))
  11541. (match t
  11542. [`(Vector ,ts ...)
  11543. (unless (and (0 . <= . i) (i . < . (length ts)))
  11544. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11545. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  11546. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11547. [(Prim 'vector-set! (list e1 (Int i) elt) )
  11548. (define-values (e-vec t-vec) (recur e1))
  11549. (define-values (e-elt^ t-elt) (recur elt))
  11550. (match t-vec
  11551. [`(Vector ,ts ...)
  11552. (unless (and (0 . <= . i) (i . < . (length ts)))
  11553. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11554. (check-type-equal? (list-ref ts i) t-elt e)
  11555. (values (Prim 'vector-set! (list e-vec (Int i) e-elt^)) 'Void)]
  11556. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  11557. [(Prim 'vector-length (list e))
  11558. (define-values (e^ t) (recur e))
  11559. (match t
  11560. [`(Vector ,ts ...)
  11561. (values (Prim 'vector-length (list e^)) 'Integer)]
  11562. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11563. [(Prim 'eq? (list arg1 arg2))
  11564. (define-values (e1 t1) (recur arg1))
  11565. (define-values (e2 t2) (recur arg2))
  11566. (match* (t1 t2)
  11567. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  11568. [(other wise) (check-type-equal? t1 t2 e)])
  11569. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  11570. [else ((super type-check-exp env) e)]
  11571. )))
  11572. ))
  11573. (define (type-check-Lvec p)
  11574. (send (new type-check-Lvec-class) type-check-program p))
  11575. \end{lstlisting}
  11576. \fi}
  11577. {\if\edition\pythonEd\pythonColor
  11578. \begin{lstlisting}
  11579. class TypeCheckLtup(TypeCheckLwhile):
  11580. def type_check_exp(self, e, env):
  11581. match e:
  11582. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  11583. l = self.type_check_exp(left, env)
  11584. r = self.type_check_exp(right, env)
  11585. check_type_equal(l, r, e)
  11586. return bool
  11587. case Tuple(es, Load()):
  11588. ts = [self.type_check_exp(e, env) for e in es]
  11589. e.has_type = TupleType(ts)
  11590. return e.has_type
  11591. case Subscript(tup, Constant(i), Load()):
  11592. tup_ty = self.type_check_exp(tup, env)
  11593. i_ty = self.type_check_exp(Constant(i), env)
  11594. check_type_equal(i_ty, int, i)
  11595. match tup_ty:
  11596. case TupleType(ts):
  11597. return ts[i]
  11598. case _:
  11599. raise Exception('error: expected a tuple, not ' + repr(tup_ty))
  11600. case _:
  11601. return super().type_check_exp(e, env)
  11602. \end{lstlisting}
  11603. \fi}
  11604. \end{tcolorbox}
  11605. \caption{Type checker for the \LangVec{} language.}
  11606. \label{fig:type-check-Lvec}
  11607. \end{figure}
  11608. \section{Garbage Collection}
  11609. \label{sec:GC}
  11610. Garbage collection is a runtime technique for reclaiming space on the
  11611. heap that will not be used in the future of the running program. We
  11612. use the term \emph{object}\index{subject}{object} to refer to any
  11613. value that is stored in the heap, which for now includes only
  11614. tuples.%
  11615. %
  11616. \footnote{The term \emph{object} as it is used in the context of
  11617. object-oriented programming has a more specific meaning than the
  11618. way in which we use the term here.}
  11619. %
  11620. Unfortunately, it is impossible to know precisely which objects will
  11621. be accessed in the future and which will not. Instead, garbage
  11622. collectors overapproximate the set of objects that will be accessed by
  11623. identifying which objects can possibly be accessed. The running
  11624. program can directly access objects that are in registers and on the
  11625. procedure call stack. It can also transitively access the elements of
  11626. tuples, starting with a tuple whose address is in a register or on the
  11627. procedure call stack. We define the \emph{root
  11628. set}\index{subject}{root set} to be all the tuple addresses that are
  11629. in registers or on the procedure call stack. We define the \emph{live
  11630. objects}\index{subject}{live objects} to be the objects that are
  11631. reachable from the root set. Garbage collectors reclaim the space that
  11632. is allocated to objects that are no longer live. \index{subject}{allocate}
  11633. That means that some objects may not get reclaimed as soon as they could be,
  11634. but at least
  11635. garbage collectors do not reclaim the space dedicated to objects that
  11636. will be accessed in the future! The programmer can influence which
  11637. objects get reclaimed by causing them to become unreachable.
  11638. So the goal of the garbage collector is twofold:
  11639. \begin{enumerate}
  11640. \item to preserve all the live objects, and
  11641. \item to reclaim the memory of everything else, that is, the \emph{garbage}.
  11642. \end{enumerate}
  11643. \subsection{Two-Space Copying Collector}
  11644. Here we study a relatively simple algorithm for garbage collection
  11645. that is the basis of many state-of-the-art garbage
  11646. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  11647. particular, we describe a two-space copying
  11648. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  11649. perform the copy~\citep{Cheney:1970aa}. \index{subject}{copying
  11650. collector} \index{subject}{two-space copying collector}
  11651. Figure~\ref{fig:copying-collector} gives a coarse-grained depiction of
  11652. what happens in a two-space collector, showing two time steps, prior
  11653. to garbage collection (on the top) and after garbage collection (on
  11654. the bottom). In a two-space collector, the heap is divided into two
  11655. parts named the FromSpace\index{subject}{FromSpace} and the
  11656. ToSpace\index{subject}{ToSpace}. Initially, all allocations go to the
  11657. FromSpace until there is not enough room for the next allocation
  11658. request. At that point, the garbage collector goes to work to make
  11659. room for the next allocation.
  11660. A copying collector makes more room by copying all the live objects
  11661. from the FromSpace into the ToSpace and then performs a sleight of
  11662. hand, treating the ToSpace as the new FromSpace and the old FromSpace
  11663. as the new ToSpace. In the example shown in
  11664. figure~\ref{fig:copying-collector}, the root set consists of three
  11665. pointers, one in a register and two on the stack. All the live
  11666. objects have been copied to the ToSpace (the right-hand side of
  11667. figure~\ref{fig:copying-collector}) in a way that preserves the
  11668. pointer relationships. For example, the pointer in the register still
  11669. points to a tuple that in turn points to two other tuples. There are
  11670. four tuples that are not reachable from the root set and therefore do
  11671. not get copied into the ToSpace.
  11672. The exact situation shown in figure~\ref{fig:copying-collector} cannot be
  11673. created by a well-typed program in \LangVec{} because it contains a
  11674. cycle. However, creating cycles will be possible once we get to
  11675. \LangDyn{} (chapter~\ref{ch:Ldyn}). We design the garbage collector
  11676. to deal with cycles to begin with, so we will not need to revisit this
  11677. issue.
  11678. \begin{figure}[tbp]
  11679. \centering
  11680. \begin{tcolorbox}[colback=white]
  11681. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-1}}
  11682. \python{\includegraphics[width=\textwidth]{figs/copy-collect-1-python}}
  11683. \\[5ex]
  11684. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-2}}
  11685. \python{\includegraphics[width=\textwidth]{figs/copy-collect-2-python}}
  11686. \end{tcolorbox}
  11687. \caption{A copying collector in action.}
  11688. \label{fig:copying-collector}
  11689. \end{figure}
  11690. \subsection{Graph Copying via Cheney's Algorithm}
  11691. \label{sec:cheney}
  11692. \index{subject}{Cheney's algorithm}
  11693. Let us take a closer look at the copying of the live objects. The
  11694. allocated\index{subject}{allocate} objects and pointers can be viewed
  11695. as a graph, and we need to copy the part of the graph that is
  11696. reachable from the root set. To make sure that we copy all the
  11697. reachable vertices in the graph, we need an exhaustive graph traversal
  11698. algorithm, such as depth-first search or breadth-first
  11699. search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that such algorithms
  11700. take into account the possibility of cycles by marking which vertices
  11701. have already been visited, so to ensure termination of the
  11702. algorithm. These search algorithms also use a data structure such as a
  11703. stack or queue as a to-do list to keep track of the vertices that need
  11704. to be visited. We use breadth-first search and a trick due to
  11705. \citet{Cheney:1970aa} for simultaneously representing the queue and
  11706. copying tuples into the ToSpace.
  11707. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  11708. copy progresses. The queue is represented by a chunk of contiguous
  11709. memory at the beginning of the ToSpace, using two pointers to track
  11710. the front and the back of the queue, called the \emph{free pointer}
  11711. and the \emph{scan pointer}, respectively. The algorithm starts by
  11712. copying all tuples that are immediately reachable from the root set
  11713. into the ToSpace to form the initial queue. When we copy a tuple, we
  11714. mark the old tuple to indicate that it has been visited. We discuss
  11715. how this marking is accomplished in section~\ref{sec:data-rep-gc}. Note
  11716. that any pointers inside the copied tuples in the queue still point
  11717. back to the FromSpace. Once the initial queue has been created, the
  11718. algorithm enters a loop in which it repeatedly processes the tuple at
  11719. the front of the queue and pops it off the queue. To process a tuple,
  11720. the algorithm copies all the objects that are directly reachable from it
  11721. to the ToSpace, placing them at the back of the queue. The algorithm
  11722. then updates the pointers in the popped tuple so that they point to the
  11723. newly copied objects.
  11724. \begin{figure}[tbp]
  11725. \centering
  11726. \begin{tcolorbox}[colback=white]
  11727. \racket{\includegraphics[width=0.8\textwidth]{figs/cheney}}
  11728. \python{\includegraphics[width=0.8\textwidth]{figs/cheney-python}}
  11729. \end{tcolorbox}
  11730. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  11731. \label{fig:cheney}
  11732. \end{figure}
  11733. As shown in figure~\ref{fig:cheney}, in the first step we copy the
  11734. tuple whose second element is $42$ to the back of the queue. The other
  11735. pointer goes to a tuple that has already been copied, so we do not
  11736. need to copy it again, but we do need to update the pointer to the new
  11737. location. This can be accomplished by storing a \emph{forwarding
  11738. pointer}\index{subject}{forwarding pointer} to the new location in the
  11739. old tuple, when we initially copied the tuple into the
  11740. ToSpace. This completes one step of the algorithm. The algorithm
  11741. continues in this way until the queue is empty; that is, when the scan
  11742. pointer catches up with the free pointer.
  11743. \subsection{Data Representation}
  11744. \label{sec:data-rep-gc}
  11745. The garbage collector places some requirements on the data
  11746. representations used by our compiler. First, the garbage collector
  11747. needs to distinguish between pointers and other kinds of data such as
  11748. integers. The following are several ways to accomplish this:
  11749. \begin{enumerate}
  11750. \item Attach a tag to each object that identifies what type of
  11751. object it is~\citep{McCarthy:1960dz}.
  11752. \item Store different types of objects in different
  11753. regions~\citep{Steele:1977ab}.
  11754. \item Use type information from the program to either (a) generate
  11755. type-specific code for collecting, or (b) generate tables that
  11756. guide the collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  11757. \end{enumerate}
  11758. Dynamically typed languages, such as \racket{Racket}\python{Python},
  11759. need to tag objects in any case, so option 1 is a natural choice for those
  11760. languages. However, \LangVec{} is a statically typed language, so it
  11761. would be unfortunate to require tags on every object, especially small
  11762. and pervasive objects like integers and Booleans. Option 3 is the
  11763. best-performing choice for statically typed languages, but it comes with
  11764. a relatively high implementation complexity. To keep this chapter
  11765. within a reasonable scope of complexity, we recommend a combination of options
  11766. 1 and 2, using separate strategies for the stack and the heap.
  11767. Regarding the stack, we recommend using a separate stack for pointers,
  11768. which we call the \emph{root stack}\index{subject}{root stack}
  11769. (aka \emph{shadow stack})~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}.
  11770. That is, when a local variable needs to be spilled and is of type
  11771. \racket{\code{Vector}}\python{\code{TupleType}}, we put it on the
  11772. root stack instead of putting it on the procedure call
  11773. stack. Furthermore, we always spill tuple-typed variables if they are
  11774. live during a call to the collector, thereby ensuring that no pointers
  11775. are in registers during a collection. Figure~\ref{fig:shadow-stack}
  11776. reproduces the example shown in figure~\ref{fig:copying-collector} and
  11777. contrasts it with the data layout using a root stack. The root stack
  11778. contains the two pointers from the regular stack and also the pointer
  11779. in the second register.
  11780. \begin{figure}[tbp]
  11781. \centering
  11782. \begin{tcolorbox}[colback=white]
  11783. \racket{\includegraphics[width=0.60\textwidth]{figs/root-stack}}
  11784. \python{\includegraphics[width=0.60\textwidth]{figs/root-stack-python}}
  11785. \end{tcolorbox}
  11786. \caption{Maintaining a root stack to facilitate garbage collection.}
  11787. \label{fig:shadow-stack}
  11788. \end{figure}
  11789. The problem of distinguishing between pointers and other kinds of data
  11790. also arises inside each tuple on the heap. We solve this problem by
  11791. attaching a tag, an extra 64 bits, to each
  11792. tuple. Figure~\ref{fig:tuple-rep} shows a zoomed-in view of the tags for
  11793. two of the tuples in the example given in figure~\ref{fig:copying-collector}.
  11794. Note that we have drawn the bits in a big-endian way, from right to left,
  11795. with bit location 0 (the least significant bit) on the far right,
  11796. which corresponds to the direction of the x86 shifting instructions
  11797. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  11798. is dedicated to specifying which elements of the tuple are pointers,
  11799. the part labeled \emph{pointer mask}. Within the pointer mask, a 1 bit
  11800. indicates that there is a pointer, and a 0 bit indicates some other kind of
  11801. data. The pointer mask starts at bit location 7. We limit tuples to a
  11802. maximum size of fifty elements, so we need 50 bits for the pointer
  11803. mask.%
  11804. %
  11805. \footnote{A production-quality compiler would handle
  11806. arbitrarily sized tuples and use a more complex approach.}
  11807. %
  11808. The tag also contains two other pieces of information. The length of
  11809. the tuple (number of elements) is stored in bits at locations 1 through
  11810. 6. Finally, the bit at location 0 indicates whether the tuple has yet
  11811. to be copied to the ToSpace. If the bit has value 1, then this tuple
  11812. has not yet been copied. If the bit has value 0, then the entire tag
  11813. is a forwarding pointer. (The lower 3 bits of a pointer are always
  11814. zero in any case, because our tuples are 8-byte aligned.)
  11815. \begin{figure}[tbp]
  11816. \centering
  11817. \begin{tcolorbox}[colback=white]
  11818. \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  11819. \end{tcolorbox}
  11820. \caption{Representation of tuples in the heap.}
  11821. \label{fig:tuple-rep}
  11822. \end{figure}
  11823. \subsection{Implementation of the Garbage Collector}
  11824. \label{sec:organize-gz}
  11825. \index{subject}{prelude}
  11826. An implementation of the copying collector is provided in the
  11827. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  11828. interface to the garbage collector that is used by the compiler. The
  11829. \code{initialize} function creates the FromSpace, ToSpace, and root
  11830. stack and should be called in the prelude of the \code{main}
  11831. function. The arguments of \code{initialize} are the root stack size
  11832. and the heap size. Both need to be multiples of sixty-four, and $16,384$ is a
  11833. good choice for both. The \code{initialize} function puts the address
  11834. of the beginning of the FromSpace into the global variable
  11835. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  11836. the address that is one past the last element of the FromSpace. We use
  11837. half-open intervals to represent chunks of
  11838. memory~\citep{Dijkstra:1982aa}. The \code{rootstack\_begin} variable
  11839. points to the first element of the root stack.
  11840. As long as there is room left in the FromSpace, your generated code
  11841. can allocate\index{subject}{allocate} tuples simply by moving the
  11842. \code{free\_ptr} forward.
  11843. %
  11844. The amount of room left in the FromSpace is the difference between the
  11845. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  11846. function should be called when there is not enough room left in the
  11847. FromSpace for the next allocation. The \code{collect} function takes
  11848. a pointer to the current top of the root stack (one past the last item
  11849. that was pushed) and the number of bytes that need to be
  11850. allocated. The \code{collect} function performs the copying collection
  11851. and leaves the heap in a state such that there is enough room for the
  11852. next allocation.
  11853. \begin{figure}[tbp]
  11854. \begin{tcolorbox}[colback=white]
  11855. \begin{lstlisting}
  11856. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  11857. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  11858. int64_t* free_ptr;
  11859. int64_t* fromspace_begin;
  11860. int64_t* fromspace_end;
  11861. int64_t** rootstack_begin;
  11862. \end{lstlisting}
  11863. \end{tcolorbox}
  11864. \caption{The compiler's interface to the garbage collector.}
  11865. \label{fig:gc-header}
  11866. \end{figure}
  11867. %% \begin{exercise}
  11868. %% In the file \code{runtime.c} you will find the implementation of
  11869. %% \code{initialize} and a partial implementation of \code{collect}.
  11870. %% The \code{collect} function calls another function, \code{cheney},
  11871. %% to perform the actual copy, and that function is left to the reader
  11872. %% to implement. The following is the prototype for \code{cheney}.
  11873. %% \begin{lstlisting}
  11874. %% static void cheney(int64_t** rootstack_ptr);
  11875. %% \end{lstlisting}
  11876. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  11877. %% rootstack (which is an array of pointers). The \code{cheney} function
  11878. %% also communicates with \code{collect} through the global
  11879. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  11880. %% mentioned in figure~\ref{fig:gc-header} as well as the pointers for
  11881. %% the ToSpace:
  11882. %% \begin{lstlisting}
  11883. %% static int64_t* tospace_begin;
  11884. %% static int64_t* tospace_end;
  11885. %% \end{lstlisting}
  11886. %% The job of the \code{cheney} function is to copy all the live
  11887. %% objects (reachable from the root stack) into the ToSpace, update
  11888. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  11889. %% update the root stack so that it points to the objects in the
  11890. %% ToSpace, and finally to swap the global pointers for the FromSpace
  11891. %% and ToSpace.
  11892. %% \end{exercise}
  11893. The introduction of garbage collection has a nontrivial impact on our
  11894. compiler passes. We introduce a new compiler pass named
  11895. \code{expose\_allocation} that elaborates the code for allocating
  11896. tuples. We also make significant changes to
  11897. \code{select\_instructions}, \code{build\_interference},
  11898. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  11899. make minor changes in several more passes.
  11900. The following program serves as our running example. It creates
  11901. two tuples, one nested inside the other. Both tuples have length
  11902. one. The program accesses the element in the inner tuple.
  11903. % tests/vectors_test_17.rkt
  11904. {\if\edition\racketEd
  11905. \begin{lstlisting}
  11906. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  11907. \end{lstlisting}
  11908. \fi}
  11909. % tests/tuple/get_get.py
  11910. {\if\edition\pythonEd\pythonColor
  11911. \begin{lstlisting}
  11912. v1 = (42,)
  11913. v2 = (v1,)
  11914. print(v2[0][0])
  11915. \end{lstlisting}
  11916. \fi}
  11917. %% {\if\edition\racketEd
  11918. %% \section{Shrink}
  11919. %% \label{sec:shrink-Lvec}
  11920. %% Recall that the \code{shrink} pass translates the primitives operators
  11921. %% into a smaller set of primitives.
  11922. %% %
  11923. %% This pass comes after type checking, and the type checker adds a
  11924. %% \code{HasType} AST node around each \code{vector} AST node, so you'll
  11925. %% need to add a case for \code{HasType} to the \code{shrink} pass.
  11926. %% \fi}
  11927. \section{Expose Allocation}
  11928. \label{sec:expose-allocation}
  11929. The pass \code{expose\_allocation} lowers tuple creation into making a
  11930. conditional call to the collector followed by allocating the
  11931. appropriate amount of memory and initializing it. We choose to place
  11932. the \code{expose\_allocation} pass before
  11933. \code{remove\_complex\_operands} because it generates
  11934. code that contains complex operands.
  11935. The output of \code{expose\_allocation} is a language \LangAlloc{}
  11936. that replaces tuple creation with new lower-level forms that we use in the
  11937. translation of tuple creation.
  11938. %
  11939. {\if\edition\racketEd
  11940. \[
  11941. \begin{array}{lcl}
  11942. \Exp &::=& (\key{collect} \,\itm{int})
  11943. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  11944. \MID (\key{global-value} \,\itm{name})
  11945. \end{array}
  11946. \]
  11947. \fi}
  11948. {\if\edition\pythonEd\pythonColor
  11949. \[
  11950. \begin{array}{lcl}
  11951. \Exp &::=& \cdots\\
  11952. &\MID& \key{collect}(\itm{int})
  11953. \MID \key{allocate}(\itm{int},\itm{type})
  11954. \MID \key{global\_value}(\itm{name}) \\
  11955. \Stmt &::= & \CASSIGN{\CPUT{\Exp}{\itm{int}}}{\Exp}
  11956. \end{array}
  11957. \]
  11958. \fi}
  11959. %
  11960. The \CCOLLECT{$n$} form runs the garbage collector, requesting that it
  11961. make sure that there are $n$ bytes ready to be allocated. During
  11962. instruction selection\index{subject}{instruction selection},
  11963. the \CCOLLECT{$n$} form will become a call to
  11964. the \code{collect} function in \code{runtime.c}.
  11965. %
  11966. The \CALLOCATE{$n$}{$\itm{type}$} form obtains memory for $n$ elements (and
  11967. space at the front for the 64-bit tag), but the elements are not
  11968. initialized. \index{subject}{allocate} The $\itm{type}$ parameter is the type
  11969. of the tuple:
  11970. %
  11971. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  11972. %
  11973. where $\Type_i$ is the type of the $i$th element.
  11974. %
  11975. The \CGLOBALVALUE{\itm{name}} form reads the value of a global
  11976. variable, such as \code{free\_ptr}.
  11977. \racket{
  11978. The type information that you need for \CALLOCATE{$n$}{$\itm{type}$}
  11979. can be obtained by running the
  11980. \code{type-check-Lvec-has-type} type checker immediately before the
  11981. \code{expose\_allocation} pass. This version of the type checker
  11982. places a special AST node of the form $(\key{HasType}~e~\itm{type})$
  11983. around each tuple creation. The concrete syntax
  11984. for \code{HasType} is \code{has-type}.}
  11985. The following shows the transformation of tuple creation into (1) a
  11986. sequence of temporary variable bindings for the initializing
  11987. expressions, (2) a conditional call to \code{collect}, (3) a call to
  11988. \code{allocate}, and (4) the initialization of the tuple. The
  11989. \itm{len} placeholder refers to the length of the tuple, and
  11990. \itm{bytes} is the total number of bytes that need to be allocated for
  11991. the tuple, which is 8 for the tag plus \itm{len} times 8.
  11992. %
  11993. \python{The \itm{type} needed for the second argument of the
  11994. \code{allocate} form can be obtained from the \code{has\_type} field
  11995. of the tuple AST node, which is stored there by running the type
  11996. checker for \LangVec{} immediately before this pass.}
  11997. %
  11998. \begin{center}
  11999. \begin{minipage}{\textwidth}
  12000. {\if\edition\racketEd
  12001. \begin{lstlisting}
  12002. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  12003. |$\Longrightarrow$|
  12004. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  12005. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  12006. (global-value fromspace_end))
  12007. (void)
  12008. (collect |\itm{bytes}|))])
  12009. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  12010. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  12011. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  12012. |$v$|) ... )))) ...)
  12013. \end{lstlisting}
  12014. \fi}
  12015. {\if\edition\pythonEd\pythonColor
  12016. \begin{lstlisting}
  12017. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  12018. |$\Longrightarrow$|
  12019. begin:
  12020. |$x_0$| = |$e_0$|
  12021. |$\vdots$|
  12022. |$x_{n-1}$| = |$e_{n-1}$|
  12023. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  12024. 0
  12025. else:
  12026. collect(|\itm{bytes}|)
  12027. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  12028. |$v$|[0] = |$x_0$|
  12029. |$\vdots$|
  12030. |$v$|[|$n-1$|] = |$x_{n-1}$|
  12031. |$v$|
  12032. \end{lstlisting}
  12033. \fi}
  12034. \end{minipage}
  12035. \end{center}
  12036. %
  12037. \noindent The sequencing of the initializing expressions
  12038. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important because
  12039. they may trigger garbage collection and we cannot have an allocated
  12040. but uninitialized tuple on the heap during a collection.
  12041. Figure~\ref{fig:expose-alloc-output} shows the output of the
  12042. \code{expose\_allocation} pass on our running example.
  12043. \begin{figure}[tbp]
  12044. \begin{tcolorbox}[colback=white]
  12045. % tests/s2_17.rkt
  12046. {\if\edition\racketEd
  12047. \begin{lstlisting}
  12048. (vector-ref
  12049. (vector-ref
  12050. (let ([vecinit6
  12051. (let ([_4 (if (< (+ (global-value free_ptr) 16)
  12052. (global-value fromspace_end))
  12053. (void)
  12054. (collect 16))])
  12055. (let ([alloc2 (allocate 1 (Vector Integer))])
  12056. (let ([_3 (vector-set! alloc2 0 42)])
  12057. alloc2)))])
  12058. (let ([_8 (if (< (+ (global-value free_ptr) 16)
  12059. (global-value fromspace_end))
  12060. (void)
  12061. (collect 16))])
  12062. (let ([alloc5 (allocate 1 (Vector (Vector Integer)))])
  12063. (let ([_7 (vector-set! alloc5 0 vecinit6)])
  12064. alloc5))))
  12065. 0)
  12066. 0)
  12067. \end{lstlisting}
  12068. \fi}
  12069. {\if\edition\pythonEd\pythonColor
  12070. \begin{lstlisting}
  12071. v1 = begin:
  12072. init.514 = 42
  12073. if (free_ptr + 16) < fromspace_end:
  12074. else:
  12075. collect(16)
  12076. alloc.513 = allocate(1,tuple[int])
  12077. alloc.513[0] = init.514
  12078. alloc.513
  12079. v2 = begin:
  12080. init.516 = v1
  12081. if (free_ptr + 16) < fromspace_end:
  12082. else:
  12083. collect(16)
  12084. alloc.515 = allocate(1,tuple[tuple[int]])
  12085. alloc.515[0] = init.516
  12086. alloc.515
  12087. print(v2[0][0])
  12088. \end{lstlisting}
  12089. \fi}
  12090. \end{tcolorbox}
  12091. \caption{Output of the \code{expose\_allocation} pass.}
  12092. \label{fig:expose-alloc-output}
  12093. \end{figure}
  12094. \section{Remove Complex Operands}
  12095. \label{sec:remove-complex-opera-Lvec}
  12096. {\if\edition\racketEd
  12097. %
  12098. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  12099. should be treated as complex operands.
  12100. %
  12101. \fi}
  12102. %
  12103. {\if\edition\pythonEd\pythonColor
  12104. %
  12105. The expressions \code{allocate}, \code{global\_value}, \code{begin},
  12106. and tuple access should be treated as complex operands. The
  12107. subexpressions of tuple access must be atomic.
  12108. %
  12109. \fi}
  12110. %% A new case for
  12111. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  12112. %% handled carefully to prevent the \code{Prim} node from being separated
  12113. %% from its enclosing \code{HasType}.
  12114. Figure~\ref{fig:Lvec-anf-syntax}
  12115. shows the grammar for the output language \LangAllocANF{} of this
  12116. pass, which is \LangAlloc{} in monadic normal form.
  12117. \newcommand{\LtupMonadASTRacket}{
  12118. \begin{array}{rcl}
  12119. \Exp &::=& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  12120. \MID \GLOBALVALUE{\Var}
  12121. \end{array}
  12122. }
  12123. \newcommand{\LtupMonadASTPython}{
  12124. \begin{array}{rcl}
  12125. \Exp &::=& \GET{\Atm}{\Atm} \\
  12126. &\MID& \LEN{\Atm}\\
  12127. &\MID& \ALLOCATE{\Int}{\Type}
  12128. \MID \GLOBALVALUE{\Var} \\
  12129. \Stmt{} &::=& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  12130. &\MID& \COLLECT{\Int}
  12131. \end{array}
  12132. }
  12133. \begin{figure}[tp]
  12134. \centering
  12135. \begin{tcolorbox}[colback=white]
  12136. \small
  12137. {\if\edition\racketEd
  12138. \[
  12139. \begin{array}{l}
  12140. \gray{\LvarMonadASTRacket} \\ \hline
  12141. \gray{\LifMonadASTRacket} \\ \hline
  12142. \gray{\LwhileMonadASTRacket} \\ \hline
  12143. \LtupMonadASTRacket \\
  12144. \begin{array}{rcl}
  12145. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  12146. \end{array}
  12147. \end{array}
  12148. \]
  12149. \fi}
  12150. {\if\edition\pythonEd\pythonColor
  12151. \[
  12152. \begin{array}{l}
  12153. \gray{\LvarMonadASTPython} \\ \hline
  12154. \gray{\LifMonadASTPython} \\ \hline
  12155. \gray{\LwhileMonadASTPython} \\ \hline
  12156. \LtupMonadASTPython \\
  12157. \begin{array}{rcl}
  12158. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  12159. \end{array}
  12160. \end{array}
  12161. \]
  12162. \fi}
  12163. \end{tcolorbox}
  12164. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  12165. \label{fig:Lvec-anf-syntax}
  12166. \end{figure}
  12167. \section{Explicate Control and the \LangCVec{} Language}
  12168. \label{sec:explicate-control-r3}
  12169. \newcommand{\CtupASTRacket}{
  12170. \begin{array}{lcl}
  12171. \Exp &::= & \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  12172. &\MID& \VECREF{\Atm}{\INT{\Int}} \\
  12173. &\MID& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12174. &\MID& \VECLEN{\Atm} \\
  12175. &\MID& \GLOBALVALUE{\Var} \\
  12176. \Stmt &::=& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12177. &\MID& \LP\key{Collect} \,\itm{int}\RP
  12178. \end{array}
  12179. }
  12180. \newcommand{\CtupASTPython}{
  12181. \begin{array}{lcl}
  12182. \Exp &::= & \GET{\Atm}{\Atm} \MID \ALLOCATE{\Int}{\Type} \\
  12183. &\MID& \GLOBALVALUE{\Var} \MID \LEN{\Atm} \\
  12184. \Stmt &::=& \COLLECT{\Int} \\
  12185. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  12186. \end{array}
  12187. }
  12188. \begin{figure}[tp]
  12189. \begin{tcolorbox}[colback=white]
  12190. \small
  12191. {\if\edition\racketEd
  12192. \[
  12193. \begin{array}{l}
  12194. \gray{\CvarASTRacket} \\ \hline
  12195. \gray{\CifASTRacket} \\ \hline
  12196. \gray{\CloopASTRacket} \\ \hline
  12197. \CtupASTRacket \\
  12198. \begin{array}{lcl}
  12199. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  12200. \end{array}
  12201. \end{array}
  12202. \]
  12203. \fi}
  12204. {\if\edition\pythonEd\pythonColor
  12205. \[
  12206. \begin{array}{l}
  12207. \gray{\CifASTPython} \\ \hline
  12208. \CtupASTPython \\
  12209. \begin{array}{lcl}
  12210. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}\;\Tail, \ldots \RC}
  12211. \end{array}
  12212. \end{array}
  12213. \]
  12214. \fi}
  12215. \end{tcolorbox}
  12216. \caption{The abstract syntax of \LangCVec{}, extending
  12217. \racket{\LangCLoop{} (figure~\ref{fig:c7-syntax})}\python{\LangCIf{}
  12218. (figure~\ref{fig:c1-syntax})}.}
  12219. \label{fig:c2-syntax}
  12220. \end{figure}
  12221. The output of \code{explicate\_control} is a program in the
  12222. intermediate language \LangCVec{}, for which figure~\ref{fig:c2-syntax}
  12223. shows the definition of the abstract syntax.
  12224. %
  12225. %% \racket{(The concrete syntax is defined in
  12226. %% figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  12227. %
  12228. The new expressions of \LangCVec{} include \key{allocate},
  12229. %
  12230. \racket{\key{vector-ref}, and \key{vector-set!},}
  12231. %
  12232. \python{accessing tuple elements,}
  12233. %
  12234. and \key{global\_value}.
  12235. %
  12236. \python{\LangCVec{} also includes the \code{collect} statement and
  12237. assignment to a tuple element.}
  12238. %
  12239. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  12240. %
  12241. The \code{explicate\_control} pass can treat these new forms much like
  12242. the other forms that we've already encountered. The output of the
  12243. \code{explicate\_control} pass on the running example is shown on the
  12244. left side of figure~\ref{fig:select-instr-output-gc} in the next
  12245. section.
  12246. \section{Select Instructions and the \LangXGlobal{} Language}
  12247. \label{sec:select-instructions-gc}
  12248. \index{subject}{select instructions}
  12249. %% void (rep as zero)
  12250. %% allocate
  12251. %% collect (callq collect)
  12252. %% vector-ref
  12253. %% vector-set!
  12254. %% vector-length
  12255. %% global (postpone)
  12256. In this pass we generate x86 code for most of the new operations that
  12257. are needed to compile tuples, including \code{Allocate},
  12258. \code{Collect}, accessing tuple elements, and the \code{Is}
  12259. comparison.
  12260. %
  12261. We compile \code{GlobalValue} to \code{Global} because the latter has a
  12262. different concrete syntax (see figures~\ref{fig:x86-2-concrete} and
  12263. \ref{fig:x86-2}). \index{subject}{x86}
  12264. The tuple read and write forms translate into \code{movq}
  12265. instructions. (The $+1$ in the offset serves to move past the tag at the
  12266. beginning of the tuple representation.)
  12267. %
  12268. \begin{center}
  12269. \begin{minipage}{\textwidth}
  12270. {\if\edition\racketEd
  12271. \begin{lstlisting}
  12272. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  12273. |$\Longrightarrow$|
  12274. movq |$\itm{tup}'$|, %r11
  12275. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12276. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  12277. |$\Longrightarrow$|
  12278. movq |$\itm{tup}'$|, %r11
  12279. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12280. movq $0, |$\itm{lhs'}$|
  12281. \end{lstlisting}
  12282. \fi}
  12283. {\if\edition\pythonEd\pythonColor
  12284. \begin{lstlisting}
  12285. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  12286. |$\Longrightarrow$|
  12287. movq |$\itm{tup}'$|, %r11
  12288. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12289. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  12290. |$\Longrightarrow$|
  12291. movq |$\itm{tup}'$|, %r11
  12292. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12293. \end{lstlisting}
  12294. \fi}
  12295. \end{minipage}
  12296. \end{center}
  12297. \racket{The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$}
  12298. \python{The $\itm{tup}'$ and $\itm{rhs}'$}
  12299. are obtained by translating from \LangCVec{} to x86.
  12300. %
  12301. The move of $\itm{tup}'$ to
  12302. register \code{r11} ensures that the offset expression
  12303. \code{$8(n+1)$(\%r11)} contains a register operand. This requires
  12304. removing \code{r11} from consideration by the register allocating.
  12305. Why not use \code{rax} instead of \code{r11}? Suppose that we instead used
  12306. \code{rax}. Then the generated code for tuple assignment would be
  12307. \begin{lstlisting}
  12308. movq |$\itm{tup}'$|, %rax
  12309. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  12310. \end{lstlisting}
  12311. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  12312. \code{patch\_instructions} would insert a move through \code{rax}
  12313. as follows:
  12314. \begin{lstlisting}
  12315. movq |$\itm{tup}'$|, %rax
  12316. movq |$\itm{rhs}'$|, %rax
  12317. movq %rax, |$8(n+1)$|(%rax)
  12318. \end{lstlisting}
  12319. However, this sequence of instructions does not work because we're
  12320. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  12321. $\itm{rhs}'$) at the same time!
  12322. The \racket{\code{vector-length}}\python{\code{len}} operation should
  12323. be translated into a sequence of instructions that read the tag of the
  12324. tuple and extract the 6 bits that represent the tuple length, which
  12325. are the bits starting at index 1 and going up to and including bit 6.
  12326. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  12327. (shift right) can be used to accomplish this.
  12328. We compile the \code{allocate} form to operations on the
  12329. \code{free\_ptr}, as shown next. This approach is called
  12330. \emph{inline allocation} because it implements allocation without a
  12331. function call by simply incrementing the allocation pointer. It is much
  12332. more efficient than calling a function for each allocation. The
  12333. address in the \code{free\_ptr} is the next free address in the
  12334. FromSpace, so we copy it into \code{r11} and then move it forward by
  12335. enough space for the tuple being allocated, which is $8(\itm{len}+1)$
  12336. bytes because each element is 8 bytes (64 bits) and we use 8 bytes for
  12337. the tag. We then initialize the \itm{tag} and finally copy the
  12338. address in \code{r11} to the left-hand side. Refer to
  12339. figure~\ref{fig:tuple-rep} to see how the tag is organized.
  12340. %
  12341. \racket{We recommend using the Racket operations
  12342. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  12343. during compilation.}
  12344. %
  12345. \python{We recommend using the bitwise-or operator \code{|} and the
  12346. shift-left operator \code{<<} to compute the tag during
  12347. compilation.}
  12348. %
  12349. The type annotation in the \code{allocate} form is used to determine
  12350. the pointer mask region of the tag.
  12351. %
  12352. The addressing mode \verb!free_ptr(%rip)! essentially stands for the
  12353. address of the \code{free\_ptr} global variable using a special
  12354. instruction-pointer-relative addressing mode of the x86-64 processor.
  12355. In particular, the assembler computes the distance $d$ between the
  12356. address of \code{free\_ptr} and where the \code{rip} would be at that
  12357. moment and then changes the \code{free\_ptr(\%rip)} argument to
  12358. \code{$d$(\%rip)}, which at runtime will compute the address of
  12359. \code{free\_ptr}.
  12360. %
  12361. {\if\edition\racketEd
  12362. \begin{lstlisting}
  12363. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  12364. |$\Longrightarrow$|
  12365. movq free_ptr(%rip), %r11
  12366. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12367. movq $|$\itm{tag}$|, 0(%r11)
  12368. movq %r11, |$\itm{lhs}'$|
  12369. \end{lstlisting}
  12370. \fi}
  12371. {\if\edition\pythonEd\pythonColor
  12372. \begin{lstlisting}
  12373. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  12374. |$\Longrightarrow$|
  12375. movq free_ptr(%rip), %r11
  12376. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12377. movq $|$\itm{tag}$|, 0(%r11)
  12378. movq %r11, |$\itm{lhs}'$|
  12379. \end{lstlisting}
  12380. \fi}
  12381. %
  12382. The \code{collect} form is compiled to a call to the \code{collect}
  12383. function in the runtime. The arguments to \code{collect} are (1) the
  12384. top of the root stack, and (2) the number of bytes that need to be
  12385. allocated. We use another dedicated register, \code{r15}, to store
  12386. the pointer to the top of the root stack. Therefore \code{r15} is not
  12387. available for use by the register allocator.
  12388. %
  12389. {\if\edition\racketEd
  12390. \begin{lstlisting}
  12391. (collect |$\itm{bytes}$|)
  12392. |$\Longrightarrow$|
  12393. movq %r15, %rdi
  12394. movq $|\itm{bytes}|, %rsi
  12395. callq collect
  12396. \end{lstlisting}
  12397. \fi}
  12398. {\if\edition\pythonEd\pythonColor
  12399. \begin{lstlisting}
  12400. collect(|$\itm{bytes}$|)
  12401. |$\Longrightarrow$|
  12402. movq %r15, %rdi
  12403. movq $|\itm{bytes}|, %rsi
  12404. callq collect
  12405. \end{lstlisting}
  12406. \fi}
  12407. {\if\edition\pythonEd\pythonColor
  12408. The \code{is} comparison is compiled similarly to the other comparison
  12409. operators, using the \code{cmpq} instruction. Because the value of a
  12410. tuple is its address, we can translate \code{is} into a simple check
  12411. for equality using the \code{e} condition code. \\
  12412. \begin{tabular}{lll}
  12413. \begin{minipage}{0.4\textwidth}
  12414. $\CASSIGN{\Var}{ \LP\CIS{\Atm_1}{\Atm_2} \RP }$
  12415. \end{minipage}
  12416. &
  12417. $\Rightarrow$
  12418. &
  12419. \begin{minipage}{0.4\textwidth}
  12420. \begin{lstlisting}
  12421. cmpq |$\Arg_2$|, |$\Arg_1$|
  12422. sete %al
  12423. movzbq %al, |$\Var$|
  12424. \end{lstlisting}
  12425. \end{minipage}
  12426. \end{tabular}
  12427. \fi}
  12428. \newcommand{\GrammarXGlobal}{
  12429. \begin{array}{lcl}
  12430. \Arg &::=& \itm{label} \key{(\%rip)}
  12431. \end{array}
  12432. }
  12433. \newcommand{\ASTXGlobalRacket}{
  12434. \begin{array}{lcl}
  12435. \Arg &::=& \GLOBAL{\itm{label}}
  12436. \end{array}
  12437. }
  12438. \begin{figure}[tp]
  12439. \begin{tcolorbox}[colback=white]
  12440. \[
  12441. \begin{array}{l}
  12442. \gray{\GrammarXInt} \\ \hline
  12443. \gray{\GrammarXIf} \\ \hline
  12444. \GrammarXGlobal \\
  12445. \begin{array}{lcl}
  12446. \LangXGlobalM{} &::= & \key{.globl main} \\
  12447. & & \key{main:} \; \Instr^{*}
  12448. \end{array}
  12449. \end{array}
  12450. \]
  12451. \end{tcolorbox}
  12452. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1-concrete}).}
  12453. \label{fig:x86-2-concrete}
  12454. \end{figure}
  12455. \begin{figure}[tp]
  12456. \begin{tcolorbox}[colback=white]
  12457. \small
  12458. {\if\edition\racketEd
  12459. \[
  12460. \begin{array}{l}
  12461. \gray{\ASTXIntRacket} \\ \hline
  12462. \gray{\ASTXIfRacket} \\ \hline
  12463. \ASTXGlobalRacket \\
  12464. \begin{array}{lcl}
  12465. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  12466. \end{array}
  12467. \end{array}
  12468. \]
  12469. \fi}
  12470. {\if\edition\pythonEd\pythonColor
  12471. \[
  12472. \begin{array}{l}
  12473. \gray{\ASTXIntPython} \\ \hline
  12474. \gray{\ASTXIfPython} \\ \hline
  12475. \ASTXGlobalRacket \\
  12476. \begin{array}{lcl}
  12477. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  12478. \end{array}
  12479. \end{array}
  12480. \]
  12481. \fi}
  12482. \end{tcolorbox}
  12483. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1}).}
  12484. \label{fig:x86-2}
  12485. \end{figure}
  12486. The definitions of the concrete and abstract syntax of the
  12487. \LangXGlobal{} language are shown in figures~\ref{fig:x86-2-concrete}
  12488. and \ref{fig:x86-2}. It differs from \LangXIf{} only in the addition
  12489. of global variables.
  12490. %
  12491. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  12492. \code{select\_instructions} pass on the running example.
  12493. \begin{figure}[tbp]
  12494. \centering
  12495. \begin{tcolorbox}[colback=white]
  12496. {\if\edition\racketEd
  12497. % tests/s2_17.rkt
  12498. \begin{tabular}{lll}
  12499. \begin{minipage}{0.5\textwidth}
  12500. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12501. start:
  12502. tmp9 = (global-value free_ptr);
  12503. tmp0 = (+ tmp9 16);
  12504. tmp1 = (global-value fromspace_end);
  12505. if (< tmp0 tmp1)
  12506. goto block0;
  12507. else
  12508. goto block1;
  12509. block0:
  12510. _4 = (void);
  12511. goto block9;
  12512. block1:
  12513. (collect 16)
  12514. goto block9;
  12515. block9:
  12516. alloc2 = (allocate 1 (Vector Integer));
  12517. _3 = (vector-set! alloc2 0 42);
  12518. vecinit6 = alloc2;
  12519. tmp2 = (global-value free_ptr);
  12520. tmp3 = (+ tmp2 16);
  12521. tmp4 = (global-value fromspace_end);
  12522. if (< tmp3 tmp4)
  12523. goto block7;
  12524. else
  12525. goto block8;
  12526. block7:
  12527. _8 = (void);
  12528. goto block6;
  12529. block8:
  12530. (collect 16)
  12531. goto block6;
  12532. block6:
  12533. alloc5 = (allocate 1 (Vector (Vector Integer)));
  12534. _7 = (vector-set! alloc5 0 vecinit6);
  12535. tmp5 = (vector-ref alloc5 0);
  12536. return (vector-ref tmp5 0);
  12537. \end{lstlisting}
  12538. \end{minipage}
  12539. &$\Rightarrow$&
  12540. \begin{minipage}{0.4\textwidth}
  12541. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12542. start:
  12543. movq free_ptr(%rip), tmp9
  12544. movq tmp9, tmp0
  12545. addq $16, tmp0
  12546. movq fromspace_end(%rip), tmp1
  12547. cmpq tmp1, tmp0
  12548. jl block0
  12549. jmp block1
  12550. block0:
  12551. movq $0, _4
  12552. jmp block9
  12553. block1:
  12554. movq %r15, %rdi
  12555. movq $16, %rsi
  12556. callq collect
  12557. jmp block9
  12558. block9:
  12559. movq free_ptr(%rip), %r11
  12560. addq $16, free_ptr(%rip)
  12561. movq $3, 0(%r11)
  12562. movq %r11, alloc2
  12563. movq alloc2, %r11
  12564. movq $42, 8(%r11)
  12565. movq $0, _3
  12566. movq alloc2, vecinit6
  12567. movq free_ptr(%rip), tmp2
  12568. movq tmp2, tmp3
  12569. addq $16, tmp3
  12570. movq fromspace_end(%rip), tmp4
  12571. cmpq tmp4, tmp3
  12572. jl block7
  12573. jmp block8
  12574. block7:
  12575. movq $0, _8
  12576. jmp block6
  12577. block8:
  12578. movq %r15, %rdi
  12579. movq $16, %rsi
  12580. callq collect
  12581. jmp block6
  12582. block6:
  12583. movq free_ptr(%rip), %r11
  12584. addq $16, free_ptr(%rip)
  12585. movq $131, 0(%r11)
  12586. movq %r11, alloc5
  12587. movq alloc5, %r11
  12588. movq vecinit6, 8(%r11)
  12589. movq $0, _7
  12590. movq alloc5, %r11
  12591. movq 8(%r11), tmp5
  12592. movq tmp5, %r11
  12593. movq 8(%r11), %rax
  12594. jmp conclusion
  12595. \end{lstlisting}
  12596. \end{minipage}
  12597. \end{tabular}
  12598. \fi}
  12599. {\if\edition\pythonEd
  12600. % tests/tuple/get_get.py
  12601. \begin{tabular}{lll}
  12602. \begin{minipage}{0.5\textwidth}
  12603. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12604. start:
  12605. init.514 = 42
  12606. tmp.517 = free_ptr
  12607. tmp.518 = (tmp.517 + 16)
  12608. tmp.519 = fromspace_end
  12609. if tmp.518 < tmp.519:
  12610. goto block.529
  12611. else:
  12612. goto block.530
  12613. block.529:
  12614. goto block.528
  12615. block.530:
  12616. collect(16)
  12617. goto block.528
  12618. block.528:
  12619. alloc.513 = allocate(1,tuple[int])
  12620. alloc.513:tuple[int][0] = init.514
  12621. v1 = alloc.513
  12622. init.516 = v1
  12623. tmp.520 = free_ptr
  12624. tmp.521 = (tmp.520 + 16)
  12625. tmp.522 = fromspace_end
  12626. if tmp.521 < tmp.522:
  12627. goto block.526
  12628. else:
  12629. goto block.527
  12630. block.526:
  12631. goto block.525
  12632. block.527:
  12633. collect(16)
  12634. goto block.525
  12635. block.525:
  12636. alloc.515 = allocate(1,tuple[tuple[int]])
  12637. alloc.515:tuple[tuple[int]][0] = init.516
  12638. v2 = alloc.515
  12639. tmp.523 = v2[0]
  12640. tmp.524 = tmp.523[0]
  12641. print(tmp.524)
  12642. return 0
  12643. \end{lstlisting}
  12644. \end{minipage}
  12645. &$\Rightarrow$&
  12646. \begin{minipage}{0.4\textwidth}
  12647. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12648. start:
  12649. movq $42, init.514
  12650. movq free_ptr(%rip), tmp.517
  12651. movq tmp.517, tmp.518
  12652. addq $16, tmp.518
  12653. movq fromspace_end(%rip), tmp.519
  12654. cmpq tmp.519, tmp.518
  12655. jl block.529
  12656. jmp block.530
  12657. block.529:
  12658. jmp block.528
  12659. block.530:
  12660. movq %r15, %rdi
  12661. movq $16, %rsi
  12662. callq collect
  12663. jmp block.528
  12664. block.528:
  12665. movq free_ptr(%rip), %r11
  12666. addq $16, free_ptr(%rip)
  12667. movq $3, 0(%r11)
  12668. movq %r11, alloc.513
  12669. movq alloc.513, %r11
  12670. movq init.514, 8(%r11)
  12671. movq alloc.513, v1
  12672. movq v1, init.516
  12673. movq free_ptr(%rip), tmp.520
  12674. movq tmp.520, tmp.521
  12675. addq $16, tmp.521
  12676. movq fromspace_end(%rip), tmp.522
  12677. cmpq tmp.522, tmp.521
  12678. jl block.526
  12679. jmp block.527
  12680. block.526:
  12681. jmp block.525
  12682. block.527:
  12683. movq %r15, %rdi
  12684. movq $16, %rsi
  12685. callq collect
  12686. jmp block.525
  12687. block.525:
  12688. movq free_ptr(%rip), %r11
  12689. addq $16, free_ptr(%rip)
  12690. movq $131, 0(%r11)
  12691. movq %r11, alloc.515
  12692. movq alloc.515, %r11
  12693. movq init.516, 8(%r11)
  12694. movq alloc.515, v2
  12695. movq v2, %r11
  12696. movq 8(%r11), %r11
  12697. movq %r11, tmp.523
  12698. movq tmp.523, %r11
  12699. movq 8(%r11), %r11
  12700. movq %r11, tmp.524
  12701. movq tmp.524, %rdi
  12702. callq print_int
  12703. movq $0, %rax
  12704. jmp conclusion
  12705. \end{lstlisting}
  12706. \end{minipage}
  12707. \end{tabular}
  12708. \fi}
  12709. \end{tcolorbox}
  12710. \caption{Output of \code{explicate\_control} (\emph{left}) and
  12711. \code{select\_instructions} (\emph{right}) on the running example.}
  12712. \label{fig:select-instr-output-gc}
  12713. \end{figure}
  12714. \clearpage
  12715. \section{Register Allocation}
  12716. \label{sec:reg-alloc-gc}
  12717. \index{subject}{register allocation}
  12718. As discussed previously in this chapter, the garbage collector needs to
  12719. access all the pointers in the root set, that is, all variables that
  12720. are tuples. It will be the responsibility of the register allocator
  12721. to make sure that
  12722. \begin{enumerate}
  12723. \item the root stack is used for spilling tuple-typed variables, and
  12724. \item if a tuple-typed variable is live during a call to the
  12725. collector, it must be spilled to ensure that it is visible to the
  12726. collector.
  12727. \end{enumerate}
  12728. The latter responsibility can be handled during construction of the
  12729. interference graph, by adding interference edges between the call-live
  12730. tuple-typed variables and all the callee-saved registers. (They
  12731. already interfere with the caller-saved registers.)
  12732. %
  12733. \racket{The type information for variables is in the \code{Program}
  12734. form, so we recommend adding another parameter to the
  12735. \code{build\_interference} function to communicate this alist.}
  12736. %
  12737. \python{The type information for variables is generated by the type
  12738. checker for \LangCVec{}, stored in a field named \code{var\_types} in
  12739. the \code{CProgram} AST mode. You'll need to propagate that
  12740. information so that it is available in this pass.}
  12741. The spilling of tuple-typed variables to the root stack can be handled
  12742. after graph coloring, in choosing how to assign the colors
  12743. (integers) to registers and stack locations. The
  12744. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  12745. changes to also record the number of spills to the root stack.
  12746. % build-interference
  12747. %
  12748. % callq
  12749. % extra parameter for var->type assoc. list
  12750. % update 'program' and 'if'
  12751. % allocate-registers
  12752. % allocate spilled vectors to the rootstack
  12753. % don't change color-graph
  12754. % TODO:
  12755. %\section{Patch Instructions}
  12756. %[mention that global variables are memory references]
  12757. \section{Prelude and Conclusion}
  12758. \label{sec:print-x86-gc}
  12759. \label{sec:prelude-conclusion-x86-gc}
  12760. \index{subject}{prelude}\index{subject}{conclusion}
  12761. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  12762. \code{prelude\_and\_conclusion} pass on the running example. In the
  12763. prelude of the \code{main} function, we allocate space
  12764. on the root stack to make room for the spills of tuple-typed
  12765. variables. We do so by incrementing the root stack pointer (\code{r15}),
  12766. taking care that the root stack grows up instead of down. For the
  12767. running example, there was just one spill, so we increment \code{r15}
  12768. by 8 bytes. In the conclusion we subtract 8 bytes from \code{r15}.
  12769. One issue that deserves special care is that there may be a call to
  12770. \code{collect} prior to the initializing assignments for all the
  12771. variables in the root stack. We do not want the garbage collector to
  12772. mistakenly determine that some uninitialized variable is a pointer that
  12773. needs to be followed. Thus, we zero out all locations on the root
  12774. stack in the prelude of \code{main}. In
  12775. figure~\ref{fig:print-x86-output-gc}, the instruction
  12776. %
  12777. \lstinline{movq $0, 0(%r15)}
  12778. %
  12779. is sufficient to accomplish this task because there is only one spill.
  12780. In general, we have to clear as many words as there are spills of
  12781. tuple-typed variables. The garbage collector tests each root to see
  12782. if it is null prior to dereferencing it.
  12783. \begin{figure}[htbp]
  12784. \begin{tcolorbox}[colback=white]
  12785. {\if\edition\racketEd
  12786. \begin{minipage}[t]{0.5\textwidth}
  12787. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12788. .globl main
  12789. main:
  12790. pushq %rbp
  12791. movq %rsp, %rbp
  12792. subq $0, %rsp
  12793. movq $65536, %rdi
  12794. movq $65536, %rsi
  12795. callq initialize
  12796. movq rootstack_begin(%rip), %r15
  12797. movq $0, 0(%r15)
  12798. addq $8, %r15
  12799. jmp start
  12800. conclusion:
  12801. subq $8, %r15
  12802. addq $0, %rsp
  12803. popq %rbp
  12804. retq
  12805. \end{lstlisting}
  12806. \end{minipage}
  12807. \fi}
  12808. {\if\edition\pythonEd
  12809. \begin{minipage}[t]{0.5\textwidth}
  12810. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12811. .globl main
  12812. main:
  12813. pushq %rbp
  12814. movq %rsp, %rbp
  12815. pushq %rbx
  12816. subq $8, %rsp
  12817. movq $65536, %rdi
  12818. movq $16, %rsi
  12819. callq initialize
  12820. movq rootstack_begin(%rip), %r15
  12821. movq $0, 0(%r15)
  12822. addq $8, %r15
  12823. jmp start
  12824. conclusion:
  12825. subq $8, %r15
  12826. addq $8, %rsp
  12827. popq %rbx
  12828. popq %rbp
  12829. retq
  12830. \end{lstlisting}
  12831. \end{minipage}
  12832. \fi}
  12833. \end{tcolorbox}
  12834. \caption{The prelude and conclusion for the running example.}
  12835. \label{fig:print-x86-output-gc}
  12836. \end{figure}
  12837. \begin{figure}[tbp]
  12838. \begin{tcolorbox}[colback=white]
  12839. {\if\edition\racketEd
  12840. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  12841. \node (Lvec) at (0,2) {\large \LangVec{}};
  12842. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  12843. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  12844. \node (Lvec-4) at (10,2) {\large \LangAlloc{}};
  12845. \node (Lvec-5) at (10,0) {\large \LangAlloc{}};
  12846. \node (Lvec-6) at (5,0) {\large \LangAllocANF{}};
  12847. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12848. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12849. \node (x86-2-1) at (0,-4) {\large \LangXGlobalVar{}};
  12850. \node (x86-2-2) at (4,-4) {\large \LangXGlobalVar{}};
  12851. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12852. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12853. \node (x86-5) at (8,-4) {\large \LangXGlobal{}};
  12854. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12855. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  12856. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-4);
  12857. \path[->,bend left=15] (Lvec-4) edge [right] node
  12858. {\ttfamily\footnotesize uncover\_get!} (Lvec-5);
  12859. \path[->,bend left=10] (Lvec-5) edge [below] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12860. \path[->,bend right=10] (Lvec-6) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  12861. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12862. \path[->,bend right=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  12863. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  12864. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  12865. \path[->,bend left=10] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12866. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12867. \end{tikzpicture}
  12868. \fi}
  12869. {\if\edition\pythonEd\pythonColor
  12870. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  12871. \node (Lvec) at (0,2) {\large \LangVec{}};
  12872. \node (Lvec-2) at (4,2) {\large \LangVec{}};
  12873. \node (Lvec-5) at (8,2) {\large \LangAlloc{}};
  12874. \node (Lvec-6) at (12,2) {\large \LangAllocANF{}};
  12875. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12876. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12877. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12878. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12879. \node (x86-5) at (12,-2) {\large \LangXGlobal{}};
  12880. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12881. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-5);
  12882. \path[->,bend left=15] (Lvec-5) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12883. \path[->,bend left=10] (Lvec-6) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C2-4);
  12884. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12885. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  12886. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12887. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12888. \end{tikzpicture}
  12889. \fi}
  12890. \end{tcolorbox}
  12891. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  12892. \label{fig:Lvec-passes}
  12893. \end{figure}
  12894. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  12895. for the compilation of \LangVec{}.
  12896. \clearpage
  12897. {\if\edition\racketEd
  12898. \section{Challenge: Simple Structures}
  12899. \label{sec:simple-structures}
  12900. \index{subject}{struct}
  12901. \index{subject}{structure}
  12902. The language \LangStruct{} extends \LangVec{} with support for simple
  12903. structures. The definition of its concrete syntax is shown in
  12904. figure~\ref{fig:Lstruct-concrete-syntax}, and the abstract syntax is
  12905. shown in figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct}
  12906. in Typed Racket is a user-defined data type that contains named fields
  12907. and that is heap allocated\index{subject}{heap allocated},
  12908. similarly to a vector. The following is an
  12909. example of a structure definition, in this case the definition of a
  12910. \code{point} type:
  12911. \begin{lstlisting}
  12912. (struct point ([x : Integer] [y : Integer]) #:mutable)
  12913. \end{lstlisting}
  12914. \newcommand{\LstructGrammarRacket}{
  12915. \begin{array}{lcl}
  12916. \Type &::=& \Var \\
  12917. \Exp &::=& (\Var\;\Exp \ldots)\\
  12918. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  12919. \end{array}
  12920. }
  12921. \newcommand{\LstructASTRacket}{
  12922. \begin{array}{lcl}
  12923. \Type &::=& \VAR{\Var} \\
  12924. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  12925. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  12926. \end{array}
  12927. }
  12928. \begin{figure}[tbp]
  12929. \centering
  12930. \begin{tcolorbox}[colback=white]
  12931. \[
  12932. \begin{array}{l}
  12933. \gray{\LintGrammarRacket{}} \\ \hline
  12934. \gray{\LvarGrammarRacket{}} \\ \hline
  12935. \gray{\LifGrammarRacket{}} \\ \hline
  12936. \gray{\LwhileGrammarRacket} \\ \hline
  12937. \gray{\LtupGrammarRacket} \\ \hline
  12938. \LstructGrammarRacket \\
  12939. \begin{array}{lcl}
  12940. \LangStruct{} &::=& \Def \ldots \; \Exp
  12941. \end{array}
  12942. \end{array}
  12943. \]
  12944. \end{tcolorbox}
  12945. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  12946. (figure~\ref{fig:Lvec-concrete-syntax}).}
  12947. \label{fig:Lstruct-concrete-syntax}
  12948. \end{figure}
  12949. \begin{figure}[tbp]
  12950. \centering
  12951. \begin{tcolorbox}[colback=white]
  12952. \small
  12953. \[
  12954. \begin{array}{l}
  12955. \gray{\LintASTRacket{}} \\ \hline
  12956. \gray{\LvarASTRacket{}} \\ \hline
  12957. \gray{\LifASTRacket{}} \\ \hline
  12958. \gray{\LwhileASTRacket} \\ \hline
  12959. \gray{\LtupASTRacket} \\ \hline
  12960. \LstructASTRacket \\
  12961. \begin{array}{lcl}
  12962. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  12963. \end{array}
  12964. \end{array}
  12965. \]
  12966. \end{tcolorbox}
  12967. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  12968. (figure~\ref{fig:Lvec-syntax}).}
  12969. \label{fig:Lstruct-syntax}
  12970. \end{figure}
  12971. An instance of a structure is created using function-call syntax, with
  12972. the name of the structure in the function position, as follows:
  12973. \begin{lstlisting}
  12974. (point 7 12)
  12975. \end{lstlisting}
  12976. Function-call syntax is also used to read a field of a structure. The
  12977. function name is formed by the structure name, a dash, and the field
  12978. name. The following example uses \code{point-x} and \code{point-y} to
  12979. access the \code{x} and \code{y} fields of two point instances:
  12980. \begin{center}
  12981. \begin{lstlisting}
  12982. (let ([pt1 (point 7 12)])
  12983. (let ([pt2 (point 4 3)])
  12984. (+ (- (point-x pt1) (point-x pt2))
  12985. (- (point-y pt1) (point-y pt2)))))
  12986. \end{lstlisting}
  12987. \end{center}
  12988. Similarly, to write to a field of a structure, use its set function,
  12989. whose name starts with \code{set-}, followed by the structure name,
  12990. then a dash, then the field name, and finally with an exclamation
  12991. mark. The following example uses \code{set-point-x!} to change the
  12992. \code{x} field from \code{7} to \code{42}:
  12993. \begin{center}
  12994. \begin{lstlisting}
  12995. (let ([pt (point 7 12)])
  12996. (let ([_ (set-point-x! pt 42)])
  12997. (point-x pt)))
  12998. \end{lstlisting}
  12999. \end{center}
  13000. \begin{exercise}\normalfont\normalsize
  13001. Create a type checker for \LangStruct{} by extending the type
  13002. checker for \LangVec{}. Extend your compiler with support for simple
  13003. structures, compiling \LangStruct{} to x86 assembly code. Create
  13004. five new test cases that use structures, and test your compiler.
  13005. \end{exercise}
  13006. % TODO: create an interpreter for L_struct
  13007. \clearpage
  13008. \fi}
  13009. \section{Challenge: Arrays}
  13010. \label{sec:arrays}
  13011. % TODO mention trapped-error
  13012. In this chapter we have studied tuples, that is, heterogeneous
  13013. sequences of elements whose length is determined at compile time. This
  13014. challenge is also about sequences, but this time the length is
  13015. determined at runtime and all the elements have the same type (they
  13016. are homogeneous). We use the term \emph{array} for this latter kind of
  13017. sequence.
  13018. %
  13019. \racket{
  13020. The Racket language does not distinguish between tuples and arrays;
  13021. they are both represented by vectors. However, Typed Racket
  13022. distinguishes between tuples and arrays: the \code{Vector} type is for
  13023. tuples, and the \code{Vectorof} type is for arrays.}%
  13024. \python{Arrays correspond to the \code{list} type in the Python language.}
  13025. Figure~\ref{fig:Lvecof-concrete-syntax} presents the definition of the
  13026. concrete syntax for \LangArray{}, and figure~\ref{fig:Lvecof-syntax}
  13027. presents the definition of the abstract syntax, extending \LangVec{}
  13028. with the \racket{\code{Vectorof}}\python{\code{list}} type and the
  13029. \racket{\code{make-vector} primitive operator for creating an array,
  13030. whose arguments are the length of the array and an initial value for
  13031. all the elements in the array.}%
  13032. \python{bracket notation for creating an array literal.}
  13033. \racket{The \code{vector-length},
  13034. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  13035. for tuples become overloaded for use with arrays.}
  13036. \python{
  13037. The subscript operator becomes overloaded for use with arrays and tuples
  13038. and now may appear on the left-hand side of an assignment.
  13039. Note that the index of the subscript, when applied to an array, may be an
  13040. arbitrary expression and not exclusively a constant integer.
  13041. The \code{len} function is also applicable to arrays.
  13042. }
  13043. %
  13044. We include integer multiplication in \LangArray{} because it is
  13045. useful in many examples involving arrays such as computing the
  13046. inner product of two arrays (figure~\ref{fig:inner_product}).
  13047. \newcommand{\LarrayGrammarRacket}{
  13048. \begin{array}{lcl}
  13049. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  13050. \Exp &::=& \CMUL{\Exp}{\Exp}
  13051. \MID \CMAKEVEC{\Exp}{\Exp}
  13052. \end{array}
  13053. }
  13054. \newcommand{\LarrayASTRacket}{
  13055. \begin{array}{lcl}
  13056. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  13057. \Exp &::=& \MUL{\Exp}{\Exp}
  13058. \MID \MAKEVEC{\Exp}{\Exp}
  13059. \end{array}
  13060. }
  13061. \newcommand{\LarrayGrammarPython}{
  13062. \begin{array}{lcl}
  13063. \Type &::=& \key{list}\LS\Type\RS \\
  13064. \Exp &::=& \CMUL{\Exp}{\Exp}
  13065. \MID \CGET{\Exp}{\Exp}
  13066. \MID \LS \Exp \code{,} \ldots \RS \\
  13067. \Stmt &::= & \CGET{\Exp}{\Exp} \mathop{\key{=}}\Exp
  13068. \end{array}
  13069. }
  13070. \newcommand{\LarrayASTPython}{
  13071. \begin{array}{lcl}
  13072. \Type &::=& \key{ListType}\LP\Type\RP \\
  13073. \Exp &::=& \MUL{\Exp}{\Exp}
  13074. \MID \GET{\Exp}{\Exp} \\
  13075. &\MID& \key{List}\LP \Exp \code{,} \ldots \code{, } \code{Load()} \RP \\
  13076. \Stmt &::= & \ASSIGN{ \PUT{\Exp}{\Exp} }{\Exp}
  13077. \end{array}
  13078. }
  13079. \begin{figure}[tp]
  13080. \centering
  13081. \begin{tcolorbox}[colback=white]
  13082. \small
  13083. {\if\edition\racketEd
  13084. \[
  13085. \begin{array}{l}
  13086. \gray{\LintGrammarRacket{}} \\ \hline
  13087. \gray{\LvarGrammarRacket{}} \\ \hline
  13088. \gray{\LifGrammarRacket{}} \\ \hline
  13089. \gray{\LwhileGrammarRacket} \\ \hline
  13090. \gray{\LtupGrammarRacket} \\ \hline
  13091. \LarrayGrammarRacket \\
  13092. \begin{array}{lcl}
  13093. \LangArray{} &::=& \Exp
  13094. \end{array}
  13095. \end{array}
  13096. \]
  13097. \fi}
  13098. {\if\edition\pythonEd\pythonColor
  13099. \[
  13100. \begin{array}{l}
  13101. \gray{\LintGrammarPython{}} \\ \hline
  13102. \gray{\LvarGrammarPython{}} \\ \hline
  13103. \gray{\LifGrammarPython{}} \\ \hline
  13104. \gray{\LwhileGrammarPython} \\ \hline
  13105. \gray{\LtupGrammarPython} \\ \hline
  13106. \LarrayGrammarPython \\
  13107. \begin{array}{rcl}
  13108. \LangArrayM{} &::=& \Stmt^{*}
  13109. \end{array}
  13110. \end{array}
  13111. \]
  13112. \fi}
  13113. \end{tcolorbox}
  13114. \caption{The concrete syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  13115. \label{fig:Lvecof-concrete-syntax}
  13116. \end{figure}
  13117. \begin{figure}[tp]
  13118. \centering
  13119. \begin{tcolorbox}[colback=white]
  13120. \small
  13121. {\if\edition\racketEd
  13122. \[
  13123. \begin{array}{l}
  13124. \gray{\LintASTRacket{}} \\ \hline
  13125. \gray{\LvarASTRacket{}} \\ \hline
  13126. \gray{\LifASTRacket{}} \\ \hline
  13127. \gray{\LwhileASTRacket} \\ \hline
  13128. \gray{\LtupASTRacket} \\ \hline
  13129. \LarrayASTRacket \\
  13130. \begin{array}{lcl}
  13131. \LangArray{} &::=& \Exp
  13132. \end{array}
  13133. \end{array}
  13134. \]
  13135. \fi}
  13136. {\if\edition\pythonEd\pythonColor
  13137. \[
  13138. \begin{array}{l}
  13139. \gray{\LintASTPython{}} \\ \hline
  13140. \gray{\LvarASTPython{}} \\ \hline
  13141. \gray{\LifASTPython{}} \\ \hline
  13142. \gray{\LwhileASTPython} \\ \hline
  13143. \gray{\LtupASTPython} \\ \hline
  13144. \LarrayASTPython \\
  13145. \begin{array}{rcl}
  13146. \LangArrayM{} &::=& \Stmt^{*}
  13147. \end{array}
  13148. \end{array}
  13149. \]
  13150. \fi}
  13151. \end{tcolorbox}
  13152. \caption{The abstract syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  13153. \label{fig:Lvecof-syntax}
  13154. \end{figure}
  13155. \begin{figure}[tp]
  13156. \begin{tcolorbox}[colback=white]
  13157. {\if\edition\racketEd
  13158. % TODO: remove the function from the following example, like the python version -Jeremy
  13159. \begin{lstlisting}
  13160. (let ([A (make-vector 2 2)])
  13161. (let ([B (make-vector 2 3)])
  13162. (let ([i 0])
  13163. (let ([prod 0])
  13164. (begin
  13165. (while (< i n)
  13166. (begin
  13167. (set! prod (+ prod (* (vector-ref A i)
  13168. (vector-ref B i))))
  13169. (set! i (+ i 1))))
  13170. prod)))))
  13171. \end{lstlisting}
  13172. \fi}
  13173. {\if\edition\pythonEd\pythonColor
  13174. \begin{lstlisting}
  13175. A = [2, 2]
  13176. B = [3, 3]
  13177. i = 0
  13178. prod = 0
  13179. while i != len(A):
  13180. prod = prod + A[i] * B[i]
  13181. i = i + 1
  13182. print(prod)
  13183. \end{lstlisting}
  13184. \fi}
  13185. \end{tcolorbox}
  13186. \caption{Example program that computes the inner product.}
  13187. \label{fig:inner_product}
  13188. \end{figure}
  13189. {\if\edition\racketEd
  13190. %
  13191. Figure~\ref{fig:type-check-Lvecof} shows the definition of the type
  13192. checker for \LangArray{}. The result type of
  13193. \code{make-vector} is \code{(Vectorof T)}, where \code{T} is the type
  13194. of the initializing expression. The length expression is required to
  13195. have type \code{Integer}. The type checking of the operators
  13196. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  13197. updated to handle the situation in which the vector has type
  13198. \code{Vectorof}. In these cases we translate the operators to their
  13199. \code{vectorof} form so that later passes can easily distinguish
  13200. between operations on tuples versus arrays. We override the
  13201. \code{operator-types} method to provide the type signature for
  13202. multiplication: it takes two integers and returns an integer. \fi}
  13203. {\if\edition\pythonEd\pythonColor
  13204. %
  13205. The type checker for \LangArray{} is defined in
  13206. figure~\ref{fig:type-check-Lvecof}. The result type of a list literal
  13207. is \code{list[T]}, where \code{T} is the type of the initializing
  13208. expressions. The type checking of the \code{len} function and the
  13209. subscript operator are updated to handle lists. The type checker now
  13210. also handles a subscript on the left-hand side of an assignment.
  13211. Regarding multiplication, it takes two integers and returns an
  13212. integer.
  13213. %
  13214. \fi}
  13215. \begin{figure}[tbp]
  13216. \begin{tcolorbox}[colback=white]
  13217. {\if\edition\racketEd
  13218. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13219. (define type-check-Lvecof-class
  13220. (class type-check-Lvec-class
  13221. (super-new)
  13222. (inherit check-type-equal?)
  13223. (define/override (operator-types)
  13224. (append '((* . ((Integer Integer) . Integer)))
  13225. (super operator-types)))
  13226. (define/override (type-check-exp env)
  13227. (lambda (e)
  13228. (define recur (type-check-exp env))
  13229. (match e
  13230. [(Prim 'make-vector (list e1 e2))
  13231. (define-values (e1^ t1) (recur e1))
  13232. (define-values (e2^ elt-type) (recur e2))
  13233. (define vec-type `(Vectorof ,elt-type))
  13234. (values (Prim 'make-vector (list e1^ e2^)) vec-type)]
  13235. [(Prim 'vector-ref (list e1 e2))
  13236. (define-values (e1^ t1) (recur e1))
  13237. (define-values (e2^ t2) (recur e2))
  13238. (match* (t1 t2)
  13239. [(`(Vectorof ,elt-type) 'Integer)
  13240. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  13241. [(other wise) ((super type-check-exp env) e)])]
  13242. [(Prim 'vector-set! (list e1 e2 e3) )
  13243. (define-values (e-vec t-vec) (recur e1))
  13244. (define-values (e2^ t2) (recur e2))
  13245. (define-values (e-arg^ t-arg) (recur e3))
  13246. (match t-vec
  13247. [`(Vectorof ,elt-type)
  13248. (check-type-equal? elt-type t-arg e)
  13249. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  13250. [else ((super type-check-exp env) e)])]
  13251. [(Prim 'vector-length (list e1))
  13252. (define-values (e1^ t1) (recur e1))
  13253. (match t1
  13254. [`(Vectorof ,t)
  13255. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  13256. [else ((super type-check-exp env) e)])]
  13257. [else ((super type-check-exp env) e)])))
  13258. ))
  13259. (define (type-check-Lvecof p)
  13260. (send (new type-check-Lvecof-class) type-check-program p))
  13261. \end{lstlisting}
  13262. \fi}
  13263. {\if\edition\pythonEd\pythonColor
  13264. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13265. class TypeCheckLarray(TypeCheckLtup):
  13266. def type_check_exp(self, e, env):
  13267. match e:
  13268. case ast.List(es, Load()):
  13269. ts = [self.type_check_exp(e, env) for e in es]
  13270. elt_ty = ts[0]
  13271. for (ty, elt) in zip(ts, es):
  13272. self.check_type_equal(elt_ty, ty, elt)
  13273. e.has_type = ListType(elt_ty)
  13274. return e.has_type
  13275. case Call(Name('len'), [tup]):
  13276. tup_t = self.type_check_exp(tup, env)
  13277. tup.has_type = tup_t
  13278. match tup_t:
  13279. case TupleType(ts):
  13280. return IntType()
  13281. case ListType(ty):
  13282. return IntType()
  13283. case _:
  13284. raise Exception('len expected a tuple, not ' + repr(tup_t))
  13285. case Subscript(tup, index, Load()):
  13286. tup_ty = self.type_check_exp(tup, env)
  13287. index_ty = self.type_check_exp(index, env)
  13288. self.check_type_equal(index_ty, IntType(), index)
  13289. match tup_ty:
  13290. case TupleType(ts):
  13291. match index:
  13292. case Constant(i):
  13293. return ts[i]
  13294. case _:
  13295. raise Exception('subscript required constant integer index')
  13296. case ListType(ty):
  13297. return ty
  13298. case _:
  13299. raise Exception('subscript expected a tuple, not ' + repr(tup_ty))
  13300. case BinOp(left, Mult(), right):
  13301. l = self.type_check_exp(left, env)
  13302. self.check_type_equal(l, IntType(), left)
  13303. r = self.type_check_exp(right, env)
  13304. self.check_type_equal(r, IntType(), right)
  13305. return IntType()
  13306. case _:
  13307. return super().type_check_exp(e, env)
  13308. \end{lstlisting}
  13309. \fi}
  13310. \end{tcolorbox}
  13311. \caption{Type checker for the \LangArray{} language\python{, part 1}.}
  13312. \label{fig:type-check-Lvecof}
  13313. \end{figure}
  13314. {\if\edition\pythonEd
  13315. \begin{figure}[tbp]
  13316. \begin{tcolorbox}[colback=white]
  13317. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13318. def type_check_stmts(self, ss, env):
  13319. if len(ss) == 0:
  13320. return VoidType()
  13321. match ss[0]:
  13322. case Assign([Subscript(tup, index, Store())], value):
  13323. tup_t = self.type_check_exp(tup, env)
  13324. value_t = self.type_check_exp(value, env)
  13325. index_ty = self.type_check_exp(index, env)
  13326. self.check_type_equal(index_ty, IntType(), index)
  13327. match tup_t:
  13328. case ListType(ty):
  13329. self.check_type_equal(ty, value_t, ss[0])
  13330. case TupleType(ts):
  13331. return self.type_check_stmts(ss, env)
  13332. case _:
  13333. raise Exception('type_check_stmts: '
  13334. 'expected tuple or list, not ' + repr(tup_t))
  13335. return self.type_check_stmts(ss[1:], env)
  13336. case _:
  13337. return super().type_check_stmts(ss, env)
  13338. \end{lstlisting}
  13339. \end{tcolorbox}
  13340. \caption{Type checker for the \LangArray{} language, part 2.}
  13341. \label{fig:type-check-Lvecof-part2}
  13342. \end{figure}
  13343. \fi}
  13344. The definition of the interpreter for \LangArray{} is shown in
  13345. \racket{figure~\ref{fig:interp-Lvecof}}
  13346. \python{figures~\ref{fig:interp-Lvecof} and \ref{fig:type-check-Lvecof-part2}}.
  13347. \racket{The \code{make-vector} operator is
  13348. interpreted using Racket's \code{make-vector} function,
  13349. and multiplication is interpreted using \code{fx*},
  13350. which is multiplication for \code{fixnum} integers.
  13351. In the \code{resolve} pass (section~\ref{sec:array-resolution})
  13352. we translate array access operations
  13353. into \code{vectorof-ref} and \code{vectorof-set!} operations,
  13354. which we interpret using \code{vector} operations with additional
  13355. bounds checks that signal a \code{trapped-error}.
  13356. }
  13357. %
  13358. \python{We implement list creation with a Python list comprehension,
  13359. and multiplication is implemented with 64-bit multiplication. We
  13360. add a case to handle a subscript on the left-hand side of
  13361. assignment. Other uses of subscript can be handled by the existing
  13362. code for tuples.}
  13363. \begin{figure}[tbp]
  13364. \begin{tcolorbox}[colback=white]
  13365. {\if\edition\racketEd
  13366. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13367. (define interp-Lvecof-class
  13368. (class interp-Lvec-class
  13369. (super-new)
  13370. (define/override (interp-op op)
  13371. (match op
  13372. ['make-vector make-vector]
  13373. ['vectorof-length vector-length]
  13374. ['vectorof-ref
  13375. (lambda (v i)
  13376. (if (< i (vector-length v))
  13377. (vector-ref v i)
  13378. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13379. ['vectorof-set!
  13380. (lambda (v i e)
  13381. (if (< i (vector-length v))
  13382. (vector-set! v i e)
  13383. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13384. [else (super interp-op op)]))
  13385. ))
  13386. (define (interp-Lvecof p)
  13387. (send (new interp-Lvecof-class) interp-program p))
  13388. \end{lstlisting}
  13389. \fi}
  13390. {\if\edition\pythonEd\pythonColor
  13391. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13392. class InterpLarray(InterpLtup):
  13393. def interp_exp(self, e, env):
  13394. match e:
  13395. case ast.List(es, Load()):
  13396. return [self.interp_exp(e, env) for e in es]
  13397. case BinOp(left, Mult(), right):
  13398. l = self.interp_exp(left, env)
  13399. r = self.interp_exp(right, env)
  13400. return mul64(l, r)
  13401. case Subscript(tup, index, Load()):
  13402. t = self.interp_exp(tup, env)
  13403. n = self.interp_exp(index, env)
  13404. if n < len(t):
  13405. return t[n]
  13406. else:
  13407. raise TrappedError('array index out of bounds')
  13408. case _:
  13409. return super().interp_exp(e, env)
  13410. def interp_stmt(self, s, env, cont):
  13411. match s:
  13412. case Assign([Subscript(tup, index)], value):
  13413. t = self.interp_exp(tup, env)
  13414. n = self.interp_exp(index, env)
  13415. if n < len(t):
  13416. t[n] = self.interp_exp(value, env)
  13417. else:
  13418. raise TrappedError('array index out of bounds')
  13419. return self.interp_stmts(cont, env)
  13420. case _:
  13421. return super().interp_stmt(s, env, cont)
  13422. \end{lstlisting}
  13423. \fi}
  13424. \end{tcolorbox}
  13425. \caption{Interpreter for \LangArray{}.}
  13426. \label{fig:interp-Lvecof}
  13427. \end{figure}
  13428. \subsection{Data Representation}
  13429. \label{sec:array-rep}
  13430. Just as with tuples, we store arrays on the heap, which means that the
  13431. garbage collector will need to inspect arrays. An immediate thought is
  13432. to use the same representation for arrays that we use for tuples.
  13433. However, we limit tuples to a length of fifty so that their length and
  13434. pointer mask can fit into the 64-bit tag at the beginning of each
  13435. tuple (section~\ref{sec:data-rep-gc}). We intend arrays to allow
  13436. millions of elements, so we need more bits to store the length.
  13437. However, because arrays are homogeneous, we need only 1 bit for the
  13438. pointer mask instead of 1 bit per array element. Finally, the
  13439. garbage collector must be able to distinguish between tuples
  13440. and arrays, so we need to reserve one bit for that purpose. We
  13441. arrive at the following layout for the 64-bit tag at the beginning of
  13442. an array:
  13443. \begin{itemize}
  13444. \item The right-most bit is the forwarding bit, just as in a tuple.
  13445. A $0$ indicates that it is a forwarding pointer, and a $1$ indicates
  13446. that it is not.
  13447. \item The next bit to the left is the pointer mask. A $0$ indicates
  13448. that none of the elements are pointers to the heap, and a $1$
  13449. indicates that all the elements are pointers.
  13450. \item The next $60$ bits store the length of the array.
  13451. \item The bit at position $62$ distinguishes between a tuple ($0$)
  13452. and an array ($1$).
  13453. \item The left-most bit is reserved as explained in
  13454. chapter~\ref{ch:Lgrad}.
  13455. \end{itemize}
  13456. %% Recall that in chapter~\ref{ch:Ldyn}, we use a $3$-bit tag to
  13457. %% differentiate the kinds of values that have been injected into the
  13458. %% \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  13459. %% to indicate that the value is an array.
  13460. In the following subsections we provide hints regarding how to update
  13461. the passes to handle arrays.
  13462. \subsection{Overload Resolution}
  13463. \label{sec:array-resolution}
  13464. As noted previously, with the addition of arrays, several operators
  13465. have become \emph{overloaded}; that is, they can be applied to values
  13466. of more than one type. In this case, the element access and length
  13467. operators can be applied to both tuples and arrays. This kind of
  13468. overloading is quite common in programming languages, so many
  13469. compilers perform \emph{overload resolution}\index{subject}{overload
  13470. resolution} to handle it. The idea is to translate each overloaded
  13471. operator into different operators for the different types.
  13472. Implement a new pass named \code{resolve}.
  13473. Translate the reading of an array element
  13474. into a call to
  13475. \racket{\code{vectorof-ref}}\python{\code{array\_load}}
  13476. and the writing of an array element to
  13477. \racket{\code{vectorof-set!}}\python{\code{array\_store}}
  13478. Translate calls to \racket{\code{vector-length}}\python{\code{len}}
  13479. into \racket{\code{vectorof-length}}\python{\code{array\_len}}.
  13480. When these operators are applied to tuples, leave them as is.
  13481. %
  13482. \python{The type checker for \LangArray{} adds a \code{has\_type}
  13483. field, which can be inspected to determine whether the operator
  13484. is applied to a tuple or an array.}
  13485. \subsection{Bounds Checking}
  13486. Recall that the interpreter for \LangArray{} signals a
  13487. \code{trapped-error} when there is an array access that is out of
  13488. bounds. Therefore your compiler is obliged to also catch these errors
  13489. during execution and halt, signaling an error. We recommend inserting
  13490. a new pass named \code{check\_bounds} that inserts code around each
  13491. \racket{\code{vectorof-ref} and \code{vectorof-set!}}
  13492. \python{subscript} operation to ensure that the index is greater than
  13493. or equal to zero and less than the array's length. If not, the program
  13494. should halt, for which we recommend using a new primitive operation
  13495. named \code{exit}.
  13496. %% \subsection{Reveal Casts}
  13497. %% The array-access operators \code{vectorof-ref} and
  13498. %% \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  13499. %% \code{any-vector-set!} operators of chapter~\ref{ch:Ldyn} in
  13500. %% that the type checker cannot tell whether the index will be in bounds,
  13501. %% so the bounds check must be performed at run time. Recall that the
  13502. %% \code{reveal-casts} pass (section~\ref{sec:reveal-casts-Rany}) wraps
  13503. %% an \code{If} around a vector reference for update to check whether
  13504. %% the index is less than the length. You should do the same for
  13505. %% \code{vectorof-ref} and \code{vectorof-set!} .
  13506. %% In addition, the handling of the \code{any-vector} operators in
  13507. %% \code{reveal-casts} needs to be updated to account for arrays that are
  13508. %% injected to \code{Any}. For the \code{any-vector-length} operator, the
  13509. %% generated code should test whether the tag is for tuples (\code{010})
  13510. %% or arrays (\code{110}) and then dispatch to either
  13511. %% \code{any-vector-length} or \code{any-vectorof-length}. For the later
  13512. %% we add a case in \code{select\_instructions} to generate the
  13513. %% appropriate instructions for accessing the array length from the
  13514. %% header of an array.
  13515. %% For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  13516. %% the generated code needs to check that the index is less than the
  13517. %% vector length, so like the code for \code{any-vector-length}, check
  13518. %% the tag to determine whether to use \code{any-vector-length} or
  13519. %% \code{any-vectorof-length} for this purpose. Once the bounds checking
  13520. %% is complete, the generated code can use \code{any-vector-ref} and
  13521. %% \code{any-vector-set!} for both tuples and arrays because the
  13522. %% instructions used for those operators do not look at the tag at the
  13523. %% front of the tuple or array.
  13524. \subsection{Expose Allocation}
  13525. This pass should translate array creation into lower-level
  13526. operations. In particular, the new AST node \ALLOCARRAY{\Exp}{\Type}
  13527. is analogous to the \code{Allocate} AST node for tuples. The $\Type$
  13528. argument must be \ARRAYTY{T}, where $T$ is the element type for the
  13529. array. The \code{AllocateArray} AST node allocates an array of the
  13530. length specified by the $\Exp$ (of type \INTTY), but does not
  13531. initialize the elements of the array. Generate code in this pass to
  13532. initialize the elements analogous to the case for tuples.
  13533. {\if\edition\racketEd
  13534. \subsection{Uncover \texttt{get!}}
  13535. \label{sec:uncover-get-bang-vecof}
  13536. Add cases for \code{AllocateArray} to \code{collect-set!} and
  13537. \code{uncover-get!-exp}.
  13538. \fi}
  13539. \subsection{Remove Complex Operands}
  13540. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  13541. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  13542. complex, and its subexpression must be atomic.
  13543. \subsection{Explicate Control}
  13544. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  13545. \code{explicate\_assign}.
  13546. \subsection{Select Instructions}
  13547. \index{subject}{select instructions}
  13548. Generate instructions for \code{AllocateArray} similar to those for
  13549. \code{Allocate} given in section~\ref{sec:select-instructions-gc}
  13550. except that the tag at the front of the array should instead use the
  13551. representation discussed in section~\ref{sec:array-rep}.
  13552. Regarding \racket{\code{vectorof-length}}\python{\code{array\_len}},
  13553. extract the length from the tag.
  13554. The instructions generated for accessing an element of an array differ
  13555. from those for a tuple (section~\ref{sec:select-instructions-gc}) in
  13556. that the index is not a constant so you need to generate instructions
  13557. that compute the offset at runtime.
  13558. Compile the \code{exit} primitive into a call to the \code{exit}
  13559. function of the C standard library, with an argument of $255$.
  13560. %% Also, note that assignment to an array element may appear in
  13561. %% as a stand-alone statement, so make sure to handle that situation in
  13562. %% this pass.
  13563. %% Finally, the instructions for \code{any-vectorof-length} should be
  13564. %% similar to those for \code{vectorof-length}, except that one must
  13565. %% first project the array by writing zeroes into the $3$-bit tag
  13566. \begin{exercise}\normalfont\normalsize
  13567. Implement a compiler for the \LangArray{} language by extending your
  13568. compiler for \LangLoop{}. Test your compiler on a half dozen new
  13569. programs, including the one shown in figure~\ref{fig:inner_product}
  13570. and also a program that multiplies two matrices. Note that although
  13571. matrices are two-dimensional arrays, they can be encoded into
  13572. one-dimensional arrays by laying out each row in the array, one after
  13573. the next.
  13574. \end{exercise}
  13575. {\if\edition\racketEd
  13576. \section{Challenge: Generational Collection}
  13577. The copying collector described in section~\ref{sec:GC} can incur
  13578. significant runtime overhead because the call to \code{collect} takes
  13579. time proportional to all the live data. One way to reduce this
  13580. overhead is to reduce how much data is inspected in each call to
  13581. \code{collect}. In particular, researchers have observed that recently
  13582. allocated data is more likely to become garbage then data that has
  13583. survived one or more previous calls to \code{collect}. This insight
  13584. motivated the creation of \emph{generational garbage collectors}
  13585. \index{subject}{generational garbage collector} that
  13586. (1) segregate data according to its age into two or more generations;
  13587. (2) allocate less space for younger generations, so collecting them is
  13588. faster, and more space for the older generations; and (3) perform
  13589. collection on the younger generations more frequently than on older
  13590. generations~\citep{Wilson:1992fk}.
  13591. For this challenge assignment, the goal is to adapt the copying
  13592. collector implemented in \code{runtime.c} to use two generations, one
  13593. for young data and one for old data. Each generation consists of a
  13594. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  13595. \code{collect} function to use the two generations:
  13596. \begin{enumerate}
  13597. \item Copy the young generation's FromSpace to its ToSpace and then
  13598. switch the role of the ToSpace and FromSpace.
  13599. \item If there is enough space for the requested number of bytes in
  13600. the young FromSpace, then return from \code{collect}.
  13601. \item If there is not enough space in the young FromSpace for the
  13602. requested bytes, then move the data from the young generation to the
  13603. old one with the following steps:
  13604. \begin{enumerate}
  13605. \item[a.] If there is enough room in the old FromSpace, copy the young
  13606. FromSpace to the old FromSpace and then return.
  13607. \item[b.] If there is not enough room in the old FromSpace, then collect
  13608. the old generation by copying the old FromSpace to the old ToSpace
  13609. and swap the roles of the old FromSpace and ToSpace.
  13610. \item[c.] If there is enough room now, copy the young FromSpace to the
  13611. old FromSpace and return. Otherwise, allocate a larger FromSpace
  13612. and ToSpace for the old generation. Copy the young FromSpace and
  13613. the old FromSpace into the larger FromSpace for the old
  13614. generation and then return.
  13615. \end{enumerate}
  13616. \end{enumerate}
  13617. We recommend that you generalize the \code{cheney} function so that it
  13618. can be used for all the copies mentioned: between the young FromSpace
  13619. and ToSpace, between the old FromSpace and ToSpace, and between the
  13620. young FromSpace and old FromSpace. This can be accomplished by adding
  13621. parameters to \code{cheney} that replace its use of the global
  13622. variables \code{fromspace\_begin}, \code{fromspace\_end},
  13623. \code{tospace\_begin}, and \code{tospace\_end}.
  13624. Note that the collection of the young generation does not traverse the
  13625. old generation. This introduces a potential problem: there may be
  13626. young data that is reachable only through pointers in the old
  13627. generation. If these pointers are not taken into account, the
  13628. collector could throw away young data that is live! One solution,
  13629. called \emph{pointer recording}, is to maintain a set of all the
  13630. pointers from the old generation into the new generation and consider
  13631. this set as part of the root set. To maintain this set, the compiler
  13632. must insert extra instructions around every \code{vector-set!}. If the
  13633. vector being modified is in the old generation, and if the value being
  13634. written is a pointer into the new generation, then that pointer must
  13635. be added to the set. Also, if the value being overwritten was a
  13636. pointer into the new generation, then that pointer should be removed
  13637. from the set.
  13638. \begin{exercise}\normalfont\normalsize
  13639. Adapt the \code{collect} function in \code{runtime.c} to implement
  13640. generational garbage collection, as outlined in this section.
  13641. Update the code generation for \code{vector-set!} to implement
  13642. pointer recording. Make sure that your new compiler and runtime
  13643. execute without error on your test suite.
  13644. \end{exercise}
  13645. \fi}
  13646. \section{Further Reading}
  13647. \citet{Appel90} describes many data representation approaches
  13648. including the ones used in the compilation of Standard ML.
  13649. There are many alternatives to copying collectors (and their bigger
  13650. siblings, the generational collectors) with regard to garbage
  13651. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  13652. reference counting~\citep{Collins:1960aa}. The strengths of copying
  13653. collectors are that allocation is fast (just a comparison and pointer
  13654. increment), there is no fragmentation, cyclic garbage is collected,
  13655. and the time complexity of collection depends only on the amount of
  13656. live data and not on the amount of garbage~\citep{Wilson:1992fk}. The
  13657. main disadvantages of a two-space copying collector is that it uses a
  13658. lot of extra space and takes a long time to perform the copy, though
  13659. these problems are ameliorated in generational collectors.
  13660. \racket{Racket}\python{Object-oriented} programs tend to allocate many
  13661. small objects and generate a lot of garbage, so copying and
  13662. generational collectors are a good fit\python{~\citep{Dieckmann99}}.
  13663. Garbage collection is an active research topic, especially concurrent
  13664. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  13665. developing new techniques and revisiting old
  13666. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  13667. meet every year at the International Symposium on Memory Management to
  13668. present these findings.
  13669. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13670. \chapter{Functions}
  13671. \label{ch:Lfun}
  13672. \index{subject}{function}
  13673. \setcounter{footnote}{0}
  13674. This chapter studies the compilation of a subset of \racket{Typed
  13675. Racket}\python{Python} in which only top-level function definitions
  13676. are allowed. This kind of function appears in the C programming
  13677. language, and it serves as an important stepping-stone to implementing
  13678. lexically scoped functions in the form of \key{lambda}\index{subject}{lambda}
  13679. abstractions, which is the topic of chapter~\ref{ch:Llambda}.
  13680. \section{The \LangFun{} Language}
  13681. The concrete syntax and abstract syntax for function definitions and
  13682. function application are shown in
  13683. figures~\ref{fig:Lfun-concrete-syntax} and \ref{fig:Lfun-syntax}, with
  13684. which we define the \LangFun{} language. Programs in \LangFun{} begin
  13685. with zero or more function definitions. The function names from these
  13686. definitions are in scope for the entire program, including all the
  13687. function definitions, and therefore the ordering of function
  13688. definitions does not matter.
  13689. %
  13690. \python{The abstract syntax for function parameters in
  13691. figure~\ref{fig:Lfun-syntax} is a list of pairs, each of which
  13692. consists of a parameter name and its type. This design differs from
  13693. Python's \code{ast} module, which has a more complex structure for
  13694. function parameters to handle keyword parameters,
  13695. defaults, and so on. The type checker in \code{type\_check\_Lfun} converts the
  13696. complex Python abstract syntax into the simpler syntax shown in
  13697. figure~\ref{fig:Lfun-syntax}. The fourth and sixth parameters of the
  13698. \code{FunctionDef} constructor are for decorators and a type
  13699. comment, neither of which are used by our compiler. We recommend
  13700. replacing them with \code{None} in the \code{shrink} pass.
  13701. }
  13702. %
  13703. The concrete syntax for function application
  13704. \index{subject}{function application}
  13705. is \python{$\CAPPLY{\Exp}{\Exp\code{,} \ldots}$}\racket{$\CAPPLY{\Exp}{\Exp \ldots}$},
  13706. where the first expression
  13707. must evaluate to a function and the remaining expressions are the arguments. The
  13708. abstract syntax for function application is
  13709. $\APPLY{\Exp}{\Exp^*}$.
  13710. %% The syntax for function application does not include an explicit
  13711. %% keyword, which is error prone when using \code{match}. To alleviate
  13712. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  13713. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  13714. Functions are first-class in the sense that a function pointer
  13715. \index{subject}{function pointer} is data and can be stored in memory or passed
  13716. as a parameter to another function. Thus, there is a function
  13717. type, written
  13718. {\if\edition\racketEd
  13719. \begin{lstlisting}
  13720. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  13721. \end{lstlisting}
  13722. \fi}
  13723. {\if\edition\pythonEd\pythonColor
  13724. \begin{lstlisting}
  13725. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_R$|]
  13726. \end{lstlisting}
  13727. \fi}
  13728. %
  13729. \noindent for a function whose $n$ parameters have the types $\Type_1$
  13730. through $\Type_n$ and whose return type is $\Type_R$. The main
  13731. limitation of these functions (with respect to
  13732. \racket{Racket}\python{Python} functions) is that they are not
  13733. lexically scoped. That is, the only external entities that can be
  13734. referenced from inside a function body are other globally defined
  13735. functions. The syntax of \LangFun{} prevents function definitions from
  13736. being nested inside each other.
  13737. \newcommand{\LfunGrammarRacket}{
  13738. \begin{array}{lcl}
  13739. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13740. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  13741. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  13742. \end{array}
  13743. }
  13744. \newcommand{\LfunASTRacket}{
  13745. \begin{array}{lcl}
  13746. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13747. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  13748. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  13749. \end{array}
  13750. }
  13751. \newcommand{\LfunGrammarPython}{
  13752. \begin{array}{lcl}
  13753. \Type &::=& \key{int}
  13754. \MID \key{bool} \MID \key{void}
  13755. \MID \key{tuple}\LS \Type^+ \RS
  13756. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  13757. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  13758. \Stmt &::=& \CRETURN{\Exp} \\
  13759. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  13760. \end{array}
  13761. }
  13762. \newcommand{\LfunASTPython}{
  13763. \begin{array}{lcl}
  13764. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  13765. \MID \key{TupleType}\LS\Type^+\RS\\
  13766. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  13767. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  13768. \Stmt &::=& \RETURN{\Exp} \\
  13769. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  13770. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  13771. \end{array}
  13772. }
  13773. \begin{figure}[tp]
  13774. \centering
  13775. \begin{tcolorbox}[colback=white]
  13776. \small
  13777. {\if\edition\racketEd
  13778. \[
  13779. \begin{array}{l}
  13780. \gray{\LintGrammarRacket{}} \\ \hline
  13781. \gray{\LvarGrammarRacket{}} \\ \hline
  13782. \gray{\LifGrammarRacket{}} \\ \hline
  13783. \gray{\LwhileGrammarRacket} \\ \hline
  13784. \gray{\LtupGrammarRacket} \\ \hline
  13785. \LfunGrammarRacket \\
  13786. \begin{array}{lcl}
  13787. \LangFunM{} &::=& \Def \ldots \; \Exp
  13788. \end{array}
  13789. \end{array}
  13790. \]
  13791. \fi}
  13792. {\if\edition\pythonEd\pythonColor
  13793. \[
  13794. \begin{array}{l}
  13795. \gray{\LintGrammarPython{}} \\ \hline
  13796. \gray{\LvarGrammarPython{}} \\ \hline
  13797. \gray{\LifGrammarPython{}} \\ \hline
  13798. \gray{\LwhileGrammarPython} \\ \hline
  13799. \gray{\LtupGrammarPython} \\ \hline
  13800. \LfunGrammarPython \\
  13801. \begin{array}{rcl}
  13802. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  13803. \end{array}
  13804. \end{array}
  13805. \]
  13806. \fi}
  13807. \end{tcolorbox}
  13808. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  13809. \label{fig:Lfun-concrete-syntax}
  13810. \end{figure}
  13811. \begin{figure}[tp]
  13812. \centering
  13813. \begin{tcolorbox}[colback=white]
  13814. \small
  13815. {\if\edition\racketEd
  13816. \[
  13817. \begin{array}{l}
  13818. \gray{\LintOpAST} \\ \hline
  13819. \gray{\LvarASTRacket{}} \\ \hline
  13820. \gray{\LifASTRacket{}} \\ \hline
  13821. \gray{\LwhileASTRacket{}} \\ \hline
  13822. \gray{\LtupASTRacket{}} \\ \hline
  13823. \LfunASTRacket \\
  13824. \begin{array}{lcl}
  13825. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  13826. \end{array}
  13827. \end{array}
  13828. \]
  13829. \fi}
  13830. {\if\edition\pythonEd\pythonColor
  13831. \[
  13832. \begin{array}{l}
  13833. \gray{\LintASTPython{}} \\ \hline
  13834. \gray{\LvarASTPython{}} \\ \hline
  13835. \gray{\LifASTPython{}} \\ \hline
  13836. \gray{\LwhileASTPython} \\ \hline
  13837. \gray{\LtupASTPython} \\ \hline
  13838. \LfunASTPython \\
  13839. \begin{array}{rcl}
  13840. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  13841. \end{array}
  13842. \end{array}
  13843. \]
  13844. \fi}
  13845. \end{tcolorbox}
  13846. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  13847. \label{fig:Lfun-syntax}
  13848. \end{figure}
  13849. The program shown in figure~\ref{fig:Lfun-function-example} is a
  13850. representative example of defining and using functions in \LangFun{}.
  13851. We define a function \code{map} that applies some other function
  13852. \code{f} to both elements of a tuple and returns a new tuple
  13853. containing the results. We also define a function \code{inc}. The
  13854. program applies \code{map} to \code{inc} and
  13855. %
  13856. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  13857. %
  13858. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  13859. %
  13860. from which we return \code{42}.
  13861. \begin{figure}[tbp]
  13862. \begin{tcolorbox}[colback=white]
  13863. {\if\edition\racketEd
  13864. \begin{lstlisting}
  13865. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  13866. : (Vector Integer Integer)
  13867. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13868. (define (inc [x : Integer]) : Integer
  13869. (+ x 1))
  13870. (vector-ref (map inc (vector 0 41)) 1)
  13871. \end{lstlisting}
  13872. \fi}
  13873. {\if\edition\pythonEd\pythonColor
  13874. \begin{lstlisting}
  13875. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  13876. return f(v[0]), f(v[1])
  13877. def inc(x : int) -> int:
  13878. return x + 1
  13879. print(map(inc, (0, 41))[1])
  13880. \end{lstlisting}
  13881. \fi}
  13882. \end{tcolorbox}
  13883. \caption{Example of using functions in \LangFun{}.}
  13884. \label{fig:Lfun-function-example}
  13885. \end{figure}
  13886. The definitional interpreter for \LangFun{} is shown in
  13887. figure~\ref{fig:interp-Lfun}. The case for the
  13888. %
  13889. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  13890. %
  13891. AST is responsible for setting up the mutual recursion between the
  13892. top-level function definitions.
  13893. %
  13894. \racket{We use the classic back-patching
  13895. \index{subject}{back-patching} approach that uses mutable variables
  13896. and makes two passes over the function
  13897. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  13898. top-level environment using a mutable cons cell for each function
  13899. definition. Note that the \code{lambda}\index{subject}{lambda} value
  13900. for each function is incomplete; it does not yet include the environment.
  13901. Once the top-level environment has been constructed, we iterate over it and
  13902. update the \code{lambda} values to use the top-level environment.}
  13903. %
  13904. \python{We create a dictionary named \code{env} and fill it in
  13905. by mapping each function name to a new \code{Function} value,
  13906. each of which stores a reference to the \code{env}.
  13907. (We define the class \code{Function} for this purpose.)}
  13908. %
  13909. To interpret a function \racket{application}\python{call}, we match
  13910. the result of the function expression to obtain a function value. We
  13911. then extend the function's environment with the mapping of parameters to
  13912. argument values. Finally, we interpret the body of the function in
  13913. this extended environment.
  13914. \begin{figure}[tp]
  13915. \begin{tcolorbox}[colback=white]
  13916. {\if\edition\racketEd
  13917. \begin{lstlisting}
  13918. (define interp-Lfun-class
  13919. (class interp-Lvec-class
  13920. (super-new)
  13921. (define/override ((interp-exp env) e)
  13922. (define recur (interp-exp env))
  13923. (match e
  13924. [(Apply fun args)
  13925. (define fun-val (recur fun))
  13926. (define arg-vals (for/list ([e args]) (recur e)))
  13927. (match fun-val
  13928. [`(function (,xs ...) ,body ,fun-env)
  13929. (define params-args (for/list ([x xs] [arg arg-vals])
  13930. (cons x (box arg))))
  13931. (define new-env (append params-args fun-env))
  13932. ((interp-exp new-env) body)]
  13933. [else
  13934. (error 'interp-exp "expected function, not ~a" fun-val)])]
  13935. [else ((super interp-exp env) e)]
  13936. ))
  13937. (define/public (interp-def d)
  13938. (match d
  13939. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  13940. (cons f (box `(function ,xs ,body ())))]))
  13941. (define/override (interp-program p)
  13942. (match p
  13943. [(ProgramDefsExp info ds body)
  13944. (let ([top-level (for/list ([d ds]) (interp-def d))])
  13945. (for/list ([f (in-dict-values top-level)])
  13946. (set-box! f (match (unbox f)
  13947. [`(function ,xs ,body ())
  13948. `(function ,xs ,body ,top-level)])))
  13949. ((interp-exp top-level) body))]))
  13950. ))
  13951. (define (interp-Lfun p)
  13952. (send (new interp-Lfun-class) interp-program p))
  13953. \end{lstlisting}
  13954. \fi}
  13955. {\if\edition\pythonEd\pythonColor
  13956. \begin{lstlisting}
  13957. class InterpLfun(InterpLtup):
  13958. def apply_fun(self, fun, args, e):
  13959. match fun:
  13960. case Function(name, xs, body, env):
  13961. new_env = env.copy().update(zip(xs, args))
  13962. return self.interp_stmts(body, new_env)
  13963. case _:
  13964. raise Exception('apply_fun: unexpected: ' + repr(fun))
  13965. def interp_exp(self, e, env):
  13966. match e:
  13967. case Call(Name('input_int'), []):
  13968. return super().interp_exp(e, env)
  13969. case Call(func, args):
  13970. f = self.interp_exp(func, env)
  13971. vs = [self.interp_exp(arg, env) for arg in args]
  13972. return self.apply_fun(f, vs, e)
  13973. case _:
  13974. return super().interp_exp(e, env)
  13975. def interp_stmt(self, s, env, cont):
  13976. match s:
  13977. case Return(value):
  13978. return self.interp_exp(value, env)
  13979. case FunctionDef(name, params, bod, dl, returns, comment):
  13980. if isinstance(params, ast.arguments):
  13981. ps = [p.arg for p in params.args]
  13982. else:
  13983. ps = [x for (x,t) in params]
  13984. env[name] = Function(name, ps, bod, env)
  13985. return self.interp_stmts(cont, env)
  13986. case _:
  13987. return super().interp_stmt(s, env, cont)
  13988. def interp(self, p):
  13989. match p:
  13990. case Module(ss):
  13991. env = {}
  13992. self.interp_stmts(ss, env)
  13993. if 'main' in env.keys():
  13994. self.apply_fun(env['main'], [], None)
  13995. case _:
  13996. raise Exception('interp: unexpected ' + repr(p))
  13997. \end{lstlisting}
  13998. \fi}
  13999. \end{tcolorbox}
  14000. \caption{Interpreter for the \LangFun{} language.}
  14001. \label{fig:interp-Lfun}
  14002. \end{figure}
  14003. %\margincomment{TODO: explain type checker}
  14004. The type checker for \LangFun{} is shown in
  14005. figure~\ref{fig:type-check-Lfun}.
  14006. %
  14007. \python{(We omit the code that parses function parameters into the
  14008. simpler abstract syntax.)}
  14009. %
  14010. Similarly to the interpreter, the case for the
  14011. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  14012. %
  14013. AST is responsible for setting up the mutual recursion between the
  14014. top-level function definitions. We begin by create a mapping
  14015. \code{env} from every function name to its type. We then type check
  14016. the program using this mapping.
  14017. %
  14018. In the case for function \racket{application}\python{call}, we match
  14019. the type of the function expression to a function type and check that
  14020. the types of the argument expressions are equal to the function's
  14021. parameter types. The type of the \racket{application}\python{call} as
  14022. a whole is the return type from the function type.
  14023. \begin{figure}[tp]
  14024. \begin{tcolorbox}[colback=white]
  14025. {\if\edition\racketEd
  14026. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14027. (define type-check-Lfun-class
  14028. (class type-check-Lvec-class
  14029. (super-new)
  14030. (inherit check-type-equal?)
  14031. (define/public (type-check-apply env e es)
  14032. (define-values (e^ ty) ((type-check-exp env) e))
  14033. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  14034. ((type-check-exp env) e)))
  14035. (match ty
  14036. [`(,ty^* ... -> ,rt)
  14037. (for ([arg-ty ty*] [param-ty ty^*])
  14038. (check-type-equal? arg-ty param-ty (Apply e es)))
  14039. (values e^ e* rt)]))
  14040. (define/override (type-check-exp env)
  14041. (lambda (e)
  14042. (match e
  14043. [(FunRef f n)
  14044. (values (FunRef f n) (dict-ref env f))]
  14045. [(Apply e es)
  14046. (define-values (e^ es^ rt) (type-check-apply env e es))
  14047. (values (Apply e^ es^) rt)]
  14048. [(Call e es)
  14049. (define-values (e^ es^ rt) (type-check-apply env e es))
  14050. (values (Call e^ es^) rt)]
  14051. [else ((super type-check-exp env) e)])))
  14052. (define/public (type-check-def env)
  14053. (lambda (e)
  14054. (match e
  14055. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  14056. (define new-env (append (map cons xs ps) env))
  14057. (define-values (body^ ty^) ((type-check-exp new-env) body))
  14058. (check-type-equal? ty^ rt body)
  14059. (Def f p:t* rt info body^)])))
  14060. (define/public (fun-def-type d)
  14061. (match d
  14062. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  14063. (define/override (type-check-program e)
  14064. (match e
  14065. [(ProgramDefsExp info ds body)
  14066. (define env (for/list ([d ds])
  14067. (cons (Def-name d) (fun-def-type d))))
  14068. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  14069. (define-values (body^ ty) ((type-check-exp env) body))
  14070. (check-type-equal? ty 'Integer body)
  14071. (ProgramDefsExp info ds^ body^)]))))
  14072. (define (type-check-Lfun p)
  14073. (send (new type-check-Lfun-class) type-check-program p))
  14074. \end{lstlisting}
  14075. \fi}
  14076. {\if\edition\pythonEd\pythonColor
  14077. \begin{lstlisting}
  14078. class TypeCheckLfun(TypeCheckLtup):
  14079. def type_check_exp(self, e, env):
  14080. match e:
  14081. case Call(Name('input_int'), []):
  14082. return super().type_check_exp(e, env)
  14083. case Call(func, args):
  14084. func_t = self.type_check_exp(func, env)
  14085. args_t = [self.type_check_exp(arg, env) for arg in args]
  14086. match func_t:
  14087. case FunctionType(params_t, return_t):
  14088. for (arg_t, param_t) in zip(args_t, params_t):
  14089. check_type_equal(param_t, arg_t, e)
  14090. return return_t
  14091. case _:
  14092. raise Exception('type_check_exp: in call, unexpected ' +
  14093. repr(func_t))
  14094. case _:
  14095. return super().type_check_exp(e, env)
  14096. def type_check_stmts(self, ss, env):
  14097. if len(ss) == 0:
  14098. return
  14099. match ss[0]:
  14100. case FunctionDef(name, params, body, dl, returns, comment):
  14101. new_env = env.copy().update(params)
  14102. rt = self.type_check_stmts(body, new_env)
  14103. check_type_equal(returns, rt, ss[0])
  14104. return self.type_check_stmts(ss[1:], env)
  14105. case Return(value):
  14106. return self.type_check_exp(value, env)
  14107. case _:
  14108. return super().type_check_stmts(ss, env)
  14109. def type_check(self, p):
  14110. match p:
  14111. case Module(body):
  14112. env = {}
  14113. for s in body:
  14114. match s:
  14115. case FunctionDef(name, params, bod, dl, returns, comment):
  14116. if name in env:
  14117. raise Exception('type_check: function ' +
  14118. repr(name) + ' defined twice')
  14119. params_t = [t for (x,t) in params]
  14120. env[name] = FunctionType(params_t, returns)
  14121. self.type_check_stmts(body, env)
  14122. case _:
  14123. raise Exception('type_check: unexpected ' + repr(p))
  14124. \end{lstlisting}
  14125. \fi}
  14126. \end{tcolorbox}
  14127. \caption{Type checker for the \LangFun{} language.}
  14128. \label{fig:type-check-Lfun}
  14129. \end{figure}
  14130. \clearpage
  14131. \section{Functions in x86}
  14132. \label{sec:fun-x86}
  14133. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  14134. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  14135. %% \margincomment{\tiny Talk about the return address on the
  14136. %% stack and what callq and retq does.\\ --Jeremy }
  14137. The x86 architecture provides a few features to support the
  14138. implementation of functions. We have already seen that there are
  14139. labels in x86 so that one can refer to the location of an instruction,
  14140. as is needed for jump instructions. Labels can also be used to mark
  14141. the beginning of the instructions for a function. Going further, we
  14142. can obtain the address of a label by using the \key{leaq}
  14143. instruction. For example, the following puts the address of the
  14144. \code{inc} label into the \code{rbx} register:
  14145. \begin{lstlisting}
  14146. leaq inc(%rip), %rbx
  14147. \end{lstlisting}
  14148. Recall from section~\ref{sec:select-instructions-gc} that
  14149. \verb!inc(%rip)! is an example of instruction-pointer-relative
  14150. addressing.
  14151. In section~\ref{sec:x86} we used the \code{callq} instruction to jump
  14152. to functions whose locations were given by a label, such as
  14153. \code{read\_int}. To support function calls in this chapter we instead
  14154. jump to functions whose location are given by an address in
  14155. a register; that is, we use \emph{indirect function calls}. The
  14156. x86 syntax for this is a \code{callq} instruction that requires an asterisk
  14157. before the register name.\index{subject}{indirect function call}
  14158. \begin{lstlisting}
  14159. callq *%rbx
  14160. \end{lstlisting}
  14161. \subsection{Calling Conventions}
  14162. \label{sec:calling-conventions-fun}
  14163. \index{subject}{calling conventions}
  14164. The \code{callq} instruction provides partial support for implementing
  14165. functions: it pushes the return address on the stack and it jumps to
  14166. the target. However, \code{callq} does not handle
  14167. \begin{enumerate}
  14168. \item parameter passing,
  14169. \item pushing frames on the procedure call stack and popping them off,
  14170. or
  14171. \item determining how registers are shared by different functions.
  14172. \end{enumerate}
  14173. Regarding parameter passing, recall that the x86-64 calling
  14174. convention for Unix-based systems uses the following six registers to
  14175. pass arguments to a function, in the given order:
  14176. \begin{lstlisting}
  14177. rdi rsi rdx rcx r8 r9
  14178. \end{lstlisting}
  14179. If there are more than six arguments, then the calling convention
  14180. mandates using space on the frame of the caller for the rest of the
  14181. arguments. However, to ease the implementation of efficient tail calls
  14182. (section~\ref{sec:tail-call}), we arrange never to need more than six
  14183. arguments.
  14184. %
  14185. The return value of the function is stored in register \code{rax}.
  14186. Regarding frames \index{subject}{frame} and the procedure call stack,
  14187. \index{subject}{procedure call stack} recall from
  14188. section~\ref{sec:x86} that the stack grows down and each function call
  14189. uses a chunk of space on the stack called a frame. The caller sets the
  14190. stack pointer, register \code{rsp}, to the last data item in its
  14191. frame. The callee must not change anything in the caller's frame, that
  14192. is, anything that is at or above the stack pointer. The callee is free
  14193. to use locations that are below the stack pointer.
  14194. Recall that we store variables of tuple type on the root stack. So,
  14195. the prelude\index{subject}{prelude} of a function needs to move the
  14196. root stack pointer \code{r15} up according to the number of variables
  14197. of tuple type and the conclusion\index{subject}{conclusion} needs to
  14198. move the root stack pointer back down. Also, the prelude must
  14199. initialize to \code{0} this frame's slots in the root stack to signal
  14200. to the garbage collector that those slots do not yet contain a valid
  14201. pointer. Otherwise the garbage collector will interpret the garbage
  14202. bits in those slots as memory addresses and try to traverse them,
  14203. causing serious mayhem!
  14204. Regarding the sharing of registers between different functions, recall
  14205. from section~\ref{sec:calling-conventions} that the registers are
  14206. divided into two groups, the caller-saved registers and the
  14207. callee-saved registers. The caller should assume that all the
  14208. caller-saved registers are overwritten with arbitrary values by the
  14209. callee. For that reason we recommend in
  14210. section~\ref{sec:calling-conventions} that variables that are live
  14211. during a function call should not be assigned to caller-saved
  14212. registers.
  14213. On the flip side, if the callee wants to use a callee-saved register,
  14214. the callee must save the contents of those registers on their stack
  14215. frame and then put them back prior to returning to the caller. For
  14216. that reason we recommend in section~\ref{sec:calling-conventions} that if
  14217. the register allocator assigns a variable to a callee-saved register,
  14218. then the prelude of the \code{main} function must save that register
  14219. to the stack and the conclusion of \code{main} must restore it. This
  14220. recommendation now generalizes to all functions.
  14221. Recall that the base pointer, register \code{rbp}, is used as a
  14222. point of reference within a frame, so that each local variable can be
  14223. accessed at a fixed offset from the base pointer
  14224. (section~\ref{sec:x86}).
  14225. %
  14226. Figure~\ref{fig:call-frames} shows the layout of the caller and callee
  14227. frames.
  14228. \begin{figure}[tbp]
  14229. \centering
  14230. \begin{tcolorbox}[colback=white]
  14231. \begin{tabular}{r|r|l|l} \hline
  14232. Caller View & Callee View & Contents & Frame \\ \hline
  14233. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  14234. 0(\key{\%rbp}) & & old \key{rbp} \\
  14235. -8(\key{\%rbp}) & & callee-saved $1$ \\
  14236. \ldots & & \ldots \\
  14237. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  14238. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  14239. \ldots & & \ldots \\
  14240. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  14241. %% & & \\
  14242. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  14243. %% & \ldots & \ldots \\
  14244. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  14245. \hline
  14246. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  14247. & 0(\key{\%rbp}) & old \key{rbp} \\
  14248. & -8(\key{\%rbp}) & callee-saved $1$ \\
  14249. & \ldots & \ldots \\
  14250. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  14251. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  14252. & \ldots & \ldots \\
  14253. & $-8(n+m)$(\key{\%rbp}) & local variable $m$\\ \hline
  14254. \end{tabular}
  14255. \end{tcolorbox}
  14256. \caption{Memory layout of caller and callee frames.}
  14257. \label{fig:call-frames}
  14258. \end{figure}
  14259. %% Recall from section~\ref{sec:x86} that the stack is also used for
  14260. %% local variables and for storing the values of callee-saved registers
  14261. %% (we shall refer to all of these collectively as ``locals''), and that
  14262. %% at the beginning of a function we move the stack pointer \code{rsp}
  14263. %% down to make room for them.
  14264. %% We recommend storing the local variables
  14265. %% first and then the callee-saved registers, so that the local variables
  14266. %% can be accessed using \code{rbp} the same as before the addition of
  14267. %% functions.
  14268. %% To make additional room for passing arguments, we shall
  14269. %% move the stack pointer even further down. We count how many stack
  14270. %% arguments are needed for each function call that occurs inside the
  14271. %% body of the function and find their maximum. Adding this number to the
  14272. %% number of locals gives us how much the \code{rsp} should be moved at
  14273. %% the beginning of the function. In preparation for a function call, we
  14274. %% offset from \code{rsp} to set up the stack arguments. We put the first
  14275. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  14276. %% so on.
  14277. %% Upon calling the function, the stack arguments are retrieved by the
  14278. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  14279. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  14280. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  14281. %% the layout of the caller and callee frames. Notice how important it is
  14282. %% that we correctly compute the maximum number of arguments needed for
  14283. %% function calls; if that number is too small then the arguments and
  14284. %% local variables will smash into each other!
  14285. \subsection{Efficient Tail Calls}
  14286. \label{sec:tail-call}
  14287. In general, the amount of stack space used by a program is determined
  14288. by the longest chain of nested function calls. That is, if function
  14289. $f_1$ calls $f_2$, $f_2$ calls $f_3$, and so on to $f_n$, then the
  14290. amount of stack space is linear in $n$. The depth $n$ can grow quite
  14291. large if functions are recursive. However, in some cases we can
  14292. arrange to use only a constant amount of space for a long chain of
  14293. nested function calls.
  14294. A \emph{tail call}\index{subject}{tail call} is a function call that
  14295. happens as the last action in a function body. For example, in the
  14296. following program, the recursive call to \code{tail\_sum} is a tail
  14297. call:
  14298. \begin{center}
  14299. {\if\edition\racketEd
  14300. \begin{lstlisting}
  14301. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  14302. (if (eq? n 0)
  14303. r
  14304. (tail_sum (- n 1) (+ n r))))
  14305. (+ (tail_sum 3 0) 36)
  14306. \end{lstlisting}
  14307. \fi}
  14308. {\if\edition\pythonEd\pythonColor
  14309. \begin{lstlisting}
  14310. def tail_sum(n : int, r : int) -> int:
  14311. if n == 0:
  14312. return r
  14313. else:
  14314. return tail_sum(n - 1, n + r)
  14315. print(tail_sum(3, 0) + 36)
  14316. \end{lstlisting}
  14317. \fi}
  14318. \end{center}
  14319. At a tail call, the frame of the caller is no longer needed, so we can
  14320. pop the caller's frame before making the tail call. With this
  14321. approach, a recursive function that makes only tail calls ends up
  14322. using a constant amount of stack space. Functional languages like
  14323. Racket rely heavily on recursive functions, so the definition of
  14324. Racket \emph{requires} that all tail calls be optimized in this way.
  14325. \index{subject}{frame}
  14326. Some care is needed with regard to argument passing in tail calls. As
  14327. mentioned, for arguments beyond the sixth, the convention is to use
  14328. space in the caller's frame for passing arguments. However, for a
  14329. tail call we pop the caller's frame and can no longer use it. An
  14330. alternative is to use space in the callee's frame for passing
  14331. arguments. However, this option is also problematic because the caller
  14332. and callee's frames overlap in memory. As we begin to copy the
  14333. arguments from their sources in the caller's frame, the target
  14334. locations in the callee's frame might collide with the sources for
  14335. later arguments! We solve this problem by using the heap instead of
  14336. the stack for passing more than six arguments
  14337. (section~\ref{sec:limit-functions-r4}).
  14338. As mentioned, for a tail call we pop the caller's frame prior to
  14339. making the tail call. The instructions for popping a frame are the
  14340. instructions that we usually place in the conclusion of a
  14341. function. Thus, we also need to place such code immediately before
  14342. each tail call. These instructions include restoring the callee-saved
  14343. registers, so it is fortunate that the argument passing registers are
  14344. all caller-saved registers.
  14345. One note remains regarding which instruction to use to make the tail
  14346. call. When the callee is finished, it should not return to the current
  14347. function but instead return to the function that called the current
  14348. one. Thus, the return address that is already on the stack is the
  14349. right one, and we should not use \key{callq} to make the tail call
  14350. because that would overwrite the return address. Instead we simply use
  14351. the \key{jmp} instruction. As with the indirect function call, we write
  14352. an \emph{indirect jump}\index{subject}{indirect jump} with a register
  14353. prefixed with an asterisk. We recommend using \code{rax} to hold the
  14354. jump target because the conclusion can overwrite just about everything
  14355. else.
  14356. \begin{lstlisting}
  14357. jmp *%rax
  14358. \end{lstlisting}
  14359. \section{Shrink \LangFun{}}
  14360. \label{sec:shrink-r4}
  14361. The \code{shrink} pass performs a minor modification to ease the
  14362. later passes. This pass introduces an explicit \code{main} function
  14363. that gobbles up all the top-level statements of the module.
  14364. %
  14365. \racket{It also changes the top \code{ProgramDefsExp} form to
  14366. \code{ProgramDefs}.}
  14367. {\if\edition\racketEd
  14368. \begin{lstlisting}
  14369. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  14370. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  14371. \end{lstlisting}
  14372. where $\itm{mainDef}$ is
  14373. \begin{lstlisting}
  14374. (Def 'main '() 'Integer '() |$\Exp'$|)
  14375. \end{lstlisting}
  14376. \fi}
  14377. {\if\edition\pythonEd\pythonColor
  14378. \begin{lstlisting}
  14379. Module(|$\Def\ldots\Stmt\ldots$|)
  14380. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  14381. \end{lstlisting}
  14382. where $\itm{mainDef}$ is
  14383. \begin{lstlisting}
  14384. FunctionDef('main', [], int, None, |$\Stmt\ldots$|Return(Constant(0)), None)
  14385. \end{lstlisting}
  14386. \fi}
  14387. \section{Reveal Functions and the \LangFunRef{} Language}
  14388. \label{sec:reveal-functions-r4}
  14389. The syntax of \LangFun{} is inconvenient for purposes of compilation
  14390. in that it conflates the use of function names and local
  14391. variables. This is a problem because we need to compile the use of a
  14392. function name differently from the use of a local variable. In
  14393. particular, we use \code{leaq} to convert the function name (a label
  14394. in x86) to an address in a register. Thus, we create a new pass that
  14395. changes function references from $\VAR{f}$ to $\FUNREF{f}{n}$ where
  14396. $n$ is the arity of the function.\python{\footnote{The arity is not
  14397. needed in this chapter but is used in chapter~\ref{ch:Ldyn}.}}
  14398. This pass is named \code{reveal\_functions} and the output language
  14399. is \LangFunRef{}.
  14400. %is defined in figure~\ref{fig:f1-syntax}.
  14401. %% The concrete syntax for a
  14402. %% function reference is $\CFUNREF{f}$.
  14403. %% \begin{figure}[tp]
  14404. %% \centering
  14405. %% \fbox{
  14406. %% \begin{minipage}{0.96\textwidth}
  14407. %% {\if\edition\racketEd
  14408. %% \[
  14409. %% \begin{array}{lcl}
  14410. %% \Exp &::=& \ldots \MID \FUNREF{\Var}{\Int}\\
  14411. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14412. %% \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  14413. %% \end{array}
  14414. %% \]
  14415. %% \fi}
  14416. %% {\if\edition\pythonEd\pythonColor
  14417. %% \[
  14418. %% \begin{array}{lcl}
  14419. %% \Exp &::=& \FUNREF{\Var}{\Int}\\
  14420. %% \LangFunRefM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  14421. %% \end{array}
  14422. %% \]
  14423. %% \fi}
  14424. %% \end{minipage}
  14425. %% }
  14426. %% \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  14427. %% (figure~\ref{fig:Lfun-syntax}).}
  14428. %% \label{fig:f1-syntax}
  14429. %% \end{figure}
  14430. %% Distinguishing between calls in tail position and non-tail position
  14431. %% requires the pass to have some notion of context. We recommend using
  14432. %% two mutually recursive functions, one for processing expressions in
  14433. %% tail position and another for the rest.
  14434. \racket{Placing this pass after \code{uniquify} will make sure that
  14435. there are no local variables and functions that share the same
  14436. name.}
  14437. %
  14438. The \code{reveal\_functions} pass should come before the
  14439. \code{remove\_complex\_operands} pass because function references
  14440. should be categorized as complex expressions.
  14441. \section{Limit Functions}
  14442. \label{sec:limit-functions-r4}
  14443. Recall that we wish to limit the number of function parameters to six
  14444. so that we do not need to use the stack for argument passing, which
  14445. makes it easier to implement efficient tail calls. However, because
  14446. the input language \LangFun{} supports arbitrary numbers of function
  14447. arguments, we have some work to do! The \code{limit\_functions} pass
  14448. transforms functions and function calls that involve more than six
  14449. arguments to pass the first five arguments as usual, but it packs the
  14450. rest of the arguments into a tuple and passes it as the sixth
  14451. argument.\footnote{The implementation this pass can be postponed to
  14452. last because you can test the rest of the passes on functions with
  14453. six or fewer parameters.}
  14454. Each function definition with seven or more parameters is transformed as
  14455. follows:
  14456. {\if\edition\racketEd
  14457. \begin{lstlisting}
  14458. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  14459. |$\Rightarrow$|
  14460. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  14461. \end{lstlisting}
  14462. \fi}
  14463. {\if\edition\pythonEd\pythonColor
  14464. \begin{lstlisting}
  14465. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, None, |$\itm{body}$|, None)
  14466. |$\Rightarrow$|
  14467. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))],
  14468. |$T_r$|, None, |$\itm{body}'$|, None)
  14469. \end{lstlisting}
  14470. \fi}
  14471. %
  14472. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  14473. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  14474. the $k$th element of the tuple, where $k = i - 6$.
  14475. %
  14476. {\if\edition\racketEd
  14477. \begin{lstlisting}
  14478. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  14479. \end{lstlisting}
  14480. \fi}
  14481. {\if\edition\pythonEd\pythonColor
  14482. \begin{lstlisting}
  14483. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|), Load())
  14484. \end{lstlisting}
  14485. \fi}
  14486. For function calls with too many arguments, the \code{limit\_functions}
  14487. pass transforms them in the following way:
  14488. \begin{tabular}{lll}
  14489. \begin{minipage}{0.3\textwidth}
  14490. {\if\edition\racketEd
  14491. \begin{lstlisting}
  14492. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  14493. \end{lstlisting}
  14494. \fi}
  14495. {\if\edition\pythonEd\pythonColor
  14496. \begin{lstlisting}
  14497. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  14498. \end{lstlisting}
  14499. \fi}
  14500. \end{minipage}
  14501. &
  14502. $\Rightarrow$
  14503. &
  14504. \begin{minipage}{0.5\textwidth}
  14505. {\if\edition\racketEd
  14506. \begin{lstlisting}
  14507. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  14508. \end{lstlisting}
  14509. \fi}
  14510. {\if\edition\pythonEd\pythonColor
  14511. \begin{lstlisting}
  14512. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  14513. \end{lstlisting}
  14514. \fi}
  14515. \end{minipage}
  14516. \end{tabular}
  14517. \section{Remove Complex Operands}
  14518. \label{sec:rco-r4}
  14519. The primary decisions to make for this pass are whether to classify
  14520. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  14521. atomic or complex expressions. Recall that an atomic expression
  14522. ends up as an immediate argument of an x86 instruction. Function
  14523. application translates to a sequence of instructions, so
  14524. \racket{\code{Apply}}\python{\code{Call}} must be classified as
  14525. a complex expression. On the other hand, the arguments of
  14526. \racket{\code{Apply}}\python{\code{Call}} should be atomic
  14527. expressions.
  14528. %
  14529. Regarding \code{FunRef}, as discussed previously, the function label
  14530. needs to be converted to an address using the \code{leaq}
  14531. instruction. Thus, even though \code{FunRef} seems rather simple, it
  14532. needs to be classified as a complex expression so that we generate an
  14533. assignment statement with a left-hand side that can serve as the
  14534. target of the \code{leaq}.
  14535. The output of this pass, \LangFunANF{} (figure~\ref{fig:Lfun-anf-syntax}),
  14536. extends \LangAllocANF{} (figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  14537. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions
  14538. and augments programs to include a list of function definitions.
  14539. %
  14540. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  14541. \newcommand{\LfunMonadASTRacket}{
  14542. \begin{array}{lcl}
  14543. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  14544. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14545. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  14546. \end{array}
  14547. }
  14548. \newcommand{\LfunMonadASTPython}{
  14549. \begin{array}{lcl}
  14550. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  14551. \MID \key{TupleType}\LS\Type^+\RS\\
  14552. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  14553. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}}\\
  14554. \Stmt &::=& \RETURN{\Exp} \\
  14555. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  14556. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  14557. \end{array}
  14558. }
  14559. \begin{figure}[tp]
  14560. \centering
  14561. \begin{tcolorbox}[colback=white]
  14562. \small
  14563. {\if\edition\racketEd
  14564. \[
  14565. \begin{array}{l}
  14566. \gray{\LvarMonadASTRacket} \\ \hline
  14567. \gray{\LifMonadASTRacket} \\ \hline
  14568. \gray{\LwhileMonadASTRacket} \\ \hline
  14569. \gray{\LtupMonadASTRacket} \\ \hline
  14570. \LfunMonadASTRacket \\
  14571. \begin{array}{rcl}
  14572. \LangFunANFM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  14573. \end{array}
  14574. \end{array}
  14575. \]
  14576. \fi}
  14577. {\if\edition\pythonEd\pythonColor
  14578. \[
  14579. \begin{array}{l}
  14580. \gray{\LvarMonadASTPython} \\ \hline
  14581. \gray{\LifMonadASTPython} \\ \hline
  14582. \gray{\LwhileMonadASTPython} \\ \hline
  14583. \gray{\LtupMonadASTPython} \\ \hline
  14584. \LfunMonadASTPython \\
  14585. \begin{array}{rcl}
  14586. \LangFunANFM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  14587. \end{array}
  14588. \end{array}
  14589. \]
  14590. \fi}
  14591. \end{tcolorbox}
  14592. \caption{\LangFunANF{} is \LangFunRef{} in monadic normal form.}
  14593. \label{fig:Lfun-anf-syntax}
  14594. \end{figure}
  14595. %% Figure~\ref{fig:Lfun-anf-syntax} defines the output language
  14596. %% \LangFunANF{} of this pass.
  14597. %% \begin{figure}[tp]
  14598. %% \centering
  14599. %% \fbox{
  14600. %% \begin{minipage}{0.96\textwidth}
  14601. %% \small
  14602. %% \[
  14603. %% \begin{array}{rcl}
  14604. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  14605. %% \MID \VOID{} } \\
  14606. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  14607. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  14608. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  14609. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  14610. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  14611. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  14612. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  14613. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14614. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14615. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  14616. %% \end{array}
  14617. %% \]
  14618. %% \end{minipage}
  14619. %% }
  14620. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  14621. %% \label{fig:Lfun-anf-syntax}
  14622. %% \end{figure}
  14623. \section{Explicate Control and the \LangCFun{} Language}
  14624. \label{sec:explicate-control-r4}
  14625. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  14626. output of \code{explicate\_control}.
  14627. %
  14628. %% \racket{(The concrete syntax is given in
  14629. %% figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  14630. %
  14631. The auxiliary functions for assignment\racket{ and tail contexts} should
  14632. be updated with cases for
  14633. \racket{\code{Apply}}\python{\code{Call}} and \code{FunRef} and the
  14634. function for predicate context should be updated for
  14635. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  14636. \code{FunRef} cannot be a Boolean.) In assignment and predicate
  14637. contexts, \code{Apply} becomes \code{Call}\racket{, whereas in tail position
  14638. \code{Apply} becomes \code{TailCall}}. We recommend defining a new
  14639. auxiliary function for processing function definitions. This code is
  14640. similar to the case for \code{Program} in \LangVec{}. The top-level
  14641. \code{explicate\_control} function that handles the \code{ProgramDefs}
  14642. form of \LangFun{} can then apply this new function to all the
  14643. function definitions.
  14644. {\if\edition\pythonEd\pythonColor
  14645. The translation of \code{Return} statements requires a new auxiliary
  14646. function to handle expressions in tail context, called
  14647. \code{explicate\_tail}. The function should take an expression and the
  14648. dictionary of basic blocks and produce a list of statements in the
  14649. \LangCFun{} language. The \code{explicate\_tail} function should
  14650. include cases for \code{Begin}, \code{IfExp}, and \code{Call},
  14651. and a default case for other kinds of expressions. The default case
  14652. should produce a \code{Return} statement. The case for \code{Call}
  14653. should change it into \code{TailCall}. The other cases should
  14654. recursively process their subexpressions and statements, choosing the
  14655. appropriate explicate functions for the various contexts.
  14656. \fi}
  14657. \newcommand{\CfunASTRacket}{
  14658. \begin{array}{lcl}
  14659. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  14660. \Tail &::= & \TAILCALL{\Atm}{\Atm\ldots} \\
  14661. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  14662. \end{array}
  14663. }
  14664. \newcommand{\CfunASTPython}{
  14665. \begin{array}{lcl}
  14666. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}} \\
  14667. \Tail &::= & \TAILCALL{\Atm}{\Atm^{*}} \\
  14668. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  14669. \Block &::=& \itm{label}\key{:} \Stmt^{*}\;\Tail \\
  14670. \Blocks &::=& \LC\Block\code{,}\ldots\RC \\
  14671. \Def &::=& \DEF{\itm{label}}{\Params}{\Blocks}{\key{None}}{\Type}{\key{None}}
  14672. \end{array}
  14673. }
  14674. \begin{figure}[tp]
  14675. \begin{tcolorbox}[colback=white]
  14676. \small
  14677. {\if\edition\racketEd
  14678. \[
  14679. \begin{array}{l}
  14680. \gray{\CvarASTRacket} \\ \hline
  14681. \gray{\CifASTRacket} \\ \hline
  14682. \gray{\CloopASTRacket} \\ \hline
  14683. \gray{\CtupASTRacket} \\ \hline
  14684. \CfunASTRacket \\
  14685. \begin{array}{lcl}
  14686. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14687. \end{array}
  14688. \end{array}
  14689. \]
  14690. \fi}
  14691. {\if\edition\pythonEd\pythonColor
  14692. \[
  14693. \begin{array}{l}
  14694. \gray{\CifASTPython} \\ \hline
  14695. \gray{\CtupASTPython} \\ \hline
  14696. \CfunASTPython \\
  14697. \begin{array}{lcl}
  14698. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14699. \end{array}
  14700. \end{array}
  14701. \]
  14702. \fi}
  14703. \end{tcolorbox}
  14704. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  14705. \label{fig:c3-syntax}
  14706. \end{figure}
  14707. \clearpage
  14708. \section{Select Instructions and the \LangXIndCall{} Language}
  14709. \label{sec:select-r4}
  14710. \index{subject}{select instructions}
  14711. The output of select instructions is a program in the \LangXIndCall{}
  14712. language; the definition of its concrete syntax is shown in
  14713. figure~\ref{fig:x86-3-concrete}, and the definition of its abstract
  14714. syntax is shown in figure~\ref{fig:x86-3}. We use the \code{align}
  14715. directive on the labels of function definitions to make sure the
  14716. bottom three bits are zero, which we put to use in
  14717. chapter~\ref{ch:Ldyn}. We discuss the new instructions as needed in
  14718. this section. \index{subject}{x86}
  14719. \newcommand{\GrammarXIndCall}{
  14720. \begin{array}{lcl}
  14721. \Instr &::=& \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  14722. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  14723. \Block &::= & \Instr^{+} \\
  14724. \Def &::= & \code{.globl}\,\code{.align 8}\,\itm{label}\; (\itm{label}\key{:}\, \Block)^{*}
  14725. \end{array}
  14726. }
  14727. \newcommand{\ASTXIndCallRacket}{
  14728. \begin{array}{lcl}
  14729. \Instr &::=& \INDCALLQ{\Arg}{\itm{int}}
  14730. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14731. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  14732. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  14733. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP}
  14734. \end{array}
  14735. }
  14736. \begin{figure}[tp]
  14737. \begin{tcolorbox}[colback=white]
  14738. \small
  14739. \[
  14740. \begin{array}{l}
  14741. \gray{\GrammarXInt} \\ \hline
  14742. \gray{\GrammarXIf} \\ \hline
  14743. \gray{\GrammarXGlobal} \\ \hline
  14744. \GrammarXIndCall \\
  14745. \begin{array}{lcl}
  14746. \LangXIndCallM{} &::= & \Def^{*}
  14747. \end{array}
  14748. \end{array}
  14749. \]
  14750. \end{tcolorbox}
  14751. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of figure~\ref{fig:x86-2-concrete}).}
  14752. \label{fig:x86-3-concrete}
  14753. \end{figure}
  14754. \begin{figure}[tp]
  14755. \begin{tcolorbox}[colback=white]
  14756. \small
  14757. {\if\edition\racketEd
  14758. \[\arraycolsep=3pt
  14759. \begin{array}{l}
  14760. \gray{\ASTXIntRacket} \\ \hline
  14761. \gray{\ASTXIfRacket} \\ \hline
  14762. \gray{\ASTXGlobalRacket} \\ \hline
  14763. \ASTXIndCallRacket \\
  14764. \begin{array}{lcl}
  14765. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14766. \end{array}
  14767. \end{array}
  14768. \]
  14769. \fi}
  14770. {\if\edition\pythonEd\pythonColor
  14771. \[
  14772. \begin{array}{lcl}
  14773. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  14774. \MID \BYTEREG{\Reg} } \\
  14775. &\MID& \gray{ \GLOBAL{\itm{label}} } \MID \FUNREF{\itm{label}}{\Int} \\
  14776. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  14777. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14778. &\MID& \BININSTR{\scode{leaq}}{\Arg}{\REG{\Reg}}\\
  14779. \Block &::=&\itm{label}\key{:}\,\Instr^{*} \\
  14780. \Blocks &::= & \LC\Block\code{,}\ldots\RC\\
  14781. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\Blocks}{\_}{\Type}{\_} \\
  14782. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14783. \end{array}
  14784. \]
  14785. \fi}
  14786. \end{tcolorbox}
  14787. \caption{The abstract syntax of \LangXIndCall{} (extends
  14788. \LangXGlobal{} of figure~\ref{fig:x86-2}).}
  14789. \label{fig:x86-3}
  14790. \end{figure}
  14791. An assignment of a function reference to a variable becomes a
  14792. load-effective-address instruction as follows, where $\itm{lhs}'$ is
  14793. the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{} to \Arg{} in
  14794. \LangXIndCallVar{}. The \code{FunRef} becomes a \code{Global} AST
  14795. node, whose concrete syntax is instruction-pointer-relative
  14796. addressing.
  14797. \begin{center}
  14798. \begin{tabular}{lcl}
  14799. \begin{minipage}{0.35\textwidth}
  14800. {\if\edition\racketEd
  14801. \begin{lstlisting}
  14802. |$\itm{lhs}$| = (fun-ref |$f$| |$n$|);
  14803. \end{lstlisting}
  14804. \fi}
  14805. {\if\edition\pythonEd\pythonColor
  14806. \begin{lstlisting}
  14807. |$\itm{lhs}$| = FunRef(|$f$| |$n$|);
  14808. \end{lstlisting}
  14809. \fi}
  14810. \end{minipage}
  14811. &
  14812. $\Rightarrow$\qquad\qquad
  14813. &
  14814. \begin{minipage}{0.3\textwidth}
  14815. \begin{lstlisting}
  14816. leaq |$f$|(%rip), |$\itm{lhs}'$|
  14817. \end{lstlisting}
  14818. \end{minipage}
  14819. \end{tabular}
  14820. \end{center}
  14821. Regarding function definitions, we need to remove the parameters and
  14822. instead perform parameter passing using the conventions discussed in
  14823. section~\ref{sec:fun-x86}. That is, the arguments are passed in
  14824. registers. We recommend turning the parameters into local variables
  14825. and generating instructions at the beginning of the function to move
  14826. from the argument-passing registers
  14827. (section~\ref{sec:calling-conventions-fun}) to these local variables.
  14828. {\if\edition\racketEd
  14829. \begin{lstlisting}
  14830. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  14831. |$\Rightarrow$|
  14832. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  14833. \end{lstlisting}
  14834. \fi}
  14835. {\if\edition\pythonEd\pythonColor
  14836. \begin{lstlisting}
  14837. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  14838. |$\Rightarrow$|
  14839. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  14840. \end{lstlisting}
  14841. \fi}
  14842. The basic blocks $B'$ are the same as $B$ except that the
  14843. \code{start} block is modified to add the instructions for moving from
  14844. the argument registers to the parameter variables. So the \code{start}
  14845. block of $B$ shown on the left of the following is changed to the code
  14846. on the right:
  14847. \begin{center}
  14848. \begin{minipage}{0.3\textwidth}
  14849. \begin{lstlisting}
  14850. start:
  14851. |$\itm{instr}_1$|
  14852. |$\cdots$|
  14853. |$\itm{instr}_n$|
  14854. \end{lstlisting}
  14855. \end{minipage}
  14856. $\Rightarrow$
  14857. \begin{minipage}{0.3\textwidth}
  14858. \begin{lstlisting}
  14859. |$f$|start:
  14860. movq %rdi, |$x_1$|
  14861. movq %rsi, |$x_2$|
  14862. |$\cdots$|
  14863. |$\itm{instr}_1$|
  14864. |$\cdots$|
  14865. |$\itm{instr}_n$|
  14866. \end{lstlisting}
  14867. \end{minipage}
  14868. \end{center}
  14869. Recall that we use the label \code{start} for the initial block of a
  14870. program, and in section~\ref{sec:select-Lvar} we recommend labeling
  14871. the conclusion of the program with \code{conclusion}, so that
  14872. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  14873. by a jump to \code{conclusion}. With the addition of function
  14874. definitions, there is a start block and conclusion for each function,
  14875. but their labels need to be unique. We recommend prepending the
  14876. function's name to \code{start} and \code{conclusion}, respectively,
  14877. to obtain unique labels.
  14878. \racket{The interpreter for \LangXIndCall{} needs to be given the
  14879. number of parameters the function expects, but the parameters are no
  14880. longer in the syntax of function definitions. Instead, add an entry
  14881. to $\itm{info}$ that maps \code{num-params} to the number of
  14882. parameters to construct $\itm{info}'$.}
  14883. By changing the parameters to local variables, we are giving the
  14884. register allocator control over which registers or stack locations to
  14885. use for them. If you implement the move-biasing challenge
  14886. (section~\ref{sec:move-biasing}), the register allocator will try to
  14887. assign the parameter variables to the corresponding argument register,
  14888. in which case the \code{patch\_instructions} pass will remove the
  14889. \code{movq} instruction. This happens in the example translation given
  14890. in figure~\ref{fig:add-fun} in section~\ref{sec:functions-example}, in
  14891. the \code{add} function.
  14892. %
  14893. Also, note that the register allocator will perform liveness analysis
  14894. on this sequence of move instructions and build the interference
  14895. graph. So, for example, $x_1$ will be marked as interfering with
  14896. \code{rsi}, and that will prevent the mapping of $x_1$ to \code{rsi},
  14897. which is good because otherwise the first \code{movq} would overwrite
  14898. the argument in \code{rsi} that is needed for $x_2$.
  14899. Next, consider the compilation of function calls. In the mirror image
  14900. of the handling of parameters in function definitions, the arguments
  14901. are moved to the argument-passing registers. Note that the function
  14902. is not given as a label, but its address is produced by the argument
  14903. $\itm{arg}_0$. So, we translate the call into an indirect function
  14904. call. The return value from the function is stored in \code{rax}, so
  14905. it needs to be moved into the \itm{lhs}.
  14906. \begin{lstlisting}
  14907. |\itm{lhs}| = |$\CALL{\itm{arg}_0}{\itm{arg}_1~\itm{arg}_2 \ldots}$|
  14908. |$\Rightarrow$|
  14909. movq |$\itm{arg}_1$|, %rdi
  14910. movq |$\itm{arg}_2$|, %rsi
  14911. |$\vdots$|
  14912. callq *|$\itm{arg}_0$|
  14913. movq %rax, |$\itm{lhs}$|
  14914. \end{lstlisting}
  14915. The \code{IndirectCallq} AST node includes an integer for the arity of
  14916. the function, that is, the number of parameters. That information is
  14917. useful in the \code{uncover\_live} pass for determining which
  14918. argument-passing registers are potentially read during the call.
  14919. For tail calls, the parameter passing is the same as non-tail calls:
  14920. generate instructions to move the arguments into the argument-passing
  14921. registers. After that we need to pop the frame from the procedure
  14922. call stack. However, we do not yet know how big the frame is; that
  14923. gets determined during register allocation. So, instead of generating
  14924. those instructions here, we invent a new instruction that means ``pop
  14925. the frame and then do an indirect jump,'' which we name
  14926. \code{TailJmp}. The abstract syntax for this instruction includes an
  14927. argument that specifies where to jump and an integer that represents
  14928. the arity of the function being called.
  14929. \section{Register Allocation}
  14930. \label{sec:register-allocation-r4}
  14931. The addition of functions requires some changes to all three aspects
  14932. of register allocation, which we discuss in the following subsections.
  14933. \subsection{Liveness Analysis}
  14934. \label{sec:liveness-analysis-r4}
  14935. \index{subject}{liveness analysis}
  14936. %% The rest of the passes need only minor modifications to handle the new
  14937. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  14938. %% \code{leaq}.
  14939. The \code{IndirectCallq} instruction should be treated like
  14940. \code{Callq} regarding its written locations $W$, in that they should
  14941. include all the caller-saved registers. Recall that the reason for
  14942. that is to force variables that are live across a function call to be assigned to callee-saved
  14943. registers or to be spilled to the stack.
  14944. Regarding the set of read locations $R$, the arity fields of
  14945. \code{TailJmp} and \code{IndirectCallq} determine how many of the
  14946. argument-passing registers should be considered as read by those
  14947. instructions. Also, the target field of \code{TailJmp} and
  14948. \code{IndirectCallq} should be included in the set of read locations
  14949. $R$.
  14950. \subsection{Build Interference Graph}
  14951. \label{sec:build-interference-r4}
  14952. With the addition of function definitions, we compute a separate interference
  14953. graph for each function (not just one for the whole program).
  14954. Recall that in section~\ref{sec:reg-alloc-gc} we discussed the need to
  14955. spill tuple-typed variables that are live during a call to
  14956. \code{collect}, the garbage collector. With the addition of functions
  14957. to our language, we need to revisit this issue. Functions that perform
  14958. allocation contain calls to the collector. Thus, we should not only
  14959. spill a tuple-typed variable when it is live during a call to
  14960. \code{collect}, but we should spill the variable if it is live during
  14961. a call to any user-defined function. Thus, in the
  14962. \code{build\_interference} pass, we recommend adding interference
  14963. edges between call-live tuple-typed variables and the callee-saved
  14964. registers (in addition to creating edges between
  14965. call-live variables and the caller-saved registers).
  14966. \subsection{Allocate Registers}
  14967. The primary change to the \code{allocate\_registers} pass is adding an
  14968. auxiliary function for handling definitions (the \Def{} nonterminal
  14969. shown in figure~\ref{fig:x86-3}) with one case for function
  14970. definitions. The logic is the same as described in
  14971. chapter~\ref{ch:register-allocation-Lvar} except that now register
  14972. allocation is performed many times, once for each function definition,
  14973. instead of just once for the whole program.
  14974. \section{Patch Instructions}
  14975. In \code{patch\_instructions}, you should deal with the x86
  14976. idiosyncrasy that the destination argument of \code{leaq} must be a
  14977. register. Additionally, you should ensure that the argument of
  14978. \code{TailJmp} is \itm{rax}, our reserved register---because we
  14979. trample many other registers before the tail call, as explained in the
  14980. next section.
  14981. \section{Prelude and Conclusion}
  14982. Now that register allocation is complete, we can translate the
  14983. \code{TailJmp} into a sequence of instructions. A naive translation of
  14984. \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}. However,
  14985. before the jump we need to pop the current frame to achieve efficient
  14986. tail calls. This sequence of instructions is the same as the code for
  14987. the conclusion of a function, except that the \code{retq} is replaced with
  14988. \code{jmp *$\itm{arg}$}.
  14989. Regarding function definitions, we generate a prelude and conclusion
  14990. for each one. This code is similar to the prelude and conclusion
  14991. generated for the \code{main} function presented in
  14992. chapter~\ref{ch:Lvec}. To review, the prelude of every function should
  14993. carry out the following steps:
  14994. % TODO: .align the functions!
  14995. \begin{enumerate}
  14996. %% \item Start with \code{.global} and \code{.align} directives followed
  14997. %% by the label for the function. (See figure~\ref{fig:add-fun} for an
  14998. %% example.)
  14999. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  15000. pointer.
  15001. \item Push to the stack all the callee-saved registers that were
  15002. used for register allocation.
  15003. \item Move the stack pointer \code{rsp} down to make room for the
  15004. regular spills (aligned to 16 bytes).
  15005. \item Move the root stack pointer \code{r15} up by the size of the
  15006. root-stack frame for this function, which depends on the number of
  15007. spilled tuple-typed variables. \label{root-stack-init}
  15008. \item Initialize to zero all new entries in the root-stack frame.
  15009. \item Jump to the start block.
  15010. \end{enumerate}
  15011. The prelude of the \code{main} function has an additional task: call
  15012. the \code{initialize} function to set up the garbage collector, and
  15013. then move the value of the global \code{rootstack\_begin} in
  15014. \code{r15}. This initialization should happen before step
  15015. \ref{root-stack-init}, which depends on \code{r15}.
  15016. The conclusion of every function should do the following:
  15017. \begin{enumerate}
  15018. \item Move the stack pointer back up past the regular spills.
  15019. \item Restore the callee-saved registers by popping them from the
  15020. stack.
  15021. \item Move the root stack pointer back down by the size of the
  15022. root-stack frame for this function.
  15023. \item Restore \code{rbp} by popping it from the stack.
  15024. \item Return to the caller with the \code{retq} instruction.
  15025. \end{enumerate}
  15026. The output of this pass is \LangXIndCallFlat{}, which differs from
  15027. \LangXIndCall{} in that there is no longer an AST node for function
  15028. definitions. Instead, a program is just an association list of basic
  15029. blocks, as in \LangXGlobal{}. So we have the following grammar rule:
  15030. \[
  15031. \LangXIndCallFlatM{} ::= \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  15032. \]
  15033. Figure~\ref{fig:Lfun-passes} gives an overview of the passes for
  15034. compiling \LangFun{} to x86.
  15035. \begin{exercise}\normalfont\normalsize
  15036. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  15037. Create eight new programs that use functions including examples that
  15038. pass functions and return functions from other functions, recursive
  15039. functions, functions that create vectors, and functions that make tail
  15040. calls. Test your compiler on these new programs and all your
  15041. previously created test programs.
  15042. \end{exercise}
  15043. \begin{figure}[tbp]
  15044. \begin{tcolorbox}[colback=white]
  15045. {\if\edition\racketEd
  15046. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  15047. \node (Lfun) at (0,2) {\large \LangFun{}};
  15048. \node (Lfun-1) at (4,2) {\large \LangFun{}};
  15049. \node (Lfun-2) at (7,2) {\large \LangFun{}};
  15050. \node (F1-1) at (11,2) {\large \LangFunRef{}};
  15051. \node (F1-2) at (11,0) {\large \LangFunRef{}};
  15052. \node (F1-3) at (7,0) {\large \LangFunRefAlloc{}};
  15053. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  15054. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  15055. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  15056. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  15057. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  15058. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  15059. \node (x86-5) at (8,-6) {\large \LangXIndCallFlat{}};
  15060. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  15061. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  15062. \path[->,bend left=15] (Lfun) edge [above] node
  15063. {\ttfamily\footnotesize shrink} (Lfun-1);
  15064. \path[->,bend left=15] (Lfun-1) edge [above] node
  15065. {\ttfamily\footnotesize uniquify} (Lfun-2);
  15066. \path[->,bend left=15] (Lfun-2) edge [above] node
  15067. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  15068. \path[->,bend left=15] (F1-1) edge [left] node
  15069. {\ttfamily\footnotesize limit\_functions} (F1-2);
  15070. \path[->,bend left=15] (F1-2) edge [below] node
  15071. {\ttfamily\footnotesize expose\_allocation} (F1-3);
  15072. \path[->,bend left=15] (F1-3) edge [below] node
  15073. {\ttfamily\footnotesize uncover\_get!} (F1-4);
  15074. \path[->,bend right=15] (F1-4) edge [above] node
  15075. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  15076. \path[->,bend right=15] (F1-5) edge [right] node
  15077. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15078. \path[->,bend right=15] (C3-2) edge [right] node
  15079. {\ttfamily\footnotesize select\_instructions} (x86-2);
  15080. \path[->,bend left=15] (x86-2) edge [right] node
  15081. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  15082. \path[->,bend right=15] (x86-2-1) edge [below] node
  15083. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  15084. \path[->,bend right=15] (x86-2-2) edge [right] node
  15085. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  15086. \path[->,bend left=15] (x86-3) edge [above] node
  15087. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  15088. \path[->,bend right=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  15089. \end{tikzpicture}
  15090. \fi}
  15091. {\if\edition\pythonEd\pythonColor
  15092. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  15093. \node (Lfun) at (0,2) {\large \LangFun{}};
  15094. \node (Lfun-2) at (4,2) {\large \LangFun{}};
  15095. \node (F1-1) at (8,2) {\large \LangFunRef{}};
  15096. \node (F1-2) at (12,2) {\large \LangFunRef{}};
  15097. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  15098. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  15099. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  15100. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  15101. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  15102. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  15103. \node (x86-5) at (12,-4) {\large \LangXIndCallFlat{}};
  15104. \path[->,bend left=15] (Lfun) edge [above] node
  15105. {\ttfamily\footnotesize shrink} (Lfun-2);
  15106. \path[->,bend left=15] (Lfun-2) edge [above] node
  15107. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  15108. \path[->,bend left=15] (F1-1) edge [above] node
  15109. {\ttfamily\footnotesize limit\_functions} (F1-2);
  15110. \path[->,bend left=15] (F1-2) edge [right] node
  15111. {\ttfamily\footnotesize \ \ expose\_allocation} (F1-4);
  15112. \path[->,bend right=15] (F1-4) edge [above] node
  15113. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  15114. \path[->,bend right=15] (F1-5) edge [right] node
  15115. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15116. \path[->,bend left=15] (C3-2) edge [right] node
  15117. {\ttfamily\footnotesize select\_instructions} (x86-2);
  15118. \path[->,bend right=15] (x86-2) edge [below] node
  15119. {\ttfamily\footnotesize assign\_homes} (x86-3);
  15120. \path[->,bend left=15] (x86-3) edge [above] node
  15121. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  15122. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  15123. \end{tikzpicture}
  15124. \fi}
  15125. \end{tcolorbox}
  15126. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  15127. \label{fig:Lfun-passes}
  15128. \end{figure}
  15129. \section{An Example Translation}
  15130. \label{sec:functions-example}
  15131. Figure~\ref{fig:add-fun} shows an example translation of a simple
  15132. function in \LangFun{} to x86. The figure includes the results of
  15133. \code{explicate\_control} and \code{select\_instructions}.
  15134. \begin{figure}[hbtp]
  15135. \begin{tcolorbox}[colback=white]
  15136. \begin{tabular}{ll}
  15137. \begin{minipage}{0.4\textwidth}
  15138. % s3_2.rkt
  15139. {\if\edition\racketEd
  15140. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15141. (define (add [x : Integer]
  15142. [y : Integer])
  15143. : Integer
  15144. (+ x y))
  15145. (add 40 2)
  15146. \end{lstlisting}
  15147. \fi}
  15148. {\if\edition\pythonEd\pythonColor
  15149. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15150. def add(x:int, y:int) -> int:
  15151. return x + y
  15152. print(add(40, 2))
  15153. \end{lstlisting}
  15154. \fi}
  15155. $\Downarrow$
  15156. {\if\edition\racketEd
  15157. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15158. (define (add86 [x87 : Integer]
  15159. [y88 : Integer])
  15160. : Integer
  15161. add86start:
  15162. return (+ x87 y88);
  15163. )
  15164. (define (main) : Integer ()
  15165. mainstart:
  15166. tmp89 = (fun-ref add86 2);
  15167. (tail-call tmp89 40 2)
  15168. )
  15169. \end{lstlisting}
  15170. \fi}
  15171. {\if\edition\pythonEd\pythonColor
  15172. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15173. def add(x:int, y:int) -> int:
  15174. addstart:
  15175. return x + y
  15176. def main() -> int:
  15177. mainstart:
  15178. fun.0 = add
  15179. tmp.1 = fun.0(40, 2)
  15180. print(tmp.1)
  15181. return 0
  15182. \end{lstlisting}
  15183. \fi}
  15184. \end{minipage}
  15185. &
  15186. $\Rightarrow$
  15187. \begin{minipage}{0.5\textwidth}
  15188. {\if\edition\racketEd
  15189. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15190. (define (add86) : Integer
  15191. add86start:
  15192. movq %rdi, x87
  15193. movq %rsi, y88
  15194. movq x87, %rax
  15195. addq y88, %rax
  15196. jmp inc1389conclusion
  15197. )
  15198. (define (main) : Integer
  15199. mainstart:
  15200. leaq (fun-ref add86 2), tmp89
  15201. movq $40, %rdi
  15202. movq $2, %rsi
  15203. tail-jmp tmp89
  15204. )
  15205. \end{lstlisting}
  15206. \fi}
  15207. {\if\edition\pythonEd\pythonColor
  15208. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15209. def add() -> int:
  15210. addstart:
  15211. movq %rdi, x
  15212. movq %rsi, y
  15213. movq x, %rax
  15214. addq y, %rax
  15215. jmp addconclusion
  15216. def main() -> int:
  15217. mainstart:
  15218. leaq add, fun.0
  15219. movq $40, %rdi
  15220. movq $2, %rsi
  15221. callq *fun.0
  15222. movq %rax, tmp.1
  15223. movq tmp.1, %rdi
  15224. callq print_int
  15225. movq $0, %rax
  15226. jmp mainconclusion
  15227. \end{lstlisting}
  15228. \fi}
  15229. $\Downarrow$
  15230. \end{minipage}
  15231. \end{tabular}
  15232. \begin{tabular}{ll}
  15233. \begin{minipage}{0.3\textwidth}
  15234. {\if\edition\racketEd
  15235. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15236. .globl add86
  15237. .align 8
  15238. add86:
  15239. pushq %rbp
  15240. movq %rsp, %rbp
  15241. jmp add86start
  15242. add86start:
  15243. movq %rdi, %rax
  15244. addq %rsi, %rax
  15245. jmp add86conclusion
  15246. add86conclusion:
  15247. popq %rbp
  15248. retq
  15249. \end{lstlisting}
  15250. \fi}
  15251. {\if\edition\pythonEd\pythonColor
  15252. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15253. .align 8
  15254. add:
  15255. pushq %rbp
  15256. movq %rsp, %rbp
  15257. subq $0, %rsp
  15258. jmp addstart
  15259. addstart:
  15260. movq %rdi, %rdx
  15261. movq %rsi, %rcx
  15262. movq %rdx, %rax
  15263. addq %rcx, %rax
  15264. jmp addconclusion
  15265. addconclusion:
  15266. subq $0, %r15
  15267. addq $0, %rsp
  15268. popq %rbp
  15269. retq
  15270. \end{lstlisting}
  15271. \fi}
  15272. \end{minipage}
  15273. &
  15274. \begin{minipage}{0.5\textwidth}
  15275. {\if\edition\racketEd
  15276. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15277. .globl main
  15278. .align 8
  15279. main:
  15280. pushq %rbp
  15281. movq %rsp, %rbp
  15282. movq $16384, %rdi
  15283. movq $16384, %rsi
  15284. callq initialize
  15285. movq rootstack_begin(%rip), %r15
  15286. jmp mainstart
  15287. mainstart:
  15288. leaq add86(%rip), %rcx
  15289. movq $40, %rdi
  15290. movq $2, %rsi
  15291. movq %rcx, %rax
  15292. popq %rbp
  15293. jmp *%rax
  15294. mainconclusion:
  15295. popq %rbp
  15296. retq
  15297. \end{lstlisting}
  15298. \fi}
  15299. {\if\edition\pythonEd\pythonColor
  15300. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15301. .globl main
  15302. .align 8
  15303. main:
  15304. pushq %rbp
  15305. movq %rsp, %rbp
  15306. subq $0, %rsp
  15307. movq $65536, %rdi
  15308. movq $65536, %rsi
  15309. callq initialize
  15310. movq rootstack_begin(%rip), %r15
  15311. jmp mainstart
  15312. mainstart:
  15313. leaq add(%rip), %rcx
  15314. movq $40, %rdi
  15315. movq $2, %rsi
  15316. callq *%rcx
  15317. movq %rax, %rcx
  15318. movq %rcx, %rdi
  15319. callq print_int
  15320. movq $0, %rax
  15321. jmp mainconclusion
  15322. mainconclusion:
  15323. subq $0, %r15
  15324. addq $0, %rsp
  15325. popq %rbp
  15326. retq
  15327. \end{lstlisting}
  15328. \fi}
  15329. \end{minipage}
  15330. \end{tabular}
  15331. \end{tcolorbox}
  15332. \caption{Example compilation of a simple function to x86.}
  15333. \label{fig:add-fun}
  15334. \end{figure}
  15335. % Challenge idea: inlining! (simple version)
  15336. % Further Reading
  15337. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15338. \chapter{Lexically Scoped Functions}
  15339. \label{ch:Llambda}
  15340. \setcounter{footnote}{0}
  15341. This chapter studies lexically scoped functions. Lexical
  15342. scoping\index{subject}{lexical scoping} means that a function's body
  15343. may refer to variables whose binding site is outside of the function,
  15344. in an enclosing scope.
  15345. %
  15346. Consider the example shown in figure~\ref{fig:lexical-scoping} written
  15347. in \LangLam{}, which extends \LangFun{} with the
  15348. \key{lambda}\index{subject}{lambda} form for creating lexically scoped
  15349. functions. The body of the \key{lambda} refers to three variables:
  15350. \code{x}, \code{y}, and \code{z}. The binding sites for \code{x} and
  15351. \code{y} are outside of the \key{lambda}. Variable \code{y} is
  15352. \racket{bound by the enclosing \key{let}}\python{a local variable of
  15353. function \code{f}}, and \code{x} is a parameter of function
  15354. \code{f}. Note that function \code{f} returns the \key{lambda} as its
  15355. result value. The main expression of the program includes two calls to
  15356. \code{f} with different arguments for \code{x}: first \code{5} and
  15357. then \code{3}. The functions returned from \code{f} are bound to
  15358. variables \code{g} and \code{h}. Even though these two functions were
  15359. created by the same \code{lambda}, they are really different functions
  15360. because they use different values for \code{x}. Applying \code{g} to
  15361. \code{11} produces \code{20} whereas applying \code{h} to \code{15}
  15362. produces \code{22}, so the result of the program is \code{42}.
  15363. \begin{figure}[btp]
  15364. \begin{tcolorbox}[colback=white]
  15365. {\if\edition\racketEd
  15366. % lambda_test_21.rkt
  15367. \begin{lstlisting}
  15368. (define (f [x : Integer]) : (Integer -> Integer)
  15369. (let ([y 4])
  15370. (lambda: ([z : Integer]) : Integer
  15371. (+ x (+ y z)))))
  15372. (let ([g (f 5)])
  15373. (let ([h (f 3)])
  15374. (+ (g 11) (h 15))))
  15375. \end{lstlisting}
  15376. \fi}
  15377. {\if\edition\pythonEd\pythonColor
  15378. \begin{lstlisting}
  15379. def f(x : int) -> Callable[[int], int]:
  15380. y = 4
  15381. return lambda z: x + y + z
  15382. g = f(5)
  15383. h = f(3)
  15384. print(g(11) + h(15))
  15385. \end{lstlisting}
  15386. \fi}
  15387. \end{tcolorbox}
  15388. \caption{Example of a lexically scoped function.}
  15389. \label{fig:lexical-scoping}
  15390. \end{figure}
  15391. The approach that we take for implementing lexically scoped functions
  15392. is to compile them into top-level function definitions, translating
  15393. from \LangLam{} into \LangFun{}. However, the compiler must give
  15394. special treatment to variable occurrences such as \code{x} and
  15395. \code{y} in the body of the \code{lambda} shown in
  15396. figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  15397. may not refer to variables defined outside of it. To identify such
  15398. variable occurrences, we review the standard notion of free variable.
  15399. \begin{definition}\normalfont
  15400. A variable is \emph{free in expression} $e$ if the variable occurs
  15401. inside $e$ but does not have an enclosing definition that is also in
  15402. $e$.\index{subject}{free variable}
  15403. \end{definition}
  15404. For example, in the expression
  15405. \racket{\code{(+ x (+ y z))}}\python{\code{x + y + z}}
  15406. the variables \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  15407. only \code{x} and \code{y} are free in the following expression,
  15408. because \code{z} is defined by the \code{lambda}
  15409. {\if\edition\racketEd
  15410. \begin{lstlisting}
  15411. (lambda: ([z : Integer]) : Integer
  15412. (+ x (+ y z)))
  15413. \end{lstlisting}
  15414. \fi}
  15415. {\if\edition\pythonEd\pythonColor
  15416. \begin{lstlisting}
  15417. lambda z: x + y + z
  15418. \end{lstlisting}
  15419. \fi}
  15420. %
  15421. \noindent Thus the free variables of a \code{lambda} are the ones that
  15422. need special treatment. We need to transport at runtime the values
  15423. of those variables from the point where the \code{lambda} was created
  15424. to the point where the \code{lambda} is applied. An efficient solution
  15425. to the problem, due to \citet{Cardelli:1983aa}, is to bundle the
  15426. values of the free variables together with a function pointer into a
  15427. tuple, an arrangement called a \emph{flat closure} (which we shorten
  15428. to just \emph{closure}).\index{subject}{closure}\index{subject}{flat
  15429. closure}
  15430. %
  15431. By design, we have all the ingredients to make closures:
  15432. chapter~\ref{ch:Lvec} gave us tuples, and chapter~\ref{ch:Lfun} gave us
  15433. function pointers. The function pointer resides at index $0$, and the
  15434. values for the free variables fill in the rest of the tuple.
  15435. Let us revisit the example shown in figure~\ref{fig:lexical-scoping}
  15436. to see how closures work. It is a three-step dance. The program calls
  15437. function \code{f}, which creates a closure for the \code{lambda}. The
  15438. closure is a tuple whose first element is a pointer to the top-level
  15439. function that we will generate for the \code{lambda}; the second
  15440. element is the value of \code{x}, which is \code{5}; and the third
  15441. element is \code{4}, the value of \code{y}. The closure does not
  15442. contain an element for \code{z} because \code{z} is not a free
  15443. variable of the \code{lambda}. Creating the closure is step 1 of the
  15444. dance. The closure is returned from \code{f} and bound to \code{g}, as
  15445. shown in figure~\ref{fig:closures}.
  15446. %
  15447. The second call to \code{f} creates another closure, this time with
  15448. \code{3} in the second slot (for \code{x}). This closure is also
  15449. returned from \code{f} but bound to \code{h}, which is also shown in
  15450. figure~\ref{fig:closures}.
  15451. \begin{figure}[tbp]
  15452. \centering
  15453. \begin{minipage}{0.65\textwidth}
  15454. \begin{tcolorbox}[colback=white]
  15455. \includegraphics[width=\textwidth]{figs/closures}
  15456. \end{tcolorbox}
  15457. \end{minipage}
  15458. \caption{Flat closure representations for the two functions
  15459. produced by the \key{lambda} in figure~\ref{fig:lexical-scoping}.}
  15460. \label{fig:closures}
  15461. \end{figure}
  15462. Continuing with the example, consider the application of \code{g} to
  15463. \code{11} shown in figure~\ref{fig:lexical-scoping}. To apply a
  15464. closure, we obtain the function pointer from the first element of the
  15465. closure and call it, passing in the closure itself and then the
  15466. regular arguments, in this case \code{11}. This technique for applying
  15467. a closure is step 2 of the dance.
  15468. %
  15469. But doesn't this \code{lambda} take only one argument, for parameter
  15470. \code{z}? The third and final step of the dance is generating a
  15471. top-level function for a \code{lambda}. We add an additional
  15472. parameter for the closure and insert an initialization at the beginning
  15473. of the function for each free variable, to bind those variables to the
  15474. appropriate elements from the closure parameter.
  15475. %
  15476. This three-step dance is known as \emph{closure
  15477. conversion}\index{subject}{closure conversion}. We discuss the
  15478. details of closure conversion in section~\ref{sec:closure-conversion}
  15479. and show the code generated from the example in
  15480. section~\ref{sec:example-lambda}. First, we define the syntax and
  15481. semantics of \LangLam{} in section~\ref{sec:r5}.
  15482. \section{The \LangLam{} Language}
  15483. \label{sec:r5}
  15484. The definitions of the concrete syntax and abstract syntax for
  15485. \LangLam{}, a language with anonymous functions and lexical scoping,
  15486. are shown in figures~\ref{fig:Llam-concrete-syntax} and
  15487. \ref{fig:Llam-syntax}. They add the \key{lambda} form to the grammar
  15488. for \LangFun{}, which already has syntax for function application.
  15489. %
  15490. \python{The syntax also includes an assignment statement that includes
  15491. a type annotation for the variable on the left-hand side, which
  15492. facilitates the type checking of \code{lambda} expressions that we
  15493. discuss later in this section.}
  15494. %
  15495. \racket{The \code{procedure-arity} operation returns the number of parameters
  15496. of a given function, an operation that we need for the translation
  15497. of dynamic typing that is discussed in chapter~\ref{ch:Ldyn}.}
  15498. %
  15499. \python{The \code{arity} operation returns the number of parameters of
  15500. a given function, an operation that we need for the translation
  15501. of dynamic typing that is discussed in chapter~\ref{ch:Ldyn}.
  15502. The \code{arity} operation is not in Python, but the same functionality
  15503. is available in a more complex form. We include \code{arity} in the
  15504. \LangLam{} source language to enable testing.}
  15505. \newcommand{\LlambdaGrammarRacket}{
  15506. \begin{array}{lcl}
  15507. \Exp &::=& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  15508. &\MID& \LP \key{procedure-arity}~\Exp\RP
  15509. \end{array}
  15510. }
  15511. \newcommand{\LlambdaASTRacket}{
  15512. \begin{array}{lcl}
  15513. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  15514. \itm{op} &::=& \code{procedure-arity}
  15515. \end{array}
  15516. }
  15517. \newcommand{\LlambdaGrammarPython}{
  15518. \begin{array}{lcl}
  15519. \Exp &::=& \CLAMBDA{\Var\code{, }\ldots}{\Exp} \MID \CARITY{\Exp} \\
  15520. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp}
  15521. \end{array}
  15522. }
  15523. \newcommand{\LlambdaASTPython}{
  15524. \begin{array}{lcl}
  15525. \Exp &::=& \LAMBDA{\Var^{*}}{\Exp} \MID \ARITY{\Exp} \\
  15526. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  15527. \end{array}
  15528. }
  15529. % include AnnAssign in ASTPython
  15530. \begin{figure}[tp]
  15531. \centering
  15532. \begin{tcolorbox}[colback=white]
  15533. \small
  15534. {\if\edition\racketEd
  15535. \[
  15536. \begin{array}{l}
  15537. \gray{\LintGrammarRacket{}} \\ \hline
  15538. \gray{\LvarGrammarRacket{}} \\ \hline
  15539. \gray{\LifGrammarRacket{}} \\ \hline
  15540. \gray{\LwhileGrammarRacket} \\ \hline
  15541. \gray{\LtupGrammarRacket} \\ \hline
  15542. \gray{\LfunGrammarRacket} \\ \hline
  15543. \LlambdaGrammarRacket \\
  15544. \begin{array}{lcl}
  15545. \LangLamM{} &::=& \Def\ldots \; \Exp
  15546. \end{array}
  15547. \end{array}
  15548. \]
  15549. \fi}
  15550. {\if\edition\pythonEd\pythonColor
  15551. \[
  15552. \begin{array}{l}
  15553. \gray{\LintGrammarPython{}} \\ \hline
  15554. \gray{\LvarGrammarPython{}} \\ \hline
  15555. \gray{\LifGrammarPython{}} \\ \hline
  15556. \gray{\LwhileGrammarPython} \\ \hline
  15557. \gray{\LtupGrammarPython} \\ \hline
  15558. \gray{\LfunGrammarPython} \\ \hline
  15559. \LlambdaGrammarPython \\
  15560. \begin{array}{lcl}
  15561. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  15562. \end{array}
  15563. \end{array}
  15564. \]
  15565. \fi}
  15566. \end{tcolorbox}
  15567. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-concrete-syntax})
  15568. with \key{lambda}.}
  15569. \label{fig:Llam-concrete-syntax}
  15570. \end{figure}
  15571. \begin{figure}[tp]
  15572. \centering
  15573. \begin{tcolorbox}[colback=white]
  15574. \small
  15575. {\if\edition\racketEd
  15576. \[\arraycolsep=3pt
  15577. \begin{array}{l}
  15578. \gray{\LintOpAST} \\ \hline
  15579. \gray{\LvarASTRacket{}} \\ \hline
  15580. \gray{\LifASTRacket{}} \\ \hline
  15581. \gray{\LwhileASTRacket{}} \\ \hline
  15582. \gray{\LtupASTRacket{}} \\ \hline
  15583. \gray{\LfunASTRacket} \\ \hline
  15584. \LlambdaASTRacket \\
  15585. \begin{array}{lcl}
  15586. \LangLamM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15587. \end{array}
  15588. \end{array}
  15589. \]
  15590. \fi}
  15591. {\if\edition\pythonEd\pythonColor
  15592. \[
  15593. \begin{array}{l}
  15594. \gray{\LintASTPython} \\ \hline
  15595. \gray{\LvarASTPython{}} \\ \hline
  15596. \gray{\LifASTPython{}} \\ \hline
  15597. \gray{\LwhileASTPython{}} \\ \hline
  15598. \gray{\LtupASTPython{}} \\ \hline
  15599. \gray{\LfunASTPython} \\ \hline
  15600. \LlambdaASTPython \\
  15601. \begin{array}{lcl}
  15602. \LangLamM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  15603. \end{array}
  15604. \end{array}
  15605. \]
  15606. \fi}
  15607. \end{tcolorbox}
  15608. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-syntax}).}
  15609. \label{fig:Llam-syntax}
  15610. \end{figure}
  15611. Figure~\ref{fig:interp-Llambda} shows the definitional
  15612. interpreter\index{subject}{interpreter} for \LangLam{}. The case for
  15613. \key{Lambda} saves the current environment inside the returned
  15614. function value. Recall that during function application, the
  15615. environment stored in the function value, extended with the mapping of
  15616. parameters to argument values, is used to interpret the body of the
  15617. function.
  15618. \begin{figure}[tbp]
  15619. \begin{tcolorbox}[colback=white]
  15620. {\if\edition\racketEd
  15621. \begin{lstlisting}
  15622. (define interp-Llambda-class
  15623. (class interp-Lfun-class
  15624. (super-new)
  15625. (define/override (interp-op op)
  15626. (match op
  15627. ['procedure-arity
  15628. (lambda (v)
  15629. (match v
  15630. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  15631. [else (error 'interp-op "expected a function, not ~a" v)]))]
  15632. [else (super interp-op op)]))
  15633. (define/override ((interp-exp env) e)
  15634. (define recur (interp-exp env))
  15635. (match e
  15636. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  15637. `(function ,xs ,body ,env)]
  15638. [else ((super interp-exp env) e)]))
  15639. ))
  15640. (define (interp-Llambda p)
  15641. (send (new interp-Llambda-class) interp-program p))
  15642. \end{lstlisting}
  15643. \fi}
  15644. {\if\edition\pythonEd\pythonColor
  15645. \begin{lstlisting}
  15646. class InterpLlambda(InterpLfun):
  15647. def arity(self, v):
  15648. match v:
  15649. case Function(name, params, body, env):
  15650. return len(params)
  15651. case _:
  15652. raise Exception('Llambda arity unexpected ' + repr(v))
  15653. def interp_exp(self, e, env):
  15654. match e:
  15655. case Call(Name('arity'), [fun]):
  15656. f = self.interp_exp(fun, env)
  15657. return self.arity(f)
  15658. case Lambda(params, body):
  15659. return Function('lambda', params, [Return(body)], env)
  15660. case _:
  15661. return super().interp_exp(e, env)
  15662. def interp_stmt(self, s, env, cont):
  15663. match s:
  15664. case AnnAssign(lhs, typ, value, simple):
  15665. env[lhs.id] = self.interp_exp(value, env)
  15666. return self.interp_stmts(cont, env)
  15667. case Pass():
  15668. return self.interp_stmts(cont, env)
  15669. case _:
  15670. return super().interp_stmt(s, env, cont)
  15671. \end{lstlisting}
  15672. \fi}
  15673. \end{tcolorbox}
  15674. \caption{Interpreter for \LangLam{}.}
  15675. \label{fig:interp-Llambda}
  15676. \end{figure}
  15677. {\if\edition\racketEd
  15678. %
  15679. Figure~\ref{fig:type-check-Llambda} shows how to type check the new
  15680. \key{lambda} form. The body of the \key{lambda} is checked in an
  15681. environment that includes the current environment (because it is
  15682. lexically scoped) and also includes the \key{lambda}'s parameters. We
  15683. require the body's type to match the declared return type.
  15684. %
  15685. \fi}
  15686. {\if\edition\pythonEd\pythonColor
  15687. %
  15688. Figures~\ref{fig:type-check-Llambda} and
  15689. \ref{fig:type-check-Llambda-part2} define the type checker for
  15690. \LangLam{}, which is more complex than one might expect. The reason
  15691. for the added complexity is that the syntax of \key{lambda} does not
  15692. include type annotations for the parameters or return type. Instead
  15693. they must be inferred. There are many approaches to type inference
  15694. from which to choose, of varying degrees of complexity. We choose one
  15695. of the simpler approaches, bidirectional type
  15696. inference~\citep{Pierce:2000,Dunfield:2021}, because the focus of this
  15697. book is compilation, not type inference.
  15698. The main idea of bidirectional type inference is to add an auxiliary
  15699. function, here named \code{check\_exp}, that takes an expected type
  15700. and checks whether the given expression is of that type. Thus, in
  15701. \code{check\_exp}, type information flows in a top-down manner with
  15702. respect to the AST, in contrast to the regular \code{type\_check\_exp}
  15703. function, where type information flows in a primarily bottom-up
  15704. manner.
  15705. %
  15706. The idea then is to use \code{check\_exp} in all the places where we
  15707. already know what the type of an expression should be, such as in the
  15708. \code{return} statement of a top-level function definition or on the
  15709. right-hand side of an annotated assignment statement.
  15710. With regard to \code{lambda}, it is straightforward to check a
  15711. \code{lambda} inside \code{check\_exp} because the expected type
  15712. provides the parameter types and the return type. On the other hand,
  15713. inside \code{type\_check\_exp} we disallow \code{lambda}, which means
  15714. that we do not allow \code{lambda} in contexts in which we don't already
  15715. know its type. This restriction does not incur a loss of
  15716. expressiveness for \LangLam{} because it is straightforward to modify
  15717. a program to sidestep the restriction, for example, by using an
  15718. annotated assignment statement to assign the \code{lambda} to a
  15719. temporary variable.
  15720. Note that for the \code{Name} and \code{Lambda} AST nodes, the type
  15721. checker records their type in a \code{has\_type} field. This type
  15722. information is used further on in this chapter.
  15723. %
  15724. \fi}
  15725. \begin{figure}[tbp]
  15726. \begin{tcolorbox}[colback=white]
  15727. {\if\edition\racketEd
  15728. \begin{lstlisting}
  15729. (define (type-check-Llambda env)
  15730. (lambda (e)
  15731. (match e
  15732. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  15733. (define-values (new-body bodyT)
  15734. ((type-check-exp (append (map cons xs Ts) env)) body))
  15735. (define ty `(,@Ts -> ,rT))
  15736. (cond
  15737. [(equal? rT bodyT)
  15738. (values (HasType (Lambda params rT new-body) ty) ty)]
  15739. [else
  15740. (error "mismatch in return type" bodyT rT)])]
  15741. ...
  15742. )))
  15743. \end{lstlisting}
  15744. \fi}
  15745. {\if\edition\pythonEd\pythonColor
  15746. \begin{lstlisting}
  15747. class TypeCheckLlambda(TypeCheckLfun):
  15748. def type_check_exp(self, e, env):
  15749. match e:
  15750. case Name(id):
  15751. e.has_type = env[id]
  15752. return env[id]
  15753. case Lambda(params, body):
  15754. raise Exception('cannot synthesize a type for a lambda')
  15755. case Call(Name('arity'), [func]):
  15756. func_t = self.type_check_exp(func, env)
  15757. match func_t:
  15758. case FunctionType(params_t, return_t):
  15759. return IntType()
  15760. case _:
  15761. raise Exception('in arity, unexpected ' + repr(func_t))
  15762. case _:
  15763. return super().type_check_exp(e, env)
  15764. def check_exp(self, e, ty, env):
  15765. match e:
  15766. case Lambda(params, body):
  15767. e.has_type = ty
  15768. match ty:
  15769. case FunctionType(params_t, return_t):
  15770. new_env = env.copy().update(zip(params, params_t))
  15771. self.check_exp(body, return_t, new_env)
  15772. case _:
  15773. raise Exception('lambda does not have type ' + str(ty))
  15774. case Call(func, args):
  15775. func_t = self.type_check_exp(func, env)
  15776. match func_t:
  15777. case FunctionType(params_t, return_t):
  15778. for (arg, param_t) in zip(args, params_t):
  15779. self.check_exp(arg, param_t, env)
  15780. self.check_type_equal(return_t, ty, e)
  15781. case _:
  15782. raise Exception('type_check_exp: in call, unexpected ' + \
  15783. repr(func_t))
  15784. case _:
  15785. t = self.type_check_exp(e, env)
  15786. self.check_type_equal(t, ty, e)
  15787. \end{lstlisting}
  15788. \fi}
  15789. \end{tcolorbox}
  15790. \caption{Type checking \LangLam{}\python{, part 1}.}
  15791. \label{fig:type-check-Llambda}
  15792. \end{figure}
  15793. {\if\edition\pythonEd\pythonColor
  15794. \begin{figure}[tbp]
  15795. \begin{tcolorbox}[colback=white]
  15796. \begin{lstlisting}
  15797. def check_stmts(self, ss, return_ty, env):
  15798. if len(ss) == 0:
  15799. return
  15800. match ss[0]:
  15801. case FunctionDef(name, params, body, dl, returns, comment):
  15802. new_env = env.copy().update(params)
  15803. rt = self.check_stmts(body, returns, new_env)
  15804. self.check_stmts(ss[1:], return_ty, env)
  15805. case Return(value):
  15806. self.check_exp(value, return_ty, env)
  15807. case Assign([Name(id)], value):
  15808. if id in env:
  15809. self.check_exp(value, env[id], env)
  15810. else:
  15811. env[id] = self.type_check_exp(value, env)
  15812. self.check_stmts(ss[1:], return_ty, env)
  15813. case Assign([Subscript(tup, Constant(index), Store())], value):
  15814. tup_t = self.type_check_exp(tup, env)
  15815. match tup_t:
  15816. case TupleType(ts):
  15817. self.check_exp(value, ts[index], env)
  15818. case _:
  15819. raise Exception('expected a tuple, not ' + repr(tup_t))
  15820. self.check_stmts(ss[1:], return_ty, env)
  15821. case AnnAssign(Name(id), ty_annot, value, simple):
  15822. ss[0].annotation = ty_annot
  15823. if id in env:
  15824. self.check_type_equal(env[id], ty_annot)
  15825. else:
  15826. env[id] = ty_annot
  15827. self.check_exp(value, ty_annot, env)
  15828. self.check_stmts(ss[1:], return_ty, env)
  15829. case _:
  15830. self.type_check_stmts(ss, env)
  15831. def type_check(self, p):
  15832. match p:
  15833. case Module(body):
  15834. env = {}
  15835. for s in body:
  15836. match s:
  15837. case FunctionDef(name, params, bod, dl, returns, comment):
  15838. params_t = [t for (x,t) in params]
  15839. env[name] = FunctionType(params_t, returns)
  15840. self.check_stmts(body, int, env)
  15841. \end{lstlisting}
  15842. \end{tcolorbox}
  15843. \caption{Type checking the \key{lambda}'s in \LangLam{}, part 2.}
  15844. \label{fig:type-check-Llambda-part2}
  15845. \end{figure}
  15846. \fi}
  15847. \clearpage
  15848. \section{Assignment and Lexically Scoped Functions}
  15849. \label{sec:assignment-scoping}
  15850. The combination of lexically scoped functions and assignment to
  15851. variables raises a challenge with the flat-closure approach to
  15852. implementing lexically scoped functions. Consider the following
  15853. example in which function \code{f} has a free variable \code{x} that
  15854. is changed after \code{f} is created but before the call to \code{f}.
  15855. % loop_test_11.rkt
  15856. {\if\edition\racketEd
  15857. \begin{lstlisting}
  15858. (let ([x 0])
  15859. (let ([y 0])
  15860. (let ([z 20])
  15861. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  15862. (begin
  15863. (set! x 10)
  15864. (set! y 12)
  15865. (f y))))))
  15866. \end{lstlisting}
  15867. \fi}
  15868. {\if\edition\pythonEd\pythonColor
  15869. % box_free_assign.py
  15870. \begin{lstlisting}
  15871. def g(z : int) -> int:
  15872. x = 0
  15873. y = 0
  15874. f : Callable[[int],int] = lambda a: a + x + z
  15875. x = 10
  15876. y = 12
  15877. return f(y)
  15878. print(g(20))
  15879. \end{lstlisting}
  15880. \fi} The correct output for this example is \code{42} because the call
  15881. to \code{f} is required to use the current value of \code{x} (which is
  15882. \code{10}). Unfortunately, the closure conversion pass
  15883. (section~\ref{sec:closure-conversion}) generates code for the
  15884. \code{lambda} that copies the old value of \code{x} into a
  15885. closure. Thus, if we naively applied closure conversion, the output of
  15886. this program would be \code{32}.
  15887. A first attempt at solving this problem would be to save a pointer to
  15888. \code{x} in the closure and change the occurrences of \code{x} inside
  15889. the lambda to dereference the pointer. Of course, this would require
  15890. assigning \code{x} to the stack and not to a register. However, the
  15891. problem goes a bit deeper.
  15892. Consider the following example that returns a function that refers to
  15893. a local variable of the enclosing function:
  15894. \begin{center}
  15895. \begin{minipage}{\textwidth}
  15896. {\if\edition\racketEd
  15897. \begin{lstlisting}
  15898. (define (f) : ( -> Integer)
  15899. (let ([x 0])
  15900. (let ([g (lambda: () : Integer x)])
  15901. (begin
  15902. (set! x 42)
  15903. g))))
  15904. ((f))
  15905. \end{lstlisting}
  15906. \fi}
  15907. {\if\edition\pythonEd\pythonColor
  15908. % counter.py
  15909. \begin{lstlisting}
  15910. def f():
  15911. x = 0
  15912. g = lambda: x
  15913. x = 42
  15914. return g
  15915. print(f()())
  15916. \end{lstlisting}
  15917. \fi}
  15918. \end{minipage}
  15919. \end{center}
  15920. In this example, the lifetime of \code{x} extends beyond the lifetime
  15921. of the call to \code{f}. Thus, if we were to store \code{x} on the
  15922. stack frame for the call to \code{f}, it would be gone by the time we
  15923. called \code{g}, leaving us with dangling pointers for
  15924. \code{x}. This example demonstrates that when a variable occurs free
  15925. inside a function, its lifetime becomes indefinite. Thus, the value of
  15926. the variable needs to live on the heap. The verb
  15927. \emph{box}\index{subject}{box} is often used for allocating a single
  15928. value on the heap, producing a pointer, and
  15929. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  15930. %
  15931. We introduce a new pass named \code{convert\_assignments} to address
  15932. this challenge.
  15933. %
  15934. \python{But before diving into that, we have one more
  15935. problem to discuss.}
  15936. {\if\edition\pythonEd\pythonColor
  15937. \section{Uniquify Variables}
  15938. \label{sec:uniquify-lambda}
  15939. With the addition of \code{lambda} we have a complication to deal
  15940. with: name shadowing. Consider the following program with a function
  15941. \code{f} that has a parameter \code{x}. Inside \code{f} there are two
  15942. \code{lambda} expressions. The first \code{lambda} has a parameter
  15943. that is also named \code{x}.
  15944. \begin{lstlisting}
  15945. def f(x:int, y:int) -> Callable[[int], int]:
  15946. g : Callable[[int],int] = (lambda x: x + y)
  15947. h : Callable[[int],int] = (lambda y: x + y)
  15948. x = input_int()
  15949. return g
  15950. print(f(0, 10)(32))
  15951. \end{lstlisting}
  15952. Many of our compiler passes rely on being able to connect variable
  15953. uses with their definitions using just the name of the
  15954. variable. However, in the example above, the name of the variable does
  15955. not uniquely determine its definition. To solve this problem we
  15956. recommend implementing a pass named \code{uniquify} that renames every
  15957. variable in the program to make sure that they are all unique.
  15958. The following shows the result of \code{uniquify} for the example
  15959. above. The \code{x} parameter of function \code{f} is renamed to
  15960. \code{x\_0}, and the \code{x} parameter of the first \code{lambda} is
  15961. renamed to \code{x\_4}.
  15962. \begin{lstlisting}
  15963. def f(x_0:int, y_1:int) -> Callable[[int], int] :
  15964. g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
  15965. h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
  15966. x_0 = input_int()
  15967. return g_2
  15968. def main() -> int :
  15969. print(f(0, 10)(32))
  15970. return 0
  15971. \end{lstlisting}
  15972. \fi} % pythonEd
  15973. %% \section{Reveal Functions}
  15974. %% \label{sec:reveal-functions-r5}
  15975. %% \racket{To support the \code{procedure-arity} operator we need to
  15976. %% communicate the arity of a function to the point of closure
  15977. %% creation.}
  15978. %% %
  15979. %% \python{In chapter~\ref{ch:Ldyn} we need to access the arity of a
  15980. %% function at runtime. Thus, we need to communicate the arity of a
  15981. %% function to the point of closure creation.}
  15982. %% %
  15983. %% We can accomplish this by replacing the $\FUNREF{\Var}{\Int}$ AST node with
  15984. %% one that has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$.
  15985. %% \[
  15986. %% \begin{array}{lcl}
  15987. %% \Exp &::=& \FUNREFARITY{\Var}{\Int}
  15988. %% \end{array}
  15989. %% \]
  15990. \section{Assignment Conversion}
  15991. \label{sec:convert-assignments}
  15992. The purpose of the \code{convert\_assignments} pass is to address the
  15993. challenge regarding the interaction between variable assignments and
  15994. closure conversion. First we identify which variables need to be
  15995. boxed, and then we transform the program to box those variables. In
  15996. general, boxing introduces runtime overhead that we would like to
  15997. avoid, so we should box as few variables as possible. We recommend
  15998. boxing the variables in the intersection of the following two sets of
  15999. variables:
  16000. \begin{enumerate}
  16001. \item The variables that are free in a \code{lambda}.
  16002. \item The variables that appear on the left-hand side of an
  16003. assignment.
  16004. \end{enumerate}
  16005. The first condition is a must but the second condition is
  16006. conservative. It is possible to develop a more liberal condition using
  16007. static program analysis.
  16008. Consider again the first example from
  16009. section~\ref{sec:assignment-scoping}:
  16010. %
  16011. {\if\edition\racketEd
  16012. \begin{lstlisting}
  16013. (let ([x 0])
  16014. (let ([y 0])
  16015. (let ([z 20])
  16016. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  16017. (begin
  16018. (set! x 10)
  16019. (set! y 12)
  16020. (f y))))))
  16021. \end{lstlisting}
  16022. \fi}
  16023. {\if\edition\pythonEd\pythonColor
  16024. \begin{lstlisting}
  16025. def g(z : int) -> int:
  16026. x = 0
  16027. y = 0
  16028. f : Callable[[int],int] = lambda a: a + x + z
  16029. x = 10
  16030. y = 12
  16031. return f(y)
  16032. print(g(20))
  16033. \end{lstlisting}
  16034. \fi}
  16035. %
  16036. \noindent The variables \code{x} and \code{y} appear on the left-hand
  16037. side of assignments. The variables \code{x} and \code{z} occur free
  16038. inside the \code{lambda}. Thus, variable \code{x} needs to be boxed
  16039. but not \code{y} or \code{z}. The boxing of \code{x} consists of
  16040. three transformations: initialize \code{x} with a tuple whose elements
  16041. are uninitialized, replace reads from \code{x} with tuple reads, and
  16042. replace each assignment to \code{x} with a tuple write. The output of
  16043. \code{convert\_assignments} for this example is as follows:
  16044. %
  16045. {\if\edition\racketEd
  16046. \begin{lstlisting}
  16047. (define (main) : Integer
  16048. (let ([x0 (vector 0)])
  16049. (let ([y1 0])
  16050. (let ([z2 20])
  16051. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  16052. (+ a3 (+ (vector-ref x0 0) z2)))])
  16053. (begin
  16054. (vector-set! x0 0 10)
  16055. (set! y1 12)
  16056. (f4 y1)))))))
  16057. \end{lstlisting}
  16058. \fi}
  16059. %
  16060. {\if\edition\pythonEd\pythonColor
  16061. \begin{lstlisting}
  16062. def g(z : int)-> int:
  16063. x = (uninitialized(int),)
  16064. x[0] = 0
  16065. y = 0
  16066. f : Callable[[int], int] = (lambda a: a + x[0] + z)
  16067. x[0] = 10
  16068. y = 12
  16069. return f(y)
  16070. def main() -> int:
  16071. print(g(20))
  16072. return 0
  16073. \end{lstlisting}
  16074. \fi}
  16075. To compute the free variables of all the \code{lambda} expressions, we
  16076. recommend defining the following two auxiliary functions:
  16077. \begin{enumerate}
  16078. \item \code{free\_variables} computes the free variables of an expression, and
  16079. \item \code{free\_in\_lambda} collects all the variables that are
  16080. free in any of the \code{lambda} expressions, using
  16081. \code{free\_variables} in the case for each \code{lambda}.
  16082. \end{enumerate}
  16083. {\if\edition\racketEd
  16084. %
  16085. To compute the variables that are assigned to, we recommend updating
  16086. the \code{collect-set!} function that we introduced in
  16087. section~\ref{sec:uncover-get-bang} to include the new AST forms such
  16088. as \code{Lambda}.
  16089. %
  16090. \fi}
  16091. {\if\edition\pythonEd\pythonColor
  16092. %
  16093. To compute the variables that are assigned to, we recommend defining
  16094. an auxiliary function named \code{assigned\_vars\_stmt} that returns
  16095. the set of variables that occur in the left-hand side of an assignment
  16096. statement and otherwise returns the empty set.
  16097. %
  16098. \fi}
  16099. Let $\mathit{AF}$ be the intersection of the set of variables that are
  16100. free in a \code{lambda} and that are assigned to in the enclosing
  16101. function definition.
  16102. Next we discuss the \code{convert\_assignments} pass. In the case for
  16103. $\VAR{x}$, if $x$ is in $\mathit{AF}$, then unbox it by translating
  16104. $\VAR{x}$ to a tuple read.
  16105. %
  16106. {\if\edition\racketEd
  16107. \begin{lstlisting}
  16108. (Var |$x$|)
  16109. |$\Rightarrow$|
  16110. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  16111. \end{lstlisting}
  16112. \fi}
  16113. %
  16114. {\if\edition\pythonEd\pythonColor
  16115. \begin{lstlisting}
  16116. Name(|$x$|)
  16117. |$\Rightarrow$|
  16118. Subscript(Name(|$x$|), Constant(0), Load())
  16119. \end{lstlisting}
  16120. \fi}
  16121. %
  16122. \noindent In the case for assignment, recursively process the
  16123. right-hand side \itm{rhs} to obtain \itm{rhs'}. If the left-hand side
  16124. $x$ is in $\mathit{AF}$, translate the assignment into a tuple write
  16125. as follows:
  16126. %
  16127. {\if\edition\racketEd
  16128. \begin{lstlisting}
  16129. (SetBang |$x$| |$\itm{rhs}$|)
  16130. |$\Rightarrow$|
  16131. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  16132. \end{lstlisting}
  16133. \fi}
  16134. {\if\edition\pythonEd\pythonColor
  16135. \begin{lstlisting}
  16136. Assign([Name(|$x$|)],|$\itm{rhs}$|)
  16137. |$\Rightarrow$|
  16138. Assign([Subscript(Name(|$x$|), Constant(0), Store())], |$\itm{rhs'}$|)
  16139. \end{lstlisting}
  16140. \fi}
  16141. %
  16142. {\if\edition\racketEd
  16143. The case for \code{Lambda} is nontrivial, but it is similar to the
  16144. case for function definitions, which we discuss next.
  16145. \fi}
  16146. %
  16147. To translate a function definition, we first compute $\mathit{AF}$,
  16148. the intersection of the variables that are free in a \code{lambda} and
  16149. that are assigned to. We then apply assignment conversion to the body
  16150. of the function definition. Finally, we box the parameters of this
  16151. function definition that are in $\mathit{AF}$. For example,
  16152. the parameter \code{x} of the following function \code{g}
  16153. needs to be boxed:
  16154. {\if\edition\racketEd
  16155. \begin{lstlisting}
  16156. (define (g [x : Integer]) : Integer
  16157. (let ([f (lambda: ([a : Integer]) : Integer (+ a x))])
  16158. (begin
  16159. (set! x 10)
  16160. (f 32))))
  16161. \end{lstlisting}
  16162. \fi}
  16163. %
  16164. {\if\edition\pythonEd\pythonColor
  16165. \begin{lstlisting}
  16166. def g(x : int) -> int:
  16167. f : Callable[[int],int] = lambda a: a + x
  16168. x = 10
  16169. return f(32)
  16170. \end{lstlisting}
  16171. \fi}
  16172. %
  16173. \noindent We box parameter \code{x} by creating a local variable named
  16174. \code{x} that is initialized to a tuple whose contents is the value of
  16175. the parameter, which has been renamed to \code{x\_0}.
  16176. %
  16177. {\if\edition\racketEd
  16178. \begin{lstlisting}
  16179. (define (g [x_0 : Integer]) : Integer
  16180. (let ([x (vector x_0)])
  16181. (let ([f (lambda: ([a : Integer]) : Integer
  16182. (+ a (vector-ref x 0)))])
  16183. (begin
  16184. (vector-set! x 0 10)
  16185. (f 32)))))
  16186. \end{lstlisting}
  16187. \fi}
  16188. %
  16189. {\if\edition\pythonEd\pythonColor
  16190. \begin{lstlisting}
  16191. def g(x_0 : int)-> int:
  16192. x = (x_0,)
  16193. f : Callable[[int], int] = (lambda a: a + x[0])
  16194. x[0] = 10
  16195. return f(32)
  16196. \end{lstlisting}
  16197. \fi}
  16198. \section{Closure Conversion}
  16199. \label{sec:closure-conversion}
  16200. \index{subject}{closure conversion}
  16201. The compiling of lexically scoped functions into top-level function
  16202. definitions and flat closures is accomplished in the pass
  16203. \code{convert\_to\_closures} that comes after \code{reveal\_functions}
  16204. and before \code{limit\_functions}.
  16205. As usual, we implement the pass as a recursive function over the
  16206. AST. The interesting cases are for \key{lambda} and function
  16207. application. We transform a \key{lambda} expression into an expression
  16208. that creates a closure, that is, a tuple for which the first element
  16209. is a function pointer and the rest of the elements are the values of
  16210. the free variables of the \key{lambda}.
  16211. %
  16212. However, we use the \code{Closure} AST node instead of using a tuple
  16213. so that we can record the arity.
  16214. %
  16215. In the generated code that follows, \itm{fvs} is the free variables of
  16216. the lambda and \itm{name} is a unique symbol generated to identify the
  16217. lambda.
  16218. %
  16219. \racket{The \itm{arity} is the number of parameters (the length of
  16220. \itm{ps}).}
  16221. %
  16222. {\if\edition\racketEd
  16223. \begin{lstlisting}
  16224. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  16225. |$\Rightarrow$|
  16226. (Closure |\itm{arity}| (cons (FunRef |\itm{name}| |\itm{arity}|) |\itm{fvs}|))
  16227. \end{lstlisting}
  16228. \fi}
  16229. %
  16230. {\if\edition\pythonEd\pythonColor
  16231. \begin{lstlisting}
  16232. Lambda([|$x_1,\ldots,x_n$|], |\itm{body}|)
  16233. |$\Rightarrow$|
  16234. Closure(|$n$|, [FunRef(|\itm{name}|, |$n$|), |\itm{fvs}, \ldots|])
  16235. \end{lstlisting}
  16236. \fi}
  16237. %
  16238. In addition to transforming each \key{Lambda} AST node into a
  16239. tuple, we create a top-level function definition for each
  16240. \key{Lambda}, as shown next.\\
  16241. \begin{minipage}{0.8\textwidth}
  16242. {\if\edition\racketEd
  16243. \begin{lstlisting}
  16244. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  16245. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  16246. ...
  16247. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  16248. |\itm{body'}|)...))
  16249. \end{lstlisting}
  16250. \fi}
  16251. {\if\edition\pythonEd\pythonColor
  16252. \begin{lstlisting}
  16253. def |\itm{name}|(clos : |\itm{closTy}|, |\itm{ps'}, \ldots|) -> |\itm{rt'}|:
  16254. |$\itm{fvs}_1$| = clos[1]
  16255. |$\ldots$|
  16256. |$\itm{fvs}_n$| = clos[|$n$|]
  16257. |\itm{body'}|
  16258. \end{lstlisting}
  16259. \fi}
  16260. \end{minipage}\\
  16261. The \code{clos} parameter refers to the closure. Translate the type
  16262. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  16263. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The type
  16264. \itm{closTy} is a tuple type for which the first element type is
  16265. \python{\code{Bottom()}}\racket{\code{\_} (the dummy type)} and the rest of
  16266. the element types are the types of the free variables in the
  16267. lambda. We use \python{\code{Bottom()}}\racket{\code{\_}} because it
  16268. is nontrivial to give a type to the function in the closure's type.%
  16269. %
  16270. \footnote{To give an accurate type to a closure, we would need to add
  16271. existential types to the type checker~\citep{Minamide:1996ys}.}
  16272. %
  16273. %% The dummy type is considered to be equal to any other type during type
  16274. %% checking.
  16275. The free variables become local variables that are initialized with
  16276. their values in the closure.
  16277. Closure conversion turns every function into a tuple, so the type
  16278. annotations in the program must also be translated. We recommend
  16279. defining an auxiliary recursive function for this purpose. Function
  16280. types should be translated as follows:
  16281. %
  16282. {\if\edition\racketEd
  16283. \begin{lstlisting}
  16284. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  16285. |$\Rightarrow$|
  16286. (Vector ((Vector) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  16287. \end{lstlisting}
  16288. \fi}
  16289. {\if\edition\pythonEd\pythonColor
  16290. \begin{lstlisting}
  16291. FunctionType([|$T_1, \ldots, T_n$|], |$T_r$|)
  16292. |$\Rightarrow$|
  16293. TupleType([FunctionType([TupleType([]), |$T'_1, \ldots, T'_n$|], |$T'_r$|)])
  16294. \end{lstlisting}
  16295. \fi}
  16296. %
  16297. This type indicates that the first thing in the tuple is a
  16298. function. The first parameter of the function is a tuple (a closure)
  16299. and the rest of the parameters are the ones from the original
  16300. function, with types $T'_1, \ldots, T'_n$. The type for the closure
  16301. omits the types of the free variables because (1) those types are not
  16302. available in this context, and (2) we do not need them in the code that
  16303. is generated for function application. So this type describes only the
  16304. first component of the closure tuple. At runtime the tuple may have
  16305. more components, but we ignore them at this point.
  16306. We transform function application into code that retrieves the
  16307. function from the closure and then calls the function, passing the
  16308. closure as the first argument. We place $e'$ in a temporary variable
  16309. to avoid code duplication.
  16310. \begin{center}
  16311. \begin{minipage}{\textwidth}
  16312. {\if\edition\racketEd
  16313. \begin{lstlisting}
  16314. (Apply |$e$| |$\itm{es}$|)
  16315. |$\Rightarrow$|
  16316. (Let |$\itm{tmp}$| |$e'$|
  16317. (Apply (Prim 'vector-ref (list (Var |$\itm{tmp}$|) (Int 0))) (cons (Var |$\itm{tmp}$|) |$\itm{es'}$|)))
  16318. \end{lstlisting}
  16319. \fi}
  16320. %
  16321. {\if\edition\pythonEd\pythonColor
  16322. \begin{lstlisting}
  16323. Call(|$e$|, [|$e_1, \ldots, e_n$|])
  16324. |$\Rightarrow$|
  16325. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  16326. Call(Subscript(Name(|$\itm{tmp}$|), Constant(0)),
  16327. [|$\itm{tmp}$|, |$e'_1, \ldots, e'_n$|]))
  16328. \end{lstlisting}
  16329. \fi}
  16330. \end{minipage}
  16331. \end{center}
  16332. There is also the question of what to do with references to top-level
  16333. function definitions. To maintain a uniform translation of function
  16334. application, we turn function references into closures.
  16335. \begin{tabular}{lll}
  16336. \begin{minipage}{0.2\textwidth}
  16337. {\if\edition\racketEd
  16338. \begin{lstlisting}
  16339. (FunRef |$f$| |$n$|)
  16340. \end{lstlisting}
  16341. \fi}
  16342. {\if\edition\pythonEd\pythonColor
  16343. \begin{lstlisting}
  16344. FunRef(|$f$|, |$n$|)
  16345. \end{lstlisting}
  16346. \fi}
  16347. \end{minipage}
  16348. &
  16349. $\Rightarrow\qquad$
  16350. &
  16351. \begin{minipage}{0.5\textwidth}
  16352. {\if\edition\racketEd
  16353. \begin{lstlisting}
  16354. (Closure |$n$| (FunRef |$f$| |$n$|) '())
  16355. \end{lstlisting}
  16356. \fi}
  16357. {\if\edition\pythonEd\pythonColor
  16358. \begin{lstlisting}
  16359. Closure(|$n$|, [FunRef(|$f$| |$n$|)])
  16360. \end{lstlisting}
  16361. \fi}
  16362. \end{minipage}
  16363. \end{tabular} \\
  16364. We no longer need the annotated assignment statement \code{AnnAssign}
  16365. to support the type checking of \code{lambda} expressions, so we
  16366. translate it to a regular \code{Assign} statement.
  16367. The top-level function definitions need to be updated to take an extra
  16368. closure parameter, but that parameter is ignored in the body of those
  16369. functions.
  16370. \section{An Example Translation}
  16371. \label{sec:example-lambda}
  16372. Figure~\ref{fig:lexical-functions-example} shows the result of
  16373. \code{reveal\_functions} and \code{convert\_to\_closures} for the example
  16374. program demonstrating lexical scoping that we discussed at the
  16375. beginning of this chapter.
  16376. \begin{figure}[tbp]
  16377. \begin{tcolorbox}[colback=white]
  16378. \begin{minipage}{0.8\textwidth}
  16379. {\if\edition\racketEd
  16380. % tests/lambda_test_6.rkt
  16381. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16382. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  16383. (let ([y8 4])
  16384. (lambda: ([z9 : Integer]) : Integer
  16385. (+ x7 (+ y8 z9)))))
  16386. (define (main) : Integer
  16387. (let ([g0 ((fun-ref f6 1) 5)])
  16388. (let ([h1 ((fun-ref f6 1) 3)])
  16389. (+ (g0 11) (h1 15)))))
  16390. \end{lstlisting}
  16391. $\Rightarrow$
  16392. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16393. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  16394. (let ([y8 4])
  16395. (closure 1 (list (fun-ref lambda2 1) x7 y8))))
  16396. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  16397. (let ([x7 (vector-ref fvs3 1)])
  16398. (let ([y8 (vector-ref fvs3 2)])
  16399. (+ x7 (+ y8 z9)))))
  16400. (define (main) : Integer
  16401. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6 1)))])
  16402. ((vector-ref clos5 0) clos5 5))])
  16403. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6 1)))])
  16404. ((vector-ref clos6 0) clos6 3))])
  16405. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  16406. \end{lstlisting}
  16407. \fi}
  16408. %
  16409. {\if\edition\pythonEd\pythonColor
  16410. % free_var.py
  16411. \begin{lstlisting}
  16412. def f(x: int) -> Callable[[int],int]:
  16413. y = 4
  16414. return lambda z: x + y + z
  16415. g = f(5)
  16416. h = f(3)
  16417. print(g(11) + h(15))
  16418. \end{lstlisting}
  16419. $\Rightarrow$
  16420. \begin{lstlisting}
  16421. def lambda_0(fvs_1: tuple[bot,int,tuple[int]], z: int) -> int:
  16422. x = fvs_1[1]
  16423. y = fvs_1[2]
  16424. return (x + y[0] + z)
  16425. def f(fvs_2: tuple[bot], x: int) -> tuple[Callable[[tuple[],int],int]]:
  16426. y = (uninitialized(int),)
  16427. y[0] = 4
  16428. return closure{1}({lambda_0}, x, y)
  16429. def main() -> int:
  16430. g = (begin: clos_3 = closure{1}({f})
  16431. clos_3[0](clos_3, 5))
  16432. h = (begin: clos_4 = closure{1}({f})
  16433. clos_4[0](clos_4, 3))
  16434. print((begin: clos_5 = g
  16435. clos_5[0](clos_5, 11))
  16436. + (begin: clos_6 = h
  16437. clos_6[0](clos_6, 15)))
  16438. return 0
  16439. \end{lstlisting}
  16440. \fi}
  16441. \end{minipage}
  16442. \end{tcolorbox}
  16443. \caption{Example of closure conversion.}
  16444. \label{fig:lexical-functions-example}
  16445. \end{figure}
  16446. \begin{exercise}\normalfont\normalsize
  16447. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  16448. Create five new programs that use \key{lambda} functions and make use of
  16449. lexical scoping. Test your compiler on these new programs and all
  16450. your previously created test programs.
  16451. \end{exercise}
  16452. \section{Expose Allocation}
  16453. \label{sec:expose-allocation-r5}
  16454. Compile the $\CLOSURE{\itm{arity}}{\Exp^{*}}$ form into code
  16455. that allocates and initializes a tuple, similar to the translation of
  16456. the tuple creation in section~\ref{sec:expose-allocation}.
  16457. The only difference is replacing the use of
  16458. \ALLOC{\itm{len}}{\itm{type}} with
  16459. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  16460. \section{Explicate Control and \LangCLam{}}
  16461. \label{sec:explicate-r5}
  16462. The output language of \code{explicate\_control} is \LangCLam{}; the
  16463. definition of its abstract syntax is shown in
  16464. figure~\ref{fig:Clam-syntax}.
  16465. %
  16466. \racket{The only differences with respect to \LangCFun{} are the
  16467. addition of the \code{AllocateClosure} form to the grammar for
  16468. $\Exp$ and the \code{procedure-arity} operator. The handling of
  16469. \code{AllocateClosure} in the \code{explicate\_control} pass is
  16470. similar to the handling of other expressions such as primitive
  16471. operators.}
  16472. %
  16473. \python{The differences with respect to \LangCFun{} are the
  16474. additions of \code{Uninitialized}, \code{AllocateClosure},
  16475. and \code{arity} to the grammar for $\Exp$. The handling of them in the
  16476. \code{explicate\_control} pass is similar to the handling of other
  16477. expressions such as primitive operators.}
  16478. \newcommand{\ClambdaASTRacket}{
  16479. \begin{array}{lcl}
  16480. \Exp &::= & \ALLOCCLOS{\Int}{\Type}{\Int} \\
  16481. \itm{op} &::= & \code{procedure-arity}
  16482. \end{array}
  16483. }
  16484. \newcommand{\ClambdaASTPython}{
  16485. \begin{array}{lcl}
  16486. \Exp &::=& \key{Uninitialized}\LP \Type \RP
  16487. \MID \key{AllocateClosure}\LP\itm{len},\Type, \itm{arity}\RP \\
  16488. &\MID& \ARITY{\Atm}
  16489. \end{array}
  16490. }
  16491. \begin{figure}[tp]
  16492. \begin{tcolorbox}[colback=white]
  16493. \small
  16494. {\if\edition\racketEd
  16495. \[
  16496. \begin{array}{l}
  16497. \gray{\CvarASTRacket} \\ \hline
  16498. \gray{\CifASTRacket} \\ \hline
  16499. \gray{\CloopASTRacket} \\ \hline
  16500. \gray{\CtupASTRacket} \\ \hline
  16501. \gray{\CfunASTRacket} \\ \hline
  16502. \ClambdaASTRacket \\
  16503. \begin{array}{lcl}
  16504. \LangCLamM{} & ::= & \PROGRAMDEFS{\itm{info}}{\Def^{*}}
  16505. \end{array}
  16506. \end{array}
  16507. \]
  16508. \fi}
  16509. {\if\edition\pythonEd\pythonColor
  16510. \[
  16511. \begin{array}{l}
  16512. \gray{\CifASTPython} \\ \hline
  16513. \gray{\CtupASTPython} \\ \hline
  16514. \gray{\CfunASTPython} \\ \hline
  16515. \ClambdaASTPython \\
  16516. \begin{array}{lcl}
  16517. \LangCLamM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  16518. \end{array}
  16519. \end{array}
  16520. \]
  16521. \fi}
  16522. \end{tcolorbox}
  16523. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (figure~\ref{fig:c3-syntax}).}
  16524. \label{fig:Clam-syntax}
  16525. \end{figure}
  16526. \section{Select Instructions}
  16527. \label{sec:select-instructions-Llambda}
  16528. \index{subject}{select instructions}
  16529. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  16530. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  16531. (section~\ref{sec:select-instructions-gc}). The only difference is
  16532. that you should place the \itm{arity} in the tag that is stored at
  16533. position $0$ of the tuple. Recall that in
  16534. section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  16535. was not used. We store the arity in the $5$ bits starting at position
  16536. $58$.
  16537. \racket{Compile the \code{procedure-arity} operator into a sequence of
  16538. instructions that access the tag from position $0$ of the vector and
  16539. extract the $5$ bits starting at position $58$ from the tag.}
  16540. %
  16541. \python{Compile a call to the \code{arity} operator to a sequence of
  16542. instructions that access the tag from position $0$ of the tuple
  16543. (representing a closure) and extract the $5$ bits starting at position
  16544. $58$ from the tag.}
  16545. Figure~\ref{fig:Llambda-passes} provides an overview of the passes
  16546. needed for the compilation of \LangLam{}.
  16547. \begin{figure}[bthp]
  16548. \begin{tcolorbox}[colback=white]
  16549. {\if\edition\racketEd
  16550. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16551. \node (Lfun) at (0,2) {\large \LangLam{}};
  16552. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16553. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16554. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16555. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16556. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16557. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16558. \node (F1-4) at (0,0) {\large \LangFunRefAlloc{}};
  16559. \node (F1-5) at (0,-2) {\large \LangFunRefAlloc{}};
  16560. \node (F1-6) at (4,-2) {\large \LangFunANF{}};
  16561. \node (C3-2) at (8,-2) {\large \LangCFun{}};
  16562. \node (x86-2) at (0,-5) {\large \LangXIndCallVar{}};
  16563. \node (x86-2-1) at (0,-7) {\large \LangXIndCallVar{}};
  16564. \node (x86-2-2) at (4,-7) {\large \LangXIndCallVar{}};
  16565. \node (x86-3) at (4,-5) {\large \LangXIndCallVar{}};
  16566. \node (x86-4) at (8,-5) {\large \LangXIndCall{}};
  16567. \node (x86-5) at (8,-7) {\large \LangXIndCall{}};
  16568. \path[->,bend left=15] (Lfun) edge [above] node
  16569. {\ttfamily\footnotesize shrink} (Lfun-2);
  16570. \path[->,bend left=15] (Lfun-2) edge [above] node
  16571. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16572. \path[->,bend left=15] (Lfun-3) edge [above] node
  16573. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16574. \path[->,bend left=15] (F1-0) edge [left] node
  16575. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16576. \path[->,bend left=15] (F1-1) edge [below] node
  16577. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16578. \path[->,bend right=15] (F1-2) edge [above] node
  16579. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16580. \path[->,bend right=15] (F1-3) edge [above] node
  16581. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  16582. \path[->,bend left=15] (F1-4) edge [right] node
  16583. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  16584. \path[->,bend right=15] (F1-5) edge [below] node
  16585. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16586. \path[->,bend left=15] (F1-6) edge [above] node
  16587. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16588. \path[->] (C3-2) edge [right] node
  16589. {\ttfamily\footnotesize \ \ select\_instructions} (x86-2);
  16590. \path[->,bend right=15] (x86-2) edge [right] node
  16591. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16592. \path[->,bend right=15] (x86-2-1) edge [below] node
  16593. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  16594. \path[->,bend right=15] (x86-2-2) edge [right] node
  16595. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  16596. \path[->,bend left=15] (x86-3) edge [above] node
  16597. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16598. \path[->,bend left=15] (x86-4) edge [right] node
  16599. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16600. \end{tikzpicture}
  16601. \fi}
  16602. {\if\edition\pythonEd\pythonColor
  16603. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16604. \node (Lfun) at (0,2) {\large \LangLam{}};
  16605. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16606. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16607. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16608. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16609. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16610. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16611. \node (F1-5) at (0,0) {\large \LangFunRefAlloc{}};
  16612. \node (F1-6) at (0,-2) {\large \LangFunANF{}};
  16613. \node (C3-2) at (0,-4) {\large \LangCFun{}};
  16614. \node (x86-2) at (0,-6) {\large \LangXIndCallVar{}};
  16615. \node (x86-3) at (4,-6) {\large \LangXIndCallVar{}};
  16616. \node (x86-4) at (8,-6) {\large \LangXIndCall{}};
  16617. \node (x86-5) at (12,-6) {\large \LangXIndCall{}};
  16618. \path[->,bend left=15] (Lfun) edge [above] node
  16619. {\ttfamily\footnotesize shrink} (Lfun-2);
  16620. \path[->,bend left=15] (Lfun-2) edge [above] node
  16621. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16622. \path[->,bend left=15] (Lfun-3) edge [above] node
  16623. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16624. \path[->,bend left=15] (F1-0) edge [left] node
  16625. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16626. \path[->,bend left=15] (F1-1) edge [below] node
  16627. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16628. \path[->,bend left=15] (F1-2) edge [below] node
  16629. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16630. \path[->,bend right=15] (F1-3) edge [above] node
  16631. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  16632. \path[->,bend right=15] (F1-5) edge [right] node
  16633. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16634. \path[->,bend left=15] (F1-6) edge [right] node
  16635. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16636. \path[->,bend right=15] (C3-2) edge [right] node
  16637. {\ttfamily\footnotesize select\_instructions} (x86-2);
  16638. \path[->,bend right=15] (x86-2) edge [below] node
  16639. {\ttfamily\footnotesize assign\_homes} (x86-3);
  16640. \path[->,bend right=15] (x86-3) edge [below] node
  16641. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16642. \path[->,bend left=15] (x86-4) edge [above] node
  16643. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16644. \end{tikzpicture}
  16645. \fi}
  16646. \end{tcolorbox}
  16647. \caption{Diagram of the passes for \LangLam{}, a language with lexically scoped
  16648. functions.}
  16649. \label{fig:Llambda-passes}
  16650. \end{figure}
  16651. \clearpage
  16652. \section{Challenge: Optimize Closures}
  16653. \label{sec:optimize-closures}
  16654. In this chapter we compile lexically scoped functions into a
  16655. relatively efficient representation: flat closures. However, even this
  16656. representation comes with some overhead. For example, consider the
  16657. following program with a function \code{tail\_sum} that does not have
  16658. any free variables and where all the uses of \code{tail\_sum} are in
  16659. applications in which we know that only \code{tail\_sum} is being applied
  16660. (and not any other functions):
  16661. \begin{center}
  16662. \begin{minipage}{0.95\textwidth}
  16663. {\if\edition\racketEd
  16664. \begin{lstlisting}
  16665. (define (tail_sum [n : Integer] [s : Integer]) : Integer
  16666. (if (eq? n 0)
  16667. s
  16668. (tail_sum (- n 1) (+ n s))))
  16669. (+ (tail_sum 3 0) 36)
  16670. \end{lstlisting}
  16671. \fi}
  16672. {\if\edition\pythonEd\pythonColor
  16673. \begin{lstlisting}
  16674. def tail_sum(n : int, s : int) -> int:
  16675. if n == 0:
  16676. return s
  16677. else:
  16678. return tail_sum(n - 1, n + s)
  16679. print(tail_sum(3, 0) + 36)
  16680. \end{lstlisting}
  16681. \fi}
  16682. \end{minipage}
  16683. \end{center}
  16684. As described in this chapter, we uniformly apply closure conversion to
  16685. all functions, obtaining the following output for this program:
  16686. \begin{center}
  16687. \begin{minipage}{0.95\textwidth}
  16688. {\if\edition\racketEd
  16689. \begin{lstlisting}
  16690. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
  16691. (if (eq? n2 0)
  16692. s3
  16693. (let ([clos4 (closure (list (fun-ref tail_sum1 2)))])
  16694. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))
  16695. (define (main) : Integer
  16696. (+ (let ([clos6 (closure (list (fun-ref tail_sum1 2)))])
  16697. ((vector-ref clos6 0) clos6 3 0)) 27))
  16698. \end{lstlisting}
  16699. \fi}
  16700. {\if\edition\pythonEd\pythonColor
  16701. \begin{lstlisting}
  16702. def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
  16703. if n_0 == 0:
  16704. return s_1
  16705. else:
  16706. return (begin: clos_2 = (tail_sum,)
  16707. clos_2[0](clos_2, n_0 - 1, n_0 + s_1))
  16708. def main() -> int :
  16709. print((begin: clos_4 = (tail_sum,)
  16710. clos_4[0](clos_4, 3, 0)) + 36)
  16711. return 0
  16712. \end{lstlisting}
  16713. \fi}
  16714. \end{minipage}
  16715. \end{center}
  16716. If this program were compiled according to the previous chapter, there
  16717. would be no allocation and the calls to \code{tail\_sum} would be
  16718. direct calls. In contrast, the program presented here allocates memory
  16719. for each closure and the calls to \code{tail\_sum} are indirect. These
  16720. two differences incur considerable overhead in a program such as this,
  16721. in which the allocations and indirect calls occur inside a tight loop.
  16722. One might think that this problem is trivial to solve: can't we just
  16723. recognize calls of the form \APPLY{\FUNREF{$f$}{$n$}}{$\mathit{args}$}
  16724. and compile them to direct calls instead of treating it like a call to
  16725. a closure? We would also drop the new \code{fvs} parameter of
  16726. \code{tail\_sum}.
  16727. %
  16728. However, this problem is not so trivial, because a global function may
  16729. \emph{escape} and become involved in applications that also involve
  16730. closures. Consider the following example in which the application
  16731. \CAPPLY{\code{f}}{\code{41}} needs to be compiled into a closure
  16732. application because the \code{lambda} may flow into \code{f}, but the
  16733. \code{inc} function might also flow into \code{f}:
  16734. \begin{center}
  16735. \begin{minipage}{\textwidth}
  16736. % lambda_test_30.rkt
  16737. {\if\edition\racketEd
  16738. \begin{lstlisting}
  16739. (define (inc [x : Integer]) : Integer
  16740. (+ x 1))
  16741. (let ([y (read)])
  16742. (let ([f (if (eq? (read) 0)
  16743. inc
  16744. (lambda: ([x : Integer]) : Integer (- x y)))])
  16745. (f 41)))
  16746. \end{lstlisting}
  16747. \fi}
  16748. {\if\edition\pythonEd\pythonColor
  16749. \begin{lstlisting}
  16750. def add1(x : int) -> int:
  16751. return x + 1
  16752. y = input_int()
  16753. g : Callable[[int], int] = lambda x: x - y
  16754. f = add1 if input_int() == 0 else g
  16755. print(f(41))
  16756. \end{lstlisting}
  16757. \fi}
  16758. \end{minipage}
  16759. \end{center}
  16760. If a global function name is used in any way other than as the
  16761. operator in a direct call, then we say that the function
  16762. \emph{escapes}. If a global function does not escape, then we do not
  16763. need to perform closure conversion on the function.
  16764. \begin{exercise}\normalfont\normalsize
  16765. Implement an auxiliary function for detecting which global
  16766. functions escape. Using that function, implement an improved version
  16767. of closure conversion that does not apply closure conversion to
  16768. global functions that do not escape but instead compiles them as
  16769. regular functions. Create several new test cases that check whether
  16770. your compiler properly detects whether global functions escape or not.
  16771. \end{exercise}
  16772. So far we have reduced the overhead of calling global functions, but
  16773. it would also be nice to reduce the overhead of calling a
  16774. \code{lambda} when we can determine at compile time which
  16775. \code{lambda} will be called. We refer to such calls as \emph{known
  16776. calls}. Consider the following example in which a \code{lambda} is
  16777. bound to \code{f} and then applied.
  16778. {\if\edition\racketEd
  16779. % lambda_test_9.rkt
  16780. \begin{lstlisting}
  16781. (let ([y (read)])
  16782. (let ([f (lambda: ([x : Integer]) : Integer
  16783. (+ x y))])
  16784. (f 21)))
  16785. \end{lstlisting}
  16786. \fi}
  16787. {\if\edition\pythonEd\pythonColor
  16788. \begin{lstlisting}
  16789. y = input_int()
  16790. f : Callable[[int],int] = lambda x: x + y
  16791. print(f(21))
  16792. \end{lstlisting}
  16793. \fi}
  16794. %
  16795. \noindent Closure conversion compiles the application
  16796. \CAPPLY{\code{f}}{\code{21}} into an indirect call, as follows:
  16797. %
  16798. {\if\edition\racketEd
  16799. \begin{lstlisting}
  16800. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  16801. (let ([y2 (vector-ref fvs6 1)])
  16802. (+ x3 y2)))
  16803. (define (main) : Integer
  16804. (let ([y2 (read)])
  16805. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16806. ((vector-ref f4 0) f4 21))))
  16807. \end{lstlisting}
  16808. \fi}
  16809. {\if\edition\pythonEd\pythonColor
  16810. \begin{lstlisting}
  16811. def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
  16812. y_1 = fvs_4[1]
  16813. return x_2 + y_1[0]
  16814. def main() -> int:
  16815. y_1 = (777,)
  16816. y_1[0] = input_int()
  16817. f_0 = (lambda_3, y_1)
  16818. print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
  16819. return 0
  16820. \end{lstlisting}
  16821. \fi}
  16822. %
  16823. \noindent However, we can instead compile the application
  16824. \CAPPLY{\code{f}}{\code{21}} into a direct call, as follows:
  16825. %
  16826. {\if\edition\racketEd
  16827. \begin{lstlisting}
  16828. (define (main) : Integer
  16829. (let ([y2 (read)])
  16830. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16831. ((fun-ref lambda5 1) f4 21))))
  16832. \end{lstlisting}
  16833. \fi}
  16834. {\if\edition\pythonEd\pythonColor
  16835. \begin{lstlisting}
  16836. def main() -> int:
  16837. y_1 = (777,)
  16838. y_1[0] = input_int()
  16839. f_0 = (lambda_3, y_1)
  16840. print(lambda_3(f_0, 21))
  16841. return 0
  16842. \end{lstlisting}
  16843. \fi}
  16844. The problem of determining which \code{lambda} will be called from a
  16845. particular application is quite challenging in general and the topic
  16846. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  16847. following exercise we recommend that you compile an application to a
  16848. direct call when the operator is a variable and \racket{the variable
  16849. is \code{let}-bound to a closure}\python{the previous assignment to
  16850. the variable is a closure}. This can be accomplished by maintaining
  16851. an environment that maps variables to function names. Extend the
  16852. environment whenever you encounter a closure on the right-hand side of
  16853. \racket{a \code{let}}\python{an assignment}, mapping the variable to the
  16854. name of the global function for the closure. This pass should come
  16855. after closure conversion.
  16856. \begin{exercise}\normalfont\normalsize
  16857. Implement a compiler pass, named \code{optimize\_known\_calls}, that
  16858. compiles known calls into direct calls. Verify that your compiler is
  16859. successful in this regard on several example programs.
  16860. \end{exercise}
  16861. These exercises only scratch the surface of closure optimization. A
  16862. good next step for the interested reader is to look at the work of
  16863. \citet{Keep:2012ab}.
  16864. \section{Further Reading}
  16865. The notion of lexically scoped functions predates modern computers by
  16866. about a decade. They were invented by \citet{Church:1932aa}, who
  16867. proposed the lambda calculus as a foundation for logic. Anonymous
  16868. functions were included in the LISP~\citep{McCarthy:1960dz}
  16869. programming language but were initially dynamically scoped. The Scheme
  16870. dialect of LISP adopted lexical scoping, and
  16871. \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently compile
  16872. Scheme programs. However, environments were represented as linked
  16873. lists, so variable look-up was linear in the size of the
  16874. environment. \citet{Appel91} gives a detailed description of several
  16875. closure representations. In this chapter we represent environments
  16876. using flat closures, which were invented by
  16877. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purpose of compiling
  16878. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  16879. closures, variable look-up is constant time but the time to create a
  16880. closure is proportional to the number of its free variables. Flat
  16881. closures were reinvented by \citet{Dybvig:1987ab} in his PhD thesis
  16882. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  16883. % todo: related work on assignment conversion (e.g. orbit and rabbit
  16884. % compilers)
  16885. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16886. \chapter{Dynamic Typing}
  16887. \label{ch:Ldyn}
  16888. \index{subject}{dynamic typing}
  16889. \setcounter{footnote}{0}
  16890. In this chapter we learn how to compile \LangDyn{}, a dynamically
  16891. typed language that is a subset of \racket{Racket}\python{Python}. The
  16892. focus on dynamic typing is in contrast to the previous chapters, which
  16893. have studied the compilation of statically typed languages. In
  16894. dynamically typed languages such as \LangDyn{}, a particular
  16895. expression may produce a value of a different type each time it is
  16896. executed. Consider the following example with a conditional \code{if}
  16897. expression that may return a Boolean or an integer depending on the
  16898. input to the program:
  16899. % part of dynamic_test_25.rkt
  16900. {\if\edition\racketEd
  16901. \begin{lstlisting}
  16902. (not (if (eq? (read) 1) #f 0))
  16903. \end{lstlisting}
  16904. \fi}
  16905. {\if\edition\pythonEd\pythonColor
  16906. \begin{lstlisting}
  16907. not (False if input_int() == 1 else 0)
  16908. \end{lstlisting}
  16909. \fi}
  16910. Languages that allow expressions to produce different kinds of values
  16911. are called \emph{polymorphic}, a word composed of the Greek roots
  16912. \emph{poly}, meaning \emph{many}, and \emph{morph}, meaning \emph{form}.
  16913. There are several kinds of polymorphism in programming languages, such as
  16914. subtype polymorphism\index{subject}{subtype polymorphism} and
  16915. parametric polymorphism\index{subject}{parametric polymorphism}
  16916. (aka generics)~\citep{Cardelli:1985kx}. The kind of polymorphism that we
  16917. study in this chapter does not have a special name; it is the kind
  16918. that arises in dynamically typed languages.
  16919. Another characteristic of dynamically typed languages is that
  16920. their primitive operations, such as \code{not}, are often defined to operate
  16921. on many different types of values. In fact, in
  16922. \racket{Racket}\python{Python}, the \code{not} operator produces a
  16923. result for any kind of value: given \FALSE{} it returns \TRUE{}, and
  16924. given anything else it returns \FALSE{}.
  16925. Furthermore, even when primitive operations restrict their inputs to
  16926. values of a certain type, this restriction is enforced at runtime
  16927. instead of during compilation. For example, the tuple read
  16928. operation \racket{\code{(vector-ref \#t 0)}}\python{\code{True[0]}}
  16929. results in a runtime error because the first argument must
  16930. be a tuple, not a Boolean.
  16931. \section{The \LangDyn{} Language}
  16932. \newcommand{\LdynGrammarRacket}{
  16933. \begin{array}{rcl}
  16934. \Exp &::=& \LP\Exp \; \Exp\ldots\RP
  16935. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  16936. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  16937. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  16938. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP
  16939. \end{array}
  16940. }
  16941. \newcommand{\LdynASTRacket}{
  16942. \begin{array}{lcl}
  16943. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  16944. \MID \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  16945. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp}
  16946. \end{array}
  16947. }
  16948. \begin{figure}[tp]
  16949. \centering
  16950. \begin{tcolorbox}[colback=white]
  16951. \small
  16952. {\if\edition\racketEd
  16953. \[
  16954. \begin{array}{l}
  16955. \gray{\LintGrammarRacket{}} \\ \hline
  16956. \gray{\LvarGrammarRacket{}} \\ \hline
  16957. \gray{\LifGrammarRacket{}} \\ \hline
  16958. \gray{\LwhileGrammarRacket} \\ \hline
  16959. \gray{\LtupGrammarRacket} \\ \hline
  16960. \LdynGrammarRacket \\
  16961. \begin{array}{rcl}
  16962. \LangDynM{} &::=& \Def\ldots\; \Exp
  16963. \end{array}
  16964. \end{array}
  16965. \]
  16966. \fi}
  16967. {\if\edition\pythonEd\pythonColor
  16968. \[
  16969. \begin{array}{rcl}
  16970. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \MID \key{is} \\
  16971. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  16972. &\MID& \Var{} \MID \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp}
  16973. \MID \COR{\Exp}{\Exp} \MID \key{not}~\Exp \\
  16974. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  16975. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  16976. &\MID& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp}
  16977. \MID \CLEN{\Exp} \\
  16978. &\MID& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  16979. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}\\
  16980. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  16981. \MID \Var\mathop{\key{=}}\Exp \\
  16982. &\MID& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  16983. \MID \key{while}~ \Exp \key{:}~ \Stmt^{+} \\
  16984. &\MID& \CRETURN{\Exp} \\
  16985. \Def &::=& \CDEFU{\Var}{\Var{,} \ldots}{\Stmt^{+}} \\
  16986. \LangDynM{} &::=& \Def\ldots \Stmt\ldots
  16987. \end{array}
  16988. \]
  16989. \fi}
  16990. \end{tcolorbox}
  16991. \caption{Syntax of \LangDyn{}, an untyped language (a subset of \racket{Racket}\python{Python}).}
  16992. \label{fig:r7-concrete-syntax}
  16993. \end{figure}
  16994. \begin{figure}[tp]
  16995. \centering
  16996. \begin{tcolorbox}[colback=white]
  16997. \small
  16998. {\if\edition\racketEd
  16999. \[
  17000. \begin{array}{l}
  17001. \gray{\LintASTRacket{}} \\ \hline
  17002. \gray{\LvarASTRacket{}} \\ \hline
  17003. \gray{\LifASTRacket{}} \\ \hline
  17004. \gray{\LwhileASTRacket} \\ \hline
  17005. \gray{\LtupASTRacket} \\ \hline
  17006. \LdynASTRacket \\
  17007. \begin{array}{lcl}
  17008. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17009. \end{array}
  17010. \end{array}
  17011. \]
  17012. \fi}
  17013. {\if\edition\pythonEd\pythonColor
  17014. \[
  17015. \begin{array}{rcl}
  17016. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  17017. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()}
  17018. \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()}
  17019. \MID \code{Is()} \\
  17020. \itm{bool} &::=& \code{True} \MID \code{False} \\
  17021. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  17022. &\MID& \UNIOP{\key{USub()}}{\Exp}\\
  17023. &\MID& \BINOP{\Exp}{\key{Add()}}{\Exp}
  17024. \MID \BINOP{\Exp}{\key{Sub()}}{\Exp} \\
  17025. &\MID& \VAR{\Var{}}
  17026. \MID \BOOL{\itm{bool}}
  17027. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  17028. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  17029. &\MID& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  17030. &\MID& \LEN{\Exp} \\
  17031. &\MID& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp} \\
  17032. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  17033. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  17034. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  17035. \MID \WHILESTMT{\Exp}{\Stmt^{+}}\\
  17036. &\MID& \RETURN{\Exp} \\
  17037. \Params &::=& \LP\Var\key{,}\code{AnyType()}\RP^* \\
  17038. \Def &::=& \FUNDEF{\Var}{\Params}{\code{AnyType()}}{}{\Stmt^{+}} \\
  17039. \LangDynM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17040. \end{array}
  17041. \]
  17042. \fi}
  17043. \end{tcolorbox}
  17044. \caption{The abstract syntax of \LangDyn{}.}
  17045. \label{fig:r7-syntax}
  17046. \end{figure}
  17047. The definitions of the concrete and abstract syntax of \LangDyn{} are
  17048. shown in figures~\ref{fig:r7-concrete-syntax} and \ref{fig:r7-syntax}.
  17049. %
  17050. There is no type checker for \LangDyn{} because it checks types only
  17051. at runtime.
  17052. The definitional interpreter for \LangDyn{} is presented in
  17053. \racket{figure~\ref{fig:interp-Ldyn}}\python{figures~\ref{fig:interp-Ldyn} and \ref{fig:interp-Ldyn-2}}, and definitions of its auxiliary functions
  17054. are shown in figure~\ref{fig:interp-Ldyn-aux}. Consider the match case for
  17055. \INT{n}. Instead of simply returning the integer \code{n} (as
  17056. in the interpreter for \LangVar{} in figure~\ref{fig:interp-Lvar}), the
  17057. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  17058. value} that combines an underlying value with a tag that identifies
  17059. what kind of value it is. We define the following \racket{struct}\python{class}
  17060. to represent tagged values:
  17061. %
  17062. {\if\edition\racketEd
  17063. \begin{lstlisting}
  17064. (struct Tagged (value tag) #:transparent)
  17065. \end{lstlisting}
  17066. \fi}
  17067. {\if\edition\pythonEd\pythonColor
  17068. \begin{minipage}{\textwidth}
  17069. \begin{lstlisting}
  17070. @dataclass(eq=True)
  17071. class Tagged(Value):
  17072. value : Value
  17073. tag : str
  17074. def __str__(self):
  17075. return str(self.value)
  17076. \end{lstlisting}
  17077. \end{minipage}
  17078. \fi}
  17079. %
  17080. \racket{The tags are \code{Integer}, \BOOLTY{}, \code{Void},
  17081. \code{Vector}, and \code{Procedure}.}
  17082. %
  17083. \python{The tags are \skey{int}, \skey{bool}, \skey{none},
  17084. \skey{tuple}, and \skey{function}.}
  17085. %
  17086. Tags are closely related to types but do not always capture all the
  17087. information that a type does.
  17088. %
  17089. \racket{For example, a vector of type \code{(Vector Any Any)} is
  17090. tagged with \code{Vector}, and a procedure of type \code{(Any Any ->
  17091. Any)} is tagged with \code{Procedure}.}
  17092. %
  17093. \python{For example, a tuple of type \code{TupleType([AnyType(),AnyType()])}
  17094. is tagged with \skey{tuple} and a function of type
  17095. \code{FunctionType([AnyType(), AnyType()], AnyType())}
  17096. is tagged with \skey{function}.}
  17097. Next consider the match case for accessing the element of a tuple.
  17098. The \racket{\code{check-tag}}\python{\code{untag}} auxiliary function
  17099. (figure~\ref{fig:interp-Ldyn-aux}) is used to ensure that the first
  17100. argument is a tuple and the second is an integer.
  17101. \racket{
  17102. If they are not, a \code{trapped-error} is raised. Recall from
  17103. section~\ref{sec:interp_Lint} that when a definition interpreter
  17104. raises a \code{trapped-error} error, the compiled code must also
  17105. signal an error by exiting with return code \code{255}. A
  17106. \code{trapped-error} is also raised if the index is not less than the
  17107. length of the vector.
  17108. }
  17109. %
  17110. \python{If they are not, an exception is raised. The compiled code
  17111. must also signal an error by exiting with return code \code{255}. A
  17112. exception is also raised if the index is not less than the length of the
  17113. tuple or if it is negative.}
  17114. \begin{figure}[tbp]
  17115. \begin{tcolorbox}[colback=white]
  17116. {\if\edition\racketEd
  17117. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17118. (define ((interp-Ldyn-exp env) ast)
  17119. (define recur (interp-Ldyn-exp env))
  17120. (match ast
  17121. [(Var x) (dict-ref env x)]
  17122. [(Int n) (Tagged n 'Integer)]
  17123. [(Bool b) (Tagged b 'Boolean)]
  17124. [(Lambda xs rt body)
  17125. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  17126. [(Prim 'vector es)
  17127. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  17128. [(Prim 'vector-ref (list e1 e2))
  17129. (define vec (recur e1)) (define i (recur e2))
  17130. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  17131. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  17132. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  17133. (vector-ref (Tagged-value vec) (Tagged-value i))]
  17134. [(Prim 'vector-set! (list e1 e2 e3))
  17135. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  17136. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  17137. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  17138. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  17139. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  17140. (Tagged (void) 'Void)]
  17141. [(Let x e body) ((interp-Ldyn-exp (cons (cons x (recur e)) env)) body)]
  17142. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  17143. [(Prim 'or (list e1 e2))
  17144. (define v1 (recur e1))
  17145. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  17146. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  17147. [(Prim op (list e1))
  17148. #:when (set-member? type-predicates op)
  17149. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  17150. [(Prim op es)
  17151. (define args (map recur es))
  17152. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  17153. (unless (for/or ([expected-tags (op-tags op)])
  17154. (equal? expected-tags tags))
  17155. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  17156. (tag-value
  17157. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  17158. [(If q t f)
  17159. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  17160. [(Apply f es)
  17161. (define new-f (recur f)) (define args (map recur es))
  17162. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  17163. (match f-val
  17164. [`(function ,xs ,body ,lam-env)
  17165. (unless (eq? (length xs) (length args))
  17166. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  17167. (define new-env (append (map cons xs args) lam-env))
  17168. ((interp-Ldyn-exp new-env) body)]
  17169. [else (error "interp-Ldyn-exp, expected function, not" f-val)])]))
  17170. \end{lstlisting}
  17171. \fi}
  17172. {\if\edition\pythonEd\pythonColor
  17173. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  17174. class InterpLdyn(InterpLlambda):
  17175. def interp_exp(self, e, env):
  17176. match e:
  17177. case Constant(n):
  17178. return self.tag(super().interp_exp(e, env))
  17179. case Tuple(es, Load()):
  17180. return self.tag(super().interp_exp(e, env))
  17181. case Lambda(params, body):
  17182. return self.tag(super().interp_exp(e, env))
  17183. case Call(Name('input_int'), []):
  17184. return self.tag(super().interp_exp(e, env))
  17185. case BinOp(left, Add(), right):
  17186. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  17187. return self.tag(self.untag(l, 'int', e) + self.untag(r, 'int', e))
  17188. case BinOp(left, Sub(), right):
  17189. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  17190. return self.tag(self.untag(l, 'int', e) - self.untag(r, 'int', e))
  17191. case UnaryOp(USub(), e1):
  17192. v = self.interp_exp(e1, env)
  17193. return self.tag(- self.untag(v, 'int', e))
  17194. case IfExp(test, body, orelse):
  17195. v = self.interp_exp(test, env)
  17196. if self.untag(v, 'bool', e):
  17197. return self.interp_exp(body, env)
  17198. else:
  17199. return self.interp_exp(orelse, env)
  17200. case UnaryOp(Not(), e1):
  17201. v = self.interp_exp(e1, env)
  17202. return self.tag(not self.untag(v, 'bool', e))
  17203. case BoolOp(And(), values):
  17204. left = values[0]; right = values[1]
  17205. l = self.interp_exp(left, env)
  17206. if self.untag(l, 'bool', e):
  17207. return self.interp_exp(right, env)
  17208. else:
  17209. return self.tag(False)
  17210. case BoolOp(Or(), values):
  17211. left = values[0]; right = values[1]
  17212. l = self.interp_exp(left, env)
  17213. if self.untag(l, 'bool', e):
  17214. return self.tag(True)
  17215. else:
  17216. return self.interp_exp(right, env)
  17217. case Compare(left, [cmp], [right]):
  17218. l = self.interp_exp(left, env)
  17219. r = self.interp_exp(right, env)
  17220. if l.tag == r.tag:
  17221. return self.tag(self.interp_cmp(cmp)(l.value, r.value))
  17222. else:
  17223. raise Exception('interp Compare unexpected '
  17224. + repr(l) + ' ' + repr(r))
  17225. case Subscript(tup, index, Load()):
  17226. t = self.interp_exp(tup, env)
  17227. n = self.interp_exp(index, env)
  17228. return self.untag(t, 'tuple', e)[self.untag(n, 'int', e)]
  17229. case Call(Name('len'), [tup]):
  17230. t = self.interp_exp(tup, env)
  17231. return self.tag(len(self.untag(t, 'tuple', e)))
  17232. case _:
  17233. return self.tag(super().interp_exp(e, env))
  17234. \end{lstlisting}
  17235. \fi}
  17236. \end{tcolorbox}
  17237. \caption{Interpreter for the \LangDyn{} language\python{, part 1}.}
  17238. \label{fig:interp-Ldyn}
  17239. \end{figure}
  17240. {\if\edition\pythonEd\pythonColor
  17241. \begin{figure}[tbp]
  17242. \begin{tcolorbox}[colback=white]
  17243. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17244. class InterpLdyn(InterpLlambda):
  17245. def interp_stmt(self, s, env, cont):
  17246. match s:
  17247. case If(test, body, orelse):
  17248. v = self.interp_exp(test, env)
  17249. match self.untag(v, 'bool', s):
  17250. case True:
  17251. return self.interp_stmts(body + cont, env)
  17252. case False:
  17253. return self.interp_stmts(orelse + cont, env)
  17254. case While(test, body, []):
  17255. v = self.interp_exp(test, env)
  17256. if self.untag(v, 'bool', test):
  17257. self.interp_stmts(body + [s] + cont, env)
  17258. else:
  17259. return self.interp_stmts(cont, env)
  17260. case Assign([Subscript(tup, index)], value):
  17261. tup = self.interp_exp(tup, env)
  17262. index = self.interp_exp(index, env)
  17263. tup_v = self.untag(tup, 'tuple', s)
  17264. index_v = self.untag(index, 'int', s)
  17265. tup_v[index_v] = self.interp_exp(value, env)
  17266. return self.interp_stmts(cont, env)
  17267. case FunctionDef(name, params, bod, dl, returns, comment):
  17268. if isinstance(params, ast.arguments):
  17269. ps = [p.arg for p in params.args]
  17270. else:
  17271. ps = [x for (x,t) in params]
  17272. env[name] = self.tag(Function(name, ps, bod, env))
  17273. return self.interp_stmts(cont, env)
  17274. case _:
  17275. return super().interp_stmt(s, env, cont)
  17276. \end{lstlisting}
  17277. \end{tcolorbox}
  17278. \caption{Interpreter for the \LangDyn{} language\python{, part 2}.}
  17279. \label{fig:interp-Ldyn-2}
  17280. \end{figure}
  17281. \fi}
  17282. \begin{figure}[tbp]
  17283. \begin{tcolorbox}[colback=white]
  17284. {\if\edition\racketEd
  17285. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17286. (define (interp-op op)
  17287. (match op
  17288. ['+ fx+]
  17289. ['- fx-]
  17290. ['read read-fixnum]
  17291. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  17292. ['< (lambda (v1 v2)
  17293. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  17294. ['<= (lambda (v1 v2)
  17295. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  17296. ['> (lambda (v1 v2)
  17297. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  17298. ['>= (lambda (v1 v2)
  17299. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  17300. ['boolean? boolean?]
  17301. ['integer? fixnum?]
  17302. ['void? void?]
  17303. ['vector? vector?]
  17304. ['vector-length vector-length]
  17305. ['procedure? (match-lambda
  17306. [`(functions ,xs ,body ,env) #t] [else #f])]
  17307. [else (error 'interp-op "unknown operator" op)]))
  17308. (define (op-tags op)
  17309. (match op
  17310. ['+ '((Integer Integer))]
  17311. ['- '((Integer Integer) (Integer))]
  17312. ['read '(())]
  17313. ['not '((Boolean))]
  17314. ['< '((Integer Integer))]
  17315. ['<= '((Integer Integer))]
  17316. ['> '((Integer Integer))]
  17317. ['>= '((Integer Integer))]
  17318. ['vector-length '((Vector))]))
  17319. (define type-predicates
  17320. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17321. (define (tag-value v)
  17322. (cond [(boolean? v) (Tagged v 'Boolean)]
  17323. [(fixnum? v) (Tagged v 'Integer)]
  17324. [(procedure? v) (Tagged v 'Procedure)]
  17325. [(vector? v) (Tagged v 'Vector)]
  17326. [(void? v) (Tagged v 'Void)]
  17327. [else (error 'tag-value "unidentified value ~a" v)]))
  17328. (define (check-tag val expected ast)
  17329. (define tag (Tagged-tag val))
  17330. (unless (eq? tag expected)
  17331. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  17332. \end{lstlisting}
  17333. \fi}
  17334. {\if\edition\pythonEd\pythonColor
  17335. \begin{lstlisting}
  17336. class InterpLdyn(InterpLlambda):
  17337. def tag(self, v):
  17338. if v is True or v is False:
  17339. return Tagged(v, 'bool')
  17340. elif isinstance(v, int):
  17341. return Tagged(v, 'int')
  17342. elif isinstance(v, Function):
  17343. return Tagged(v, 'function')
  17344. elif isinstance(v, tuple):
  17345. return Tagged(v, 'tuple')
  17346. elif isinstance(v, type(None)):
  17347. return Tagged(v, 'none')
  17348. else:
  17349. raise Exception('tag: unexpected ' + repr(v))
  17350. def untag(self, v, expected_tag, ast):
  17351. match v:
  17352. case Tagged(val, tag) if tag == expected_tag:
  17353. return val
  17354. case _:
  17355. raise TrappedError('expected Tagged value with '
  17356. + expected_tag + ', not ' + ' ' + repr(v))
  17357. def apply_fun(self, fun, args, e):
  17358. f = self.untag(fun, 'function', e)
  17359. return super().apply_fun(f, args, e)
  17360. \end{lstlisting}
  17361. \fi}
  17362. \end{tcolorbox}
  17363. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  17364. \label{fig:interp-Ldyn-aux}
  17365. \end{figure}
  17366. \clearpage
  17367. \section{Representation of Tagged Values}
  17368. The interpreter for \LangDyn{} introduced a new kind of value: the
  17369. tagged value. To compile \LangDyn{} to x86 we must decide how to
  17370. represent tagged values at the bit level. Because almost every
  17371. operation in \LangDyn{} involves manipulating tagged values, the
  17372. representation must be efficient. Recall that all our values are 64
  17373. bits. We shall steal the right-most $3$ bits to encode the tag. We use
  17374. $001$ to identify integers, $100$ for Booleans, $010$ for tuples,
  17375. $011$ for procedures, and $101$ for the void value\python{,
  17376. \key{None}}. We define the following auxiliary function for mapping
  17377. types to tag codes:
  17378. %
  17379. {\if\edition\racketEd
  17380. \begin{align*}
  17381. \itm{tagof}(\key{Integer}) &= 001 \\
  17382. \itm{tagof}(\key{Boolean}) &= 100 \\
  17383. \itm{tagof}(\LP\key{Vector} \ldots\RP) &= 010 \\
  17384. \itm{tagof}(\LP\ldots \key{->} \ldots\RP) &= 011 \\
  17385. \itm{tagof}(\key{Void}) &= 101
  17386. \end{align*}
  17387. \fi}
  17388. {\if\edition\pythonEd\pythonColor
  17389. \begin{align*}
  17390. \itm{tagof}(\key{IntType()}) &= 001 \\
  17391. \itm{tagof}(\key{BoolType()}) &= 100 \\
  17392. \itm{tagof}(\key{TupleType(ts)}) &= 010 \\
  17393. \itm{tagof}(\key{FunctionType(ps, rt)}) &= 011 \\
  17394. \itm{tagof}(\key{type(None)}) &= 101
  17395. \end{align*}
  17396. \fi}
  17397. %
  17398. This stealing of 3 bits comes at some price: integers are now restricted
  17399. to the range $-2^{60}$ to $2^{60}-1$. The stealing does not adversely
  17400. affect tuples and procedures because those values are addresses, and
  17401. our addresses are 8-byte aligned so the rightmost 3 bits are unused;
  17402. they are always $000$. Thus, we do not lose information by overwriting
  17403. the rightmost 3 bits with the tag, and we can simply zero out the tag
  17404. to recover the original address.
  17405. To make tagged values into first-class entities, we can give them a
  17406. type called \racket{\code{Any}}\python{\code{AnyType()}} and define
  17407. operations such as \code{Inject} and \code{Project} for creating and
  17408. using them, yielding the statically typed \LangAny{} intermediate
  17409. language. We describe how to compile \LangDyn{} to \LangAny{} in
  17410. section~\ref{sec:compile-r7}; in the next section we describe the
  17411. \LangAny{} language in greater detail.
  17412. \section{The \LangAny{} Language}
  17413. \label{sec:Rany-lang}
  17414. \newcommand{\LanyASTRacket}{
  17415. \begin{array}{lcl}
  17416. \Type &::= & \ANYTY \\
  17417. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  17418. \MID \LP\key{Vector}\; \ANYTY\ldots\RP
  17419. \MID \LP\ANYTY\ldots \; \key{->}\; \ANYTY\RP\\
  17420. \itm{op} &::= & \code{any-vector-length}
  17421. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  17422. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  17423. \MID \code{procedure?} \MID \code{void?} \\
  17424. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  17425. \end{array}
  17426. }
  17427. \newcommand{\LanyASTPython}{
  17428. \begin{array}{lcl}
  17429. \Type &::= & \key{AnyType()} \\
  17430. \FType &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  17431. \MID \key{TupleType}\LS\key{AnyType()}^+\RS \\
  17432. &\MID& \key{FunctionType}\LP \key{AnyType()}^{*}\key{, }\key{AnyType()}\RP \\
  17433. \Exp & ::= & \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  17434. &\MID& \CALL{\VAR{\skey{any\_tuple\_load}}}{\LS\Exp\key{, }\Exp\RS}\\
  17435. &\MID& \CALL{\VAR{\skey{any\_len}}}{\LS\Exp\RS} \\
  17436. &\MID& \CALL{\VAR{\skey{arity}}}{\LS\Exp\RS} \\
  17437. &\MID& \CALL{\VAR{\skey{make\_any}}}{\LS\Exp\key{, }\INT{\Int}\RS}
  17438. %% &\MID& \CALL{\VAR{\skey{is\_int}}}{\Exp}
  17439. %% \MID \CALL{\VAR{\skey{is\_bool}}}{\Exp} \\
  17440. %% &\MID& \CALL{\VAR{\skey{is\_none}}}{\Exp}
  17441. %% \MID \CALL{\VAR{\skey{is\_tuple}}}{\Exp} \\
  17442. %% &\MID& \CALL{\VAR{\skey{is\_function}}}{\Exp}
  17443. \end{array}
  17444. }
  17445. \begin{figure}[tp]
  17446. \centering
  17447. \begin{tcolorbox}[colback=white]
  17448. \small
  17449. {\if\edition\racketEd
  17450. \[
  17451. \begin{array}{l}
  17452. \gray{\LintOpAST} \\ \hline
  17453. \gray{\LvarASTRacket{}} \\ \hline
  17454. \gray{\LifASTRacket{}} \\ \hline
  17455. \gray{\LwhileASTRacket{}} \\ \hline
  17456. \gray{\LtupASTRacket{}} \\ \hline
  17457. \gray{\LfunASTRacket} \\ \hline
  17458. \gray{\LlambdaASTRacket} \\ \hline
  17459. \LanyASTRacket \\
  17460. \begin{array}{lcl}
  17461. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17462. \end{array}
  17463. \end{array}
  17464. \]
  17465. \fi}
  17466. {\if\edition\pythonEd\pythonColor
  17467. \[
  17468. \begin{array}{l}
  17469. \gray{\LintASTPython} \\ \hline
  17470. \gray{\LvarASTPython{}} \\ \hline
  17471. \gray{\LifASTPython{}} \\ \hline
  17472. \gray{\LwhileASTPython{}} \\ \hline
  17473. \gray{\LtupASTPython{}} \\ \hline
  17474. \gray{\LfunASTPython} \\ \hline
  17475. \gray{\LlambdaASTPython} \\ \hline
  17476. \LanyASTPython \\
  17477. \begin{array}{lcl}
  17478. \LangAnyM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17479. \end{array}
  17480. \end{array}
  17481. \]
  17482. \fi}
  17483. \end{tcolorbox}
  17484. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (figure~\ref{fig:Llam-syntax}).}
  17485. \label{fig:Lany-syntax}
  17486. \end{figure}
  17487. The definition of the abstract syntax of \LangAny{} is given in
  17488. figure~\ref{fig:Lany-syntax}.
  17489. %% \racket{(The concrete syntax of \LangAny{} is in the Appendix,
  17490. %% figure~\ref{fig:Lany-concrete-syntax}.)}
  17491. The $\INJECT{e}{T}$ form converts the value produced by expression $e$
  17492. of type $T$ into a tagged value. The $\PROJECT{e}{T}$ form either
  17493. converts the tagged value produced by expression $e$ into a value of
  17494. type $T$ or halts the program if the type tag does not match $T$.
  17495. %
  17496. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  17497. restricted to be a flat type (the nonterminal $\FType$) which
  17498. simplifies the implementation and complies with the needs for
  17499. compiling \LangDyn{}.
  17500. The \racket{\code{any-vector}} operators
  17501. \python{\code{any\_tuple\_load} and \code{any\_len}} adapt the tuple
  17502. operations so that they can be applied to a value of type
  17503. \racket{\code{Any}}\python{\code{AnyType}}. They also generalize the
  17504. tuple operations in that the index is not restricted to a literal
  17505. integer in the grammar but is allowed to be any expression.
  17506. \racket{The type predicates such as
  17507. \racket{\key{boolean?}}\python{\key{is\_bool}} expect their argument
  17508. to produce a tagged value; they return {\TRUE} if the tag corresponds to
  17509. the predicate and return {\FALSE} otherwise.}
  17510. The type checker for \LangAny{} is shown in
  17511. figure~\ref{fig:type-check-Lany}
  17512. %
  17513. \racket{ and uses the auxiliary functions presented in
  17514. figure~\ref{fig:type-check-Lany-aux}}.
  17515. %
  17516. The interpreter for \LangAny{} is shown in figure~\ref{fig:interp-Lany} and
  17517. its auxiliary functions are shown in figure~\ref{fig:interp-Lany-aux}.
  17518. \begin{figure}[btp]
  17519. \begin{tcolorbox}[colback=white]
  17520. {\if\edition\racketEd
  17521. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17522. (define type-check-Lany-class
  17523. (class type-check-Llambda-class
  17524. (super-new)
  17525. (inherit check-type-equal?)
  17526. (define/override (type-check-exp env)
  17527. (lambda (e)
  17528. (define recur (type-check-exp env))
  17529. (match e
  17530. [(Inject e1 ty)
  17531. (unless (flat-ty? ty)
  17532. (error 'type-check "may only inject from flat type, not ~a" ty))
  17533. (define-values (new-e1 e-ty) (recur e1))
  17534. (check-type-equal? e-ty ty e)
  17535. (values (Inject new-e1 ty) 'Any)]
  17536. [(Project e1 ty)
  17537. (unless (flat-ty? ty)
  17538. (error 'type-check "may only project to flat type, not ~a" ty))
  17539. (define-values (new-e1 e-ty) (recur e1))
  17540. (check-type-equal? e-ty 'Any e)
  17541. (values (Project new-e1 ty) ty)]
  17542. [(Prim 'any-vector-length (list e1))
  17543. (define-values (e1^ t1) (recur e1))
  17544. (check-type-equal? t1 'Any e)
  17545. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  17546. [(Prim 'any-vector-ref (list e1 e2))
  17547. (define-values (e1^ t1) (recur e1))
  17548. (define-values (e2^ t2) (recur e2))
  17549. (check-type-equal? t1 'Any e)
  17550. (check-type-equal? t2 'Integer e)
  17551. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  17552. [(Prim 'any-vector-set! (list e1 e2 e3))
  17553. (define-values (e1^ t1) (recur e1))
  17554. (define-values (e2^ t2) (recur e2))
  17555. (define-values (e3^ t3) (recur e3))
  17556. (check-type-equal? t1 'Any e)
  17557. (check-type-equal? t2 'Integer e)
  17558. (check-type-equal? t3 'Any e)
  17559. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  17560. [(Prim pred (list e1))
  17561. #:when (set-member? (type-predicates) pred)
  17562. (define-values (new-e1 e-ty) (recur e1))
  17563. (check-type-equal? e-ty 'Any e)
  17564. (values (Prim pred (list new-e1)) 'Boolean)]
  17565. [(Prim 'eq? (list arg1 arg2))
  17566. (define-values (e1 t1) (recur arg1))
  17567. (define-values (e2 t2) (recur arg2))
  17568. (match* (t1 t2)
  17569. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  17570. [(other wise) (check-type-equal? t1 t2 e)])
  17571. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  17572. [else ((super type-check-exp env) e)])))
  17573. ))
  17574. \end{lstlisting}
  17575. \fi}
  17576. {\if\edition\pythonEd\pythonColor
  17577. \begin{lstlisting}
  17578. class TypeCheckLany(TypeCheckLlambda):
  17579. def type_check_exp(self, e, env):
  17580. match e:
  17581. case Inject(value, typ):
  17582. self.check_exp(value, typ, env)
  17583. return AnyType()
  17584. case Project(value, typ):
  17585. self.check_exp(value, AnyType(), env)
  17586. return typ
  17587. case Call(Name('any_tuple_load'), [tup, index]):
  17588. self.check_exp(tup, AnyType(), env)
  17589. self.check_exp(index, IntType(), env)
  17590. return AnyType()
  17591. case Call(Name('any_len'), [tup]):
  17592. self.check_exp(tup, AnyType(), env)
  17593. return IntType()
  17594. case Call(Name('arity'), [fun]):
  17595. ty = self.type_check_exp(fun, env)
  17596. match ty:
  17597. case FunctionType(ps, rt):
  17598. return IntType()
  17599. case TupleType([FunctionType(ps,rs)]):
  17600. return IntType()
  17601. case _:
  17602. raise Exception('type check arity unexpected ' + repr(ty))
  17603. case Call(Name('make_any'), [value, tag]):
  17604. self.type_check_exp(value, env)
  17605. self.check_exp(tag, IntType(), env)
  17606. return AnyType()
  17607. case AnnLambda(params, returns, body):
  17608. new_env = {x:t for (x,t) in env.items()}
  17609. for (x,t) in params:
  17610. new_env[x] = t
  17611. return_t = self.type_check_exp(body, new_env)
  17612. self.check_type_equal(returns, return_t, e)
  17613. return FunctionType([t for (x,t) in params], return_t)
  17614. case _:
  17615. return super().type_check_exp(e, env)
  17616. \end{lstlisting}
  17617. \fi}
  17618. \end{tcolorbox}
  17619. \caption{Type checker for the \LangAny{} language.}
  17620. \label{fig:type-check-Lany}
  17621. \end{figure}
  17622. {\if\edition\racketEd
  17623. \begin{figure}[tbp]
  17624. \begin{tcolorbox}[colback=white]
  17625. \begin{lstlisting}
  17626. (define/override (operator-types)
  17627. (append
  17628. '((integer? . ((Any) . Boolean))
  17629. (vector? . ((Any) . Boolean))
  17630. (procedure? . ((Any) . Boolean))
  17631. (void? . ((Any) . Boolean)))
  17632. (super operator-types)))
  17633. (define/public (type-predicates)
  17634. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17635. (define/public (flat-ty? ty)
  17636. (match ty
  17637. [(or `Integer `Boolean `Void) #t]
  17638. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  17639. [`(,ts ... -> ,rt)
  17640. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  17641. [else #f]))
  17642. \end{lstlisting}
  17643. \end{tcolorbox}
  17644. \caption{Auxiliary methods for type checking \LangAny{}.}
  17645. \label{fig:type-check-Lany-aux}
  17646. \end{figure}
  17647. \fi}
  17648. \begin{figure}[btp]
  17649. \begin{tcolorbox}[colback=white]
  17650. {\if\edition\racketEd
  17651. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17652. (define interp-Lany-class
  17653. (class interp-Llambda-class
  17654. (super-new)
  17655. (define/override (interp-op op)
  17656. (match op
  17657. ['boolean? (match-lambda
  17658. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  17659. [else #f])]
  17660. ['integer? (match-lambda
  17661. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  17662. [else #f])]
  17663. ['vector? (match-lambda
  17664. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  17665. [else #f])]
  17666. ['procedure? (match-lambda
  17667. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  17668. [else #f])]
  17669. ['eq? (match-lambda*
  17670. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  17671. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  17672. [ls (apply (super interp-op op) ls)])]
  17673. ['any-vector-ref (lambda (v i)
  17674. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  17675. ['any-vector-set! (lambda (v i a)
  17676. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  17677. ['any-vector-length (lambda (v)
  17678. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  17679. [else (super interp-op op)]))
  17680. (define/override ((interp-exp env) e)
  17681. (define recur (interp-exp env))
  17682. (match e
  17683. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  17684. [(Project e ty2) (apply-project (recur e) ty2)]
  17685. [else ((super interp-exp env) e)]))
  17686. ))
  17687. (define (interp-Lany p)
  17688. (send (new interp-Lany-class) interp-program p))
  17689. \end{lstlisting}
  17690. \fi}
  17691. {\if\edition\pythonEd\pythonColor
  17692. \begin{lstlisting}
  17693. class InterpLany(InterpLlambda):
  17694. def interp_exp(self, e, env):
  17695. match e:
  17696. case Inject(value, typ):
  17697. v = self.interp_exp(value, env)
  17698. return Tagged(v, self.type_to_tag(typ))
  17699. case Project(value, typ):
  17700. v = self.interp_exp(value, env)
  17701. match v:
  17702. case Tagged(val, tag) if self.type_to_tag(typ) == tag:
  17703. return val
  17704. case _:
  17705. raise Exception('interp project to ' + repr(typ)
  17706. + ' unexpected ' + repr(v))
  17707. case Call(Name('any_tuple_load'), [tup, index]):
  17708. tv = self.interp_exp(tup, env)
  17709. n = self.interp_exp(index, env)
  17710. match tv:
  17711. case Tagged(v, tag):
  17712. return v[n]
  17713. case _:
  17714. raise Exception('in any_tuple_load unexpected ' + repr(tv))
  17715. case Call(Name('any_len'), [value]):
  17716. v = self.interp_exp(value, env)
  17717. match v:
  17718. case Tagged(value, tag):
  17719. return len(value)
  17720. case _:
  17721. raise Exception('interp any_len unexpected ' + repr(v))
  17722. case Call(Name('arity'), [fun]):
  17723. f = self.interp_exp(fun, env)
  17724. return self.arity(f)
  17725. case _:
  17726. return super().interp_exp(e, env)
  17727. \end{lstlisting}
  17728. \fi}
  17729. \end{tcolorbox}
  17730. \caption{Interpreter for \LangAny{}.}
  17731. \label{fig:interp-Lany}
  17732. \end{figure}
  17733. \begin{figure}[tbp]
  17734. \begin{tcolorbox}[colback=white]
  17735. {\if\edition\racketEd
  17736. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17737. (define/public (apply-inject v tg) (Tagged v tg))
  17738. (define/public (apply-project v ty2)
  17739. (define tag2 (any-tag ty2))
  17740. (match v
  17741. [(Tagged v1 tag1)
  17742. (cond
  17743. [(eq? tag1 tag2)
  17744. (match ty2
  17745. [`(Vector ,ts ...)
  17746. (define l1 ((interp-op 'vector-length) v1))
  17747. (cond
  17748. [(eq? l1 (length ts)) v1]
  17749. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  17750. l1 (length ts))])]
  17751. [`(,ts ... -> ,rt)
  17752. (match v1
  17753. [`(function ,xs ,body ,env)
  17754. (cond [(eq? (length xs) (length ts)) v1]
  17755. [else
  17756. (error 'apply-project "arity mismatch ~a != ~a"
  17757. (length xs) (length ts))])]
  17758. [else (error 'apply-project "expected function not ~a" v1)])]
  17759. [else v1])]
  17760. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  17761. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  17762. \end{lstlisting}
  17763. \fi}
  17764. {\if\edition\pythonEd\pythonColor
  17765. \begin{lstlisting}
  17766. class InterpLany(InterpLlambda):
  17767. def type_to_tag(self, typ):
  17768. match typ:
  17769. case FunctionType(params, rt):
  17770. return 'function'
  17771. case TupleType(fields):
  17772. return 'tuple'
  17773. case t if t == int:
  17774. return 'int'
  17775. case t if t == bool:
  17776. return 'bool'
  17777. case IntType():
  17778. return 'int'
  17779. case BoolType():
  17780. return 'int'
  17781. case _:
  17782. raise Exception('type_to_tag unexpected ' + repr(typ))
  17783. def arity(self, v):
  17784. match v:
  17785. case Function(name, params, body, env):
  17786. return len(params)
  17787. case ClosureTuple(args, arity):
  17788. return arity
  17789. case _:
  17790. raise Exception('Lany arity unexpected ' + repr(v))
  17791. \end{lstlisting}
  17792. \fi}
  17793. \end{tcolorbox}
  17794. \caption{Auxiliary functions for interpreting \LangAny{}.}
  17795. \label{fig:interp-Lany-aux}
  17796. \end{figure}
  17797. \clearpage
  17798. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  17799. \label{sec:compile-r7}
  17800. The \code{cast\_insert} pass compiles from \LangDyn{} to \LangAny{}.
  17801. Figure~\ref{fig:compile-r7-Lany} shows the compilation of many of the
  17802. \LangDyn{} forms into \LangAny{}. An important invariant of this pass
  17803. is that given any subexpression $e$ in the \LangDyn{} program, the
  17804. pass will produce an expression $e'$ in \LangAny{} that has type
  17805. \ANYTY{}. For example, the first row in
  17806. figure~\ref{fig:compile-r7-Lany} shows the compilation of the Boolean
  17807. \TRUE{}, which must be injected to produce an expression of type
  17808. \ANYTY{}.
  17809. %
  17810. The compilation of addition is shown in the second row of
  17811. figure~\ref{fig:compile-r7-Lany}. The compilation of addition is
  17812. representative of many primitive operations: the arguments have type
  17813. \ANYTY{} and must be projected to \INTTYPE{} before the addition can
  17814. be performed.
  17815. The compilation of \key{lambda} (third row of
  17816. figure~\ref{fig:compile-r7-Lany}) shows what happens when we need to
  17817. produce type annotations: we simply use \ANYTY{}.
  17818. %
  17819. % TODO:update the following for python, and the tests and interpreter. -Jeremy
  17820. \racket{The compilation of \code{if} and \code{eq?} demonstrate how
  17821. this pass has to account for some differences in behavior between
  17822. \LangDyn{} and \LangAny{}. The \LangDyn{} language is more
  17823. permissive than \LangAny{} regarding what kind of values can be used
  17824. in various places. For example, the condition of an \key{if} does
  17825. not have to be a Boolean. For \key{eq?}, the arguments need not be
  17826. of the same type (in that case the result is \code{\#f}).}
  17827. \begin{figure}[btp]
  17828. \centering
  17829. \begin{tcolorbox}[colback=white]
  17830. {\if\edition\racketEd
  17831. \begin{tabular}{lll}
  17832. \begin{minipage}{0.27\textwidth}
  17833. \begin{lstlisting}
  17834. #t
  17835. \end{lstlisting}
  17836. \end{minipage}
  17837. &
  17838. $\Rightarrow$
  17839. &
  17840. \begin{minipage}{0.65\textwidth}
  17841. \begin{lstlisting}
  17842. (inject #t Boolean)
  17843. \end{lstlisting}
  17844. \end{minipage}
  17845. \\[2ex]\hline
  17846. \begin{minipage}{0.27\textwidth}
  17847. \begin{lstlisting}
  17848. (+ |$e_1$| |$e_2$|)
  17849. \end{lstlisting}
  17850. \end{minipage}
  17851. &
  17852. $\Rightarrow$
  17853. &
  17854. \begin{minipage}{0.65\textwidth}
  17855. \begin{lstlisting}
  17856. (inject
  17857. (+ (project |$e'_1$| Integer)
  17858. (project |$e'_2$| Integer))
  17859. Integer)
  17860. \end{lstlisting}
  17861. \end{minipage}
  17862. \\[2ex]\hline
  17863. \begin{minipage}{0.27\textwidth}
  17864. \begin{lstlisting}
  17865. (lambda (|$x_1 \ldots$|) |$e$|)
  17866. \end{lstlisting}
  17867. \end{minipage}
  17868. &
  17869. $\Rightarrow$
  17870. &
  17871. \begin{minipage}{0.65\textwidth}
  17872. \begin{lstlisting}
  17873. (inject
  17874. (lambda: ([|$x_1$|:Any]|$\ldots$|):Any |$e'$|)
  17875. (Any|$\ldots$|Any -> Any))
  17876. \end{lstlisting}
  17877. \end{minipage}
  17878. \\[2ex]\hline
  17879. \begin{minipage}{0.27\textwidth}
  17880. \begin{lstlisting}
  17881. (|$e_0$| |$e_1 \ldots e_n$|)
  17882. \end{lstlisting}
  17883. \end{minipage}
  17884. &
  17885. $\Rightarrow$
  17886. &
  17887. \begin{minipage}{0.65\textwidth}
  17888. \begin{lstlisting}
  17889. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  17890. \end{lstlisting}
  17891. \end{minipage}
  17892. \\[2ex]\hline
  17893. \begin{minipage}{0.27\textwidth}
  17894. \begin{lstlisting}
  17895. (vector-ref |$e_1$| |$e_2$|)
  17896. \end{lstlisting}
  17897. \end{minipage}
  17898. &
  17899. $\Rightarrow$
  17900. &
  17901. \begin{minipage}{0.65\textwidth}
  17902. \begin{lstlisting}
  17903. (any-vector-ref |$e_1'$| (project |$e'_2$| Integer))
  17904. \end{lstlisting}
  17905. \end{minipage}
  17906. \\[2ex]\hline
  17907. \begin{minipage}{0.27\textwidth}
  17908. \begin{lstlisting}
  17909. (if |$e_1$| |$e_2$| |$e_3$|)
  17910. \end{lstlisting}
  17911. \end{minipage}
  17912. &
  17913. $\Rightarrow$
  17914. &
  17915. \begin{minipage}{0.65\textwidth}
  17916. \begin{lstlisting}
  17917. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  17918. \end{lstlisting}
  17919. \end{minipage}
  17920. \\[2ex]\hline
  17921. \begin{minipage}{0.27\textwidth}
  17922. \begin{lstlisting}
  17923. (eq? |$e_1$| |$e_2$|)
  17924. \end{lstlisting}
  17925. \end{minipage}
  17926. &
  17927. $\Rightarrow$
  17928. &
  17929. \begin{minipage}{0.65\textwidth}
  17930. \begin{lstlisting}
  17931. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  17932. \end{lstlisting}
  17933. \end{minipage}
  17934. \\[2ex]\hline
  17935. \begin{minipage}{0.27\textwidth}
  17936. \begin{lstlisting}
  17937. (not |$e_1$|)
  17938. \end{lstlisting}
  17939. \end{minipage}
  17940. &
  17941. $\Rightarrow$
  17942. &
  17943. \begin{minipage}{0.65\textwidth}
  17944. \begin{lstlisting}
  17945. (if (eq? |$e'_1$| (inject #f Boolean))
  17946. (inject #t Boolean) (inject #f Boolean))
  17947. \end{lstlisting}
  17948. \end{minipage}
  17949. \end{tabular}
  17950. \fi}
  17951. {\if\edition\pythonEd\pythonColor
  17952. \hspace{-0.8em}\begin{tabular}{|lll|} \hline
  17953. \begin{minipage}{0.23\textwidth}
  17954. \begin{lstlisting}
  17955. True
  17956. \end{lstlisting}
  17957. \end{minipage}
  17958. &
  17959. $\Rightarrow$
  17960. &
  17961. \begin{minipage}{0.7\textwidth}
  17962. \begin{lstlisting}
  17963. Inject(True, BoolType())
  17964. \end{lstlisting}
  17965. \end{minipage}
  17966. \\[2ex]\hline
  17967. \begin{minipage}{0.23\textwidth}
  17968. \begin{lstlisting}
  17969. |$e_1$| + |$e_2$|
  17970. \end{lstlisting}
  17971. \end{minipage}
  17972. &
  17973. $\Rightarrow$
  17974. &
  17975. \begin{minipage}{0.7\textwidth}
  17976. \begin{lstlisting}
  17977. Inject(Project(|$e'_1$|, IntType())
  17978. + Project(|$e'_2$|, IntType()),
  17979. IntType())
  17980. \end{lstlisting}
  17981. \end{minipage}
  17982. \\[2ex]\hline
  17983. \begin{minipage}{0.23\textwidth}
  17984. \begin{lstlisting}
  17985. lambda |$x_1 \ldots$|: |$e$|
  17986. \end{lstlisting}
  17987. \end{minipage}
  17988. &
  17989. $\Rightarrow$
  17990. &
  17991. \begin{minipage}{0.7\textwidth}
  17992. \begin{lstlisting}
  17993. Inject(Lambda([(|$x_1$|,AnyType),|$\ldots$|], |$e'$|)
  17994. FunctionType([AnyType(),|$\ldots$|], AnyType()))
  17995. \end{lstlisting}
  17996. \end{minipage}
  17997. \\[2ex]\hline
  17998. \begin{minipage}{0.23\textwidth}
  17999. \begin{lstlisting}
  18000. |$e_0$|(|$e_1 \ldots e_n$|)
  18001. \end{lstlisting}
  18002. \end{minipage}
  18003. &
  18004. $\Rightarrow$
  18005. &
  18006. \begin{minipage}{0.7\textwidth}
  18007. \begin{lstlisting}
  18008. Call(Project(|$e'_0$|, FunctionType([AnyType(),|$\ldots$|],
  18009. AnyType())), |$e'_1, \ldots, e'_n$|)
  18010. \end{lstlisting}
  18011. \end{minipage}
  18012. \\[2ex]\hline
  18013. \begin{minipage}{0.23\textwidth}
  18014. \begin{lstlisting}
  18015. |$e_1$|[|$e_2$|]
  18016. \end{lstlisting}
  18017. \end{minipage}
  18018. &
  18019. $\Rightarrow$
  18020. &
  18021. \begin{minipage}{0.7\textwidth}
  18022. \begin{lstlisting}
  18023. Call(Name('any_tuple_load'),
  18024. [|$e_1'$|, Project(|$e_2'$|, IntType())])
  18025. \end{lstlisting}
  18026. \end{minipage}
  18027. %% \begin{minipage}{0.23\textwidth}
  18028. %% \begin{lstlisting}
  18029. %% |$e_2$| if |$e_1$| else |$e_3$|
  18030. %% \end{lstlisting}
  18031. %% \end{minipage}
  18032. %% &
  18033. %% $\Rightarrow$
  18034. %% &
  18035. %% \begin{minipage}{0.7\textwidth}
  18036. %% \begin{lstlisting}
  18037. %% (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  18038. %% \end{lstlisting}
  18039. %% \end{minipage}
  18040. %% \\[2ex]\hline
  18041. %% \begin{minipage}{0.23\textwidth}
  18042. %% \begin{lstlisting}
  18043. %% (eq? |$e_1$| |$e_2$|)
  18044. %% \end{lstlisting}
  18045. %% \end{minipage}
  18046. %% &
  18047. %% $\Rightarrow$
  18048. %% &
  18049. %% \begin{minipage}{0.7\textwidth}
  18050. %% \begin{lstlisting}
  18051. %% (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  18052. %% \end{lstlisting}
  18053. %% \end{minipage}
  18054. %% \\[2ex]\hline
  18055. %% \begin{minipage}{0.23\textwidth}
  18056. %% \begin{lstlisting}
  18057. %% (not |$e_1$|)
  18058. %% \end{lstlisting}
  18059. %% \end{minipage}
  18060. %% &
  18061. %% $\Rightarrow$
  18062. %% &
  18063. %% \begin{minipage}{0.7\textwidth}
  18064. %% \begin{lstlisting}
  18065. %% (if (eq? |$e'_1$| (inject #f Boolean))
  18066. %% (inject #t Boolean) (inject #f Boolean))
  18067. %% \end{lstlisting}
  18068. %% \end{minipage}
  18069. %% \\[2ex]\hline
  18070. \\\hline
  18071. \end{tabular}
  18072. \fi}
  18073. \end{tcolorbox}
  18074. \caption{Cast insertion.}
  18075. \label{fig:compile-r7-Lany}
  18076. \end{figure}
  18077. \section{Reveal Casts}
  18078. \label{sec:reveal-casts-Lany}
  18079. % TODO: define R'_6
  18080. In the \code{reveal\_casts} pass, we recommend compiling
  18081. \code{Project} into a conditional expression that checks whether the
  18082. value's tag matches the target type; if it does, the value is
  18083. converted to a value of the target type by removing the tag; if it
  18084. does not, the program exits.
  18085. %
  18086. {\if\edition\racketEd
  18087. %
  18088. To perform these actions we need a new primitive operation,
  18089. \code{tag-of-any}, and a new form, \code{ValueOf}.
  18090. The \code{tag-of-any} operation retrieves the type tag from a tagged
  18091. value of type \code{Any}. The \code{ValueOf} form retrieves the
  18092. underlying value from a tagged value. The \code{ValueOf} form
  18093. includes the type for the underlying value that is used by the type
  18094. checker.
  18095. %
  18096. \fi}
  18097. %
  18098. {\if\edition\pythonEd\pythonColor
  18099. %
  18100. To perform these actions we need two new AST classes: \code{TagOf} and
  18101. \code{ValueOf}. The \code{TagOf} operation retrieves the type tag from a
  18102. tagged value of type \ANYTY{}. The \code{ValueOf} operation retrieves
  18103. the underlying value from a tagged value. The \code{ValueOf}
  18104. operation includes the type for the underlying value that is used by
  18105. the type checker.
  18106. %
  18107. \fi}
  18108. If the target type of the projection is \BOOLTY{} or \INTTY{}, then
  18109. \code{Project} can be translated as follows:
  18110. \begin{center}
  18111. \begin{minipage}{1.0\textwidth}
  18112. {\if\edition\racketEd
  18113. \begin{lstlisting}
  18114. (Project |$e$| |$\FType$|)
  18115. |$\Rightarrow$|
  18116. (Let |$\itm{tmp}$| |$e'$|
  18117. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  18118. (Int |$\itm{tagof}(\FType)$|)))
  18119. (ValueOf |$\itm{tmp}$| |$\FType$|)
  18120. (Exit)))
  18121. \end{lstlisting}
  18122. \fi}
  18123. {\if\edition\pythonEd\pythonColor
  18124. \begin{lstlisting}
  18125. Project(|$e$|, |$\FType$|)
  18126. |$\Rightarrow$|
  18127. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  18128. IfExp(Compare(TagOf(|$\itm{tmp}$|),[Eq()],
  18129. [Constant(|$\itm{tagof}(\FType)$|)]),
  18130. ValueOf(|$\itm{tmp}$|, |$\FType$|)
  18131. Call(Name('exit'), [])))
  18132. \end{lstlisting}
  18133. \fi}
  18134. \end{minipage}
  18135. \end{center}
  18136. If the target type of the projection is a tuple or function type, then
  18137. there is a bit more work to do. For tuples, check that the length of
  18138. the tuple type matches the length of the tuple. For functions, check
  18139. that the number of parameters in the function type matches the
  18140. function's arity.
  18141. Regarding \code{Inject}, we recommend compiling it to a slightly
  18142. lower-level primitive operation named \racket{\code{make-any}}\python{\code{make\_any}}. This operation
  18143. takes a tag instead of a type.
  18144. \begin{center}
  18145. \begin{minipage}{1.0\textwidth}
  18146. {\if\edition\racketEd
  18147. \begin{lstlisting}
  18148. (Inject |$e$| |$\FType$|)
  18149. |$\Rightarrow$|
  18150. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  18151. \end{lstlisting}
  18152. \fi}
  18153. {\if\edition\pythonEd\pythonColor
  18154. \begin{lstlisting}
  18155. Inject(|$e$|, |$\FType$|)
  18156. |$\Rightarrow$|
  18157. Call(Name('make_any'), [|$e'$|, Constant(|$\itm{tagof}(\FType)$|)])
  18158. \end{lstlisting}
  18159. \fi}
  18160. \end{minipage}
  18161. \end{center}
  18162. {\if\edition\pythonEd\pythonColor
  18163. %
  18164. The introduction of \code{make\_any} makes it difficult to use
  18165. bidirectional type checking because we no longer have an expected type
  18166. to use for type checking the expression $e'$. Thus, we run into
  18167. difficulty if $e'$ is a \code{Lambda} expression. We recommend
  18168. translating \code{Lambda} to a new AST class \code{AnnLambda} (for
  18169. annotated lambda) that contains its return type and the types of its
  18170. parameters.
  18171. %
  18172. \fi}
  18173. \racket{The type predicates (\code{boolean?}, etc.) can be translated into
  18174. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  18175. translation of \code{Project}.}
  18176. {\if\edition\racketEd
  18177. The \code{any-vector-ref} and \code{any-vector-set!} operations
  18178. combine the projection action with the vector operation. Also, the
  18179. read and write operations allow arbitrary expressions for the index, so
  18180. the type checker for \LangAny{} (figure~\ref{fig:type-check-Lany})
  18181. cannot guarantee that the index is within bounds. Thus, we insert code
  18182. to perform bounds checking at runtime. The translation for
  18183. \code{any-vector-ref} is as follows, and the other two operations are
  18184. translated in a similar way:
  18185. \begin{center}
  18186. \begin{minipage}{0.95\textwidth}
  18187. \begin{lstlisting}
  18188. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  18189. |$\Rightarrow$|
  18190. (Let |$v$| |$e'_1$|
  18191. (Let |$i$| |$e'_2$|
  18192. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  18193. (If (Prim '< (list (Var |$i$|) (Prim 'any-vector-length (list (Var |$v$|)))))
  18194. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  18195. (Exit))
  18196. (Exit))))
  18197. \end{lstlisting}
  18198. \end{minipage}
  18199. \end{center}
  18200. \fi}
  18201. %
  18202. {\if\edition\pythonEd\pythonColor
  18203. %
  18204. The \code{any\_tuple\_load} operation combines the projection action
  18205. with the load operation. Also, the load operation allows arbitrary
  18206. expressions for the index, so the type checker for \LangAny{}
  18207. (figure~\ref{fig:type-check-Lany}) cannot guarantee that the index is
  18208. within bounds. Thus, we insert code to perform bounds checking at
  18209. runtime. The translation for \code{any\_tuple\_load} is as follows.
  18210. \begin{lstlisting}
  18211. Call(Name('any_tuple_load'), [|$e_1$|,|$e_2$|])
  18212. |$\Rightarrow$|
  18213. Block([Assign([|$t$|], |$e'_1$|), Assign([|$i$|], |$e'_2$|)],
  18214. IfExp(Compare(TagOf(|$t$|), [Eq()], [Constant(2)]),
  18215. IfExp(Compare(|$i$|, [Lt()], [Call(Name('any_len'), [|$t$|])]),
  18216. Call(Name('any_tuple_load_unsafe'), [|$t$|, |$i$|]),
  18217. Call(Name('exit'), [])),
  18218. Call(Name('exit'), [])))
  18219. \end{lstlisting}
  18220. \fi}
  18221. {\if\edition\pythonEd\pythonColor
  18222. \section{Assignment Conversion}
  18223. \label{sec:convert-assignments-Lany}
  18224. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  18225. \code{AnnLambda} AST classes.
  18226. \section{Closure Conversion}
  18227. \label{sec:closure-conversion-Lany}
  18228. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  18229. \code{AnnLambda} AST classes.
  18230. \fi}
  18231. \section{Remove Complex Operands}
  18232. \label{sec:rco-Lany}
  18233. \racket{The \code{ValueOf} and \code{Exit} forms are both complex
  18234. expressions. The subexpression of \code{ValueOf} must be atomic.}
  18235. %
  18236. \python{The \code{ValueOf} and \code{TagOf} operations are both
  18237. complex expressions. Their subexpressions must be atomic.}
  18238. \section{Explicate Control and \LangCAny{}}
  18239. \label{sec:explicate-Lany}
  18240. The output of \code{explicate\_control} is the \LangCAny{} language,
  18241. whose syntax definition is shown in figure~\ref{fig:c5-syntax}.
  18242. %
  18243. \racket{The \code{ValueOf} form that we added to \LangAny{} remains an
  18244. expression and the \code{Exit} expression becomes a $\Tail$. Also,
  18245. note that the index argument of \code{vector-ref} and
  18246. \code{vector-set!} is an $\Atm$, instead of an integer as it was in
  18247. \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  18248. %
  18249. \python{Update the auxiliary functions \code{explicate\_tail},
  18250. \code{explicate\_effect}, and \code{explicate\_pred} as
  18251. appropriate to handle the new expressions in \LangCAny{}. }
  18252. \newcommand{\CanyASTPython}{
  18253. \begin{array}{lcl}
  18254. \Exp &::=& \CALL{\VAR{\skey{make\_any}}}{\LS \Atm,\Atm \RS}\\
  18255. &\MID& \key{TagOf}\LP \Atm \RP
  18256. \MID \key{ValueOf}\LP \Atm , \FType \RP \\
  18257. &\MID& \CALL{\VAR{\skey{any\_tuple\_load\_unsafe}}}{\LS \Atm,\Atm \RS}\\
  18258. &\MID& \CALL{\VAR{\skey{any\_len}}}{\LS \Atm \RS} \\
  18259. &\MID& \CALL{\VAR{\skey{exit}}}{\LS\RS}
  18260. \end{array}
  18261. }
  18262. \newcommand{\CanyASTRacket}{
  18263. \begin{array}{lcl}
  18264. \Exp &::= & \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  18265. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  18266. &\MID& \VALUEOF{\Atm}{\FType} \\
  18267. \Tail &::= & \LP\key{Exit}\RP
  18268. \end{array}
  18269. }
  18270. \begin{figure}[tp]
  18271. \begin{tcolorbox}[colback=white]
  18272. \small
  18273. {\if\edition\racketEd
  18274. \[
  18275. \begin{array}{l}
  18276. \gray{\CvarASTRacket} \\ \hline
  18277. \gray{\CifASTRacket} \\ \hline
  18278. \gray{\CloopASTRacket} \\ \hline
  18279. \gray{\CtupASTRacket} \\ \hline
  18280. \gray{\CfunASTRacket} \\ \hline
  18281. \gray{\ClambdaASTRacket} \\ \hline
  18282. \CanyASTRacket \\
  18283. \begin{array}{lcl}
  18284. \LangCAnyM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  18285. \end{array}
  18286. \end{array}
  18287. \]
  18288. \fi}
  18289. {\if\edition\pythonEd\pythonColor
  18290. \[
  18291. \begin{array}{l}
  18292. \gray{\CifASTPython} \\ \hline
  18293. \gray{\CtupASTPython} \\ \hline
  18294. \gray{\CfunASTPython} \\ \hline
  18295. \gray{\ClambdaASTPython} \\ \hline
  18296. \CanyASTPython \\
  18297. \begin{array}{lcl}
  18298. \LangCAnyM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  18299. \end{array}
  18300. \end{array}
  18301. \]
  18302. \fi}
  18303. \end{tcolorbox}
  18304. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (figure~\ref{fig:Clam-syntax}).}
  18305. \label{fig:c5-syntax}
  18306. \end{figure}
  18307. \section{Select Instructions}
  18308. \label{sec:select-Lany}
  18309. \index{subject}{select instructions}
  18310. In the \code{select\_instructions} pass, we translate the primitive
  18311. operations on the \ANYTY{} type to x86 instructions that manipulate
  18312. the three tag bits of the tagged value. In the following descriptions,
  18313. given an atom $e$ we use a primed variable $e'$ to refer to the result
  18314. of translating $e$ into an x86 argument:
  18315. \paragraph{\racket{\code{make-any}}\python{\code{make\_any}}}
  18316. We recommend compiling the
  18317. \racket{\code{make-any}}\python{\code{make\_any}} operation as follows
  18318. if the tag is for \INTTY{} or \BOOLTY{}. The \key{salq} instruction
  18319. shifts the destination to the left by the number of bits specified by its
  18320. source argument (in this case three, the length of the tag), and it
  18321. preserves the sign of the integer. We use the \key{orq} instruction to
  18322. combine the tag and the value to form the tagged value.
  18323. {\if\edition\racketEd
  18324. \begin{lstlisting}
  18325. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18326. |$\Rightarrow$|
  18327. movq |$e'$|, |\itm{lhs'}|
  18328. salq $3, |\itm{lhs'}|
  18329. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18330. \end{lstlisting}
  18331. \fi}
  18332. %
  18333. {\if\edition\pythonEd\pythonColor
  18334. \begin{lstlisting}
  18335. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18336. |$\Rightarrow$|
  18337. movq |$e'$|, |\itm{lhs'}|
  18338. salq $3, |\itm{lhs'}|
  18339. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18340. \end{lstlisting}
  18341. \fi}
  18342. %
  18343. The instruction selection\index{subject}{instruction selection} for
  18344. tuples and procedures is different because there is no need to shift
  18345. them to the left. The rightmost 3 bits are already zeros, so we simply
  18346. combine the value and the tag using \key{orq}. \\
  18347. %
  18348. {\if\edition\racketEd
  18349. \begin{center}
  18350. \begin{minipage}{\textwidth}
  18351. \begin{lstlisting}
  18352. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18353. |$\Rightarrow$|
  18354. movq |$e'$|, |\itm{lhs'}|
  18355. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18356. \end{lstlisting}
  18357. \end{minipage}
  18358. \end{center}
  18359. \fi}
  18360. %
  18361. {\if\edition\pythonEd\pythonColor
  18362. \begin{lstlisting}
  18363. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18364. |$\Rightarrow$|
  18365. movq |$e'$|, |\itm{lhs'}|
  18366. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18367. \end{lstlisting}
  18368. \fi}
  18369. \paragraph{\racket{\code{tag-of-any}}\python{\code{TagOf}}}
  18370. Recall that the \racket{\code{tag-of-any}}\python{\code{TagOf}}
  18371. operation extracts the type tag from a value of type \ANYTY{}. The
  18372. type tag is the bottom $3$ bits, so we obtain the tag by taking the
  18373. bitwise-and of the value with $111$ ($7$ decimal).
  18374. %
  18375. {\if\edition\racketEd
  18376. \begin{lstlisting}
  18377. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  18378. |$\Rightarrow$|
  18379. movq |$e'$|, |\itm{lhs'}|
  18380. andq $7, |\itm{lhs'}|
  18381. \end{lstlisting}
  18382. \fi}
  18383. %
  18384. {\if\edition\pythonEd\pythonColor
  18385. \begin{lstlisting}
  18386. Assign([|\itm{lhs}|], TagOf(|$e$|))
  18387. |$\Rightarrow$|
  18388. movq |$e'$|, |\itm{lhs'}|
  18389. andq $7, |\itm{lhs'}|
  18390. \end{lstlisting}
  18391. \fi}
  18392. \paragraph{\code{ValueOf}}
  18393. The instructions for \key{ValueOf} also differ, depending on whether
  18394. the type $T$ is a pointer (tuple or function) or not (integer or
  18395. Boolean). The following shows the instruction
  18396. selection for integers and
  18397. Booleans, in which we produce an untagged value by shifting it to the
  18398. right by 3 bits:
  18399. %
  18400. {\if\edition\racketEd
  18401. \begin{lstlisting}
  18402. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18403. |$\Rightarrow$|
  18404. movq |$e'$|, |\itm{lhs'}|
  18405. sarq $3, |\itm{lhs'}|
  18406. \end{lstlisting}
  18407. \fi}
  18408. %
  18409. {\if\edition\pythonEd\pythonColor
  18410. \begin{lstlisting}
  18411. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18412. |$\Rightarrow$|
  18413. movq |$e'$|, |\itm{lhs'}|
  18414. sarq $3, |\itm{lhs'}|
  18415. \end{lstlisting}
  18416. \fi}
  18417. %
  18418. In the case for tuples and procedures, we zero out the rightmost 3
  18419. bits. We accomplish this by creating the bit pattern $\ldots 0111$
  18420. ($7$ decimal) and apply bitwise-not to obtain $\ldots 11111000$ (-8
  18421. decimal), which we \code{movq} into the destination $\itm{lhs'}$.
  18422. Finally, we apply \code{andq} with the tagged value to get the desired
  18423. result.
  18424. %
  18425. {\if\edition\racketEd
  18426. \begin{lstlisting}
  18427. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18428. |$\Rightarrow$|
  18429. movq $|$-8$|, |\itm{lhs'}|
  18430. andq |$e'$|, |\itm{lhs'}|
  18431. \end{lstlisting}
  18432. \fi}
  18433. %
  18434. {\if\edition\pythonEd\pythonColor
  18435. \begin{lstlisting}
  18436. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18437. |$\Rightarrow$|
  18438. movq $|$-8$|, |\itm{lhs'}|
  18439. andq |$e'$|, |\itm{lhs'}|
  18440. \end{lstlisting}
  18441. \fi}
  18442. %% \paragraph{Type Predicates} We leave it to the reader to
  18443. %% devise a sequence of instructions to implement the type predicates
  18444. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  18445. \paragraph{\racket{\code{any-vector-length}}\python{\code{any\_len}}}
  18446. The \racket{\code{any-vector-length}}\python{\code{any\_len}}
  18447. operation combines the effect of \code{ValueOf} with accessing the
  18448. length of a tuple from the tag stored at the zero index of the tuple.
  18449. {\if\edition\racketEd
  18450. \begin{lstlisting}
  18451. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$e_1$|)))
  18452. |$\Longrightarrow$|
  18453. movq $|$-8$|, %r11
  18454. andq |$e_1'$|, %r11
  18455. movq 0(%r11), %r11
  18456. andq $126, %r11
  18457. sarq $1, %r11
  18458. movq %r11, |$\itm{lhs'}$|
  18459. \end{lstlisting}
  18460. \fi}
  18461. {\if\edition\pythonEd\pythonColor
  18462. \begin{lstlisting}
  18463. Assign([|$\itm{lhs}$|], Call(Name('any_len'), [|$e_1$|]))
  18464. |$\Longrightarrow$|
  18465. movq $|$-8$|, %r11
  18466. andq |$e_1'$|, %r11
  18467. movq 0(%r11), %r11
  18468. andq $126, %r11
  18469. sarq $1, %r11
  18470. movq %r11, |$\itm{lhs'}$|
  18471. \end{lstlisting}
  18472. \fi}
  18473. \paragraph{\racket{\code{any-vector-ref}}\python{\code{\code{any\_tuple\_load\_unsafe}}}}
  18474. This operation combines the effect of \code{ValueOf} with reading an
  18475. element of the tuple (see
  18476. section~\ref{sec:select-instructions-gc}). However, the index may be
  18477. an arbitrary atom, so instead of computing the offset at compile time,
  18478. we must generate instructions to compute the offset at runtime as
  18479. follows. Note the use of the new instruction \code{imulq}.
  18480. \begin{center}
  18481. \begin{minipage}{0.96\textwidth}
  18482. {\if\edition\racketEd
  18483. \begin{lstlisting}
  18484. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  18485. |$\Longrightarrow$|
  18486. movq |$\neg 111$|, %r11
  18487. andq |$e_1'$|, %r11
  18488. movq |$e_2'$|, %rax
  18489. addq $1, %rax
  18490. imulq $8, %rax
  18491. addq %rax, %r11
  18492. movq 0(%r11) |$\itm{lhs'}$|
  18493. \end{lstlisting}
  18494. \fi}
  18495. %
  18496. {\if\edition\pythonEd\pythonColor
  18497. \begin{lstlisting}
  18498. Assign([|$\itm{lhs}$|], Call(Name('any_tuple_load_unsafe'), [|$e_1$|,|$e_2$|]))
  18499. |$\Longrightarrow$|
  18500. movq $|$-8$|, %r11
  18501. andq |$e_1'$|, %r11
  18502. movq |$e_2'$|, %rax
  18503. addq $1, %rax
  18504. imulq $8, %rax
  18505. addq %rax, %r11
  18506. movq 0(%r11) |$\itm{lhs'}$|
  18507. \end{lstlisting}
  18508. \fi}
  18509. \end{minipage}
  18510. \end{center}
  18511. % $ pacify font lock
  18512. %% \paragraph{\racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}}}
  18513. %% The code generation for
  18514. %% \racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}} is
  18515. %% analogous to the above translation for reading from a tuple.
  18516. \section{Register Allocation for \LangAny{} }
  18517. \label{sec:register-allocation-Lany}
  18518. \index{subject}{register allocation}
  18519. There is an interesting interaction between tagged values and garbage
  18520. collection that has an impact on register allocation. A variable of
  18521. type \ANYTY{} might refer to a tuple, and therefore it might be a root
  18522. that needs to be inspected and copied during garbage collection. Thus,
  18523. we need to treat variables of type \ANYTY{} in a similar way to
  18524. variables of tuple type for purposes of register allocation,
  18525. with particular attention to the following:
  18526. \begin{itemize}
  18527. \item If a variable of type \ANYTY{} is live during a function call,
  18528. then it must be spilled. This can be accomplished by changing
  18529. \code{build\_interference} to mark all variables of type \ANYTY{}
  18530. that are live after a \code{callq} to be interfering with all the
  18531. registers.
  18532. \item If a variable of type \ANYTY{} is spilled, it must be spilled to
  18533. the root stack instead of the normal procedure call stack.
  18534. \end{itemize}
  18535. Another concern regarding the root stack is that the garbage collector
  18536. needs to differentiate among (1) plain old pointers to tuples, (2) a
  18537. tagged value that points to a tuple, and (3) a tagged value that is
  18538. not a tuple. We enable this differentiation by choosing not to use the
  18539. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  18540. reserved for identifying plain old pointers to tuples. That way, if
  18541. one of the first three bits is set, then we have a tagged value and
  18542. inspecting the tag can differentiate between tuples ($010$) and the
  18543. other kinds of values.
  18544. %% \begin{exercise}\normalfont
  18545. %% Expand your compiler to handle \LangAny{} as discussed in the last few
  18546. %% sections. Create 5 new programs that use the \ANYTY{} type and the
  18547. %% new operations (\code{Inject}, \code{Project}, etc.). Test your
  18548. %% compiler on these new programs and all of your previously created test
  18549. %% programs.
  18550. %% \end{exercise}
  18551. \begin{exercise}\normalfont\normalsize
  18552. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  18553. Create tests for \LangDyn{} by adapting ten of your previous test programs
  18554. by removing type annotations. Add five more test programs that
  18555. specifically rely on the language being dynamically typed. That is,
  18556. they should not be legal programs in a statically typed language, but
  18557. nevertheless they should be valid \LangDyn{} programs that run to
  18558. completion without error.
  18559. \end{exercise}
  18560. Figure~\ref{fig:Ldyn-passes} provides an overview of the passes needed
  18561. for the compilation of \LangDyn{}.
  18562. \begin{figure}[bthp]
  18563. \begin{tcolorbox}[colback=white]
  18564. {\if\edition\racketEd
  18565. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18566. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18567. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18568. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18569. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18570. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18571. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18572. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18573. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18574. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18575. \node (F1-4) at (4,0) {\large \LangAnyAlloc{}};
  18576. \node (F1-5) at (8,0) {\large \LangAnyAlloc{}};
  18577. \node (F1-6) at (12,0) {\large \LangAnyAlloc{}};
  18578. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18579. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18580. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  18581. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  18582. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18583. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18584. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  18585. \path[->,bend left=15] (Lfun) edge [above] node
  18586. {\ttfamily\footnotesize shrink} (Lfun-2);
  18587. \path[->,bend left=15] (Lfun-2) edge [above] node
  18588. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18589. \path[->,bend left=15] (Lfun-3) edge [above] node
  18590. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18591. \path[->,bend left=15] (Lfun-4) edge [left] node
  18592. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18593. \path[->,bend left=15] (Lfun-5) edge [below] node
  18594. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18595. \path[->,bend left=15] (Lfun-6) edge [below] node
  18596. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18597. \path[->,bend right=15] (Lfun-7) edge [above] node
  18598. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18599. \path[->,bend right=15] (F1-2) edge [right] node
  18600. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18601. \path[->,bend right=15] (F1-3) edge [below] node
  18602. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  18603. \path[->,bend right=15] (F1-4) edge [below] node
  18604. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  18605. \path[->,bend left=15] (F1-5) edge [above] node
  18606. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18607. \path[->,bend left=10] (F1-6) edge [below] node
  18608. {\ttfamily\footnotesize \ \ \ \ \ explicate\_control} (C3-2);
  18609. \path[->,bend left=15] (C3-2) edge [right] node
  18610. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18611. \path[->,bend right=15] (x86-2) edge [right] node
  18612. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  18613. \path[->,bend right=15] (x86-2-1) edge [below] node
  18614. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  18615. \path[->,bend right=15] (x86-2-2) edge [right] node
  18616. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  18617. \path[->,bend left=15] (x86-3) edge [above] node
  18618. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18619. \path[->,bend left=15] (x86-4) edge [right] node
  18620. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18621. \end{tikzpicture}
  18622. \fi}
  18623. {\if\edition\pythonEd\pythonColor
  18624. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18625. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18626. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18627. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18628. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18629. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18630. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18631. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18632. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18633. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18634. \node (F1-5) at (4,0) {\large \LangAnyAlloc{}};
  18635. \node (F1-6) at (8,0) {\large \LangAnyAlloc{}};
  18636. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18637. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18638. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18639. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18640. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  18641. \path[->,bend left=15] (Lfun) edge [above] node
  18642. {\ttfamily\footnotesize shrink} (Lfun-2);
  18643. \path[->,bend left=15] (Lfun-2) edge [above] node
  18644. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18645. \path[->,bend left=15] (Lfun-3) edge [above] node
  18646. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18647. \path[->,bend left=15] (Lfun-4) edge [left] node
  18648. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18649. \path[->,bend left=15] (Lfun-5) edge [below] node
  18650. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18651. \path[->,bend right=15] (Lfun-6) edge [above] node
  18652. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18653. \path[->,bend right=15] (Lfun-7) edge [above] node
  18654. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18655. \path[->,bend right=15] (F1-2) edge [right] node
  18656. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18657. \path[->,bend right=15] (F1-3) edge [below] node
  18658. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  18659. \path[->,bend left=15] (F1-5) edge [above] node
  18660. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18661. \path[->,bend left=10] (F1-6) edge [below] node
  18662. {\ttfamily\footnotesize \ \ \ \ \ \ \ \ explicate\_control} (C3-2);
  18663. \path[->,bend right=15] (C3-2) edge [right] node
  18664. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18665. \path[->,bend right=15] (x86-2) edge [below] node
  18666. {\ttfamily\footnotesize assign\_homes} (x86-3);
  18667. \path[->,bend right=15] (x86-3) edge [below] node
  18668. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18669. \path[->,bend left=15] (x86-4) edge [above] node
  18670. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18671. \end{tikzpicture}
  18672. \fi}
  18673. \end{tcolorbox}
  18674. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  18675. \label{fig:Ldyn-passes}
  18676. \end{figure}
  18677. % Further Reading
  18678. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18679. %% {\if\edition\pythonEd\pythonColor
  18680. %% \chapter{Objects}
  18681. %% \label{ch:Lobject}
  18682. %% \index{subject}{objects}
  18683. %% \index{subject}{classes}
  18684. %% \setcounter{footnote}{0}
  18685. %% \fi}
  18686. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18687. \chapter{Gradual Typing}
  18688. \label{ch:Lgrad}
  18689. \index{subject}{gradual typing}
  18690. \setcounter{footnote}{0}
  18691. This chapter studies the language \LangGrad{}, in which the programmer
  18692. can choose between static and dynamic type checking in different parts
  18693. of a program, thereby mixing the statically typed \LangLam{} language
  18694. with the dynamically typed \LangDyn{}. There are several approaches to
  18695. mixing static and dynamic typing, including multilanguage
  18696. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  18697. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  18698. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  18699. programmer controls the amount of static versus dynamic checking by
  18700. adding or removing type annotations on parameters and
  18701. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  18702. The definition of the concrete syntax of \LangGrad{} is shown in
  18703. figure~\ref{fig:Lgrad-concrete-syntax}, and the definition of its
  18704. abstract syntax is shown in figure~\ref{fig:Lgrad-syntax}. The main
  18705. syntactic difference between \LangLam{} and \LangGrad{} is that type
  18706. annotations are optional, which is specified in the grammar using the
  18707. \Param{} and \itm{ret} nonterminals. In the abstract syntax, type
  18708. annotations are not optional, but we use the \CANYTY{} type when a type
  18709. annotation is absent.
  18710. %
  18711. Both the type checker and the interpreter for \LangGrad{} require some
  18712. interesting changes to enable gradual typing, which we discuss in the
  18713. next two sections.
  18714. \newcommand{\LgradGrammarRacket}{
  18715. \begin{array}{lcl}
  18716. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18717. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18718. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  18719. \Exp &::=& \LP\Exp \; \Exp \ldots\RP
  18720. \MID \CGLAMBDA{\LP\Param\ldots\RP}{\itm{ret}}{\Exp} \\
  18721. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  18722. \Def &::=& \CGDEF{\Var}{\Param\ldots}{\itm{ret}}{\Exp}
  18723. \end{array}
  18724. }
  18725. \newcommand{\LgradASTRacket}{
  18726. \begin{array}{lcl}
  18727. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18728. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18729. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  18730. \MID \LAMBDA{\LP\Param\ldots\RP}{\Type}{\Exp} \\
  18731. \itm{op} &::=& \code{procedure-arity} \\
  18732. \Def &::=& \FUNDEF{\Var}{\LP\Param\ldots\RP}{\Type}{\code{'()}}{\Exp}
  18733. \end{array}
  18734. }
  18735. \newcommand{\LgradGrammarPython}{
  18736. \begin{array}{lcl}
  18737. \Type &::=& \key{Any}
  18738. \MID \key{int}
  18739. \MID \key{bool}
  18740. \MID \key{tuple}\LS \Type \code{, } \ldots \RS
  18741. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  18742. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  18743. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}
  18744. \MID \CARITY{\Exp} \\
  18745. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp} \MID \CRETURN{\Exp} \\
  18746. \Param &::=& \Var \MID \Var \key{:} \Type \\
  18747. \itm{ret} &::=& \epsilon \MID \key{->}~\Type \\
  18748. \Def &::=& \CGDEF{\Var}{\Param\key{, }\ldots}{\itm{ret}}{\Stmt^{+}}
  18749. \end{array}
  18750. }
  18751. \newcommand{\LgradASTPython}{
  18752. \begin{array}{lcl}
  18753. \Type &::=& \key{AnyType()} \MID \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}\\
  18754. &\MID& \key{TupleType}\LP\Type^{*}\RP
  18755. \MID \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  18756. \Exp &::=& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp}\\
  18757. &\MID& \ARITY{\Exp} \\
  18758. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  18759. \MID \RETURN{\Exp} \\
  18760. \Param &::=& \LP\Var\key{,}\Type\RP \\
  18761. \Def &::=& \FUNDEF{\Var}{\Param^{*}}{\Type}{}{\Stmt^{+}}
  18762. \end{array}
  18763. }
  18764. \begin{figure}[tp]
  18765. \centering
  18766. \begin{tcolorbox}[colback=white]
  18767. \small
  18768. {\if\edition\racketEd
  18769. \[
  18770. \begin{array}{l}
  18771. \gray{\LintGrammarRacket{}} \\ \hline
  18772. \gray{\LvarGrammarRacket{}} \\ \hline
  18773. \gray{\LifGrammarRacket{}} \\ \hline
  18774. \gray{\LwhileGrammarRacket} \\ \hline
  18775. \gray{\LtupGrammarRacket} \\ \hline
  18776. \LgradGrammarRacket \\
  18777. \begin{array}{lcl}
  18778. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  18779. \end{array}
  18780. \end{array}
  18781. \]
  18782. \fi}
  18783. {\if\edition\pythonEd\pythonColor
  18784. \[
  18785. \begin{array}{l}
  18786. \gray{\LintGrammarPython{}} \\ \hline
  18787. \gray{\LvarGrammarPython{}} \\ \hline
  18788. \gray{\LifGrammarPython{}} \\ \hline
  18789. \gray{\LwhileGrammarPython} \\ \hline
  18790. \gray{\LtupGrammarPython} \\ \hline
  18791. \LgradGrammarPython \\
  18792. \begin{array}{lcl}
  18793. \LangGradM{} &::=& \Def\ldots \Stmt\ldots
  18794. \end{array}
  18795. \end{array}
  18796. \]
  18797. \fi}
  18798. \end{tcolorbox}
  18799. \caption{The concrete syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  18800. \label{fig:Lgrad-concrete-syntax}
  18801. \end{figure}
  18802. \begin{figure}[tp]
  18803. \centering
  18804. \begin{tcolorbox}[colback=white]
  18805. \small
  18806. {\if\edition\racketEd
  18807. \[
  18808. \begin{array}{l}
  18809. \gray{\LintOpAST} \\ \hline
  18810. \gray{\LvarASTRacket{}} \\ \hline
  18811. \gray{\LifASTRacket{}} \\ \hline
  18812. \gray{\LwhileASTRacket{}} \\ \hline
  18813. \gray{\LtupASTRacket{}} \\ \hline
  18814. \LgradASTRacket \\
  18815. \begin{array}{lcl}
  18816. \LangGradM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  18817. \end{array}
  18818. \end{array}
  18819. \]
  18820. \fi}
  18821. {\if\edition\pythonEd\pythonColor
  18822. \[
  18823. \begin{array}{l}
  18824. \gray{\LintASTPython{}} \\ \hline
  18825. \gray{\LvarASTPython{}} \\ \hline
  18826. \gray{\LifASTPython{}} \\ \hline
  18827. \gray{\LwhileASTPython} \\ \hline
  18828. \gray{\LtupASTPython} \\ \hline
  18829. \LgradASTPython \\
  18830. \begin{array}{lcl}
  18831. \LangGradM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  18832. \end{array}
  18833. \end{array}
  18834. \]
  18835. \fi}
  18836. \end{tcolorbox}
  18837. \caption{The abstract syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  18838. \label{fig:Lgrad-syntax}
  18839. \end{figure}
  18840. % TODO: more road map -Jeremy
  18841. %\clearpage
  18842. \section{Type Checking \LangGrad{} \vspace{-2pt}}
  18843. \label{sec:gradual-type-check}
  18844. We begin by discussing the type checking of a partially typed variant
  18845. of the \code{map} example from chapter~\ref{ch:Lfun}, shown in
  18846. figure~\ref{fig:gradual-map}. The \code{map} function itself is
  18847. statically typed, so there is nothing special happening there with
  18848. respect to type checking. On the other hand, the \code{inc} function
  18849. does not have type annotations, so the type checker assigns the type
  18850. \CANYTY{} to parameter \code{x} and the return type. Now consider the
  18851. \code{+} operator inside \code{inc}. It expects both arguments to have
  18852. type \INTTY{}, but its first argument \code{x} has type \CANYTY{}. In
  18853. a gradually typed language, such differences are allowed so long as
  18854. the types are \emph{consistent}; that is, they are equal except in
  18855. places where there is an \CANYTY{} type. That is, the type \CANYTY{}
  18856. is consistent with every other type. Figure~\ref{fig:consistent}
  18857. shows the definition of the
  18858. \racket{\code{consistent?}}\python{\code{consistent}} method.
  18859. %
  18860. So the type checker allows the \code{+} operator to be applied
  18861. to \code{x} because \CANYTY{} is consistent with \INTTY{}.
  18862. %
  18863. Next consider the call to the \code{map} function shown in
  18864. figure~\ref{fig:gradual-map} with the arguments \code{inc} and a
  18865. tuple. The \code{inc} function has type
  18866. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}},
  18867. but parameter \code{f} of \code{map} has type
  18868. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18869. The type checker for \LangGrad{} accepts this call because the two types are
  18870. consistent.
  18871. \begin{figure}[btp]
  18872. % gradual_test_9.rkt
  18873. \begin{tcolorbox}[colback=white]
  18874. {\if\edition\racketEd
  18875. \begin{lstlisting}
  18876. (define (map [f : (Integer -> Integer)]
  18877. [v : (Vector Integer Integer)])
  18878. : (Vector Integer Integer)
  18879. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18880. (define (inc x) (+ x 1))
  18881. (vector-ref (map inc (vector 0 41)) 1)
  18882. \end{lstlisting}
  18883. \fi}
  18884. {\if\edition\pythonEd\pythonColor
  18885. \begin{lstlisting}
  18886. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18887. return f(v[0]), f(v[1])
  18888. def inc(x):
  18889. return x + 1
  18890. t = map(inc, (0, 41))
  18891. print(t[1])
  18892. \end{lstlisting}
  18893. \fi}
  18894. \end{tcolorbox}
  18895. \caption{A partially typed version of the \code{map} example.}
  18896. \label{fig:gradual-map}
  18897. \end{figure}
  18898. \begin{figure}[tbp]
  18899. \begin{tcolorbox}[colback=white]
  18900. {\if\edition\racketEd
  18901. \begin{lstlisting}
  18902. (define/public (consistent? t1 t2)
  18903. (match* (t1 t2)
  18904. [('Integer 'Integer) #t]
  18905. [('Boolean 'Boolean) #t]
  18906. [('Void 'Void) #t]
  18907. [('Any t2) #t]
  18908. [(t1 'Any) #t]
  18909. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  18910. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  18911. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  18912. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  18913. (consistent? rt1 rt2))]
  18914. [(other wise) #f]))
  18915. \end{lstlisting}
  18916. \fi}
  18917. {\if\edition\pythonEd\pythonColor
  18918. \begin{lstlisting}
  18919. def consistent(self, t1, t2):
  18920. match (t1, t2):
  18921. case (AnyType(), _):
  18922. return True
  18923. case (_, AnyType()):
  18924. return True
  18925. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  18926. return all(map(self.consistent, ps1, ps2)) and consistent(rt1, rt2)
  18927. case (TupleType(ts1), TupleType(ts2)):
  18928. return all(map(self.consistent, ts1, ts2))
  18929. case (_, _):
  18930. return t1 == t2
  18931. \end{lstlisting}
  18932. \fi}
  18933. \vspace{-5pt}
  18934. \end{tcolorbox}
  18935. \caption{The consistency method on types.}
  18936. \label{fig:consistent}
  18937. \end{figure}
  18938. It is also helpful to consider how gradual typing handles programs with an
  18939. error, such as applying \code{map} to a function that sometimes
  18940. returns a Boolean, as shown in figure~\ref{fig:map-maybe_inc}. The
  18941. type checker for \LangGrad{} accepts this program because the type of
  18942. \code{maybe\_inc} is consistent with the type of parameter \code{f} of
  18943. \code{map}; that is,
  18944. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}}
  18945. is consistent with
  18946. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18947. One might say that a gradual type checker is optimistic in that it
  18948. accepts programs that might execute without a runtime type error.
  18949. %
  18950. The definition of the type checker for \LangGrad{} is shown in
  18951. figures~\ref{fig:type-check-Lgradual-1}, \ref{fig:type-check-Lgradual-2},
  18952. and \ref{fig:type-check-Lgradual-3}.
  18953. %% \begin{figure}[tp]
  18954. %% \centering
  18955. %% \fbox{
  18956. %% \begin{minipage}{0.96\textwidth}
  18957. %% \small
  18958. %% \[
  18959. %% \begin{array}{lcl}
  18960. %% \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  18961. %% \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  18962. %% \end{array}
  18963. %% \]
  18964. %% \end{minipage}
  18965. %% }
  18966. %% \caption{The abstract syntax of \LangCast{}, extending \LangLam{} (figure~\ref{fig:Lwhile-syntax}).}
  18967. %% \label{fig:Lgrad-prime-syntax}
  18968. %% \end{figure}
  18969. \begin{figure}[tbp]
  18970. \begin{tcolorbox}[colback=white]
  18971. {\if\edition\racketEd
  18972. \begin{lstlisting}
  18973. (define (map [f : (Integer -> Integer)]
  18974. [v : (Vector Integer Integer)])
  18975. : (Vector Integer Integer)
  18976. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18977. (define (inc x) (+ x 1))
  18978. (define (true) #t)
  18979. (define (maybe_inc x) (if (eq? 0 (read)) (inc x) (true)))
  18980. (vector-ref (map maybe_inc (vector 0 41)) 0)
  18981. \end{lstlisting}
  18982. \fi}
  18983. {\if\edition\pythonEd\pythonColor
  18984. \begin{lstlisting}
  18985. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18986. return f(v[0]), f(v[1])
  18987. def inc(x):
  18988. return x + 1
  18989. def true():
  18990. return True
  18991. def maybe_inc(x):
  18992. return inc(x) if input_int() == 0 else true()
  18993. t = map(maybe_inc, (0, 41))
  18994. print(t[1])
  18995. \end{lstlisting}
  18996. \fi}
  18997. \vspace{-5pt}
  18998. \end{tcolorbox}
  18999. \caption{A variant of the \code{map} example with an error.}
  19000. \label{fig:map-maybe_inc}
  19001. \end{figure}
  19002. Running this program with input \code{1} triggers an
  19003. error when the \code{maybe\_inc} function returns
  19004. \racket{\code{\#t}}\python{\code{True}}. The \LangGrad{} language
  19005. performs checking at runtime to ensure the integrity of the static
  19006. types, such as the
  19007. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}
  19008. annotation on
  19009. parameter \code{f} of \code{map}.
  19010. Here we give a preview of how the runtime checking is accomplished;
  19011. the following sections provide the details.
  19012. The runtime checking is carried out by a new \code{Cast} AST node that
  19013. is generated in a new pass named \code{cast\_insert}. The output of
  19014. \code{cast\_insert} is a program in the \LangCast{} language, which
  19015. simply adds \code{Cast} and \CANYTY{} to \LangLam{}.
  19016. %
  19017. Figure~\ref{fig:map-cast} shows the output of \code{cast\_insert} for
  19018. \code{map} and \code{maybe\_inc}. The idea is that \code{Cast} is
  19019. inserted every time the type checker encounters two types that are
  19020. consistent but not equal. In the \code{inc} function, \code{x} is
  19021. cast to \INTTY{} and the result of the \code{+} is cast to
  19022. \CANYTY{}. In the call to \code{map}, the \code{inc} argument
  19023. is cast from
  19024. \racket{\code{(Any -> Any)}}
  19025. \python{\code{Callable[[Any], Any]}}
  19026. to
  19027. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  19028. %
  19029. In the next section we see how to interpret the \code{Cast} node.
  19030. \begin{figure}[btp]
  19031. \begin{tcolorbox}[colback=white]
  19032. {\if\edition\racketEd
  19033. \begin{lstlisting}
  19034. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  19035. : (Vector Integer Integer)
  19036. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19037. (define (inc [x : Any]) : Any
  19038. (cast (+ (cast x Any Integer) 1) Integer Any))
  19039. (define (true) : Any (cast #t Boolean Any))
  19040. (define (maybe_inc [x : Any]) : Any
  19041. (if (eq? 0 (read)) (inc x) (true)))
  19042. (vector-ref (map (cast maybe_inc (Any -> Any) (Integer -> Integer))
  19043. (vector 0 41)) 0)
  19044. \end{lstlisting}
  19045. \fi}
  19046. {\if\edition\pythonEd\pythonColor
  19047. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19048. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19049. return f(v[0]), f(v[1])
  19050. def inc(x : Any) -> Any:
  19051. return Cast(Cast(x, Any, int) + 1, int, Any)
  19052. def true() -> Any:
  19053. return Cast(True, bool, Any)
  19054. def maybe_inc(x : Any) -> Any:
  19055. return inc(x) if input_int() == 0 else true()
  19056. t = map(Cast(maybe_inc, Callable[[Any], Any], Callable[[int], int]),
  19057. (0, 41))
  19058. print(t[1])
  19059. \end{lstlisting}
  19060. \fi}
  19061. \vspace{-5pt}
  19062. \end{tcolorbox}
  19063. \caption{Output of the \code{cast\_insert} pass for the \code{map}
  19064. and \code{maybe\_inc} example.}
  19065. \label{fig:map-cast}
  19066. \end{figure}
  19067. {\if\edition\pythonEd\pythonColor
  19068. \begin{figure}[tbp]
  19069. \begin{tcolorbox}[colback=white]
  19070. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19071. class TypeCheckLgrad(TypeCheckLlambda):
  19072. def type_check_exp(self, e, env) -> Type:
  19073. match e:
  19074. case Name(id):
  19075. return env[id]
  19076. case Constant(value) if isinstance(value, bool):
  19077. return BoolType()
  19078. case Constant(value) if isinstance(value, int):
  19079. return IntType()
  19080. case Call(Name('input_int'), []):
  19081. return IntType()
  19082. case BinOp(left, op, right):
  19083. left_type = self.type_check_exp(left, env)
  19084. self.check_consistent(left_type, IntType(), left)
  19085. right_type = self.type_check_exp(right, env)
  19086. self.check_consistent(right_type, IntType(), right)
  19087. return IntType()
  19088. case IfExp(test, body, orelse):
  19089. test_t = self.type_check_exp(test, env)
  19090. self.check_consistent(test_t, BoolType(), test)
  19091. body_t = self.type_check_exp(body, env)
  19092. orelse_t = self.type_check_exp(orelse, env)
  19093. self.check_consistent(body_t, orelse_t, e)
  19094. return self.join_types(body_t, orelse_t)
  19095. case Call(func, args):
  19096. func_t = self.type_check_exp(func, env)
  19097. args_t = [self.type_check_exp(arg, env) for arg in args]
  19098. match func_t:
  19099. case FunctionType(params_t, return_t) if len(params_t) == len(args_t):
  19100. for (arg_t, param_t) in zip(args_t, params_t):
  19101. self.check_consistent(param_t, arg_t, e)
  19102. return return_t
  19103. case AnyType():
  19104. return AnyType()
  19105. case _:
  19106. raise Exception('type_check_exp: in call, unexpected ' + repr(func_t))
  19107. ...
  19108. case _:
  19109. raise Exception('type_check_exp: unexpected ' + repr(e))
  19110. \end{lstlisting}
  19111. \end{tcolorbox}
  19112. \caption{Type checking expressions in the \LangGrad{} language.}
  19113. \label{fig:type-check-Lgradual-1}
  19114. \end{figure}
  19115. \begin{figure}[tbp]
  19116. \begin{tcolorbox}[colback=white]
  19117. \begin{lstlisting}
  19118. def check_exp(self, e, expected_ty, env):
  19119. match e:
  19120. case Lambda(params, body):
  19121. match expected_ty:
  19122. case FunctionType(params_t, return_t):
  19123. new_env = env.copy().update(zip(params, params_t))
  19124. e.has_type = expected_ty
  19125. body_ty = self.type_check_exp(body, new_env)
  19126. self.check_consistent(body_ty, return_t)
  19127. case AnyType():
  19128. new_env = env.copy().update((p, AnyType()) for p in params)
  19129. e.has_type = FunctionType([AnyType()for _ in params],AnyType())
  19130. body_ty = self.type_check_exp(body, new_env)
  19131. case _:
  19132. raise Exception('lambda is not of type ' + str(expected_ty))
  19133. case _:
  19134. e_ty = self.type_check_exp(e, env)
  19135. self.check_consistent(e_ty, expected_ty, e)
  19136. \end{lstlisting}
  19137. \end{tcolorbox}
  19138. \caption{Checking expressions with respect to a type in the \LangGrad{} language.}
  19139. \label{fig:type-check-Lgradual-2}
  19140. \end{figure}
  19141. \begin{figure}[tbp]
  19142. \begin{tcolorbox}[colback=white]
  19143. \begin{lstlisting}
  19144. def type_check_stmt(self, s, env, return_type):
  19145. match s:
  19146. case Assign([Name(id)], value):
  19147. value_ty = self.type_check_exp(value, env)
  19148. if id in env:
  19149. self.check_consistent(env[id], value_ty, value)
  19150. else:
  19151. env[id] = value_ty
  19152. ...
  19153. case _:
  19154. raise Exception('type_check_stmts: unexpected ' + repr(ss))
  19155. def type_check_stmts(self, ss, env, return_type):
  19156. for s in ss:
  19157. self.type_check_stmt(s, env, return_type)
  19158. \end{lstlisting}
  19159. \end{tcolorbox}
  19160. \caption{Type checking statements in the \LangGrad{} language.}
  19161. \label{fig:type-check-Lgradual-3}
  19162. \end{figure}
  19163. \begin{figure}[tbp]
  19164. \begin{tcolorbox}[colback=white]
  19165. \begin{lstlisting}
  19166. def join_types(self, t1, t2):
  19167. match (t1, t2):
  19168. case (AnyType(), _):
  19169. return t2
  19170. case (_, AnyType()):
  19171. return t1
  19172. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19173. return FunctionType(list(map(self.join_types, ps1, ps2)),
  19174. self.join_types(rt1,rt2))
  19175. case (TupleType(ts1), TupleType(ts2)):
  19176. return TupleType(list(map(self.join_types, ts1, ts2)))
  19177. case (_, _):
  19178. return t1
  19179. def check_consistent(self, t1, t2, e):
  19180. if not self.consistent(t1, t2):
  19181. raise Exception('error: ' + repr(t1) + ' inconsistent with ' \
  19182. + repr(t2) + ' in ' + repr(e))
  19183. \end{lstlisting}
  19184. \end{tcolorbox}
  19185. \caption{Auxiliary methods for type checking \LangGrad{}.}
  19186. \label{fig:type-check-Lgradual-aux}
  19187. \end{figure}
  19188. \fi}
  19189. {\if\edition\racketEd
  19190. \begin{figure}[tbp]
  19191. \begin{tcolorbox}[colback=white]
  19192. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19193. (define/override (type-check-exp env)
  19194. (lambda (e)
  19195. (define recur (type-check-exp env))
  19196. (match e
  19197. [(Prim op es) #:when (not (set-member? explicit-prim-ops op))
  19198. (define-values (new-es ts)
  19199. (for/lists (exprs types) ([e es])
  19200. (recur e)))
  19201. (define t-ret (type-check-op op ts e))
  19202. (values (Prim op new-es) t-ret)]
  19203. [(Prim 'eq? (list e1 e2))
  19204. (define-values (e1^ t1) (recur e1))
  19205. (define-values (e2^ t2) (recur e2))
  19206. (check-consistent? t1 t2 e)
  19207. (define T (meet t1 t2))
  19208. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  19209. [(Prim 'and (list e1 e2))
  19210. (recur (If e1 e2 (Bool #f)))]
  19211. [(Prim 'or (list e1 e2))
  19212. (define tmp (gensym 'tmp))
  19213. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  19214. [(If e1 e2 e3)
  19215. (define-values (e1^ T1) (recur e1))
  19216. (define-values (e2^ T2) (recur e2))
  19217. (define-values (e3^ T3) (recur e3))
  19218. (check-consistent? T1 'Boolean e)
  19219. (check-consistent? T2 T3 e)
  19220. (define Tif (meet T2 T3))
  19221. (values (If e1^ e2^ e3^) Tif)]
  19222. [(SetBang x e1)
  19223. (define-values (e1^ T1) (recur e1))
  19224. (define varT (dict-ref env x))
  19225. (check-consistent? T1 varT e)
  19226. (values (SetBang x e1^) 'Void)]
  19227. [(WhileLoop e1 e2)
  19228. (define-values (e1^ T1) (recur e1))
  19229. (check-consistent? T1 'Boolean e)
  19230. (define-values (e2^ T2) ((type-check-exp env) e2))
  19231. (values (WhileLoop e1^ e2^) 'Void)]
  19232. [(Prim 'vector-length (list e1))
  19233. (define-values (e1^ t) (recur e1))
  19234. (match t
  19235. [`(Vector ,ts ...)
  19236. (values (Prim 'vector-length (list e1^)) 'Integer)]
  19237. ['Any (values (Prim 'vector-length (list e1^)) 'Integer)])]
  19238. \end{lstlisting}
  19239. \end{tcolorbox}
  19240. \caption{Type checker for the \LangGrad{} language, part 1.}
  19241. \label{fig:type-check-Lgradual-1}
  19242. \end{figure}
  19243. \begin{figure}[tbp]
  19244. \begin{tcolorbox}[colback=white]
  19245. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19246. [(Prim 'vector-ref (list e1 e2))
  19247. (define-values (e1^ t1) (recur e1))
  19248. (define-values (e2^ t2) (recur e2))
  19249. (check-consistent? t2 'Integer e)
  19250. (match t1
  19251. [`(Vector ,ts ...)
  19252. (match e2^
  19253. [(Int i)
  19254. (unless (and (0 . <= . i) (i . < . (length ts)))
  19255. (error 'type-check "invalid index ~a in ~a" i e))
  19256. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  19257. [else (values (Prim 'vector-ref (list e1^ e2^)) 'Any)])]
  19258. ['Any (values (Prim 'vector-ref (list e1^ e2^)) 'Any)]
  19259. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19260. [(Prim 'vector-set! (list e1 e2 e3) )
  19261. (define-values (e1^ t1) (recur e1))
  19262. (define-values (e2^ t2) (recur e2))
  19263. (define-values (e3^ t3) (recur e3))
  19264. (check-consistent? t2 'Integer e)
  19265. (match t1
  19266. [`(Vector ,ts ...)
  19267. (match e2^
  19268. [(Int i)
  19269. (unless (and (0 . <= . i) (i . < . (length ts)))
  19270. (error 'type-check "invalid index ~a in ~a" i e))
  19271. (check-consistent? (list-ref ts i) t3 e)
  19272. (values (Prim 'vector-set! (list e1^ (Int i) e3^)) 'Void)]
  19273. [else (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)])]
  19274. ['Any (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)]
  19275. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19276. [(Apply e1 e2s)
  19277. (define-values (e1^ T1) (recur e1))
  19278. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  19279. (match T1
  19280. [`(,T1ps ... -> ,T1rt)
  19281. (for ([T2 T2s] [Tp T1ps])
  19282. (check-consistent? T2 Tp e))
  19283. (values (Apply e1^ e2s^) T1rt)]
  19284. [`Any (values (Apply e1^ e2s^) 'Any)]
  19285. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  19286. [(Lambda params Tr e1)
  19287. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  19288. (match p
  19289. [`[,x : ,T] (values x T)]
  19290. [(? symbol? x) (values x 'Any)])))
  19291. (define-values (e1^ T1)
  19292. ((type-check-exp (append (map cons xs Ts) env)) e1))
  19293. (check-consistent? Tr T1 e)
  19294. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr e1^)
  19295. `(,@Ts -> ,Tr))]
  19296. [else ((super type-check-exp env) e)]
  19297. )))
  19298. \end{lstlisting}
  19299. \end{tcolorbox}
  19300. \caption{Type checker for the \LangGrad{} language, part 2.}
  19301. \label{fig:type-check-Lgradual-2}
  19302. \end{figure}
  19303. \begin{figure}[tbp]
  19304. \begin{tcolorbox}[colback=white]
  19305. \begin{lstlisting}
  19306. (define/override (type-check-def env)
  19307. (lambda (e)
  19308. (match e
  19309. [(Def f params rt info body)
  19310. (define-values (xs ps) (for/lists (l1 l2) ([p params])
  19311. (match p
  19312. [`[,x : ,T] (values x T)]
  19313. [(? symbol? x) (values x 'Any)])))
  19314. (define new-env (append (map cons xs ps) env))
  19315. (define-values (body^ ty^) ((type-check-exp new-env) body))
  19316. (check-consistent? ty^ rt e)
  19317. (Def f (for/list ([x xs] [T ps]) `[,x : ,T]) rt info body^)]
  19318. [else (error 'type-check "ill-formed function definition ~a" e)]
  19319. )))
  19320. (define/override (type-check-program e)
  19321. (match e
  19322. [(Program info body)
  19323. (define-values (body^ ty) ((type-check-exp '()) body))
  19324. (check-consistent? ty 'Integer e)
  19325. (ProgramDefsExp info '() body^)]
  19326. [(ProgramDefsExp info ds body)
  19327. (define new-env (for/list ([d ds])
  19328. (cons (Def-name d) (fun-def-type d))))
  19329. (define ds^ (for/list ([d ds])
  19330. ((type-check-def new-env) d)))
  19331. (define-values (body^ ty) ((type-check-exp new-env) body))
  19332. (check-consistent? ty 'Integer e)
  19333. (ProgramDefsExp info ds^ body^)]
  19334. [else (super type-check-program e)]))
  19335. \end{lstlisting}
  19336. \end{tcolorbox}
  19337. \caption{Type checker for the \LangGrad{} language, part 3.}
  19338. \label{fig:type-check-Lgradual-3}
  19339. \end{figure}
  19340. \begin{figure}[tbp]
  19341. \begin{tcolorbox}[colback=white]
  19342. \begin{lstlisting}
  19343. (define/public (join t1 t2)
  19344. (match* (t1 t2)
  19345. [('Integer 'Integer) 'Integer]
  19346. [('Boolean 'Boolean) 'Boolean]
  19347. [('Void 'Void) 'Void]
  19348. [('Any t2) t2]
  19349. [(t1 'Any) t1]
  19350. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19351. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  19352. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19353. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  19354. -> ,(join rt1 rt2))]))
  19355. (define/public (meet t1 t2)
  19356. (match* (t1 t2)
  19357. [('Integer 'Integer) 'Integer]
  19358. [('Boolean 'Boolean) 'Boolean]
  19359. [('Void 'Void) 'Void]
  19360. [('Any t2) 'Any]
  19361. [(t1 'Any) 'Any]
  19362. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19363. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  19364. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19365. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  19366. -> ,(meet rt1 rt2))]))
  19367. (define/public (check-consistent? t1 t2 e)
  19368. (unless (consistent? t1 t2)
  19369. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  19370. (define explicit-prim-ops
  19371. (set-union
  19372. (type-predicates)
  19373. (set 'procedure-arity 'eq? 'not 'and 'or
  19374. 'vector 'vector-length 'vector-ref 'vector-set!
  19375. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  19376. (define/override (fun-def-type d)
  19377. (match d
  19378. [(Def f params rt info body)
  19379. (define ps
  19380. (for/list ([p params])
  19381. (match p
  19382. [`[,x : ,T] T]
  19383. [(? symbol?) 'Any]
  19384. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  19385. `(,@ps -> ,rt)]
  19386. [else (error 'fun-def-type "ill-formed definition in ~a" d)]))
  19387. \end{lstlisting}
  19388. \end{tcolorbox}
  19389. \caption{Auxiliary functions for type checking \LangGrad{}.}
  19390. \label{fig:type-check-Lgradual-aux}
  19391. \end{figure}
  19392. \fi}
  19393. \clearpage
  19394. \section{Interpreting \LangCast{} \vspace{-2pt}}
  19395. \label{sec:interp-casts}
  19396. The runtime behavior of casts involving simple types such as
  19397. \INTTY{} and \BOOLTY{} is straightforward. For example, a
  19398. cast from \INTTY{} to \CANYTY{} can be accomplished with the
  19399. \code{Inject} operator of \LangAny{}, which puts the integer into a
  19400. tagged value (figure~\ref{fig:interp-Lany}). Similarly, a cast from
  19401. \CANYTY{} to \INTTY{} is accomplished with the \code{Project}
  19402. operator, by checking the value's tag and either retrieving
  19403. the underlying integer or signaling an error if the tag is not the
  19404. one for integers (figure~\ref{fig:interp-Lany-aux}).
  19405. %
  19406. Things get more interesting with casts involving
  19407. \racket{function and tuple types}\python{function, tuple, and array types}.
  19408. Consider the cast of the function \code{maybe\_inc} from
  19409. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any], Any]}}
  19410. to
  19411. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int], int]}}
  19412. shown in figure~\ref{fig:map-maybe_inc}.
  19413. When the \code{maybe\_inc} function flows through
  19414. this cast at runtime, we don't know whether it will return
  19415. an integer, because that depends on the input from the user.
  19416. The \LangCast{} interpreter therefore delays the checking
  19417. of the cast until the function is applied. To do so it
  19418. wraps \code{maybe\_inc} in a new function that casts its parameter
  19419. from \INTTY{} to \CANYTY{}, applies \code{maybe\_inc}, and then
  19420. casts the return value from \CANYTY{} to \INTTY{}.
  19421. {\if\edition\pythonEd\pythonColor
  19422. %
  19423. There are further complications regarding casts on mutable data,
  19424. such as the \code{list} type introduced in
  19425. the challenge assignment of section~\ref{sec:arrays}.
  19426. %
  19427. \fi}
  19428. %
  19429. Consider the example presented in figure~\ref{fig:map-bang} that
  19430. defines a partially typed version of \code{map} whose parameter
  19431. \code{v} has type
  19432. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}
  19433. and that updates \code{v} in place
  19434. instead of returning a new tuple. We name this function
  19435. \code{map\_inplace}. We apply \code{map\_inplace} to
  19436. \racket{a tuple}\python{an array} of integers, so the type checker
  19437. inserts a cast from
  19438. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}}
  19439. to
  19440. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}.
  19441. A naive way for the \LangCast{} interpreter to cast between
  19442. \racket{tuple}\python{array} types would be to build a new
  19443. \racket{tuple}\python{array} whose elements are the result
  19444. of casting each of the original elements to the target
  19445. type. However, this approach is not valid for mutable data structures.
  19446. In the example of figure~\ref{fig:map-bang},
  19447. if the cast created a new \racket{tuple}\python{array}, then the updates inside
  19448. \code{map\_inplace} would happen to the new \racket{tuple}\python{array} and not
  19449. the original one.
  19450. Instead the interpreter needs to create a new kind of value, a
  19451. \emph{proxy}, that intercepts every \racket{tuple}\python{array} operation.
  19452. On a read, the proxy reads from the underlying \racket{tuple}\python{array}
  19453. and then applies a
  19454. cast to the resulting value. On a write, the proxy casts the argument
  19455. value and then performs the write to the underlying \racket{tuple}\python{array}.
  19456. \racket{
  19457. For the first \code{(vector-ref v 0)} in \code{map\_inplace}, the proxy casts
  19458. \code{0} from \INTTY{} to \CANYTY{}.
  19459. For the first \code{vector-set!}, the proxy casts a tagged \code{1}
  19460. from \CANYTY{} to \INTTY{}.
  19461. }
  19462. \python{
  19463. For the subscript \code{v[i]} in \code{f(v[i])} of \code{map\_inplace},
  19464. the proxy casts the integer from \INTTY{} to \CANYTY{}.
  19465. For the subscript on the left of the assignment,
  19466. the proxy casts the tagged value from \CANYTY{} to \INTTY{}.
  19467. }
  19468. Finally we consider casts between the \CANYTY{} type and higher-order types
  19469. such as functions and \racket{tuples}\python{lists}. Figure~\ref{fig:map-any}
  19470. shows a variant of \code{map\_inplace} in which parameter \code{v} does not
  19471. have a type annotation, so it is given type \CANYTY{}. In the call to
  19472. \code{map\_inplace}, the \racket{tuple}\python{list} has type
  19473. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}},
  19474. so the type checker inserts a cast to \CANYTY{}. A first thought is to use
  19475. \code{Inject}, but that doesn't work because
  19476. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}} is not
  19477. a flat type. Instead, we must first cast to
  19478. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}, which is flat,
  19479. and then inject to \CANYTY{}.
  19480. \begin{figure}[tbp]
  19481. \begin{tcolorbox}[colback=white]
  19482. % gradual_test_11.rkt
  19483. {\if\edition\racketEd
  19484. \begin{lstlisting}
  19485. (define (map_inplace [f : (Any -> Any)]
  19486. [v : (Vector Any Any)]) : Void
  19487. (begin
  19488. (vector-set! v 0 (f (vector-ref v 0)))
  19489. (vector-set! v 1 (f (vector-ref v 1)))))
  19490. (define (inc x) (+ x 1))
  19491. (let ([v (vector 0 41)])
  19492. (begin (map_inplace inc v) (vector-ref v 1)))
  19493. \end{lstlisting}
  19494. \fi}
  19495. {\if\edition\pythonEd\pythonColor
  19496. \begin{lstlisting}
  19497. def map_inplace(f : Callable[[int], int], v : list[Any]) -> None:
  19498. i = 0
  19499. while i != len(v):
  19500. v[i] = f(v[i])
  19501. i = i + 1
  19502. def inc(x : int) -> int:
  19503. return x + 1
  19504. v = [0, 41]
  19505. map_inplace(inc, v)
  19506. print(v[1])
  19507. \end{lstlisting}
  19508. \fi}
  19509. \end{tcolorbox}
  19510. \caption{An example involving casts on arrays.}
  19511. \label{fig:map-bang}
  19512. \end{figure}
  19513. \begin{figure}[btp]
  19514. \begin{tcolorbox}[colback=white]
  19515. {\if\edition\racketEd
  19516. \begin{lstlisting}
  19517. (define (map_inplace [f : (Any -> Any)] v) : Void
  19518. (begin
  19519. (vector-set! v 0 (f (vector-ref v 0)))
  19520. (vector-set! v 1 (f (vector-ref v 1)))))
  19521. (define (inc x) (+ x 1))
  19522. (let ([v (vector 0 41)])
  19523. (begin (map_inplace inc v) (vector-ref v 1)))
  19524. \end{lstlisting}
  19525. \fi}
  19526. {\if\edition\pythonEd\pythonColor
  19527. \begin{lstlisting}
  19528. def map_inplace(f : Callable[[Any], Any], v) -> None:
  19529. i = 0
  19530. while i != len(v):
  19531. v[i] = f(v[i])
  19532. i = i + 1
  19533. def inc(x):
  19534. return x + 1
  19535. v = [0, 41]
  19536. map_inplace(inc, v)
  19537. print(v[1])
  19538. \end{lstlisting}
  19539. \fi}
  19540. \end{tcolorbox}
  19541. \caption{Casting \racket{a tuple}\python{an array} to \CANYTY{}.}
  19542. \label{fig:map-any}
  19543. \end{figure}
  19544. \begin{figure}[tbp]
  19545. \begin{tcolorbox}[colback=white]
  19546. {\if\edition\racketEd
  19547. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19548. (define/public (apply_cast v s t)
  19549. (match* (s t)
  19550. [(t1 t2) #:when (equal? t1 t2) v]
  19551. [('Any t2)
  19552. (match t2
  19553. [`(,ts ... -> ,rt)
  19554. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19555. (define v^ (apply-project v any->any))
  19556. (apply_cast v^ any->any `(,@ts -> ,rt))]
  19557. [`(Vector ,ts ...)
  19558. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19559. (define v^ (apply-project v vec-any))
  19560. (apply_cast v^ vec-any `(Vector ,@ts))]
  19561. [else (apply-project v t2)])]
  19562. [(t1 'Any)
  19563. (match t1
  19564. [`(,ts ... -> ,rt)
  19565. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19566. (define v^ (apply_cast v `(,@ts -> ,rt) any->any))
  19567. (apply-inject v^ (any-tag any->any))]
  19568. [`(Vector ,ts ...)
  19569. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19570. (define v^ (apply_cast v `(Vector ,@ts) vec-any))
  19571. (apply-inject v^ (any-tag vec-any))]
  19572. [else (apply-inject v (any-tag t1))])]
  19573. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19574. (define x (gensym 'x))
  19575. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  19576. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  19577. (define cast-writes
  19578. (for/list ([t1 ts1] [t2 ts2])
  19579. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  19580. `(vector-proxy ,(vector v (apply vector cast-reads)
  19581. (apply vector cast-writes)))]
  19582. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19583. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  19584. `(function ,xs ,(Cast
  19585. (Apply (Value v)
  19586. (for/list ([x xs][t1 ts1][t2 ts2])
  19587. (Cast (Var x) t2 t1)))
  19588. rt1 rt2) ())]
  19589. ))
  19590. \end{lstlisting}
  19591. \fi}
  19592. {\if\edition\pythonEd\pythonColor
  19593. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19594. def apply_cast(self, value, src, tgt):
  19595. match (src, tgt):
  19596. case (AnyType(), FunctionType(ps2, rt2)):
  19597. anyfun = FunctionType([AnyType() for p in ps2], AnyType())
  19598. return self.apply_cast(self.apply_project(value, anyfun), anyfun, tgt)
  19599. case (AnyType(), TupleType(ts2)):
  19600. anytup = TupleType([AnyType() for t1 in ts2])
  19601. return self.apply_cast(self.apply_project(value, anytup), anytup, tgt)
  19602. case (AnyType(), ListType(t2)):
  19603. anylist = ListType([AnyType() for t1 in ts2])
  19604. return self.apply_cast(self.apply_project(value, anylist), anylist, tgt)
  19605. case (AnyType(), AnyType()):
  19606. return value
  19607. case (AnyType(), _):
  19608. return self.apply_project(value, tgt)
  19609. case (FunctionType(ps1,rt1), AnyType()):
  19610. anyfun = FunctionType([AnyType() for p in ps1], AnyType())
  19611. return self.apply_inject(self.apply_cast(value, src, anyfun), anyfun)
  19612. case (TupleType(ts1), AnyType()):
  19613. anytup = TupleType([AnyType() for t1 in ts1])
  19614. return self.apply_inject(self.apply_cast(value, src, anytup), anytup)
  19615. case (ListType(t1), AnyType()):
  19616. anylist = ListType(AnyType())
  19617. return self.apply_inject(self.apply_cast(value,src,anylist), anylist)
  19618. case (_, AnyType()):
  19619. return self.apply_inject(value, src)
  19620. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19621. params = [generate_name('x') for p in ps2]
  19622. args = [Cast(Name(x), t2, t1)
  19623. for (x,t1,t2) in zip(params, ps1, ps2)]
  19624. body = Cast(Call(ValueExp(value), args), rt1, rt2)
  19625. return Function('cast', params, [Return(body)], {})
  19626. case (TupleType(ts1), TupleType(ts2)):
  19627. x = generate_name('x')
  19628. reads = [Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19629. for (t1,t2) in zip(ts1,ts2)]
  19630. return ProxiedTuple(value, reads)
  19631. case (ListType(t1), ListType(t2)):
  19632. x = generate_name('x')
  19633. read = Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19634. write = Function('cast', [x], [Return(Cast(Name(x), t2, t1))], {})
  19635. return ProxiedList(value, read, write)
  19636. case (t1, t2) if t1 == t2:
  19637. return value
  19638. case (t1, t2):
  19639. raise Exception('apply_cast unexpected ' + repr(src) + ' ' + repr(tgt))
  19640. def apply_inject(self, value, src):
  19641. return Tagged(value, self.type_to_tag(src))
  19642. def apply_project(self, value, tgt):
  19643. match value:
  19644. case Tagged(val, tag) if self.type_to_tag(tgt) == tag:
  19645. return val
  19646. case _:
  19647. raise Exception('apply_project, unexpected ' + repr(value))
  19648. \end{lstlisting}
  19649. \fi}
  19650. \end{tcolorbox}
  19651. \caption{The \code{apply\_cast} auxiliary method.}
  19652. \label{fig:apply_cast}
  19653. \end{figure}
  19654. The \LangCast{} interpreter uses an auxiliary function named
  19655. \code{apply\_cast} to cast a value from a source type to a target type,
  19656. shown in figure~\ref{fig:apply_cast}. You'll find that it handles all
  19657. the kinds of casts that we've discussed in this section.
  19658. %
  19659. The definition of the interpreter for \LangCast{} is shown in
  19660. figure~\ref{fig:interp-Lcast}, with the case for \code{Cast}
  19661. dispatching to \code{apply\_cast}.
  19662. \racket{To handle the addition of tuple
  19663. proxies, we update the tuple primitives in \code{interp-op} using the
  19664. functions given in figure~\ref{fig:guarded-tuple}.}
  19665. Next we turn to the individual passes needed for compiling \LangGrad{}.
  19666. \begin{figure}[tbp]
  19667. \begin{tcolorbox}[colback=white]
  19668. {\if\edition\racketEd
  19669. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19670. (define interp-Lcast-class
  19671. (class interp-Llambda-class
  19672. (super-new)
  19673. (inherit apply-fun apply-inject apply-project)
  19674. (define/override (interp-op op)
  19675. (match op
  19676. ['vector-length guarded-vector-length]
  19677. ['vector-ref guarded-vector-ref]
  19678. ['vector-set! guarded-vector-set!]
  19679. ['any-vector-ref (lambda (v i)
  19680. (match v [`(tagged ,v^ ,tg)
  19681. (guarded-vector-ref v^ i)]))]
  19682. ['any-vector-set! (lambda (v i a)
  19683. (match v [`(tagged ,v^ ,tg)
  19684. (guarded-vector-set! v^ i a)]))]
  19685. ['any-vector-length (lambda (v)
  19686. (match v [`(tagged ,v^ ,tg)
  19687. (guarded-vector-length v^)]))]
  19688. [else (super interp-op op)]
  19689. ))
  19690. (define/override ((interp-exp env) e)
  19691. (define (recur e) ((interp-exp env) e))
  19692. (match e
  19693. [(Value v) v]
  19694. [(Cast e src tgt) (apply_cast (recur e) src tgt)]
  19695. [else ((super interp-exp env) e)]))
  19696. ))
  19697. (define (interp-Lcast p)
  19698. (send (new interp-Lcast-class) interp-program p))
  19699. \end{lstlisting}
  19700. \fi}
  19701. {\if\edition\pythonEd\pythonColor
  19702. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19703. class InterpLcast(InterpLany):
  19704. def interp_exp(self, e, env):
  19705. match e:
  19706. case Cast(value, src, tgt):
  19707. v = self.interp_exp(value, env)
  19708. return self.apply_cast(v, src, tgt)
  19709. case ValueExp(value):
  19710. return value
  19711. ...
  19712. case _:
  19713. return super().interp_exp(e, env)
  19714. \end{lstlisting}
  19715. \fi}
  19716. \end{tcolorbox}
  19717. \caption{The interpreter for \LangCast{}.}
  19718. \label{fig:interp-Lcast}
  19719. \end{figure}
  19720. {\if\edition\racketEd
  19721. \begin{figure}[tbp]
  19722. \begin{tcolorbox}[colback=white]
  19723. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19724. (define (guarded-vector-ref vec i)
  19725. (match vec
  19726. [`(vector-proxy ,proxy)
  19727. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  19728. (define rd (vector-ref (vector-ref proxy 1) i))
  19729. (apply-fun rd (list val) 'guarded-vector-ref)]
  19730. [else (vector-ref vec i)]))
  19731. (define (guarded-vector-set! vec i arg)
  19732. (match vec
  19733. [`(vector-proxy ,proxy)
  19734. (define wr (vector-ref (vector-ref proxy 2) i))
  19735. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  19736. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  19737. [else (vector-set! vec i arg)]))
  19738. (define (guarded-vector-length vec)
  19739. (match vec
  19740. [`(vector-proxy ,proxy)
  19741. (guarded-vector-length (vector-ref proxy 0))]
  19742. [else (vector-length vec)]))
  19743. \end{lstlisting}
  19744. %% {\if\edition\pythonEd\pythonColor
  19745. %% \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19746. %% UNDER CONSTRUCTION
  19747. %% \end{lstlisting}
  19748. %% \fi}
  19749. \end{tcolorbox}
  19750. \caption{The \code{guarded-vector} auxiliary functions.}
  19751. \label{fig:guarded-tuple}
  19752. \end{figure}
  19753. \fi}
  19754. {\if\edition\pythonEd\pythonColor
  19755. \section{Overload Resolution \vspace{-2pt}}
  19756. \label{sec:gradual-resolution}
  19757. Recall that when we added support for arrays in
  19758. section~\ref{sec:arrays}, the syntax for the array operations were the
  19759. same as for tuple operations (for example, accessing an element and
  19760. getting the length). So we performed overload resolution, with a pass
  19761. named \code{resolve}, to separate the array and tuple operations. In
  19762. particular, we introduced the primitives \code{array\_load},
  19763. \code{array\_store}, and \code{array\_len}.
  19764. For gradual typing, we further overload these operators to work on
  19765. values of type \CANYTY{}. Thus, the \code{resolve} pass should be
  19766. updated with new cases for the \CANYTY{} type, translating the element
  19767. access and length operations to the primitives \code{any\_load},
  19768. \code{any\_store}, and \code{any\_len}.
  19769. \fi}
  19770. \section{Cast Insertion \vspace{-2pt}}
  19771. \label{sec:gradual-insert-casts}
  19772. In our discussion of type checking of \LangGrad{}, we mentioned how
  19773. the runtime aspect of type checking is carried out by the \code{Cast}
  19774. AST node, which is added to the program by a new pass named
  19775. \code{cast\_insert}. The target of this pass is the \LangCast{}
  19776. language. We now discuss the details of this pass.
  19777. The \code{cast\_insert} pass is closely related to the type checker
  19778. for \LangGrad{} (starting in figure~\ref{fig:type-check-Lgradual-1}).
  19779. In particular, the type checker allows implicit casts between
  19780. consistent types. The job of the \code{cast\_insert} pass is to make
  19781. those casts explicit. It does so by inserting
  19782. \code{Cast} nodes into the AST.
  19783. %
  19784. For the most part, the implicit casts occur in places where the type
  19785. checker checks two types for consistency. Consider the case for
  19786. binary operators in figure~\ref{fig:type-check-Lgradual-1}. The type
  19787. checker requires that the type of the left operand is consistent with
  19788. \INTTY{}. Thus, the \code{cast\_insert} pass should insert a
  19789. \code{Cast} around the left operand, converting from its type to
  19790. \INTTY{}. The story is similar for the right operand. It is not always
  19791. necessary to insert a cast, for example, if the left operand already has type
  19792. \INTTY{} then there is no need for a \code{Cast}.
  19793. Some of the implicit casts are not as straightforward. One such case
  19794. arises with the
  19795. conditional expression. In figure~\ref{fig:type-check-Lgradual-1} we
  19796. see that the type checker requires that the two branches have
  19797. consistent types and that type of the conditional expression is the
  19798. meet of the branches' types. In the target language \LangCast{}, both
  19799. branches will need to have the same type, and that type
  19800. will be the type of the conditional expression. Thus, each branch requires
  19801. a \code{Cast} to convert from its type to the meet of the branches' types.
  19802. The case for the function call exhibits another interesting situation. If
  19803. the function expression is of type \CANYTY{}, then it needs to be cast
  19804. to a function type so that it can be used in a function call in
  19805. \LangCast{}. Which function type should it be cast to? The parameter
  19806. and return types are unknown, so we can simply use \CANYTY{} for all
  19807. of them. Furthermore, in \LangCast{} the argument types will need to
  19808. exactly match the parameter types, so we must cast all the arguments
  19809. to type \CANYTY{} (if they are not already of that type).
  19810. {\if\edition\racketEd
  19811. %
  19812. Likewise, the cases for the tuple operators \code{vector-length},
  19813. \code{vector-ref}, and \code{vector-set!} need to handle the situation
  19814. where the tuple expression is of type \CANYTY{}. Instead of
  19815. handling these situations with casts, we recommend translating
  19816. the special-purpose variants of the tuple operators that handle
  19817. tuples of type \CANYTY{}: \code{any-vector-length},
  19818. \code{any-vector-ref}, and \code{any-vector-set!}.
  19819. %
  19820. \fi}
  19821. \section{Lower Casts \vspace{-2pt}}
  19822. \label{sec:lower_casts}
  19823. The next step in the journey toward x86 is the \code{lower\_casts}
  19824. pass that translates the casts in \LangCast{} to the lower-level
  19825. \code{Inject} and \code{Project} operators and new operators for
  19826. proxies, extending the \LangLam{} language to \LangProxy{}.
  19827. The \LangProxy{} language can also be described as an extension of
  19828. \LangAny{}, with the addition of proxies. We recommend creating an
  19829. auxiliary function named \code{lower\_cast} that takes an expression
  19830. (in \LangCast{}), a source type, and a target type and translates it
  19831. to an expression in \LangProxy{}.
  19832. The \code{lower\_cast} function can follow a code structure similar to
  19833. the \code{apply\_cast} function (figure~\ref{fig:apply_cast}) used in
  19834. the interpreter for \LangCast{}, because it must handle the same cases
  19835. as \code{apply\_cast} and it needs to mimic the behavior of
  19836. \code{apply\_cast}. The most interesting cases concern
  19837. the casts involving \racket{tuple and function types}\python{tuple, array, and function types}.
  19838. {\if\edition\racketEd
  19839. As mentioned in section~\ref{sec:interp-casts}, a cast from one tuple
  19840. type to another tuple type is accomplished by creating a proxy that
  19841. intercepts the operations on the underlying tuple. Here we make the
  19842. creation of the proxy explicit with the \code{vector-proxy} AST
  19843. node. It takes three arguments: the first is an expression for the
  19844. tuple, the second is a tuple of functions for casting an element that is
  19845. being read from the tuple, and the third is a tuple of functions for
  19846. casting an element that is being written to the array. You can create
  19847. the functions for reading and writing using lambda expressions. Also,
  19848. as we show in the next section, we need to differentiate these tuples
  19849. of functions from the user-created ones, so we recommend using a new
  19850. AST node named \code{raw-vector} instead of \code{vector}.
  19851. %
  19852. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19853. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19854. that involved casting a tuple of integers to a tuple of \CANYTY{}.
  19855. \fi}
  19856. {\if\edition\pythonEd\pythonColor
  19857. As mentioned in section~\ref{sec:interp-casts}, a cast from one array
  19858. type to another array type is accomplished by creating a proxy that
  19859. intercepts the operations on the underlying array. Here we make the
  19860. creation of the proxy explicit with the \code{ListProxy} AST node. It
  19861. takes fives arguments: the first is an expression for the array, the
  19862. second is a function for casting an element that is being read from
  19863. the array, the third is a function for casting an element that is
  19864. being written to the array, the fourth is the type of the underlying
  19865. array, and the fifth is the type of the proxied array. You can create
  19866. the functions for reading and writing using lambda expressions.
  19867. A cast between two tuple types can be handled in a similar manner. We
  19868. create a proxy with the \code{TupleProxy} AST node. Tuples are
  19869. immutable, so there is no need for a function to cast the value during
  19870. a write. Because there is a separate element type for each slot in
  19871. the tuple, we need more than one function for casting during a read:
  19872. we need a tuple of functions.
  19873. %
  19874. Also, as we show in the next section, we need to differentiate these
  19875. tuples from the user-created ones, so we recommend using a new AST
  19876. node named \code{RawTuple} instead of \code{Tuple} to create the
  19877. tuples of functions.
  19878. %
  19879. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19880. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19881. that involves casting an array of integers to an array of \CANYTY{}.
  19882. \fi}
  19883. \begin{figure}[tbp]
  19884. \begin{tcolorbox}[colback=white]
  19885. {\if\edition\racketEd
  19886. \begin{lstlisting}
  19887. (define (map_inplace [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  19888. (begin
  19889. (vector-set! v 0 (f (vector-ref v 0)))
  19890. (vector-set! v 1 (f (vector-ref v 1)))))
  19891. (define (inc [x : Any]) : Any
  19892. (inject (+ (project x Integer) 1) Integer))
  19893. (let ([v (vector 0 41)])
  19894. (begin
  19895. (map_inplace inc (vector-proxy v
  19896. (raw-vector (lambda: ([x9 : Integer]) : Any
  19897. (inject x9 Integer))
  19898. (lambda: ([x9 : Integer]) : Any
  19899. (inject x9 Integer)))
  19900. (raw-vector (lambda: ([x9 : Any]) : Integer
  19901. (project x9 Integer))
  19902. (lambda: ([x9 : Any]) : Integer
  19903. (project x9 Integer)))))
  19904. (vector-ref v 1)))
  19905. \end{lstlisting}
  19906. \fi}
  19907. {\if\edition\pythonEd\pythonColor
  19908. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19909. def map_inplace(f : Callable[[int], int], v : list[Any]) -> void:
  19910. i = 0
  19911. while i != array_len(v):
  19912. array_store(v, i, inject(f(project(array_load(v, i), int)), int))
  19913. i = (i + 1)
  19914. def inc(x : int) -> int:
  19915. return (x + 1)
  19916. def main() -> int:
  19917. v = [0, 41]
  19918. map_inplace(inc, array_proxy(v, list[int], list[Any]))
  19919. print(array_load(v, 1))
  19920. return 0
  19921. \end{lstlisting}
  19922. \fi}
  19923. \end{tcolorbox}
  19924. \caption{Output of \code{lower\_casts} on the example shown in
  19925. figure~\ref{fig:map-bang}.}
  19926. \label{fig:map-bang-lower-cast}
  19927. \end{figure}
  19928. A cast from one function type to another function type is accomplished
  19929. by generating a \code{lambda} whose parameter and return types match
  19930. the target function type. The body of the \code{lambda} should cast
  19931. the parameters from the target type to the source type. (Yes,
  19932. backward! Functions are contravariant\index{subject}{contravariant}
  19933. in the parameters.) Afterward, call the underlying function and then
  19934. cast the result from the source return type to the target return type.
  19935. Figure~\ref{fig:map-lower-cast} shows the output of the
  19936. \code{lower\_casts} pass on the \code{map} example give in
  19937. figure~\ref{fig:gradual-map}. Note that the \code{inc} argument in the
  19938. call to \code{map} is wrapped in a \code{lambda}.
  19939. \begin{figure}[tbp]
  19940. \begin{tcolorbox}[colback=white]
  19941. {\if\edition\racketEd
  19942. \begin{lstlisting}
  19943. (define (map [f : (Integer -> Integer)]
  19944. [v : (Vector Integer Integer)])
  19945. : (Vector Integer Integer)
  19946. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19947. (define (inc [x : Any]) : Any
  19948. (inject (+ (project x Integer) 1) Integer))
  19949. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  19950. (project (inc (inject x9 Integer)) Integer))
  19951. (vector 0 41)) 1)
  19952. \end{lstlisting}
  19953. \fi}
  19954. {\if\edition\pythonEd\pythonColor
  19955. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19956. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19957. return (f(v[0]), f(v[1]),)
  19958. def inc(x : any) -> any:
  19959. return inject((project(x, int) + 1), int)
  19960. def main() -> int:
  19961. t = map(lambda x: project(inc(inject(x, int)), int), (0, 41,))
  19962. print(t[1])
  19963. return 0
  19964. \end{lstlisting}
  19965. \fi}
  19966. \end{tcolorbox}
  19967. \caption{Output of \code{lower\_casts} on the example shown in
  19968. figure~\ref{fig:gradual-map}.}
  19969. \label{fig:map-lower-cast}
  19970. \end{figure}
  19971. \section{Differentiate Proxies \vspace{-2pt}}
  19972. \label{sec:differentiate-proxies}
  19973. So far, the responsibility of differentiating tuples and tuple proxies
  19974. has been the job of the interpreter.
  19975. %
  19976. \racket{For example, the interpreter for \LangCast{} implements
  19977. \code{vector-ref} using the \code{guarded-vector-ref} function shown in
  19978. figure~\ref{fig:guarded-tuple}.}
  19979. %
  19980. In the \code{differentiate\_proxies} pass we shift this responsibility
  19981. to the generated code.
  19982. We begin by designing the output language \LangPVec{}. In \LangGrad{}
  19983. we used the type \TUPLETYPENAME{} for both
  19984. real tuples and tuple proxies.
  19985. \python{Similarly, we use the type \code{list} for both arrays and
  19986. array proxies.}
  19987. In \LangPVec{} we return the
  19988. \TUPLETYPENAME{} type to its original
  19989. meaning, as the type of just tuples, and we introduce a new type,
  19990. \PTUPLETYNAME{}, whose values
  19991. can be either real tuples or tuple
  19992. proxies.
  19993. %
  19994. {\if\edition\pythonEd\pythonColor
  19995. Likewise, we return the
  19996. \ARRAYTYPENAME{} type to its original
  19997. meaning, as the type of arrays, and we introduce a new type,
  19998. \PARRAYTYNAME{}, whose values
  19999. can be either arrays or array proxies.
  20000. These new types come with a suite of new primitive operations.
  20001. \fi}
  20002. {\if\edition\racketEd
  20003. A tuple proxy is represented by a tuple containing three things: (1) the
  20004. underlying tuple, (2) a tuple of functions for casting elements that
  20005. are read from the tuple, and (3) a tuple of functions for casting
  20006. values to be written to the tuple. So, we define the following
  20007. abbreviation for the type of a tuple proxy:
  20008. \[
  20009. \itm{TupleProxy} (T\ldots \Rightarrow T'\ldots)
  20010. = (\ttm{Vector}~\PTUPLETY{T\ldots} ~R~ W)
  20011. \]
  20012. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  20013. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  20014. %
  20015. Next we describe each of the new primitive operations.
  20016. \begin{description}
  20017. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  20018. (\key{PVector} $T \ldots$)]\ \\
  20019. %
  20020. This operation brands a vector as a value of the \code{PVector} type.
  20021. \item[\code{inject-proxy} : $\itm{TupleProxy}(T\ldots \Rightarrow T'\ldots)$
  20022. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  20023. %
  20024. This operation brands a vector proxy as value of the \code{PVector} type.
  20025. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  20026. \BOOLTY{}] \ \\
  20027. %
  20028. This returns true if the value is a tuple proxy and false if it is a
  20029. real tuple.
  20030. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  20031. (\key{Vector} $T \ldots$)]\ \\
  20032. %
  20033. Assuming that the input is a tuple, this operation returns the
  20034. tuple.
  20035. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  20036. $\to$ \INTTY{}]\ \\
  20037. %
  20038. Given a tuple proxy, this operation returns the length of the tuple.
  20039. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  20040. $\to$ ($i$ : \INTTY{}) $\to$ $T_i$]\ \\
  20041. %
  20042. Given a tuple proxy, this operation returns the $i$th element of the
  20043. tuple.
  20044. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  20045. : \INTTY{}) $\to$ $T_i$ $\to$ \key{Void}]\ \\
  20046. Given a tuple proxy, this operation writes a value to the $i$th element
  20047. of the tuple.
  20048. \end{description}
  20049. \fi}
  20050. {\if\edition\pythonEd\pythonColor
  20051. %
  20052. A tuple proxy is represented by a tuple containing (1) the underlying
  20053. tuple and (2) a tuple of functions for casting elements that are read
  20054. from the tuple. The \LangPVec{} language includes the following AST
  20055. classes and primitive functions.
  20056. \begin{description}
  20057. \item[\code{InjectTuple}] \ \\
  20058. %
  20059. This AST node brands a tuple as a value of the \PTUPLETYNAME{} type.
  20060. \item[\code{InjectTupleProxy}]\ \\
  20061. %
  20062. This AST node brands a tuple proxy as value of the \PTUPLETYNAME{} type.
  20063. \item[\code{is\_tuple\_proxy}]\ \\
  20064. %
  20065. This primitive returns true if the value is a tuple proxy and false
  20066. if it is a tuple.
  20067. \item[\code{project\_tuple}]\ \\
  20068. %
  20069. Converts a tuple that is branded as \PTUPLETYNAME{}
  20070. back to a tuple.
  20071. \item[\code{proxy\_tuple\_len}]\ \\
  20072. %
  20073. Given a tuple proxy, returns the length of the underlying tuple.
  20074. \item[\code{proxy\_tuple\_load}]\ \\
  20075. %
  20076. Given a tuple proxy, returns the $i$th element of the underlying
  20077. tuple.
  20078. \end{description}
  20079. An array proxy is represented by a tuple containing (1) the underlying
  20080. array, (2) a function for casting elements that are read from the
  20081. array, and (3) a function for casting elements that are written to the
  20082. array. The \LangPVec{} language includes the following AST classes
  20083. and primitive functions.
  20084. \begin{description}
  20085. \item[\code{InjectList}]\ \\
  20086. This AST node brands an array as a value of the \PARRAYTYNAME{} type.
  20087. \item[\code{InjectListProxy}]\ \\
  20088. %
  20089. This AST node brands an array proxy as a value of the \PARRAYTYNAME{} type.
  20090. \item[\code{is\_array\_proxy}]\ \\
  20091. %
  20092. Returns true if the value is an array proxy and false if it is an
  20093. array.
  20094. \item[\code{project\_array}]\ \\
  20095. %
  20096. Converts an array that is branded as \PARRAYTYNAME{} back to an
  20097. array.
  20098. \item[\code{proxy\_array\_len}]\ \\
  20099. %
  20100. Given an array proxy, returns the length of the underlying array.
  20101. \item[\code{proxy\_array\_load}]\ \\
  20102. %
  20103. Given an array proxy, returns the $i$th element of the underlying
  20104. array.
  20105. \item[\code{proxy\_array\_store}]\ \\
  20106. %
  20107. Given an array proxy, writes a value to the $i$th element of the
  20108. underlying array.
  20109. \end{description}
  20110. \fi}
  20111. Now we discuss the translation that differentiates tuples and arrays
  20112. from proxies. First, every type annotation in the program is
  20113. translated (recursively) to replace \TUPLETYPENAME{} with \PTUPLETYNAME{}.
  20114. Next, we insert uses of \PTUPLETYNAME{} operations in the appropriate
  20115. places. For example, we wrap every tuple creation with an
  20116. \racket{\code{inject-vector}}\python{\code{InjectTuple}}.
  20117. %
  20118. {\if\edition\racketEd
  20119. \begin{minipage}{0.96\textwidth}
  20120. \begin{lstlisting}
  20121. (vector |$e_1 \ldots e_n$|)
  20122. |$\Rightarrow$|
  20123. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  20124. \end{lstlisting}
  20125. \end{minipage}
  20126. \fi}
  20127. {\if\edition\pythonEd\pythonColor
  20128. \begin{lstlisting}
  20129. Tuple(|$e_1, \ldots, e_n$|)
  20130. |$\Rightarrow$|
  20131. InjectTuple(Tuple(|$e'_1, \ldots, e'_n$|))
  20132. \end{lstlisting}
  20133. \fi}
  20134. The \racket{\code{raw-vector}}\python{\code{RawTuple}}
  20135. AST node that we introduced in the previous
  20136. section does not get injected.
  20137. {\if\edition\racketEd
  20138. \begin{lstlisting}
  20139. (raw-vector |$e_1 \ldots e_n$|)
  20140. |$\Rightarrow$|
  20141. (vector |$e'_1 \ldots e'_n$|)
  20142. \end{lstlisting}
  20143. \fi}
  20144. {\if\edition\pythonEd\pythonColor
  20145. \begin{lstlisting}
  20146. RawTuple(|$e_1, \ldots, e_n$|)
  20147. |$\Rightarrow$|
  20148. Tuple(|$e'_1, \ldots, e'_n$|)
  20149. \end{lstlisting}
  20150. \fi}
  20151. The \racket{\code{vector-proxy}}\python{\code{TupleProxy}} AST
  20152. translates as follows:
  20153. %
  20154. {\if\edition\racketEd
  20155. \begin{lstlisting}
  20156. (vector-proxy |$e_1~e_2~e_3$|)
  20157. |$\Rightarrow$|
  20158. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  20159. \end{lstlisting}
  20160. \fi}
  20161. {\if\edition\pythonEd\pythonColor
  20162. \begin{lstlisting}
  20163. TupleProxy(|$e_1, e_2, T_1, T_2$|)
  20164. |$\Rightarrow$|
  20165. InjectTupleProxy(Tuple(|$e'_1,e'_2, T'_1, T'_2$|))
  20166. \end{lstlisting}
  20167. \fi}
  20168. We translate the element access operations into conditional
  20169. expressions that check whether the value is a proxy and then dispatch
  20170. to either the appropriate proxy tuple operation or the regular tuple
  20171. operation.
  20172. {\if\edition\racketEd
  20173. \begin{lstlisting}
  20174. (vector-ref |$e_1$| |$i$|)
  20175. |$\Rightarrow$|
  20176. (let ([|$v~e_1$|])
  20177. (if (proxy? |$v$|)
  20178. (proxy-vector-ref |$v$| |$i$|)
  20179. (vector-ref (project-vector |$v$|) |$i$|)
  20180. \end{lstlisting}
  20181. \fi}
  20182. %
  20183. Note that in the branch for a tuple, we must apply
  20184. \racket{\code{project-vector}}\python{\code{project\_tuple}} before reading
  20185. from the tuple.
  20186. The translation of array operations is similar to the ones for tuples.
  20187. \section{Reveal Casts \vspace{-2pt}}
  20188. \label{sec:reveal-casts-gradual}
  20189. {\if\edition\racketEd
  20190. Recall that the \code{reveal\_casts} pass
  20191. (section~\ref{sec:reveal-casts-Lany}) is responsible for lowering
  20192. \code{Inject} and \code{Project} into lower-level operations.
  20193. %
  20194. In particular, \code{Project} turns into a conditional expression that
  20195. inspects the tag and retrieves the underlying value. Here we need to
  20196. augment the translation of \code{Project} to handle the situation in which
  20197. the target type is \code{PVector}. Instead of using
  20198. \code{vector-length} we need to use \code{proxy-vector-length}.
  20199. \begin{lstlisting}
  20200. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  20201. |$\Rightarrow$|
  20202. (let |$\itm{tmp}$| |$e'$|
  20203. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  20204. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  20205. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  20206. (exit)))
  20207. \end{lstlisting}
  20208. \fi}
  20209. %
  20210. {\if\edition\pythonEd\pythonColor
  20211. Recall that the $\itm{tagof}$ function determines the bits used to
  20212. identify values of different types, and it is used in the \code{reveal\_casts}
  20213. pass in the translation of \code{Project}. The \PTUPLETYNAME{} and
  20214. \PARRAYTYNAME{} types can be mapped to $010$ in binary ($2$ is
  20215. decimal), just like the tuple and array types.
  20216. \fi}
  20217. %
  20218. Otherwise, the only other changes are adding cases that copy the new AST nodes.
  20219. \section{Closure Conversion \vspace{-2pt}}
  20220. \label{sec:closure-conversion-gradual}
  20221. The auxiliary function that translates type annotations needs to be
  20222. updated to handle the \PTUPLETYNAME{}
  20223. \racket{type}\python{and \PARRAYTYNAME{} types}.
  20224. %
  20225. Otherwise, the only other changes are adding cases that copy the new
  20226. AST nodes.
  20227. \section{Select Instructions \vspace{-2pt}}
  20228. \label{sec:select-instructions-gradual}
  20229. \index{subject}{select instructions}
  20230. Recall that the \code{select\_instructions} pass is responsible for
  20231. lowering the primitive operations into x86 instructions. So, we need
  20232. to translate the new operations on \PTUPLETYNAME{} \python{and \PARRAYTYNAME{}}
  20233. to x86. To do so, the first question we need to answer is how to
  20234. differentiate between tuple and tuple proxies\python{, and likewise for
  20235. arrays and array proxies}. We need just one bit to accomplish this;
  20236. we use the bit in position $63$ of the 64-bit tag at the front of
  20237. every tuple (see figure~\ref{fig:tuple-rep})\python{ or array
  20238. (section~\ref{sec:array-rep})}. So far, this bit has been set to $0$,
  20239. so for \racket{\code{inject-vector}}\python{\code{InjectTuple}} we leave
  20240. it that way.
  20241. {\if\edition\racketEd
  20242. \begin{lstlisting}
  20243. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  20244. |$\Rightarrow$|
  20245. movq |$e'_1$|, |$\itm{lhs'}$|
  20246. \end{lstlisting}
  20247. \fi}
  20248. {\if\edition\pythonEd\pythonColor
  20249. \begin{lstlisting}
  20250. Assign([|$\itm{lhs}$|], InjectTuple(|$e_1$|))
  20251. |$\Rightarrow$|
  20252. movq |$e'_1$|, |$\itm{lhs'}$|
  20253. \end{lstlisting}
  20254. \fi}
  20255. \python{The translation for \code{InjectList} is also a move instruction.}
  20256. \noindent On the other hand,
  20257. \racket{\code{inject-proxy}}\python{\code{InjectTupleProxy}} sets bit
  20258. $63$ to $1$.
  20259. %
  20260. {\if\edition\racketEd
  20261. \begin{lstlisting}
  20262. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  20263. |$\Rightarrow$|
  20264. movq |$e'_1$|, %r11
  20265. movq |$(1 << 63)$|, %rax
  20266. orq 0(%r11), %rax
  20267. movq %rax, 0(%r11)
  20268. movq %r11, |$\itm{lhs'}$|
  20269. \end{lstlisting}
  20270. \fi}
  20271. {\if\edition\pythonEd\pythonColor
  20272. \begin{lstlisting}
  20273. Assign([|$\itm{lhs}$|], InjectTupleProxy(|$e_1$|))
  20274. |$\Rightarrow$|
  20275. movq |$e'_1$|, %r11
  20276. movq |$(1 << 63)$|, %rax
  20277. orq 0(%r11), %rax
  20278. movq %rax, 0(%r11)
  20279. movq %r11, |$\itm{lhs'}$|
  20280. \end{lstlisting}
  20281. \fi}
  20282. \python{\noindent The translation for \code{InjectListProxy} should set bit $63$
  20283. of the tag and also bit $62$, to differentiate between arrays and tuples.}
  20284. The \racket{\code{proxy?} operation consumes}%
  20285. \python{\code{is\_tuple\_proxy} and \code{is\_array\_proxy} operations
  20286. consume}
  20287. the information so carefully stashed away by the injections. It
  20288. isolates bit $63$ to tell whether the value is a proxy.
  20289. %
  20290. {\if\edition\racketEd
  20291. \begin{lstlisting}
  20292. (Assign |$\itm{lhs}$| (Prim 'proxy? (list |$e_1$|)))
  20293. |$\Rightarrow$|
  20294. movq |$e_1'$|, %r11
  20295. movq 0(%r11), %rax
  20296. sarq $63, %rax
  20297. andq $1, %rax
  20298. movq %rax, |$\itm{lhs'}$|
  20299. \end{lstlisting}
  20300. \fi}%
  20301. %
  20302. {\if\edition\pythonEd\pythonColor
  20303. \begin{lstlisting}
  20304. Assign([|$\itm{lhs}$|], Call(Name('is_tuple_proxy'), [|$e_1$|]))
  20305. |$\Rightarrow$|
  20306. movq |$e_1'$|, %r11
  20307. movq 0(%r11), %rax
  20308. sarq $63, %rax
  20309. andq $1, %rax
  20310. movq %rax, |$\itm{lhs'}$|
  20311. \end{lstlisting}
  20312. \fi}%
  20313. %
  20314. The \racket{\code{project-vector} operation is}
  20315. \python{\code{project\_tuple} and \code{project\_array} operations are}
  20316. straightforward to translate, so we leave that to the reader.
  20317. Regarding the element access operations for tuples\python{ and arrays}, the
  20318. runtime provides procedures that implement them (they are recursive
  20319. functions!), so here we simply need to translate these tuple
  20320. operations into the appropriate function call. For example, here is
  20321. the translation for
  20322. \racket{\code{proxy-vector-ref}}\python{\code{proxy\_tuple\_load}}.
  20323. {\if\edition\racketEd
  20324. \begin{minipage}{0.96\textwidth}
  20325. \begin{lstlisting}
  20326. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  20327. |$\Rightarrow$|
  20328. movq |$e_1'$|, %rdi
  20329. movq |$e_2'$|, %rsi
  20330. callq proxy_vector_ref
  20331. movq %rax, |$\itm{lhs'}$|
  20332. \end{lstlisting}
  20333. \end{minipage}
  20334. \fi}
  20335. {\if\edition\pythonEd\pythonColor
  20336. \begin{lstlisting}
  20337. Assign([|$\itm{lhs}$|], Call(Name('proxy_tuple_load'), [|$e_1$|, |$e_2$|]))
  20338. |$\Rightarrow$|
  20339. movq |$e_1'$|, %rdi
  20340. movq |$e_2'$|, %rsi
  20341. callq proxy_vector_ref
  20342. movq %rax, |$\itm{lhs'}$|
  20343. \end{lstlisting}
  20344. \fi}
  20345. {\if\edition\pythonEd\pythonColor
  20346. % TODO: revisit the names vecof for python -Jeremy
  20347. We translate
  20348. \code{proxy\_array\_load} to \code{proxy\_vecof\_ref},
  20349. \code{proxy\_array\_store} to \code{proxy\_vecof\_set}, and
  20350. \code{proxy\_array\_len} to \code{proxy\_vecof\_length}.
  20351. \fi}
  20352. We have another batch of operations to deal with: those for the
  20353. \CANYTY{} type. Recall that we generate an
  20354. \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}} when
  20355. there is a element access on something of type \CANYTY{}, and
  20356. similarly for
  20357. \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}} and
  20358. \racket{\code{any-vector-length}}\python{\code{any\_len}}. In
  20359. section~\ref{sec:select-Lany} we selected instructions for these
  20360. operations on the basis of the idea that the underlying value was a tuple or
  20361. array. But in the current setting, the underlying value is of type
  20362. \PTUPLETYNAME{}\python{ or \PARRAYTYNAME{}}. We have added three runtime
  20363. functions to deal with this:
  20364. \code{proxy\_vector\_ref},
  20365. \code{proxy\_vector\_set}, and
  20366. \code{proxy\_vector\_length} that inspect bit $62$ of the tag
  20367. to determine whether the value is a proxy, and then
  20368. dispatches to the the appropriate code.
  20369. %
  20370. So \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}}
  20371. can be translated as follows.
  20372. We begin by projecting the underlying value out of the tagged value and
  20373. then call the \code{proxy\_vector\_ref} procedure in the runtime.
  20374. {\if\edition\racketEd
  20375. \begin{lstlisting}
  20376. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  20377. |$\Rightarrow$|
  20378. movq |$\neg 111$|, %rdi
  20379. andq |$e_1'$|, %rdi
  20380. movq |$e_2'$|, %rsi
  20381. callq proxy_vector_ref
  20382. movq %rax, |$\itm{lhs'}$|
  20383. \end{lstlisting}
  20384. \fi}
  20385. {\if\edition\pythonEd\pythonColor
  20386. \begin{lstlisting}
  20387. Assign([|$\itm{lhs}$|], Call(Name('any_load_unsafe'), [|$e_1$|, |$e_2$|]))
  20388. |$\Rightarrow$|
  20389. movq |$\neg 111$|, %rdi
  20390. andq |$e_1'$|, %rdi
  20391. movq |$e_2'$|, %rsi
  20392. callq proxy_vector_ref
  20393. movq %rax, |$\itm{lhs'}$|
  20394. \end{lstlisting}
  20395. \fi}
  20396. \noindent The \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}}
  20397. and \racket{\code{any-vector-length}}\python{\code{any\_len}} operators
  20398. are translated in a similar way. Alternatively, you could generate
  20399. instructions to open-code
  20400. the \code{proxy\_vector\_ref}, \code{proxy\_vector\_set},
  20401. and \code{proxy\_vector\_length} functions.
  20402. \begin{exercise}\normalfont\normalsize
  20403. Implement a compiler for the gradually typed \LangGrad{} language by
  20404. extending and adapting your compiler for \LangLam{}. Create ten new
  20405. partially typed test programs. In addition to testing with these
  20406. new programs, test your compiler on all the tests for \LangLam{}
  20407. and for \LangDyn{}.
  20408. %
  20409. \racket{Sometimes you may get a type-checking error on the
  20410. \LangDyn{} programs, but you can adapt them by inserting a cast to
  20411. the \CANYTY{} type around each subexpression that has caused a type
  20412. error. Although \LangDyn{} does not have explicit casts, you can
  20413. induce one by wrapping the subexpression \code{e} with a call to
  20414. an unannotated identity function, as follows: \code{((lambda (x) x) e)}.}
  20415. %
  20416. \python{Sometimes you may get a type-checking error on the
  20417. \LangDyn{} programs, but you can adapt them by inserting a
  20418. temporary variable of type \CANYTY{} that is initialized with the
  20419. troublesome expression.}
  20420. \end{exercise}
  20421. \begin{figure}[t]
  20422. \begin{tcolorbox}[colback=white]
  20423. {\if\edition\racketEd
  20424. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  20425. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20426. \node (Lgradual2) at (4,4) {\large \LangCast{}};
  20427. \node (Lgradual3) at (8,4) {\large \LangProxy{}};
  20428. \node (Lgradual4) at (12,4) {\large \LangPVec{}};
  20429. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20430. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20431. \node (Llambdapp) at (4,2) {\large \LangPVecFunRef{}};
  20432. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20433. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20434. %\node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20435. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20436. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20437. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  20438. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20439. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20440. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20441. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20442. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  20443. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  20444. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20445. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20446. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  20447. \path[->,bend left=15] (Lgradual) edge [above] node
  20448. {\ttfamily\footnotesize cast\_insert} (Lgradual2);
  20449. \path[->,bend left=15] (Lgradual2) edge [above] node
  20450. {\ttfamily\footnotesize lower\_casts} (Lgradual3);
  20451. \path[->,bend left=15] (Lgradual3) edge [above] node
  20452. {\ttfamily\footnotesize differentiate\_proxies} (Lgradual4);
  20453. \path[->,bend left=15] (Lgradual4) edge [left] node
  20454. {\ttfamily\footnotesize shrink} (Lgradualr);
  20455. \path[->,bend left=15] (Lgradualr) edge [above] node
  20456. {\ttfamily\footnotesize uniquify} (Lgradualp);
  20457. \path[->,bend right=15] (Lgradualp) edge [above] node
  20458. {\ttfamily\footnotesize reveal\_functions} (Llambdapp);
  20459. %% \path[->,bend left=15] (Llambdaproxy-4) edge [left] node
  20460. %% {\ttfamily\footnotesize resolve} (Lgradualr);
  20461. \path[->,bend right=15] (Llambdapp) edge [above] node
  20462. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-4);
  20463. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20464. {\ttfamily\footnotesize convert\_assignments} (Llambdaproxy-5);
  20465. \path[->,bend right=10] (Llambdaproxy-5) edge [above] node
  20466. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20467. \path[->,bend left=15] (F1-2) edge [above] node
  20468. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20469. \path[->,bend left=15] (F1-3) edge [left] node
  20470. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  20471. \path[->,bend left=15] (F1-4) edge [below] node
  20472. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  20473. \path[->,bend right=15] (F1-5) edge [above] node
  20474. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20475. \path[->,bend right=15] (F1-6) edge [above] node
  20476. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20477. \path[->,bend right=15] (C3-2) edge [right] node
  20478. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20479. \path[->,bend right=15] (x86-2) edge [right] node
  20480. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  20481. \path[->,bend right=15] (x86-2-1) edge [below] node
  20482. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  20483. \path[->,bend right=15] (x86-2-2) edge [right] node
  20484. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  20485. \path[->,bend left=15] (x86-3) edge [above] node
  20486. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20487. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20488. \end{tikzpicture}
  20489. \fi}
  20490. {\if\edition\pythonEd\pythonColor
  20491. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.80]
  20492. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20493. \node (Lgradual2) at (4,4) {\large \LangGrad{}};
  20494. \node (Lgradual3) at (8,4) {\large \LangCast{}};
  20495. \node (Lgradual4) at (12,4) {\large \LangProxy{}};
  20496. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20497. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20498. \node (Llambdapp) at (4,2) {\large \LangPVec{}};
  20499. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20500. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20501. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20502. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20503. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20504. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20505. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20506. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20507. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20508. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20509. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20510. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  20511. \path[->,bend left=15] (Lgradual) edge [above] node
  20512. {\ttfamily\footnotesize shrink} (Lgradual2);
  20513. \path[->,bend left=15] (Lgradual2) edge [above] node
  20514. {\ttfamily\footnotesize uniquify} (Lgradual3);
  20515. \path[->,bend left=15] (Lgradual3) edge [above] node
  20516. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  20517. \path[->,bend left=15] (Lgradual4) edge [left] node
  20518. {\ttfamily\footnotesize resolve} (Lgradualr);
  20519. \path[->,bend left=15] (Lgradualr) edge [below] node
  20520. {\ttfamily\footnotesize cast\_insert} (Lgradualp);
  20521. \path[->,bend right=15] (Lgradualp) edge [above] node
  20522. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  20523. \path[->,bend right=15] (Llambdapp) edge [above] node
  20524. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  20525. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20526. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  20527. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  20528. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  20529. \path[->,bend left=15] (F1-1) edge [above] node
  20530. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20531. \path[->,bend left=15] (F1-2) edge [above] node
  20532. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20533. \path[->,bend left=15] (F1-3) edge [right] node
  20534. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  20535. \path[->,bend right=15] (F1-5) edge [above] node
  20536. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20537. \path[->,bend right=15] (F1-6) edge [above] node
  20538. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20539. \path[->,bend right=15] (C3-2) edge [right] node
  20540. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20541. \path[->,bend right=15] (x86-2) edge [below] node
  20542. {\ttfamily\footnotesize assign\_homes} (x86-3);
  20543. \path[->,bend right=15] (x86-3) edge [below] node
  20544. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20545. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20546. \end{tikzpicture}
  20547. \fi}
  20548. \end{tcolorbox}
  20549. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  20550. \label{fig:Lgradual-passes}
  20551. \end{figure}
  20552. Figure~\ref{fig:Lgradual-passes} provides an overview of the passes
  20553. needed for the compilation of \LangGrad{}.
  20554. \section{Further Reading}
  20555. This chapter just scratches the surface of gradual typing. The basic
  20556. approach described here is missing two key ingredients that one would
  20557. want in a implementation of gradual typing: blame
  20558. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  20559. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  20560. problem addressed by blame tracking is that when a cast on a
  20561. higher-order value fails, it often does so at a point in the program
  20562. that is far removed from the original cast. Blame tracking is a
  20563. technique for propagating extra information through casts and proxies
  20564. so that when a cast fails, the error message can point back to the
  20565. original location of the cast in the source program.
  20566. The problem addressed by space-efficient casts also relates to
  20567. higher-order casts. It turns out that in partially typed programs, a
  20568. function or tuple can flow through a great many casts at runtime. With
  20569. the approach described in this chapter, each cast adds another
  20570. \code{lambda} wrapper or a tuple proxy. Not only does this take up
  20571. considerable space, but it also makes the function calls and tuple
  20572. operations slow. For example, a partially typed version of quicksort
  20573. could, in the worst case, build a chain of proxies of length $O(n)$
  20574. around the tuple, changing the overall time complexity of the
  20575. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  20576. solution to this problem by representing casts using the coercion
  20577. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  20578. long chains of proxies by compressing them into a concise normal
  20579. form. \citet{Siek:2015ab} give an algorithm for compressing coercions,
  20580. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  20581. the Grift compiler:
  20582. \begin{center}
  20583. \url{https://github.com/Gradual-Typing/Grift}
  20584. \end{center}
  20585. There are also interesting interactions between gradual typing and
  20586. other language features, such as generics, information-flow types, and
  20587. type inference, to name a few. We recommend to the reader the
  20588. online gradual typing bibliography for more material:
  20589. \begin{center}
  20590. \url{http://samth.github.io/gradual-typing-bib/}
  20591. \end{center}
  20592. % TODO: challenge problem:
  20593. % type analysis and type specialization?
  20594. % coercions?
  20595. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  20596. \chapter{Generics}
  20597. \label{ch:Lpoly}
  20598. \setcounter{footnote}{0}
  20599. This chapter studies the compilation of
  20600. generics\index{subject}{generics} (aka parametric
  20601. polymorphism\index{subject}{parametric polymorphism}), compiling the
  20602. \LangPoly{} subset of \racket{Typed Racket}\python{Python}. Generics
  20603. enable programmers to make code more reusable by parameterizing
  20604. functions and data structures with respect to the types on which they
  20605. operate. For example, figure~\ref{fig:map-poly} revisits the
  20606. \code{map} example and this time gives it a more fitting type. This
  20607. \code{map} function is parameterized with respect to the element type
  20608. of the tuple. The type of \code{map} is the following generic type
  20609. specified by the \code{All} type with parameter \code{T}:
  20610. {\if\edition\racketEd
  20611. \begin{lstlisting}
  20612. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  20613. \end{lstlisting}
  20614. \fi}
  20615. {\if\edition\pythonEd\pythonColor
  20616. \begin{lstlisting}
  20617. All[[T], Callable[[Callable[[T],T], tuple[T,T]], tuple[T,T]]]
  20618. \end{lstlisting}
  20619. \fi}
  20620. %
  20621. The idea is that \code{map} can be used at \emph{all} choices of a
  20622. type for parameter \code{T}. In the example shown in
  20623. figure~\ref{fig:map-poly} we apply \code{map} to a tuple of integers,
  20624. implicitly choosing \racket{\code{Integer}}\python{\code{int}} for
  20625. \code{T}, but we could have just as well applied \code{map} to a tuple
  20626. of Booleans.
  20627. %
  20628. A \emph{monomorphic} function is simply one that is not generic.
  20629. %
  20630. We use the term \emph{instantiation} for the process (within the
  20631. language implementation) of turning a generic function into a
  20632. monomorphic one, where the type parameters have been replaced by
  20633. types.
  20634. {\if\edition\pythonEd\pythonColor
  20635. %
  20636. In Python, when writing a generic function such as \code{map}, one
  20637. does not explicitly write its generic type (using \code{All}).
  20638. Instead, that the function is generic is implied by the use of type
  20639. variables (such as \code{T}) in the type annotations of its
  20640. parameters.
  20641. %
  20642. \fi}
  20643. \begin{figure}[tbp]
  20644. % poly_test_2.rkt
  20645. \begin{tcolorbox}[colback=white]
  20646. {\if\edition\racketEd
  20647. \begin{lstlisting}
  20648. (: map (All (T) ((T -> T) (Vector T T) -> (Vector T T))))
  20649. (define (map f v)
  20650. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  20651. (define (inc [x : Integer]) : Integer (+ x 1))
  20652. (vector-ref (map inc (vector 0 41)) 1)
  20653. \end{lstlisting}
  20654. \fi}
  20655. {\if\edition\pythonEd\pythonColor
  20656. \begin{lstlisting}
  20657. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  20658. return (f(tup[0]), f(tup[1]))
  20659. def add1(x : int) -> int:
  20660. return x + 1
  20661. t = map(add1, (0, 41))
  20662. print(t[1])
  20663. \end{lstlisting}
  20664. \fi}
  20665. \end{tcolorbox}
  20666. \caption{A generic version of the \code{map} function.}
  20667. \label{fig:map-poly}
  20668. \end{figure}
  20669. Figure~\ref{fig:Lpoly-concrete-syntax} presents the definition of the
  20670. concrete syntax of \LangPoly{}, and figure~\ref{fig:Lpoly-syntax}
  20671. shows the definition of the abstract syntax.
  20672. %
  20673. {\if\edition\racketEd
  20674. We add a second form for function definitions in which a type
  20675. declaration comes before the \code{define}. In the abstract syntax,
  20676. the return type in the \code{Def} is \CANYTY{}, but that should be
  20677. ignored in favor of the return type in the type declaration. (The
  20678. \CANYTY{} comes from using the same parser as discussed in
  20679. chapter~\ref{ch:Ldyn}.) The presence of a type declaration
  20680. enables the use of an \code{All} type for a function, thereby making
  20681. it generic.
  20682. \fi}
  20683. %
  20684. The grammar for types is extended to include the type of a generic
  20685. (\code{All}) and type variables\python{\ (\code{GenericVar} in the
  20686. abstract syntax)}.
  20687. \newcommand{\LpolyGrammarRacket}{
  20688. \begin{array}{lcl}
  20689. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20690. \Def &::=& \LP\key{:}~\Var~\Type\RP \\
  20691. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP
  20692. \end{array}
  20693. }
  20694. \newcommand{\LpolyASTRacket}{
  20695. \begin{array}{lcl}
  20696. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20697. \Def &::=& \DECL{\Var}{\Type} \\
  20698. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp}
  20699. \end{array}
  20700. }
  20701. \newcommand{\LpolyGrammarPython}{
  20702. \begin{array}{lcl}
  20703. \Type &::=& \key{All}\LS \LS\Var\ldots\RS,\Type\RS \MID \Var
  20704. \end{array}
  20705. }
  20706. \newcommand{\LpolyASTPython}{
  20707. \begin{array}{lcl}
  20708. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP
  20709. \MID \key{GenericVar}\LP\Var\RP
  20710. \end{array}
  20711. }
  20712. \begin{figure}[tp]
  20713. \centering
  20714. \begin{tcolorbox}[colback=white]
  20715. \footnotesize
  20716. {\if\edition\racketEd
  20717. \[
  20718. \begin{array}{l}
  20719. \gray{\LintGrammarRacket{}} \\ \hline
  20720. \gray{\LvarGrammarRacket{}} \\ \hline
  20721. \gray{\LifGrammarRacket{}} \\ \hline
  20722. \gray{\LwhileGrammarRacket} \\ \hline
  20723. \gray{\LtupGrammarRacket} \\ \hline
  20724. \gray{\LfunGrammarRacket} \\ \hline
  20725. \gray{\LlambdaGrammarRacket} \\ \hline
  20726. \LpolyGrammarRacket \\
  20727. \begin{array}{lcl}
  20728. \LangPoly{} &::=& \Def \ldots ~ \Exp
  20729. \end{array}
  20730. \end{array}
  20731. \]
  20732. \fi}
  20733. {\if\edition\pythonEd\pythonColor
  20734. \[
  20735. \begin{array}{l}
  20736. \gray{\LintGrammarPython{}} \\ \hline
  20737. \gray{\LvarGrammarPython{}} \\ \hline
  20738. \gray{\LifGrammarPython{}} \\ \hline
  20739. \gray{\LwhileGrammarPython} \\ \hline
  20740. \gray{\LtupGrammarPython} \\ \hline
  20741. \gray{\LfunGrammarPython} \\ \hline
  20742. \gray{\LlambdaGrammarPython} \\\hline
  20743. \LpolyGrammarPython \\
  20744. \begin{array}{lcl}
  20745. \LangPoly{} &::=& \Def\ldots \Stmt\ldots
  20746. \end{array}
  20747. \end{array}
  20748. \]
  20749. \fi}
  20750. \end{tcolorbox}
  20751. \caption{The concrete syntax of \LangPoly{}, extending \LangLam{}
  20752. (figure~\ref{fig:Llam-concrete-syntax}).}
  20753. \label{fig:Lpoly-concrete-syntax}
  20754. \end{figure}
  20755. \begin{figure}[tp]
  20756. \centering
  20757. \begin{tcolorbox}[colback=white]
  20758. \footnotesize
  20759. {\if\edition\racketEd
  20760. \[
  20761. \begin{array}{l}
  20762. \gray{\LintOpAST} \\ \hline
  20763. \gray{\LvarASTRacket{}} \\ \hline
  20764. \gray{\LifASTRacket{}} \\ \hline
  20765. \gray{\LwhileASTRacket{}} \\ \hline
  20766. \gray{\LtupASTRacket{}} \\ \hline
  20767. \gray{\LfunASTRacket} \\ \hline
  20768. \gray{\LlambdaASTRacket} \\ \hline
  20769. \LpolyASTRacket \\
  20770. \begin{array}{lcl}
  20771. \LangPoly{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  20772. \end{array}
  20773. \end{array}
  20774. \]
  20775. \fi}
  20776. {\if\edition\pythonEd\pythonColor
  20777. \[
  20778. \begin{array}{l}
  20779. \gray{\LintASTPython} \\ \hline
  20780. \gray{\LvarASTPython{}} \\ \hline
  20781. \gray{\LifASTPython{}} \\ \hline
  20782. \gray{\LwhileASTPython{}} \\ \hline
  20783. \gray{\LtupASTPython{}} \\ \hline
  20784. \gray{\LfunASTPython} \\ \hline
  20785. \gray{\LlambdaASTPython} \\ \hline
  20786. \LpolyASTPython \\
  20787. \begin{array}{lcl}
  20788. \LangPoly{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  20789. \end{array}
  20790. \end{array}
  20791. \]
  20792. \fi}
  20793. \end{tcolorbox}
  20794. \caption{The abstract syntax of \LangPoly{}, extending \LangLam{}
  20795. (figure~\ref{fig:Llam-syntax}).}
  20796. \label{fig:Lpoly-syntax}
  20797. \end{figure}
  20798. By including the \code{All} type in the $\Type$ nonterminal of the
  20799. grammar we choose to make generics first class, which has interesting
  20800. repercussions on the compiler.\footnote{The Python \code{typing} library does
  20801. not include syntax for the \code{All} type. It is inferred for functions whose
  20802. type annotations contain type variables.} Many languages with generics, such as
  20803. C++~\citep{stroustrup88:_param_types} and Standard
  20804. ML~\citep{Milner:1990fk}, support only second-class generics, so it
  20805. may be helpful to see an example of first-class generics in action. In
  20806. figure~\ref{fig:apply-twice} we define a function \code{apply\_twice}
  20807. whose parameter is a generic function. Indeed, because the grammar for
  20808. $\Type$ includes the \code{All} type, a generic function may also be
  20809. returned from a function or stored inside a tuple. The body of
  20810. \code{apply\_twice} applies the generic function \code{f} to a Boolean
  20811. and also to an integer, which would not be possible if \code{f} were
  20812. not generic.
  20813. \begin{figure}[tbp]
  20814. \begin{tcolorbox}[colback=white]
  20815. {\if\edition\racketEd
  20816. \begin{lstlisting}
  20817. (: apply_twice ((All (U) (U -> U)) -> Integer))
  20818. (define (apply_twice f)
  20819. (if (f #t) (f 42) (f 777)))
  20820. (: id (All (T) (T -> T)))
  20821. (define (id x) x)
  20822. (apply_twice id)
  20823. \end{lstlisting}
  20824. \fi}
  20825. {\if\edition\pythonEd\pythonColor
  20826. \begin{lstlisting}
  20827. def apply_twice(f : All[[U], Callable[[U],U]]) -> int:
  20828. if f(True):
  20829. return f(42)
  20830. else:
  20831. return f(777)
  20832. def id(x: T) -> T:
  20833. return x
  20834. print(apply_twice(id))
  20835. \end{lstlisting}
  20836. \fi}
  20837. \end{tcolorbox}
  20838. \caption{An example illustrating first-class generics.}
  20839. \label{fig:apply-twice}
  20840. \end{figure}
  20841. The type checker for \LangPoly{} shown in
  20842. figure~\ref{fig:type-check-Lpoly} has several new responsibilities
  20843. (compared to \LangLam{}) which we discuss in the following paragraphs.
  20844. {\if\edition\pythonEd\pythonColor
  20845. %
  20846. Regarding function definitions, if the type annotations on its
  20847. parameters contain generic variables, then the function is generic and
  20848. therefore its type is an \code{All} type wrapped around a function
  20849. type. Otherwise the function is monomorphic and its type is simply
  20850. a function type.
  20851. %
  20852. \fi}
  20853. The type checking of a function application is extended to handle the
  20854. case in which the operator expression is a generic function. In that case
  20855. the type arguments are deduced by matching the types of the parameters
  20856. with the types of the arguments.
  20857. %
  20858. The \code{match\_types} auxiliary function
  20859. (figure~\ref{fig:type-check-Lpoly-aux}) carries out this deduction by
  20860. recursively descending through a parameter type \code{param\_ty} and
  20861. the corresponding argument type \code{arg\_ty}, making sure that they
  20862. are equal except when there is a type parameter in the parameter
  20863. type. Upon encountering a type parameter for the first time, the
  20864. algorithm deduces an association of the type parameter to the
  20865. corresponding part of the argument type. If it is not the first time
  20866. that the type parameter has been encountered, the algorithm looks up
  20867. its deduced type and makes sure that it is equal to the corresponding
  20868. part of the argument type. The return type of the application is the
  20869. return type of the generic function with the type parameters
  20870. replaced by the deduced type arguments, using the
  20871. \code{substitute\_type} auxiliary function, which is also listed in
  20872. figure~\ref{fig:type-check-Lpoly-aux}.
  20873. The type checker extends type equality to handle the \code{All} type.
  20874. This is not quite as simple as for other types, such as function and
  20875. tuple types, because two \code{All} types can be syntactically
  20876. different even though they are equivalent. For example,
  20877. \begin{center}
  20878. \racket{\code{(All (T) (T -> T))}}\python{\code{All[[T], Callable[[T], T]]}}
  20879. \end{center}
  20880. is equivalent to
  20881. \begin{center}
  20882. \racket{\code{(All (U) (U -> U))}}\python{\code{All[[U], Callable[[U], U]]}}.
  20883. \end{center}
  20884. Two generic types are equal if they differ only in
  20885. the choice of the names of the type parameters. The definition of type
  20886. equality shown in figure~\ref{fig:type-check-Lpoly-aux} renames the type
  20887. parameters in one type to match the type parameters of the other type.
  20888. {\if\edition\racketEd
  20889. %
  20890. The type checker also ensures that only defined type variables appear
  20891. in type annotations. The \code{check\_well\_formed} function for which
  20892. the definition is shown in figure~\ref{fig:well-formed-types}
  20893. recursively inspects a type, making sure that each type variable has
  20894. been defined.
  20895. %
  20896. \fi}
  20897. \begin{figure}[tbp]
  20898. \begin{tcolorbox}[colback=white]
  20899. {\if\edition\racketEd
  20900. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20901. (define type-check-poly-class
  20902. (class type-check-Llambda-class
  20903. (super-new)
  20904. (inherit check-type-equal?)
  20905. (define/override (type-check-apply env e1 es)
  20906. (define-values (e^ ty) ((type-check-exp env) e1))
  20907. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  20908. ((type-check-exp env) e)))
  20909. (match ty
  20910. [`(,ty^* ... -> ,rt)
  20911. (for ([arg-ty ty*] [param-ty ty^*])
  20912. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  20913. (values e^ es^ rt)]
  20914. [`(All ,xs (,tys ... -> ,rt))
  20915. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  20916. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  20917. (match_types env^^ param-ty arg-ty)))
  20918. (define targs
  20919. (for/list ([x xs])
  20920. (match (dict-ref env^^ x (lambda () #f))
  20921. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  20922. x (Apply e1 es))]
  20923. [ty ty])))
  20924. (values (Inst e^ ty targs) es^ (substitute_type env^^ rt))]
  20925. [else (error 'type-check "expected a function, not ~a" ty)]))
  20926. (define/override ((type-check-exp env) e)
  20927. (match e
  20928. [(Lambda `([,xs : ,Ts] ...) rT body)
  20929. (for ([T Ts]) ((check_well_formed env) T))
  20930. ((check_well_formed env) rT)
  20931. ((super type-check-exp env) e)]
  20932. [(HasType e1 ty)
  20933. ((check_well_formed env) ty)
  20934. ((super type-check-exp env) e)]
  20935. [else ((super type-check-exp env) e)]))
  20936. (define/override ((type-check-def env) d)
  20937. (verbose 'type-check "poly/def" d)
  20938. (match d
  20939. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  20940. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  20941. (for ([p ps]) ((check_well_formed ts-env) p))
  20942. ((check_well_formed ts-env) rt)
  20943. (define new-env (append ts-env (map cons xs ps) env))
  20944. (define-values (body^ ty^) ((type-check-exp new-env) body))
  20945. (check-type-equal? ty^ rt body)
  20946. (Generic ts (Def f p:t* rt info body^))]
  20947. [else ((super type-check-def env) d)]))
  20948. (define/override (type-check-program p)
  20949. (match p
  20950. [(Program info body)
  20951. (type-check-program (ProgramDefsExp info '() body))]
  20952. [(ProgramDefsExp info ds body)
  20953. (define ds^ (combine-decls-defs ds))
  20954. (define new-env (for/list ([d ds^])
  20955. (cons (def-name d) (fun-def-type d))))
  20956. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  20957. (define-values (body^ ty) ((type-check-exp new-env) body))
  20958. (check-type-equal? ty 'Integer body)
  20959. (ProgramDefsExp info ds^^ body^)]))
  20960. ))
  20961. \end{lstlisting}
  20962. \fi}
  20963. {\if\edition\pythonEd\pythonColor
  20964. \begin{lstlisting}[basicstyle=\ttfamily\small]
  20965. def type_check_exp(self, e, env):
  20966. match e:
  20967. case Call(Name(f), args) if f in builtin_functions:
  20968. return super().type_check_exp(e, env)
  20969. case Call(func, args):
  20970. func_t = self.type_check_exp(func, env)
  20971. func.has_type = func_t
  20972. match func_t:
  20973. case AllType(ps, FunctionType(p_tys, rt)):
  20974. for arg in args:
  20975. arg.has_type = self.type_check_exp(arg, env)
  20976. arg_tys = [arg.has_type for arg in args]
  20977. deduced = {}
  20978. for (p, a) in zip(p_tys, arg_tys):
  20979. self.match_types(p, a, deduced, e)
  20980. return self.substitute_type(rt, deduced)
  20981. case _:
  20982. return super().type_check_exp(e, env)
  20983. case _:
  20984. return super().type_check_exp(e, env)
  20985. def type_check(self, p):
  20986. match p:
  20987. case Module(body):
  20988. env = {}
  20989. for s in body:
  20990. match s:
  20991. case FunctionDef(name, params, bod, dl, returns, comment):
  20992. params_t = [t for (x,t) in params]
  20993. ty_params = set()
  20994. for t in params_t:
  20995. ty_params |$\mid$|= self.generic_variables(t)
  20996. ty = FunctionType(params_t, returns)
  20997. if len(ty_params) > 0:
  20998. ty = AllType(list(ty_params), ty)
  20999. env[name] = ty
  21000. self.check_stmts(body, IntType(), env)
  21001. case _:
  21002. raise Exception('type_check: unexpected ' + repr(p))
  21003. \end{lstlisting}
  21004. \fi}
  21005. \end{tcolorbox}
  21006. \caption{Type checker for the \LangPoly{} language.}
  21007. \label{fig:type-check-Lpoly}
  21008. \end{figure}
  21009. \begin{figure}[tbp]
  21010. \begin{tcolorbox}[colback=white]
  21011. {\if\edition\racketEd
  21012. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  21013. (define/override (type-equal? t1 t2)
  21014. (match* (t1 t2)
  21015. [(`(All ,xs ,T1) `(All ,ys ,T2))
  21016. (define env (map cons xs ys))
  21017. (type-equal? (substitute_type env T1) T2)]
  21018. [(other wise)
  21019. (super type-equal? t1 t2)]))
  21020. (define/public (match_types env pt at)
  21021. (match* (pt at)
  21022. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  21023. [('Void 'Void) env] [('Any 'Any) env]
  21024. [(`(Vector ,pts ...) `(Vector ,ats ...))
  21025. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  21026. (match_types env^ pt1 at1))]
  21027. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  21028. (define env^ (match_types env prt art))
  21029. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  21030. (match_types env^^ pt1 at1))]
  21031. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  21032. (define env^ (append (map cons pxs axs) env))
  21033. (match_types env^ pt1 at1)]
  21034. [((? symbol? x) at)
  21035. (match (dict-ref env x (lambda () #f))
  21036. [#f (error 'type-check "undefined type variable ~a" x)]
  21037. ['Type (cons (cons x at) env)]
  21038. [t^ (check-type-equal? at t^ 'matching) env])]
  21039. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  21040. (define/public (substitute_type env pt)
  21041. (match pt
  21042. ['Integer 'Integer] ['Boolean 'Boolean]
  21043. ['Void 'Void] ['Any 'Any]
  21044. [`(Vector ,ts ...)
  21045. `(Vector ,@(for/list ([t ts]) (substitute_type env t)))]
  21046. [`(,ts ... -> ,rt)
  21047. `(,@(for/list ([t ts]) (substitute_type env t)) -> ,(substitute_type env rt))]
  21048. [`(All ,xs ,t)
  21049. `(All ,xs ,(substitute_type (append (map cons xs xs) env) t))]
  21050. [(? symbol? x) (dict-ref env x)]
  21051. [else (error 'type-check "expected a type not ~a" pt)]))
  21052. (define/public (combine-decls-defs ds)
  21053. (match ds
  21054. ['() '()]
  21055. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  21056. (unless (equal? name f)
  21057. (error 'type-check "name mismatch, ~a != ~a" name f))
  21058. (match type
  21059. [`(All ,xs (,ps ... -> ,rt))
  21060. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  21061. (cons (Generic xs (Def name params^ rt info body))
  21062. (combine-decls-defs ds^))]
  21063. [`(,ps ... -> ,rt)
  21064. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  21065. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  21066. [else (error 'type-check "expected a function type, not ~a" type) ])]
  21067. [`(,(Def f params rt info body) . ,ds^)
  21068. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  21069. \end{lstlisting}
  21070. \fi}
  21071. {\if\edition\pythonEd\pythonColor
  21072. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  21073. def match_types(self, param_ty, arg_ty, deduced, e):
  21074. match (param_ty, arg_ty):
  21075. case (GenericVar(id), _):
  21076. if id in deduced:
  21077. self.check_type_equal(arg_ty, deduced[id], e)
  21078. else:
  21079. deduced[id] = arg_ty
  21080. case (AllType(ps, ty), AllType(arg_ps, arg_ty)):
  21081. rename = {ap:p for (ap,p) in zip(arg_ps, ps)}
  21082. new_arg_ty = self.substitute_type(arg_ty, rename)
  21083. self.match_types(ty, new_arg_ty, deduced, e)
  21084. case (TupleType(ps), TupleType(ts)):
  21085. for (p, a) in zip(ps, ts):
  21086. self.match_types(p, a, deduced, e)
  21087. case (ListType(p), ListType(a)):
  21088. self.match_types(p, a, deduced, e)
  21089. case (FunctionType(pps, prt), FunctionType(aps, art)):
  21090. for (pp, ap) in zip(pps, aps):
  21091. self.match_types(pp, ap, deduced, e)
  21092. self.match_types(prt, art, deduced, e)
  21093. case (IntType(), IntType()):
  21094. pass
  21095. case (BoolType(), BoolType()):
  21096. pass
  21097. case _:
  21098. raise Exception('mismatch: ' + str(param_ty) + '\n!= ' + str(arg_ty))
  21099. def substitute_type(self, ty, var_map):
  21100. match ty:
  21101. case GenericVar(id):
  21102. return var_map[id]
  21103. case AllType(ps, ty):
  21104. new_map = copy.deepcopy(var_map)
  21105. for p in ps:
  21106. new_map[p] = GenericVar(p)
  21107. return AllType(ps, self.substitute_type(ty, new_map))
  21108. case TupleType(ts):
  21109. return TupleType([self.substitute_type(t, var_map) for t in ts])
  21110. case ListType(ty):
  21111. return ListType(self.substitute_type(ty, var_map))
  21112. case FunctionType(pts, rt):
  21113. return FunctionType([self.substitute_type(p, var_map) for p in pts],
  21114. self.substitute_type(rt, var_map))
  21115. case IntType():
  21116. return IntType()
  21117. case BoolType():
  21118. return BoolType()
  21119. case _:
  21120. raise Exception('substitute_type: unexpected ' + repr(ty))
  21121. def check_type_equal(self, t1, t2, e):
  21122. match (t1, t2):
  21123. case (AllType(ps1, ty1), AllType(ps2, ty2)):
  21124. rename = {p2: GenericVar(p1) for (p1,p2) in zip(ps1,ps2)}
  21125. return self.check_type_equal(ty1, self.substitute_type(ty2, rename), e)
  21126. case (_, _):
  21127. return super().check_type_equal(t1, t2, e)
  21128. \end{lstlisting}
  21129. \fi}
  21130. \end{tcolorbox}
  21131. \caption{Auxiliary functions for type checking \LangPoly{}.}
  21132. \label{fig:type-check-Lpoly-aux}
  21133. \end{figure}
  21134. {\if\edition\racketEd
  21135. \begin{figure}[tbp]
  21136. \begin{tcolorbox}[colback=white]
  21137. \begin{lstlisting}
  21138. (define/public ((check_well_formed env) ty)
  21139. (match ty
  21140. ['Integer (void)]
  21141. ['Boolean (void)]
  21142. ['Void (void)]
  21143. [(? symbol? a)
  21144. (match (dict-ref env a (lambda () #f))
  21145. ['Type (void)]
  21146. [else (error 'type-check "undefined type variable ~a" a)])]
  21147. [`(Vector ,ts ...)
  21148. (for ([t ts]) ((check_well_formed env) t))]
  21149. [`(,ts ... -> ,t)
  21150. (for ([t ts]) ((check_well_formed env) t))
  21151. ((check_well_formed env) t)]
  21152. [`(All ,xs ,t)
  21153. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  21154. ((check_well_formed env^) t)]
  21155. [else (error 'type-check "unrecognized type ~a" ty)]))
  21156. \end{lstlisting}
  21157. \end{tcolorbox}
  21158. \caption{Well-formed types.}
  21159. \label{fig:well-formed-types}
  21160. \end{figure}
  21161. \fi}
  21162. % TODO: interpreter for R'_10
  21163. \clearpage
  21164. \section{Compiling Generics}
  21165. \label{sec:compiling-poly}
  21166. Broadly speaking, there are four approaches to compiling generics, as
  21167. follows:
  21168. \begin{description}
  21169. \item[Monomorphization] generates a different version of a generic
  21170. function for each set of type arguments with which it is used,
  21171. producing type-specialized code. This approach results in the most
  21172. efficient code but requires whole-program compilation (no separate
  21173. compilation) and may increase code size. Unfortunately,
  21174. monomorphization is incompatible with first-class generics because
  21175. it is not always possible to determine which generic functions are
  21176. used with which type arguments during compilation. (It can be done
  21177. at runtime with just-in-time compilation.) Monomorphization is
  21178. used to compile C++ templates~\citep{stroustrup88:_param_types} and
  21179. generic functions in NESL~\citep{Blelloch:1993aa} and
  21180. ML~\citep{Weeks:2006aa}.
  21181. \item[Uniform representation] generates one version of each generic
  21182. function and requires all values to have a common \emph{boxed} format,
  21183. such as the tagged values of type \CANYTY{} in \LangAny{}. Both
  21184. generic and monomorphic code is compiled similarly to code in a
  21185. dynamically typed language (like \LangDyn{}), in which primitive
  21186. operators require their arguments to be projected from \CANYTY{} and
  21187. their results to be injected into \CANYTY{}. (In object-oriented
  21188. languages, the projection is accomplished via virtual method
  21189. dispatch.) The uniform representation approach is compatible with
  21190. separate compilation and with first-class generics. However, it
  21191. produces the least efficient code because it introduces overhead in
  21192. the entire program. This approach is used in
  21193. Java~\citep{Bracha:1998fk},
  21194. CLU~\citep{liskov79:_clu_ref,Liskov:1993dk}, and some implementations
  21195. of ML~\citep{Cardelli:1984aa,Appel:1987aa}.
  21196. \item[Mixed representation] generates one version of each generic
  21197. function, using a boxed representation for type variables. However,
  21198. monomorphic code is compiled as usual (as in \LangLam{}), and
  21199. conversions are performed at the boundaries between monomorphic code
  21200. and polymorphic code (for example, when a generic function is instantiated
  21201. and called). This approach is compatible with separate compilation
  21202. and first-class generics and maintains efficiency in monomorphic
  21203. code. The trade-off is increased overhead at the boundary between
  21204. monomorphic and generic code. This approach is used in
  21205. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  21206. Java 5 with the addition of autoboxing.
  21207. \item[Type passing] uses the unboxed representation in both
  21208. monomorphic and generic code. Each generic function is compiled to a
  21209. single function with extra parameters that describe the type
  21210. arguments. The type information is used by the generated code to
  21211. determine how to access the unboxed values at runtime. This approach is
  21212. used in implementation of Napier88~\citep{Morrison:1991aa} and
  21213. ML~\citep{Harper:1995um}. Type passing is compatible with separate
  21214. compilation and first-class generics and maintains the
  21215. efficiency for monomorphic code. There is runtime overhead in
  21216. polymorphic code from dispatching on type information.
  21217. \end{description}
  21218. In this chapter we use the mixed representation approach, partly
  21219. because of its favorable attributes and partly because it is
  21220. straightforward to implement using the tools that we have already
  21221. built to support gradual typing. The work of compiling generic
  21222. functions is performed in two passes, \code{resolve} and
  21223. \code{erase\_types}, that we discuss next. The output of
  21224. \code{erase\_types} is \LangCast{}
  21225. (section~\ref{sec:gradual-insert-casts}), so the rest of the
  21226. compilation is handled by the compiler of chapter~\ref{ch:Lgrad}.
  21227. \section{Resolve Instantiation}
  21228. \label{sec:generic-resolve}
  21229. Recall that the type checker for \LangPoly{} deduces the type
  21230. arguments at call sites to a generic function. The purpose of the
  21231. \code{resolve} pass is to turn this implicit instantiation into an
  21232. explicit one, by adding \code{inst} nodes to the syntax of the
  21233. intermediate language. An \code{inst} node records the mapping of
  21234. type parameters to type arguments. The semantics of the \code{inst}
  21235. node is to instantiate the result of its first argument, a generic
  21236. function, to produce a monomorphic function. However, because the
  21237. interpreter never analyzes type annotations, instantiation can be a
  21238. no-op and simply return the generic function.
  21239. %
  21240. The output language of the \code{resolve} pass is \LangInst{},
  21241. for which the definition is shown in figure~\ref{fig:Lpoly-prime-syntax}.
  21242. {\if\edition\racketEd
  21243. The \code{resolve} pass combines the type declaration and polymorphic
  21244. function into a single definition, using the \code{Poly} form, to make
  21245. polymorphic functions more convenient to process in the next pass of the
  21246. compiler.
  21247. \fi}
  21248. \newcommand{\LinstASTRacket}{
  21249. \begin{array}{lcl}
  21250. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  21251. \Exp &::=& \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  21252. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  21253. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP
  21254. \end{array}
  21255. }
  21256. \newcommand{\LinstASTPython}{
  21257. \begin{array}{lcl}
  21258. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP \MID \Var \\
  21259. \Exp &::=& \INST{\Exp}{\LC\Var\key{:}\Type\ldots\RC}
  21260. \end{array}
  21261. }
  21262. \begin{figure}[tp]
  21263. \centering
  21264. \begin{tcolorbox}[colback=white]
  21265. \small
  21266. {\if\edition\racketEd
  21267. \[
  21268. \begin{array}{l}
  21269. \gray{\LintOpAST} \\ \hline
  21270. \gray{\LvarASTRacket{}} \\ \hline
  21271. \gray{\LifASTRacket{}} \\ \hline
  21272. \gray{\LwhileASTRacket{}} \\ \hline
  21273. \gray{\LtupASTRacket{}} \\ \hline
  21274. \gray{\LfunASTRacket} \\ \hline
  21275. \gray{\LlambdaASTRacket} \\ \hline
  21276. \LinstASTRacket \\
  21277. \begin{array}{lcl}
  21278. \LangInst{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  21279. \end{array}
  21280. \end{array}
  21281. \]
  21282. \fi}
  21283. {\if\edition\pythonEd\pythonColor
  21284. \[
  21285. \begin{array}{l}
  21286. \gray{\LintASTPython} \\ \hline
  21287. \gray{\LvarASTPython{}} \\ \hline
  21288. \gray{\LifASTPython{}} \\ \hline
  21289. \gray{\LwhileASTPython{}} \\ \hline
  21290. \gray{\LtupASTPython{}} \\ \hline
  21291. \gray{\LfunASTPython} \\ \hline
  21292. \gray{\LlambdaASTPython} \\ \hline
  21293. \LinstASTPython \\
  21294. \begin{array}{lcl}
  21295. \LangInst{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  21296. \end{array}
  21297. \end{array}
  21298. \]
  21299. \fi}
  21300. \end{tcolorbox}
  21301. \caption{The abstract syntax of \LangInst{}, extending \LangLam{}
  21302. (figure~\ref{fig:Llam-syntax}).}
  21303. \label{fig:Lpoly-prime-syntax}
  21304. \end{figure}
  21305. The output of the \code{resolve} pass on the generic \code{map}
  21306. example is listed in figure~\ref{fig:map-resolve}. Note that the use
  21307. of \code{map} is wrapped in an \code{inst} node, with the parameter
  21308. \code{T} chosen to be \racket{\code{Integer}}\python{\code{int}}.
  21309. \begin{figure}[tbp]
  21310. % poly_test_2.rkt
  21311. \begin{tcolorbox}[colback=white]
  21312. {\if\edition\racketEd
  21313. \begin{lstlisting}
  21314. (poly (T) (define (map [f : (T -> T)] [v : (Vector T T)]) : (Vector T T)
  21315. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  21316. (define (inc [x : Integer]) : Integer (+ x 1))
  21317. (vector-ref ((inst map (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21318. (Integer))
  21319. inc (vector 0 41)) 1)
  21320. \end{lstlisting}
  21321. \fi}
  21322. {\if\edition\pythonEd\pythonColor
  21323. \begin{lstlisting}
  21324. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  21325. return (f(tup[0]), f(tup[1]))
  21326. def add1(x : int) -> int:
  21327. return x + 1
  21328. t = inst(map, {T: int})(add1, (0, 41))
  21329. print(t[1])
  21330. \end{lstlisting}
  21331. \fi}
  21332. \end{tcolorbox}
  21333. \caption{Output of the \code{resolve} pass on the \code{map} example.}
  21334. \label{fig:map-resolve}
  21335. \end{figure}
  21336. \section{Erase Generic Types}
  21337. \label{sec:erase_types}
  21338. We use the \CANYTY{} type presented in chapter~\ref{ch:Ldyn} to
  21339. represent type variables. For example, figure~\ref{fig:map-erase}
  21340. shows the output of the \code{erase\_types} pass on the generic
  21341. \code{map} (figure~\ref{fig:map-poly}). The occurrences of
  21342. type parameter \code{a} are replaced by \CANYTY{}, and the generic
  21343. \code{All} types are removed from the type of \code{map}.
  21344. \begin{figure}[tbp]
  21345. \begin{tcolorbox}[colback=white]
  21346. {\if\edition\racketEd
  21347. \begin{lstlisting}
  21348. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  21349. : (Vector Any Any)
  21350. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  21351. (define (inc [x : Integer]) : Integer (+ x 1))
  21352. (vector-ref ((cast map
  21353. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21354. ((Integer -> Integer) (Vector Integer Integer)
  21355. -> (Vector Integer Integer)))
  21356. inc (vector 0 41)) 1)
  21357. \end{lstlisting}
  21358. \fi}
  21359. {\if\edition\pythonEd\pythonColor
  21360. \begin{lstlisting}
  21361. def map(f : Callable[[Any],Any], tup : tuple[Any,Any])-> tuple[Any,Any]:
  21362. return (f(tup[0]), f(tup[1]))
  21363. def add1(x : int) -> int:
  21364. return (x + 1)
  21365. def main() -> int:
  21366. t = cast(map, |$T_1$|, |$T_2$|)(add1, (0, 41))
  21367. print(t[1])
  21368. return 0
  21369. \end{lstlisting}
  21370. {\small
  21371. where\\
  21372. $T_1 = $ \code{Callable[[Callable[[Any], Any],tuple[Any,Any]], tuple[Any,Any]]}\\
  21373. $T_2 = $ \code{Callable[[Callable[[int], int],tuple[int,int]], tuple[int,int]]}
  21374. }
  21375. \fi}
  21376. \end{tcolorbox}
  21377. \caption{The generic \code{map} example after type erasure.}
  21378. \label{fig:map-erase}
  21379. \end{figure}
  21380. This process of type erasure creates a challenge at points of
  21381. instantiation. For example, consider the instantiation of
  21382. \code{map} shown in figure~\ref{fig:map-resolve}.
  21383. The type of \code{map} is
  21384. %
  21385. {\if\edition\racketEd
  21386. \begin{lstlisting}
  21387. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21388. \end{lstlisting}
  21389. \fi}
  21390. {\if\edition\pythonEd\pythonColor
  21391. \begin{lstlisting}
  21392. All[[T], Callable[[Callable[[T], T], tuple[T, T]], tuple[T, T]]]
  21393. \end{lstlisting}
  21394. \fi}
  21395. %
  21396. and it is instantiated to
  21397. %
  21398. {\if\edition\racketEd
  21399. \begin{lstlisting}
  21400. ((Integer -> Integer) (Vector Integer Integer)
  21401. -> (Vector Integer Integer))
  21402. \end{lstlisting}
  21403. \fi}
  21404. {\if\edition\pythonEd\pythonColor
  21405. \begin{lstlisting}
  21406. Callable[[Callable[[int], int], tuple[int, int]], tuple[int, int]]
  21407. \end{lstlisting}
  21408. \fi}
  21409. %
  21410. After erasure, the type of \code{map} is
  21411. %
  21412. {\if\edition\racketEd
  21413. \begin{lstlisting}
  21414. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21415. \end{lstlisting}
  21416. \fi}
  21417. {\if\edition\pythonEd\pythonColor
  21418. \begin{lstlisting}
  21419. Callable[[Callable[[Any], Any], tuple[Any, Any]], tuple[Any, Any]]
  21420. \end{lstlisting}
  21421. \fi}
  21422. %
  21423. but we need to convert it to the instantiated type. This is easy to
  21424. do in the language \LangCast{} with a single \code{cast}. In the
  21425. example shown in figure~\ref{fig:map-erase}, the instantiation of
  21426. \code{map} has been compiled to a \code{cast} from the type of
  21427. \code{map} to the instantiated type. The source and the target type of a
  21428. cast must be consistent (figure~\ref{fig:consistent}), which indeed is
  21429. the case because both the source and target are obtained from the same
  21430. generic type of \code{map}, replacing the type parameters with
  21431. \CANYTY{} in the former and with the deduced type arguments in the
  21432. latter. (Recall that the \CANYTY{} type is consistent with any type.)
  21433. To implement the \code{erase\_types} pass, we first recommend defining
  21434. a recursive function that translates types, named
  21435. \code{erase\_type}. It replaces type variables with \CANYTY{} as
  21436. follows.
  21437. %
  21438. {\if\edition\racketEd
  21439. \begin{lstlisting}
  21440. |$T$|
  21441. |$\Rightarrow$|
  21442. Any
  21443. \end{lstlisting}
  21444. \fi}
  21445. {\if\edition\pythonEd\pythonColor
  21446. \begin{lstlisting}
  21447. GenericVar(|$T$|)
  21448. |$\Rightarrow$|
  21449. Any
  21450. \end{lstlisting}
  21451. \fi}
  21452. %
  21453. \noindent The \code{erase\_type} function also removes the generic
  21454. \code{All} types.
  21455. %
  21456. {\if\edition\racketEd
  21457. \begin{lstlisting}
  21458. (All |$xs$| |$T_1$|)
  21459. |$\Rightarrow$|
  21460. |$T'_1$|
  21461. \end{lstlisting}
  21462. \fi}
  21463. {\if\edition\pythonEd\pythonColor
  21464. \begin{lstlisting}
  21465. AllType(|$xs$|, |$T_1$|)
  21466. |$\Rightarrow$|
  21467. |$T'_1$|
  21468. \end{lstlisting}
  21469. \fi}
  21470. where $T'_1$ is the result of applying \code{erase\_type} to $T_1$.
  21471. %
  21472. In this compiler pass, apply the \code{erase\_type} function to all
  21473. the type annotations in the program.
  21474. Regarding the translation of expressions, the case for \code{Inst} is
  21475. the interesting one. We translate it into a \code{Cast}, as shown
  21476. next.
  21477. The type of the subexpression $e$ is a generic type of the form
  21478. \racket{$\LP\key{All}~\itm{xs}~T\RP$}\python{$\key{AllType}\LP\itm{xs}, T\RP$}.
  21479. The source type of the cast is the erasure of $T$, the type $T_s$.
  21480. %
  21481. {\if\edition\racketEd
  21482. %
  21483. The target type $T_t$ is the result of substituting the argument types
  21484. $ts$ for the type parameters $xs$ in $T$ and then performing type
  21485. erasure.
  21486. %
  21487. \begin{lstlisting}
  21488. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  21489. |$\Rightarrow$|
  21490. (Cast |$e'$| |$T_s$| |$T_t$|)
  21491. \end{lstlisting}
  21492. %
  21493. where $T_t = \LP\code{erase\_type}~\LP\code{substitute\_type}~s~T\RP\RP$,
  21494. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  21495. \fi}
  21496. {\if\edition\pythonEd\pythonColor
  21497. %
  21498. The target type $T_t$ is the result of substituting the deduced
  21499. argument types $d$ in $T$ and then performing type erasure.
  21500. %
  21501. \begin{lstlisting}
  21502. Inst(|$e$|, |$d$|)
  21503. |$\Rightarrow$|
  21504. Cast(|$e'$|, |$T_s$|, |$T_t$|)
  21505. \end{lstlisting}
  21506. %
  21507. where
  21508. $T_t = \code{erase\_type}\LP\code{substitute\_type}\LP d, T\RP\RP$.
  21509. \fi}
  21510. Finally, each generic function is translated to a regular
  21511. function in which type erasure has been applied to all the type
  21512. annotations and the body.
  21513. %% \begin{lstlisting}
  21514. %% (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  21515. %% |$\Rightarrow$|
  21516. %% (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  21517. %% \end{lstlisting}
  21518. \begin{exercise}\normalfont\normalsize
  21519. Implement a compiler for the polymorphic language \LangPoly{} by
  21520. extending and adapting your compiler for \LangGrad{}. Create six new
  21521. test programs that use polymorphic functions. Some of them should
  21522. make use of first-class generics.
  21523. \end{exercise}
  21524. \begin{figure}[tbp]
  21525. \begin{tcolorbox}[colback=white]
  21526. {\if\edition\racketEd
  21527. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21528. \node (Lpoly) at (0,4) {\large \LangPoly{}};
  21529. \node (Lpolyp) at (4,4) {\large \LangInst{}};
  21530. \node (Lgradualp) at (8,4) {\large \LangCast{}};
  21531. \node (Llambdapp) at (12,4) {\large \LangProxy{}};
  21532. \node (Llambdaproxy) at (12,2) {\large \LangPVec{}};
  21533. \node (Llambdaproxy-2) at (8,2) {\large \LangPVec{}};
  21534. \node (Llambdaproxy-3) at (4,2) {\large \LangPVec{}};
  21535. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  21536. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  21537. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  21538. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  21539. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  21540. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  21541. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  21542. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  21543. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21544. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21545. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  21546. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  21547. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21548. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21549. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  21550. \path[->,bend left=15] (Lpoly) edge [above] node
  21551. {\ttfamily\footnotesize resolve} (Lpolyp);
  21552. \path[->,bend left=15] (Lpolyp) edge [above] node
  21553. {\ttfamily\footnotesize erase\_types} (Lgradualp);
  21554. \path[->,bend left=15] (Lgradualp) edge [above] node
  21555. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  21556. \path[->,bend left=15] (Llambdapp) edge [left] node
  21557. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy);
  21558. \path[->,bend left=15] (Llambdaproxy) edge [below] node
  21559. {\ttfamily\footnotesize shrink} (Llambdaproxy-2);
  21560. \path[->,bend right=15] (Llambdaproxy-2) edge [above] node
  21561. {\ttfamily\footnotesize uniquify} (Llambdaproxy-3);
  21562. \path[->,bend right=15] (Llambdaproxy-3) edge [above] node
  21563. {\ttfamily\footnotesize reveal\_functions} (Llambdaproxy-4);
  21564. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  21565. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21566. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  21567. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21568. \path[->,bend left=15] (F1-1) edge [above] node
  21569. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21570. \path[->,bend left=15] (F1-2) edge [above] node
  21571. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21572. \path[->,bend left=15] (F1-3) edge [left] node
  21573. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  21574. \path[->,bend left=15] (F1-4) edge [below] node
  21575. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  21576. \path[->,bend right=15] (F1-5) edge [above] node
  21577. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21578. \path[->,bend right=15] (F1-6) edge [above] node
  21579. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21580. \path[->,bend right=15] (C3-2) edge [right] node
  21581. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21582. \path[->,bend right=15] (x86-2) edge [right] node
  21583. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  21584. \path[->,bend right=15] (x86-2-1) edge [below] node
  21585. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  21586. \path[->,bend right=15] (x86-2-2) edge [right] node
  21587. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  21588. \path[->,bend left=15] (x86-3) edge [above] node
  21589. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21590. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21591. \end{tikzpicture}
  21592. \fi}
  21593. {\if\edition\pythonEd\pythonColor
  21594. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21595. \node (Lgradual) at (0,4) {\large \LangPoly{}};
  21596. \node (Lgradual2) at (4,4) {\large \LangPoly{}};
  21597. \node (Lgradual3) at (8,4) {\large \LangPoly{}};
  21598. \node (Lgradual4) at (12,4) {\large \LangPoly{}};
  21599. \node (Lgradualr) at (12,2) {\large \LangInst{}};
  21600. \node (Llambdapp) at (8,2) {\large \LangCast{}};
  21601. \node (Llambdaproxy-4) at (4,2) {\large \LangPVec{}};
  21602. \node (Llambdaproxy-5) at (0,2) {\large \LangPVec{}};
  21603. \node (F1-1) at (0,0) {\large \LangPVec{}};
  21604. \node (F1-2) at (4,0) {\large \LangPVec{}};
  21605. \node (F1-3) at (8,0) {\large \LangPVec{}};
  21606. \node (F1-5) at (12,0) {\large \LangPVecAlloc{}};
  21607. \node (F1-6) at (12,-2) {\large \LangPVecAlloc{}};
  21608. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21609. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21610. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21611. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21612. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  21613. \path[->,bend left=15] (Lgradual) edge [above] node
  21614. {\ttfamily\footnotesize shrink} (Lgradual2);
  21615. \path[->,bend left=15] (Lgradual2) edge [above] node
  21616. {\ttfamily\footnotesize uniquify} (Lgradual3);
  21617. \path[->,bend left=15] (Lgradual3) edge [above] node
  21618. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  21619. \path[->,bend left=15] (Lgradual4) edge [left] node
  21620. {\ttfamily\footnotesize resolve} (Lgradualr);
  21621. \path[->,bend left=15] (Lgradualr) edge [below] node
  21622. {\ttfamily\footnotesize erase\_types} (Llambdapp);
  21623. \path[->,bend right=15] (Llambdapp) edge [above] node
  21624. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  21625. \path[->,bend right=15] (Llambdaproxy-4) edge [above] node
  21626. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21627. \path[->,bend right=15] (Llambdaproxy-5) edge [right] node
  21628. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21629. \path[->,bend right=15] (F1-1) edge [below] node
  21630. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21631. \path[->,bend right=15] (F1-2) edge [below] node
  21632. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21633. \path[->,bend left=15] (F1-3) edge [above] node
  21634. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  21635. \path[->,bend left=15] (F1-5) edge [left] node
  21636. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21637. \path[->,bend left=5] (F1-6) edge [below] node
  21638. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21639. \path[->,bend right=15] (C3-2) edge [right] node
  21640. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21641. \path[->,bend right=15] (x86-2) edge [below] node
  21642. {\ttfamily\footnotesize assign\_homes} (x86-3);
  21643. \path[->,bend right=15] (x86-3) edge [below] node
  21644. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21645. \path[->,bend left=15] (x86-4) edge [above] node
  21646. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21647. \end{tikzpicture}
  21648. \fi}
  21649. \end{tcolorbox}
  21650. \caption{Diagram of the passes for \LangPoly{} (generics).}
  21651. \label{fig:Lpoly-passes}
  21652. \end{figure}
  21653. Figure~\ref{fig:Lpoly-passes} provides an overview of the passes
  21654. needed to compile \LangPoly{}.
  21655. % TODO: challenge problem: specialization of instantiations
  21656. % Further Reading
  21657. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  21658. \clearpage
  21659. \appendix
  21660. \chapter{Appendix}
  21661. \setcounter{footnote}{0}
  21662. {\if\edition\racketEd
  21663. \section{Interpreters}
  21664. \label{appendix:interp}
  21665. \index{subject}{interpreter}
  21666. We provide interpreters for each of the source languages \LangInt{},
  21667. \LangVar{}, $\ldots$ in the files \code{interp-Lint.rkt},
  21668. \code{interp-Lvar.rkt}, and so on. The interpreters for the
  21669. intermediate languages \LangCVar{} and \LangCIf{} are in
  21670. \code{interp-Cvar.rkt} and \code{interp-C1.rkt}. The interpreters for
  21671. \LangCVec{}, \LangCFun{}, pseudo-x86, and x86 are in the
  21672. \key{interp.rkt} file.
  21673. \section{Utility Functions}
  21674. \label{appendix:utilities}
  21675. The utility functions described in this section are in the
  21676. \key{utilities.rkt} file of the support code.
  21677. \paragraph{\code{interp-tests}}
  21678. This function runs the compiler passes and the interpreters on each of
  21679. the specified tests to check whether each pass is correct. The
  21680. \key{interp-tests} function has the following parameters:
  21681. \begin{description}
  21682. \item[name (a string)] A name to identify the compiler.
  21683. \item[typechecker] A function of exactly one argument that either
  21684. raises an error using the \code{error} function when it encounters a
  21685. type error, or returns \code{\#f} when it encounters a type
  21686. error. If there is no type error, the type checker returns the
  21687. program.
  21688. \item[passes] A list with one entry per pass. An entry is a list
  21689. consisting of four things:
  21690. \begin{enumerate}
  21691. \item a string giving the name of the pass;
  21692. \item the function that implements the pass (a translator from AST
  21693. to AST);
  21694. \item a function that implements the interpreter (a function from
  21695. AST to result value) for the output language; and,
  21696. \item a type checker for the output language. Type checkers for
  21697. all the $\Lang{}$ and $\CLang{}$ languages are provided in the support code.
  21698. For example, the type checkers for \LangVar{} and \LangCVar{} are in
  21699. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  21700. type checker entry is optional. The support code does not provide
  21701. type checkers for the x86 languages.
  21702. \end{enumerate}
  21703. \item[source-interp] An interpreter for the source language. The
  21704. interpreters from appendix~\ref{appendix:interp} make a good choice.
  21705. \item[test-family (a string)] For example, \code{"var"} or \code{"cond"}.
  21706. \item[tests] A list of test numbers that specifies which tests to
  21707. run (explained next).
  21708. \end{description}
  21709. %
  21710. The \key{interp-tests} function assumes that the subdirectory
  21711. \key{tests} has a collection of Racket programs whose names all start
  21712. with the family name, followed by an underscore and then the test
  21713. number, and ending with the file extension \key{.rkt}. Also, for each test
  21714. program that calls \code{read} one or more times, there is a file with
  21715. the same name except that the file extension is \key{.in}, which
  21716. provides the input for the Racket program. If the test program is
  21717. expected to fail type checking, then there should be an empty file of
  21718. the same name with extension \key{.tyerr}.
  21719. \paragraph{\code{compiler-tests}}
  21720. This function runs the compiler passes to generate x86 (a \key{.s}
  21721. file) and then runs the GNU C compiler (gcc) to generate machine code.
  21722. It runs the machine code and checks that the output is $42$. The
  21723. parameters to the \code{compiler-tests} function are similar to those
  21724. of the \code{interp-tests} function, and they consist of
  21725. \begin{itemize}
  21726. \item a compiler name (a string),
  21727. \item a type checker,
  21728. \item description of the passes,
  21729. \item name of a test-family, and
  21730. \item a list of test numbers.
  21731. \end{itemize}
  21732. \paragraph{\code{compile-file}}
  21733. This function takes a description of the compiler passes (see the
  21734. comment for \key{interp-tests}) and returns a function that, given a
  21735. program file name (a string ending in \key{.rkt}), applies all the
  21736. passes and writes the output to a file whose name is the same as the
  21737. program file name with extension \key{.rkt} replaced by \key{.s}.
  21738. \paragraph{\code{read-program}}
  21739. This function takes a file path and parses that file (it must be a
  21740. Racket program) into an abstract syntax tree.
  21741. \paragraph{\code{parse-program}}
  21742. This function takes an S-expression representation of an abstract
  21743. syntax tree and converts it into the struct-based representation.
  21744. \paragraph{\code{assert}}
  21745. This function takes two parameters, a string (\code{msg}) and Boolean
  21746. (\code{bool}), and displays the message \key{msg} if the Boolean
  21747. \key{bool} is false.
  21748. \paragraph{\code{lookup}}
  21749. % remove discussion of lookup? -Jeremy
  21750. This function takes a key and an alist and returns the first value that is
  21751. associated with the given key, if there is one. If not, an error is
  21752. triggered. The alist may contain both immutable pairs (built with
  21753. \key{cons}) and mutable pairs (built with \key{mcons}).
  21754. %The \key{map2} function ...
  21755. \fi} %\racketEd
  21756. \section{x86 Instruction Set Quick Reference}
  21757. \label{sec:x86-quick-reference}
  21758. \index{subject}{x86}
  21759. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  21760. do. We write $A \to B$ to mean that the value of $A$ is written into
  21761. location $B$. Address offsets are given in bytes. The instruction
  21762. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  21763. registers (such as \code{\%rax}), or memory references (such as
  21764. \code{-4(\%ebp)}). Most x86 instructions allow at most one memory
  21765. reference per instruction. Other operands must be immediates or
  21766. registers.
  21767. \begin{table}[tbp]
  21768. \captionabove{Quick reference for the x86 instructions used in this book.}
  21769. \label{tab:x86-instr}
  21770. \centering
  21771. \begin{tabular}{l|l}
  21772. \textbf{Instruction} & \textbf{Operation} \\ \hline
  21773. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  21774. \texttt{negq} $A$ & $- A \to A$ \\
  21775. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  21776. \texttt{imulq} $A$, $B$ & $A \times B \to B$ ($B$ must be a register).\\
  21777. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$. \\
  21778. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  21779. \texttt{retq} & Pops the return address and jumps to it. \\
  21780. \texttt{popq} $A$ & $*\texttt{rsp} \to A;\, \texttt{rsp} + 8 \to \texttt{rsp}$ \\
  21781. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp};\, A \to *\texttt{rsp}$\\
  21782. \texttt{leaq} $A$, $B$ & $A \to B$ ($B$ must be a register.) \\
  21783. \texttt{cmpq} $A$, $B$ & Compare $A$ and $B$ and set the flag register ($B$ must not
  21784. be an immediate). \\
  21785. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  21786. matches the condition code of the instruction; otherwise go to the
  21787. next instructions. The condition codes are \key{e} for \emph{equal},
  21788. \key{l} for \emph{less}, \key{le} for \emph{less or equal}, \key{g}
  21789. for \emph{greater}, and \key{ge} for \emph{greater or equal}.} \\
  21790. \texttt{jl} $L$ & \\
  21791. \texttt{jle} $L$ & \\
  21792. \texttt{jg} $L$ & \\
  21793. \texttt{jge} $L$ & \\
  21794. \texttt{jmp} $L$ & Jump to label $L$. \\
  21795. \texttt{movq} $A$, $B$ & $A \to B$ \\
  21796. \texttt{movzbq} $A$, $B$ &
  21797. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  21798. (e.g., \texttt{al} or \texttt{cl}), $B$ is an 8-byte register,
  21799. and the extra bytes of $B$ are set to zero.} \\
  21800. & \\
  21801. & \\
  21802. \texttt{notq} $A$ & $\sim A \to A$ (bitwise complement)\\
  21803. \texttt{orq} $A$, $B$ & $A \mid B \to B$ (bitwise-or)\\
  21804. \texttt{andq} $A$, $B$ & $A \& B \to B$ (bitwise-and)\\
  21805. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  21806. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  21807. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  21808. then $1 \to A$; else $0 \to A$. Refer to \texttt{je} for the
  21809. description of the condition codes. $A$ must be a single byte register
  21810. (e.g., \texttt{al} or \texttt{cl}).} \\
  21811. \texttt{setl} $A$ & \\
  21812. \texttt{setle} $A$ & \\
  21813. \texttt{setg} $A$ & \\
  21814. \texttt{setge} $A$ &
  21815. \end{tabular}
  21816. \end{table}
  21817. \backmatter
  21818. \addtocontents{toc}{\vspace{11pt}}
  21819. \cleardoublepage % needed for right page number in TOC for References
  21820. %% \nocite{*} is a way to get all the entries in the .bib file to
  21821. %% print in the bibliography:
  21822. \nocite{*}\let\bibname\refname
  21823. \addcontentsline{toc}{fmbm}{\refname}
  21824. \printbibliography
  21825. %\printindex{authors}{Author Index}
  21826. \printindex{subject}{Index}
  21827. \end{document}
  21828. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  21829. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  21830. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  21831. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  21832. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  21833. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  21834. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  21835. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  21836. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  21837. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  21838. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  21839. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  21840. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  21841. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  21842. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  21843. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  21844. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  21845. % LocalWords: numberstyle Cormen sudoku Balakrishnan ve aka DSATUR
  21846. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS wb
  21847. % LocalWords: morekeywords fullflexible goto allocator tuples Wailes
  21848. % LocalWords: Kernighan runtime Freiburg Thiemann Bloomington unary
  21849. % LocalWords: eq prog rcl definitional Evaluator os
  21850. % LocalWords: subexpression evaluator InterpLint lcl quadwords concl
  21851. % LocalWords: nanopass subexpressions decompositions Lawall Hatcliff
  21852. % LocalWords: subdirectory monadic Moggi mon utils macosx unix repr
  21853. % LocalWords: Uncomment undirected vertices callee Liveness liveness
  21854. % LocalWords: frozenset unordered Appel Rosen pqueue cmp Fortran vl
  21855. % LocalWords: Horwitz Kempe colorable subgraph kx iteratively Matula
  21856. % LocalWords: ys ly Palsberg si JoeQ cardinality Poletto Booleans hj
  21857. % LocalWords: subscriptable MyPy Lehtosalo Listof Pairof indexable
  21858. % LocalWords: bool boolop NotEq LtE GtE refactor els orelse BoolOp
  21859. % LocalWords: boolean initializer param exprs TypeCheckLvar msg Tt
  21860. % LocalWords: isinstance TypeCheckLif tyerr xorq bytereg al dh dl ne
  21861. % LocalWords: le ge cmpq movzbq EFLAGS jle inlined setl je jl Cif
  21862. % LocalWords: lll pred IfStmt sete CFG tsort multigraph FunctionType
  21863. % LocalWords: Wijngaarden Plotkin Logothetis PeytonJones SetBang Ph
  21864. % LocalWords: WhileLoop unboxes Lwhile unbox InterpLwhile rhsT varT
  21865. % LocalWords: Tbody TypeCheckLwhile acyclic mainstart mainconclusion
  21866. % LocalWords: versa Kildall Kleene worklist enqueue dequeue deque tb
  21867. % LocalWords: GetBang effectful SPERBER Lfun tuple implementer's tup
  21868. % LocalWords: indices HasType Lvec InterpLtup tuple's vec ty Ungar
  21869. % LocalWords: TypeCheckLtup Detlefs Tene FromSpace ToSpace Diwan ptr
  21870. % LocalWords: Siebert TupleType endian salq sarq fromspace rootstack
  21871. % LocalWords: uint th vecinit alloc GlobalValue andq bitwise ior elt
  21872. % LocalWords: dereferencing StructDef Vectorof vectorof Lvecof Jacek
  21873. % LocalWords: AllocateArray cheney tospace Dieckmann Shahriyar di xs
  21874. % LocalWords: Shidal Osterlund Gamari lexically FunctionDef IntType
  21875. % LocalWords: BoolType VoidType ProgramDefsExp vals params ps ds num
  21876. % LocalWords: InterpLfun FunRef TypeCheckLfun leaq callee's mainDef
  21877. % LocalWords: ProgramDefs TailCall tailjmp IndirectCallq TailJmp rT
  21878. % LocalWords: prepending addstart addconclusion Cardelli Llambda typ
  21879. % LocalWords: Llambda InterpLlambda AnnAssign Dunfield bodyT str fvs
  21880. % LocalWords: TypeCheckLlambda annot dereference clos fvts closTy tg
  21881. % LocalWords: Minamide AllocateClosure Gilray Milner morphos subtype
  21882. % LocalWords: polymorphism untyped AnyType dataclass untag Ldyn conc
  21883. % LocalWords: lookup InterpLdyn elif tagof Lany TypeCheckLany tv orq
  21884. % LocalWords: AnnLambda InterpLany ClosureTuple ValueOf TagOf imulq
  21885. % LocalWords: untagged multi Tobin Hochstadt zr mn Gronski kd ret Tp
  21886. % LocalWords: Tif src tgt Lcast wr contravariant PVector un Lgradual
  21887. % LocalWords: Lgradualp Llambdapp Llambdaproxy Wadler qv quicksort
  21888. % LocalWords: Henglein nz coercions Grift parametetric parameterized
  21889. % LocalWords: parameterizing stroustrup subst tys targs decls defs
  21890. % LocalWords: pts ats prt pxs axs Decl Monomorphization NESL CLU qb
  21891. % LocalWords: monomorphization Blelloch monomorphic Bracha unboxed
  21892. % LocalWords: instantiation Lpoly Lpolyp typechecker mcons ebp jge
  21893. % LocalWords: notq setle setg setge uncredited LT Std groundbreaking
  21894. % LocalWords: colback GitHub inputint nonatomic ea tcolorbox bassed
  21895. % LocalWords: tikzpicture Chaitin's Belady's Cocke Freiburghouse Lt
  21896. % LocalWords: lessthan lessthaneq greaterthan greaterthaneq Gt pt Te
  21897. % LocalWords: ts escapechar Tc bl ch cl cc foo lt metavariables vars
  21898. % LocalWords: trans naively IR rep assoc ListType TypeCheckLarray dz
  21899. % LocalWords: Mult InterpLarray lst array's generation's Collins inc
  21900. % LocalWords: Cutler Kelsey val rt bod conflates reg inlining lam AF
  21901. % LocalWords: ASTPython body's bot todo rs ls TypeCheckLgrad ops ab
  21902. % LocalWords: value's inplace anyfun anytup anylist ValueExp proxied
  21903. % LocalWords: ProxiedTuple ProxiedList InterpLcast ListProxy vectof
  21904. % LocalWords: TupleProxy RawTuple InjectTuple InjectTupleProxy vecof
  21905. % LocalWords: InjectList InjectListProxy unannotated Lgradualr poly
  21906. % LocalWords: GenericVar AllType Inst builtin ap pps aps pp deepcopy
  21907. % LocalWords: liskov clu Liskov dk Napier um inst popl jg seq ith qy
  21908. % LocalWords: racketEd subparts subpart nonterminal nonterminals Dyn
  21909. % LocalWords: pseudocode underapproximation underapproximations LALR
  21910. % LocalWords: semilattices overapproximate incrementing Earley docs
  21911. % LocalWords: multilanguage Prelim shinan DeRemer lexer Lesk LPAR cb
  21912. % LocalWords: RPAR abcbab abc bzca usub paren expr lang WS Tomita qr
  21913. % LocalWords: subparses LCCN ebook hardcover epub pdf LCSH LCC DDC
  21914. % LocalWords: LC partialevaluation pythonEd TOC TrappedError