book.tex 824 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409234102341123412234132341423415234162341723418234192342023421234222342323424234252342623427234282342923430234312343223433234342343523436234372343823439234402344123442234432344423445234462344723448234492345023451234522345323454234552345623457234582345923460234612346223463234642346523466234672346823469234702347123472234732347423475234762347723478234792348023481234822348323484234852348623487234882348923490234912349223493234942349523496234972349823499235002350123502235032350423505235062350723508235092351023511235122351323514235152351623517235182351923520235212352223523235242352523526235272352823529235302353123532235332353423535235362353723538235392354023541235422354323544235452354623547235482354923550235512355223553235542355523556235572355823559235602356123562235632356423565235662356723568235692357023571235722357323574235752357623577235782357923580235812358223583235842358523586235872358823589235902359123592
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. % TODO:
  3. %
  4. \usepackage[utf8]{inputenc}
  5. %% \usepackage{setspace}
  6. %% \doublespacing
  7. \usepackage{listings}
  8. \usepackage{verbatim}
  9. \usepackage{amssymb}
  10. \usepackage{lmodern} % better typewriter font for code
  11. %\usepackage{wrapfig}
  12. \usepackage{multirow}
  13. \usepackage{tcolorbox}
  14. \usepackage{color}
  15. %\usepackage{ifthen}
  16. \usepackage{upquote}
  17. \usepackage[all]{xy}
  18. \usepackage{url}
  19. \definecolor{lightgray}{gray}{1}
  20. \newcommand{\black}[1]{{\color{black} #1}}
  21. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  22. \newcommand{\gray}[1]{{\color{gray} #1}}
  23. \def\racketEd{0}
  24. \def\pythonEd{1}
  25. \def\edition{1}
  26. % material that is specific to the Racket edition of the book
  27. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  28. % would like a command for: \if\edition\racketEd\color{olive}
  29. % and : \fi\color{black}
  30. %\newcommand{\pythonColor}[0]{\color{purple}}
  31. \newcommand{\pythonColor}[0]{}
  32. % material that is specific to the Python edition of the book
  33. \newcommand{\python}[1]{{\if\edition\pythonEd\pythonColor #1\fi}}
  34. %% For multiple indices:
  35. %\usepackage{multind} moved this to the file TimesAPriori_MIT.cls. -Jeremy
  36. \makeindex{subject}
  37. %\makeindex{authors}
  38. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  39. \if\edition\racketEd
  40. \lstset{%
  41. language=Lisp,
  42. basicstyle=\ttfamily\small,
  43. morekeywords={lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  44. deletekeywords={read,mapping,vector},
  45. escapechar=|,
  46. columns=flexible,
  47. %moredelim=[is][\color{red}]{~}{~},
  48. showstringspaces=false
  49. }
  50. \fi
  51. \if\edition\pythonEd
  52. \lstset{%
  53. language=Python,
  54. basicstyle=\ttfamily\small,
  55. morekeywords={match,case,bool,int,let},
  56. deletekeywords={},
  57. escapechar=|,
  58. columns=flexible,
  59. %moredelim=[is][\color{red}]{~}{~},
  60. showstringspaces=false
  61. }
  62. \fi
  63. %%% Any shortcut own defined macros place here
  64. %% sample of author macro:
  65. \input{defs}
  66. \newtheorem{exercise}[theorem]{Exercise}
  67. \numberwithin{theorem}{chapter}
  68. \numberwithin{definition}{chapter}
  69. \numberwithin{equation}{chapter}
  70. % Adjusted settings
  71. \setlength{\columnsep}{4pt}
  72. %% \begingroup
  73. %% \setlength{\intextsep}{0pt}%
  74. %% \setlength{\columnsep}{0pt}%
  75. %% \begin{wrapfigure}{r}{0.5\textwidth}
  76. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  77. %% \caption{Basic layout}
  78. %% \end{wrapfigure}
  79. %% \lipsum[1]
  80. %% \endgroup
  81. \newbox\oiintbox
  82. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  83. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  84. \def\oiint{\copy\oiintbox}
  85. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  86. %\usepackage{showframe}
  87. \def\ShowFrameLinethickness{0.125pt}
  88. \addbibresource{book.bib}
  89. \if\edition\pythonEd
  90. \addbibresource{python.bib}
  91. \fi
  92. \begin{document}
  93. \frontmatter
  94. %\HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  95. \HalfTitle{Essentials of Compilation}
  96. \halftitlepage
  97. \clearemptydoublepage
  98. \Title{Essentials of Compilation}
  99. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  100. %\edition{First Edition}
  101. \BookAuthor{Jeremy G. Siek}
  102. \imprint{The MIT Press\\
  103. Cambridge, Massachusetts\\
  104. London, England}
  105. \begin{copyrightpage}
  106. \textcopyright\ 2023 Massachusetts Institute of Technology \\[2ex]
  107. This work is subject to a Creative Commons CC-BY-ND-NC license. \\[2ex]
  108. Subject to such license, all rights are reserved. \\[2ex]
  109. \includegraphics{CCBY-logo}
  110. The MIT Press would like to thank the anonymous peer reviewers who
  111. provided comments on drafts of this book. The generous work of
  112. academic experts is essential for establishing the authority and
  113. quality of our publications. We acknowledge with gratitude the
  114. contributions of these otherwise uncredited readers.
  115. This book was set in Times LT Std Roman by the author. Printed and
  116. bound in the United States of America.
  117. Library of Congress Cataloging-in-Publication Data\\
  118. \ \\
  119. Names: Siek, Jeremy, author. \\
  120. Title: Essentials of compilation : an incremental approach in Racket / Jeremy G. Siek. \\
  121. Description: Cambridge, Massachusetts : The MIT Press, [2023] | Includes bibliographical references and index. \\
  122. Identifiers: LCCN 2022015399 (print) | LCCN 2022015400 (ebook) | ISBN 9780262047760 (hardcover) | ISBN 9780262373272 (epub) | ISBN 9780262373289 (pdf) \\
  123. Subjects: LCSH: Racket (Computer program language) | Compilers (Computer programs) \\
  124. Classification: LCC QA76.73.R33 S54 2023 (print) | LCC QA76.73.R33 (ebook) | DDC 005.13/3--dc23/eng/20220705 \\
  125. LC record available at https://lccn.loc.gov/2022015399\\
  126. LC ebook record available at https://lccn.loc.gov/2022015400\\
  127. \ \\
  128. 10 9 8 7 6 5 4 3 2 1
  129. %% Jeremy G. Siek. Available for free viewing
  130. %% or personal downloading under the
  131. %% \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  132. %% license.
  133. %% Copyright in this monograph has been licensed exclusively to The MIT
  134. %% Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  135. %% version to the public in 2022. All inquiries regarding rights should
  136. %% be addressed to The MIT Press, Rights and Permissions Department.
  137. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  138. %% All rights reserved. No part of this book may be reproduced in any
  139. %% form by any electronic or mechanical means (including photocopying,
  140. %% recording, or information storage and retrieval) without permission in
  141. %% writing from the publisher.
  142. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  143. %% United States of America.
  144. %% Library of Congress Cataloging-in-Publication Data is available.
  145. %% ISBN:
  146. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  147. \end{copyrightpage}
  148. \dedication{This book is dedicated to Katie, my partner in everything,
  149. my children, who grew up during the writing of this book, and the
  150. programming language students at Indiana University, whose
  151. thoughtful questions made this a better book.}
  152. %% \begin{epigraphpage}
  153. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  154. %% \textit{Book Name if any}}
  155. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  156. %% \end{epigraphpage}
  157. \tableofcontents
  158. %\listoffigures
  159. %\listoftables
  160. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  161. \chapter*{Preface}
  162. \addcontentsline{toc}{fmbm}{Preface}
  163. There is a magical moment when a programmer presses the \emph{run}
  164. button and the software begins to execute. Somehow a program written
  165. in a high-level language is running on a computer that is capable only
  166. of shuffling bits. Here we reveal the wizardry that makes that moment
  167. possible. Beginning with the groundbreaking work of Backus and
  168. colleagues in the 1950s, computer scientists developed techniques for
  169. constructing programs called \emph{compilers} that automatically
  170. translate high-level programs into machine code.
  171. We take you on a journey through constructing your own compiler for a
  172. small but powerful language. Along the way we explain the essential
  173. concepts, algorithms, and data structures that underlie compilers. We
  174. develop your understanding of how programs are mapped onto computer
  175. hardware, which is helpful in reasoning about properties at the
  176. junction of hardware and software, such as execution time, software
  177. errors, and security vulnerabilities. For those interested in
  178. pursuing compiler construction as a career, our goal is to provide a
  179. stepping-stone to advanced topics such as just-in-time compilation,
  180. program analysis, and program optimization. For those interested in
  181. designing and implementing programming languages, we connect language
  182. design choices to their impact on the compiler and the generated code.
  183. A compiler is typically organized as a sequence of stages that
  184. progressively translate a program to the code that runs on
  185. hardware. We take this approach to the extreme by partitioning our
  186. compiler into a large number of \emph{nanopasses}, each of which
  187. performs a single task. This enables the testing of each pass in
  188. isolation and focuses our attention, making the compiler far easier to
  189. understand.
  190. The most familiar approach to describing compilers is to dedicate each
  191. chapter to one pass. The problem with that approach is that it
  192. obfuscates how language features motivate design choices in a
  193. compiler. We instead take an \emph{incremental} approach in which we
  194. build a complete compiler in each chapter, starting with a small input
  195. language that includes only arithmetic and variables. We add new
  196. language features in subsequent chapters, extending the compiler as
  197. necessary.
  198. Our choice of language features is designed to elicit fundamental
  199. concepts and algorithms used in compilers.
  200. \begin{itemize}
  201. \item We begin with integer arithmetic and local variables in
  202. chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  203. the fundamental tools of compiler construction: \emph{abstract
  204. syntax trees} and \emph{recursive functions}.
  205. {\if\edition\pythonEd\pythonColor
  206. \item In Chapter~\ref{ch:parsing} we learn how to use the Lark
  207. parser framework to create a parser for the language of integer
  208. arithmetic and local variables. We learn about the parsing
  209. algorithms inside Lark, including Earley and LALR(1).
  210. %
  211. \fi}
  212. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  213. \emph{graph coloring} to assign variables to machine registers.
  214. \item Chapter~\ref{ch:Lif} adds conditional expressions, which
  215. motivates an elegant recursive algorithm for translating them into
  216. conditional \code{goto} statements.
  217. \item Chapter~\ref{ch:Lwhile} adds loops\racket{ and mutable
  218. variables}. This elicits the need for \emph{dataflow
  219. analysis} in the register allocator.
  220. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  221. \emph{garbage collection}.
  222. \item Chapter~\ref{ch:Lfun} adds functions as first-class values
  223. without lexical scoping, similar to functions in the C programming
  224. language~\citep{Kernighan:1988nx}. The reader learns about the
  225. procedure call stack and \emph{calling conventions} and how they interact
  226. with register allocation and garbage collection. The chapter also
  227. describes how to generate efficient tail calls.
  228. \item Chapter~\ref{ch:Llambda} adds anonymous functions with lexical
  229. scoping, that is, \emph{lambda} expressions. The reader learns about
  230. \emph{closure conversion}, in which lambdas are translated into a
  231. combination of functions and tuples.
  232. % Chapter about classes and objects?
  233. \item Chapter~\ref{ch:Ldyn} adds \emph{dynamic typing}. Prior to this
  234. point the input languages are statically typed. The reader extends
  235. the statically typed language with an \code{Any} type that serves
  236. as a target for compiling the dynamically typed language.
  237. %% {\if\edition\pythonEd\pythonColor
  238. %% \item Chapter~\ref{ch:Lobject} adds support for \emph{objects} and
  239. %% \emph{classes}.
  240. %% \fi}
  241. \item Chapter~\ref{ch:Lgrad} uses the \code{Any} type introduced in
  242. chapter~\ref{ch:Ldyn} to implement a \emph{gradually typed language}
  243. in which different regions of a program may be static or dynamically
  244. typed. The reader implements runtime support for \emph{proxies} that
  245. allow values to safely move between regions.
  246. \item Chapter~\ref{ch:Lpoly} adds \emph{generics} with autoboxing,
  247. leveraging the \code{Any} type and type casts developed in chapters
  248. \ref{ch:Ldyn} and \ref{ch:Lgrad}.
  249. \end{itemize}
  250. There are many language features that we do not include. Our choices
  251. balance the incidental complexity of a feature versus the fundamental
  252. concepts that it exposes. For example, we include tuples and not
  253. records because although they both elicit the study of heap allocation and
  254. garbage collection, records come with more incidental complexity.
  255. Since 2009, drafts of this book have served as the textbook for
  256. sixteen-week compiler courses for upper-level undergraduates and
  257. first-year graduate students at the University of Colorado and Indiana
  258. University.
  259. %
  260. Students come into the course having learned the basics of
  261. programming, data structures and algorithms, and discrete
  262. mathematics.
  263. %
  264. At the beginning of the course, students form groups of two to four
  265. people. The groups complete approximately one chapter every two
  266. weeks, starting with chapter~\ref{ch:Lvar} and including chapters
  267. according to the students interests while respecting the dependencies
  268. between chapters shown in
  269. Figure~\ref{fig:chapter-dependences}. Chapter~\ref{ch:Lfun}
  270. (functions) depends on chapter~\ref{ch:Lvec} (tuples) only in the
  271. implementation of efficient tail calls.
  272. %
  273. The last two weeks of the course involve a final project in which
  274. students design and implement a compiler extension of their choosing.
  275. The last few chapters can be used in support of these projects. Many
  276. chapters include a challenge problem that we assign to the graduate
  277. students.
  278. For compiler courses at universities on the quarter system
  279. (about ten weeks in length), we recommend completing the course
  280. through chapter~\ref{ch:Lvec} or chapter~\ref{ch:Lfun} and providing
  281. some scaffolding code to the students for each compiler pass.
  282. %
  283. The course can be adapted to emphasize functional languages by
  284. skipping chapter~\ref{ch:Lwhile} (loops) and including
  285. chapter~\ref{ch:Llambda} (lambda). The course can be adapted to
  286. dynamically typed languages by including chapter~\ref{ch:Ldyn}.
  287. %
  288. %% \python{A course that emphasizes object-oriented languages would
  289. %% include Chapter~\ref{ch:Lobject}.}
  290. This book has been used in compiler courses at California Polytechnic
  291. State University, Portland State University, Rose–Hulman Institute of
  292. Technology, University of Freiburg, University of Massachusetts
  293. Lowell, and the University of Vermont.
  294. \begin{figure}[tp]
  295. \begin{tcolorbox}[colback=white]
  296. {\if\edition\racketEd
  297. \begin{tikzpicture}[baseline=(current bounding box.center)]
  298. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  299. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  300. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  301. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  302. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  303. \node (C6) at (8,0) {\small Ch.~\ref{ch:Lfun} Functions};
  304. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  305. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  306. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Llambda} Lambda};
  307. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  308. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  309. \path[->] (C1) edge [above] node {} (C2);
  310. \path[->] (C2) edge [above] node {} (C3);
  311. \path[->] (C3) edge [above] node {} (C4);
  312. \path[->] (C4) edge [above] node {} (C5);
  313. \path[->,style=dotted] (C5) edge [above] node {} (C6);
  314. \path[->] (C5) edge [above] node {} (C7);
  315. \path[->] (C6) edge [above] node {} (C7);
  316. \path[->] (C4) edge [above] node {} (C8);
  317. \path[->] (C4) edge [above] node {} (C9);
  318. \path[->] (C7) edge [above] node {} (C10);
  319. \path[->] (C8) edge [above] node {} (C10);
  320. \path[->] (C10) edge [above] node {} (C11);
  321. \end{tikzpicture}
  322. \fi}
  323. {\if\edition\pythonEd\pythonColor
  324. \begin{tikzpicture}[baseline=(current bounding box.center)]
  325. \node (Prelim) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  326. \node (Var) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  327. \node (Parse) at (8,1.5) {\small Ch.~\ref{ch:parsing} Parsing};
  328. \node (Reg) at (0,0) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  329. \node (Cond) at (4,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  330. \node (Loop) at (8,0) {\small Ch.~\ref{ch:Lwhile} Loops};
  331. \node (Fun) at (0,-1.5) {\small Ch.~\ref{ch:Lfun} Functions};
  332. \node (Tuple) at (4,-1.5) {\small Ch.~\ref{ch:Lvec} Tuples};
  333. \node (Dyn) at (8,-1.5) {\small Ch.~\ref{ch:Ldyn} Dynamic};
  334. % \node (CO) at (0,-3) {\small Ch.~\ref{ch:Lobject} Objects};
  335. \node (Lam) at (0,-3) {\small Ch.~\ref{ch:Llambda} Lambda};
  336. \node (Gradual) at (4,-3) {\small Ch.~\ref{ch:Lgrad} Gradual Typing};
  337. \node (Generic) at (8,-3) {\small Ch.~\ref{ch:Lpoly} Generics};
  338. \path[->] (Prelim) edge [above] node {} (Var);
  339. \path[->] (Var) edge [above] node {} (Reg);
  340. \path[->] (Var) edge [above] node {} (Parse);
  341. \path[->] (Reg) edge [above] node {} (Cond);
  342. \path[->] (Cond) edge [above] node {} (Tuple);
  343. \path[->,style=dotted] (Tuple) edge [above] node {} (Fun);
  344. \path[->] (Cond) edge [above] node {} (Fun);
  345. \path[->] (Tuple) edge [above] node {} (Lam);
  346. \path[->] (Fun) edge [above] node {} (Lam);
  347. \path[->] (Cond) edge [above] node {} (Dyn);
  348. \path[->] (Cond) edge [above] node {} (Loop);
  349. \path[->] (Lam) edge [above] node {} (Gradual);
  350. \path[->] (Dyn) edge [above] node {} (Gradual);
  351. % \path[->] (Dyn) edge [above] node {} (CO);
  352. \path[->] (Gradual) edge [above] node {} (Generic);
  353. \end{tikzpicture}
  354. \fi}
  355. \end{tcolorbox}
  356. \caption{Diagram of chapter dependencies.}
  357. \label{fig:chapter-dependences}
  358. \end{figure}
  359. \racket{We use the \href{https://racket-lang.org/}{Racket} language both for
  360. the implementation of the compiler and for the input language, so the
  361. reader should be proficient with Racket or Scheme. There are many
  362. excellent resources for learning Scheme and
  363. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.}
  364. %
  365. \python{This edition of the book uses \href{https://www.python.org/}{Python}
  366. both for the implementation of the compiler and for the input language, so the
  367. reader should be proficient with Python. There are many
  368. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.}%
  369. %
  370. The support code for this book is in the GitHub repository at
  371. the following location:
  372. \begin{center}\small\texttt
  373. https://github.com/IUCompilerCourse/
  374. \end{center}
  375. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  376. is helpful but not necessary for the reader to have taken a computer
  377. systems course~\citep{Bryant:2010aa}. We introduce the parts of x86-64
  378. assembly language that are needed in the compiler.
  379. %
  380. We follow the System V calling
  381. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  382. that we generate works with the runtime system (written in C) when it
  383. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  384. operating systems on Intel hardware.
  385. %
  386. On the Windows operating system, \code{gcc} uses the Microsoft x64
  387. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  388. assembly code that we generate does \emph{not} work with the runtime
  389. system on Windows. One workaround is to use a virtual machine with
  390. Linux as the guest operating system.
  391. \section*{Acknowledgments}
  392. The tradition of compiler construction at Indiana University goes back
  393. to research and courses on programming languages by Daniel Friedman in
  394. the 1970s and 1980s. One of his students, Kent Dybvig, implemented
  395. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  396. compiler for Scheme. Throughout the 1990s and 2000s, Dybvig taught
  397. the compiler course and continued the development of Chez Scheme.
  398. %
  399. The compiler course evolved to incorporate novel pedagogical ideas
  400. while also including elements of real-world compilers. One of
  401. Friedman's ideas was to split the compiler into many small
  402. passes. Another idea, called ``the game,'' was to test the code
  403. generated by each pass using interpreters.
  404. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  405. developed infrastructure to support this approach and evolved the
  406. course to use even smaller
  407. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  408. design decisions in this book are inspired by the assignment
  409. descriptions of \citet{Dybvig:2010aa}. In the mid 2000s, a student of
  410. Dybvig named Abdulaziz Ghuloum observed that the front-to-back
  411. organization of the course made it difficult for students to
  412. understand the rationale for the compiler design. Ghuloum proposed the
  413. incremental approach~\citep{Ghuloum:2006bh} on which this book is
  414. based.
  415. I thank the many students who served as teaching assistants for the
  416. compiler course at IU including Carl Factora, Ryan Scott, Cameron
  417. Swords, and Chris Wailes. I thank Andre Kuhlenschmidt for work on the
  418. garbage collector and x86 interpreter, Michael Vollmer for work on
  419. efficient tail calls, and Michael Vitousek for help with the first
  420. offering of the incremental compiler course at IU.
  421. I thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  422. Near, Ryan Newton, Nate Nystrom, Peter Thiemann, Andrew Tolmach, and
  423. Michael Wollowski for teaching courses based on drafts of this book
  424. and for their feedback. I thank the National Science Foundation for
  425. the grants that helped to support this work: Grant Numbers 1518844,
  426. 1763922, and 1814460.
  427. I thank Ronald Garcia for helping me survive Dybvig's compiler
  428. course in the early 2000s and especially for finding the bug that
  429. sent our garbage collector on a wild goose chase!
  430. \mbox{}\\
  431. \noindent Jeremy G. Siek \\
  432. Bloomington, Indiana
  433. \mainmatter
  434. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  435. \chapter{Preliminaries}
  436. \label{ch:trees-recur}
  437. \setcounter{footnote}{0}
  438. In this chapter we review the basic tools needed to implement a
  439. compiler. Programs are typically input by a programmer as text, that
  440. is, a sequence of characters. The program-as-text representation is
  441. called \emph{concrete syntax}. We use concrete syntax to concisely
  442. write down and talk about programs. Inside the compiler, we use
  443. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  444. that efficiently supports the operations that the compiler needs to
  445. perform.\index{subject}{concrete syntax}\index{subject}{abstract
  446. syntax}\index{subject}{abstract syntax
  447. tree}\index{subject}{AST}\index{subject}{program}
  448. The process of translating concrete syntax to abstract syntax is
  449. called \emph{parsing}\index{subject}{parsing}\python{\ and is studied in
  450. chapter~\ref{ch:parsing}}.
  451. \racket{This book does not cover the theory and implementation of parsing.
  452. We refer the readers interested in parsing to the thorough treatment
  453. of parsing by \citet{Aho:2006wb}.}%
  454. %
  455. \racket{A parser is provided in the support code for translating from
  456. concrete to abstract syntax.}%
  457. %
  458. \python{For now we use Python's \code{ast} module to translate from concrete
  459. to abstract syntax.}
  460. ASTs can be represented inside the compiler in many different ways,
  461. depending on the programming language used to write the compiler.
  462. %
  463. \racket{We use Racket's
  464. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  465. feature to represent ASTs (section~\ref{sec:ast}).}
  466. %
  467. \python{We use Python classes and objects to represent ASTs, especially the
  468. classes defined in the standard \code{ast} module for the Python
  469. source language.}%
  470. %
  471. We use grammars to define the abstract syntax of programming languages
  472. (section~\ref{sec:grammar}) and pattern matching to inspect individual
  473. nodes in an AST (section~\ref{sec:pattern-matching}). We use
  474. recursive functions to construct and deconstruct ASTs
  475. (section~\ref{sec:recursion}). This chapter provides a brief
  476. introduction to these components.
  477. \racket{\index{subject}{struct}}
  478. \python{\index{subject}{class}\index{subject}{object}}
  479. \section{Abstract Syntax Trees}
  480. \label{sec:ast}
  481. Compilers use abstract syntax trees to represent programs because they
  482. often need to ask questions such as, for a given part of a program,
  483. what kind of language feature is it? What are its subparts? Consider
  484. the program on the left and the diagram of its AST on the
  485. right~\eqref{eq:arith-prog}. This program is an addition operation
  486. that has two subparts, a \racket{read}\python{input} operation and a
  487. negation. The negation has another subpart, the integer constant
  488. \code{8}. By using a tree to represent the program, we can easily
  489. follow the links to go from one part of a program to its subparts.
  490. \begin{center}
  491. \begin{minipage}{0.4\textwidth}
  492. {\if\edition\racketEd
  493. \begin{lstlisting}
  494. (+ (read) (- 8))
  495. \end{lstlisting}
  496. \fi}
  497. {\if\edition\pythonEd\pythonColor
  498. \begin{lstlisting}
  499. input_int() + -8
  500. \end{lstlisting}
  501. \fi}
  502. \end{minipage}
  503. \begin{minipage}{0.4\textwidth}
  504. \begin{equation}
  505. \begin{tikzpicture}
  506. \node[draw] (plus) at (0 , 0) {\key{+}};
  507. \node[draw] (read) at (-1, -1) {\racket{\footnotesize\key{read}}\python{\key{input\_int()}}};
  508. \node[draw] (minus) at (1 , -1) {$\key{-}$};
  509. \node[draw] (8) at (1 , -2) {\key{8}};
  510. \draw[->] (plus) to (read);
  511. \draw[->] (plus) to (minus);
  512. \draw[->] (minus) to (8);
  513. \end{tikzpicture}
  514. \label{eq:arith-prog}
  515. \end{equation}
  516. \end{minipage}
  517. \end{center}
  518. We use the standard terminology for trees to describe ASTs: each
  519. rectangle above is called a \emph{node}. The arrows connect a node to its
  520. \emph{children}, which are also nodes. The top-most node is the
  521. \emph{root}. Every node except for the root has a \emph{parent} (the
  522. node of which it is the child). If a node has no children, it is a
  523. \emph{leaf} node; otherwise it is an \emph{internal} node.
  524. \index{subject}{node}
  525. \index{subject}{children}
  526. \index{subject}{root}
  527. \index{subject}{parent}
  528. \index{subject}{leaf}
  529. \index{subject}{internal node}
  530. %% Recall that an \emph{symbolic expression} (S-expression) is either
  531. %% \begin{enumerate}
  532. %% \item an atom, or
  533. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  534. %% where $e_1$ and $e_2$ are each an S-expression.
  535. %% \end{enumerate}
  536. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  537. %% null value \code{'()}, etc. We can create an S-expression in Racket
  538. %% simply by writing a backquote (called a quasi-quote in Racket)
  539. %% followed by the textual representation of the S-expression. It is
  540. %% quite common to use S-expressions to represent a list, such as $a, b
  541. %% ,c$ in the following way:
  542. %% \begin{lstlisting}
  543. %% `(a . (b . (c . ())))
  544. %% \end{lstlisting}
  545. %% Each element of the list is in the first slot of a pair, and the
  546. %% second slot is either the rest of the list or the null value, to mark
  547. %% the end of the list. Such lists are so common that Racket provides
  548. %% special notation for them that removes the need for the periods
  549. %% and so many parenthesis:
  550. %% \begin{lstlisting}
  551. %% `(a b c)
  552. %% \end{lstlisting}
  553. %% The following expression creates an S-expression that represents AST
  554. %% \eqref{eq:arith-prog}.
  555. %% \begin{lstlisting}
  556. %% `(+ (read) (- 8))
  557. %% \end{lstlisting}
  558. %% When using S-expressions to represent ASTs, the convention is to
  559. %% represent each AST node as a list and to put the operation symbol at
  560. %% the front of the list. The rest of the list contains the children. So
  561. %% in the above case, the root AST node has operation \code{`+} and its
  562. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  563. %% diagram \eqref{eq:arith-prog}.
  564. %% To build larger S-expressions one often needs to splice together
  565. %% several smaller S-expressions. Racket provides the comma operator to
  566. %% splice an S-expression into a larger one. For example, instead of
  567. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  568. %% we could have first created an S-expression for AST
  569. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  570. %% S-expression.
  571. %% \begin{lstlisting}
  572. %% (define ast1.4 `(- 8))
  573. %% (define ast1_1 `(+ (read) ,ast1.4))
  574. %% \end{lstlisting}
  575. %% In general, the Racket expression that follows the comma (splice)
  576. %% can be any expression that produces an S-expression.
  577. {\if\edition\racketEd
  578. We define a Racket \code{struct} for each kind of node. For this
  579. chapter we require just two kinds of nodes: one for integer constants
  580. (aka literals\index{subject}{literals})
  581. and one for primitive operations. The following is the \code{struct}
  582. definition for integer constants.\footnote{All the AST structures are
  583. defined in the file \code{utilities.rkt} in the support code.}
  584. \begin{lstlisting}
  585. (struct Int (value))
  586. \end{lstlisting}
  587. An integer node contains just one thing: the integer value.
  588. We establish the convention that \code{struct} names, such
  589. as \code{Int}, are capitalized.
  590. To create an AST node for the integer $8$, we write \INT{8}.
  591. \begin{lstlisting}
  592. (define eight (Int 8))
  593. \end{lstlisting}
  594. We say that the value created by \INT{8} is an
  595. \emph{instance} of the
  596. \code{Int} structure.
  597. The following is the \code{struct} definition for primitive operations.
  598. \begin{lstlisting}
  599. (struct Prim (op args))
  600. \end{lstlisting}
  601. A primitive operation node includes an operator symbol \code{op} and a
  602. list of child arguments called \code{args}. For example, to create an
  603. AST that negates the number $8$, we write the following.
  604. \begin{lstlisting}
  605. (define neg-eight (Prim '- (list eight)))
  606. \end{lstlisting}
  607. Primitive operations may have zero or more children. The \code{read}
  608. operator has zero:
  609. \begin{lstlisting}
  610. (define rd (Prim 'read '()))
  611. \end{lstlisting}
  612. The addition operator has two children:
  613. \begin{lstlisting}
  614. (define ast1_1 (Prim '+ (list rd neg-eight)))
  615. \end{lstlisting}
  616. We have made a design choice regarding the \code{Prim} structure.
  617. Instead of using one structure for many different operations
  618. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  619. structure for each operation, as follows:
  620. \begin{lstlisting}
  621. (struct Read ())
  622. (struct Add (left right))
  623. (struct Neg (value))
  624. \end{lstlisting}
  625. The reason that we choose to use just one structure is that many parts
  626. of the compiler can use the same code for the different primitive
  627. operators, so we might as well just write that code once by using a
  628. single structure.
  629. %
  630. \fi}
  631. {\if\edition\pythonEd\pythonColor
  632. We use a Python \code{class} for each kind of node.
  633. The following is the class definition for
  634. constants (aka literals\index{subject}{literals})
  635. from the Python \code{ast} module.
  636. \begin{lstlisting}
  637. class Constant:
  638. def __init__(self, value):
  639. self.value = value
  640. \end{lstlisting}
  641. An integer constant node includes just one thing: the integer value.
  642. To create an AST node for the integer $8$, we write \INT{8}.
  643. \begin{lstlisting}
  644. eight = Constant(8)
  645. \end{lstlisting}
  646. We say that the value created by \INT{8} is an
  647. \emph{instance} of the \code{Constant} class.
  648. The following is the class definition for unary operators.
  649. \begin{lstlisting}
  650. class UnaryOp:
  651. def __init__(self, op, operand):
  652. self.op = op
  653. self.operand = operand
  654. \end{lstlisting}
  655. The specific operation is specified by the \code{op} parameter. For
  656. example, the class \code{USub} is for unary subtraction.
  657. (More unary operators are introduced in later chapters.) To create an AST that
  658. negates the number $8$, we write the following.
  659. \begin{lstlisting}
  660. neg_eight = UnaryOp(USub(), eight)
  661. \end{lstlisting}
  662. The call to the \code{input\_int} function is represented by the
  663. \code{Call} and \code{Name} classes.
  664. \begin{lstlisting}
  665. class Call:
  666. def __init__(self, func, args):
  667. self.func = func
  668. self.args = args
  669. class Name:
  670. def __init__(self, id):
  671. self.id = id
  672. \end{lstlisting}
  673. To create an AST node that calls \code{input\_int}, we write
  674. \begin{lstlisting}
  675. read = Call(Name('input_int'), [])
  676. \end{lstlisting}
  677. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  678. the \code{BinOp} class for binary operators.
  679. \begin{lstlisting}
  680. class BinOp:
  681. def __init__(self, left, op, right):
  682. self.op = op
  683. self.left = left
  684. self.right = right
  685. \end{lstlisting}
  686. Similar to \code{UnaryOp}, the specific operation is specified by the
  687. \code{op} parameter, which for now is just an instance of the
  688. \code{Add} class. So to create the AST
  689. node that adds negative eight to some user input, we write the following.
  690. \begin{lstlisting}
  691. ast1_1 = BinOp(read, Add(), neg_eight)
  692. \end{lstlisting}
  693. \fi}
  694. To compile a program such as \eqref{eq:arith-prog}, we need to know
  695. that the operation associated with the root node is addition and we
  696. need to be able to access its two
  697. children. \racket{Racket}\python{Python} provides pattern matching to
  698. support these kinds of queries, as we see in
  699. section~\ref{sec:pattern-matching}.
  700. We often write down the concrete syntax of a program even when we
  701. actually have in mind the AST, because the concrete syntax is more
  702. concise. We recommend that you always think of programs as abstract
  703. syntax trees.
  704. \section{Grammars}
  705. \label{sec:grammar}
  706. \index{subject}{integer}
  707. %\index{subject}{constant}
  708. A programming language can be thought of as a \emph{set} of programs.
  709. The set is infinite (that is, one can always create larger programs),
  710. so one cannot simply describe a language by listing all the
  711. programs in the language. Instead we write down a set of rules, a
  712. \emph{context-free grammar}, for building programs. Grammars are often used to
  713. define the concrete syntax of a language, but they can also be used to
  714. describe the abstract syntax. We write our rules in a variant of
  715. Backus-Naur form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  716. \index{subject}{Backus-Naur form}\index{subject}{BNF} As an example,
  717. we describe a small language, named \LangInt{}, that consists of
  718. integers and arithmetic operations.\index{subject}{grammar}
  719. \index{subject}{context-free grammar}
  720. The first grammar rule for the abstract syntax of \LangInt{} says that an
  721. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  722. \begin{equation}
  723. \Exp ::= \INT{\Int} \label{eq:arith-int}
  724. \end{equation}
  725. %
  726. Each rule has a left-hand side and a right-hand side.
  727. If you have an AST node that matches the
  728. right-hand side, then you can categorize it according to the
  729. left-hand side.
  730. %
  731. Symbols in typewriter font, such as \racket{\code{Int}}\python{\code{Constant}},
  732. are \emph{terminal} symbols and must literally appear in the program for the
  733. rule to be applicable.\index{subject}{terminal}
  734. %
  735. Our grammars do not mention \emph{white space}, that is, delimiter
  736. characters like spaces, tabs, and new lines. White space may be
  737. inserted between symbols for disambiguation and to improve
  738. readability. \index{subject}{white space}
  739. %
  740. A name such as $\Exp$ that is defined by the grammar rules is a
  741. \emph{nonterminal}. \index{subject}{nonterminal}
  742. %
  743. The name $\Int$ is also a nonterminal, but instead of defining it with
  744. a grammar rule, we define it with the following explanation. An
  745. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  746. $-$ (for negative integers), such that the sequence of decimals
  747. represents an integer in the range $-2^{62}$ to $2^{62}-1$. This
  748. enables the representation of integers using 63 bits, which simplifies
  749. several aspects of compilation.
  750. %
  751. \racket{Thus, these integers correspond to the Racket \texttt{fixnum}
  752. datatype on a 64-bit machine.}
  753. %
  754. \python{In contrast, integers in Python have unlimited precision, but
  755. the techniques needed to handle unlimited precision fall outside the
  756. scope of this book.}
  757. The second grammar rule is the \READOP{} operation, which receives an
  758. input integer from the user of the program.
  759. \begin{equation}
  760. \Exp ::= \READ{} \label{eq:arith-read}
  761. \end{equation}
  762. The third rule categorizes the negation of an $\Exp$ node as an
  763. $\Exp$.
  764. \begin{equation}
  765. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  766. \end{equation}
  767. We can apply these rules to categorize the ASTs that are in the
  768. \LangInt{} language. For example, by rule \eqref{eq:arith-int},
  769. \INT{8} is an $\Exp$, and then by rule \eqref{eq:arith-neg} the
  770. following AST is an $\Exp$.
  771. \begin{center}
  772. \begin{minipage}{0.5\textwidth}
  773. \NEG{\INT{\code{8}}}
  774. \end{minipage}
  775. \begin{minipage}{0.25\textwidth}
  776. \begin{equation}
  777. \begin{tikzpicture}
  778. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  779. \node[draw, circle] (8) at (0, -1.2) {$8$};
  780. \draw[->] (minus) to (8);
  781. \end{tikzpicture}
  782. \label{eq:arith-neg8}
  783. \end{equation}
  784. \end{minipage}
  785. \end{center}
  786. The next two grammar rules are for addition and subtraction expressions:
  787. \begin{align}
  788. \Exp &::= \ADD{\Exp}{\Exp} \label{eq:arith-add}\\
  789. \Exp &::= \SUB{\Exp}{\Exp} \label{eq:arith-sub}
  790. \end{align}
  791. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  792. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  793. \eqref{eq:arith-read}, and we have already categorized
  794. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  795. to show that
  796. \[
  797. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  798. \]
  799. is an $\Exp$ in the \LangInt{} language.
  800. If you have an AST for which these rules do not apply, then the
  801. AST is not in \LangInt{}. For example, the program \racket{\code{(*
  802. (read) 8)}} \python{\code{input\_int() * 8}} is not in \LangInt{}
  803. because there is no rule for the \key{*} operator. Whenever we
  804. define a language with a grammar, the language includes only those
  805. programs that are justified by the grammar rules.
  806. {\if\edition\pythonEd\pythonColor
  807. The language \LangInt{} includes a second nonterminal $\Stmt$ for statements.
  808. There is a statement for printing the value of an expression
  809. \[
  810. \Stmt{} ::= \PRINT{\Exp}
  811. \]
  812. and a statement that evaluates an expression but ignores the result.
  813. \[
  814. \Stmt{} ::= \EXPR{\Exp}
  815. \]
  816. \fi}
  817. {\if\edition\racketEd
  818. The last grammar rule for \LangInt{} states that there is a
  819. \code{Program} node to mark the top of the whole program:
  820. \[
  821. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  822. \]
  823. The \code{Program} structure is defined as follows:
  824. \begin{lstlisting}
  825. (struct Program (info body))
  826. \end{lstlisting}
  827. where \code{body} is an expression. In further chapters, the \code{info}
  828. part is used to store auxiliary information, but for now it is
  829. just the empty list.
  830. \fi}
  831. {\if\edition\pythonEd\pythonColor
  832. The last grammar rule for \LangInt{} states that there is a
  833. \code{Module} node to mark the top of the whole program:
  834. \[
  835. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  836. \]
  837. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  838. this case, a list of statements.
  839. %
  840. The \code{Module} class is defined as follows
  841. \begin{lstlisting}
  842. class Module:
  843. def __init__(self, body):
  844. self.body = body
  845. \end{lstlisting}
  846. where \code{body} is a list of statements.
  847. \fi}
  848. It is common to have many grammar rules with the same left-hand side
  849. but different right-hand sides, such as the rules for $\Exp$ in the
  850. grammar of \LangInt{}. As shorthand, a vertical bar can be used to
  851. combine several right-hand sides into a single rule.
  852. The concrete syntax for \LangInt{} is shown in
  853. figure~\ref{fig:r0-concrete-syntax} and the abstract syntax for
  854. \LangInt{} is shown in figure~\ref{fig:r0-syntax}.%
  855. %
  856. \racket{The \code{read-program} function provided in
  857. \code{utilities.rkt} of the support code reads a program from a file
  858. (the sequence of characters in the concrete syntax of Racket) and
  859. parses it into an abstract syntax tree. Refer to the description of
  860. \code{read-program} in appendix~\ref{appendix:utilities} for more
  861. details.}
  862. %
  863. \python{The \code{parse} function in Python's \code{ast} module
  864. converts the concrete syntax (represented as a string) into an
  865. abstract syntax tree.}
  866. \newcommand{\LintGrammarRacket}{
  867. \begin{array}{rcl}
  868. \Type &::=& \key{Integer} \\
  869. \Exp{} &::=& \Int{} \MID \CREAD \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}
  870. \MID \CSUB{\Exp}{\Exp}
  871. \end{array}
  872. }
  873. \newcommand{\LintASTRacket}{
  874. \begin{array}{rcl}
  875. \Type &::=& \key{Integer} \\
  876. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  877. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \SUB{\Exp}{\Exp}
  878. \end{array}
  879. }
  880. \newcommand{\LintGrammarPython}{
  881. \begin{array}{rcl}
  882. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  883. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  884. \end{array}
  885. }
  886. \newcommand{\LintASTPython}{
  887. \begin{array}{rcl}
  888. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  889. \itm{unaryop} &::= & \code{USub()} \\
  890. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  891. &\MID& \UNIOP{\itm{unaryop}}{\Exp} \MID \BINOP{\Exp}{\itm{binaryop}}{\Exp} \\
  892. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp}
  893. \end{array}
  894. }
  895. \begin{figure}[tp]
  896. \begin{tcolorbox}[colback=white]
  897. {\if\edition\racketEd
  898. \[
  899. \begin{array}{l}
  900. \LintGrammarRacket \\
  901. \begin{array}{rcl}
  902. \LangInt{} &::=& \Exp
  903. \end{array}
  904. \end{array}
  905. \]
  906. \fi}
  907. {\if\edition\pythonEd\pythonColor
  908. \[
  909. \begin{array}{l}
  910. \LintGrammarPython \\
  911. \begin{array}{rcl}
  912. \LangInt{} &::=& \Stmt^{*}
  913. \end{array}
  914. \end{array}
  915. \]
  916. \fi}
  917. \end{tcolorbox}
  918. \caption{The concrete syntax of \LangInt{}.}
  919. \label{fig:r0-concrete-syntax}
  920. \end{figure}
  921. \begin{figure}[tp]
  922. \begin{tcolorbox}[colback=white]
  923. {\if\edition\racketEd
  924. \[
  925. \begin{array}{l}
  926. \LintASTRacket{} \\
  927. \begin{array}{rcl}
  928. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  929. \end{array}
  930. \end{array}
  931. \]
  932. \fi}
  933. {\if\edition\pythonEd\pythonColor
  934. \[
  935. \begin{array}{l}
  936. \LintASTPython\\
  937. \begin{array}{rcl}
  938. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  939. \end{array}
  940. \end{array}
  941. \]
  942. \fi}
  943. \end{tcolorbox}
  944. \python{
  945. \index{subject}{Constant@\texttt{Constant}}
  946. \index{subject}{UnaryOp@\texttt{UnaryOp}}
  947. \index{subject}{USub@\texttt{USub}}
  948. \index{subject}{inputint@\texttt{input\_int}}
  949. \index{subject}{Call@\texttt{Call}}
  950. \index{subject}{Name@\texttt{Name}}
  951. \index{subject}{BinOp@\texttt{BinOp}}
  952. \index{subject}{Add@\texttt{Add}}
  953. \index{subject}{Sub@\texttt{Sub}}
  954. \index{subject}{print@\texttt{print}}
  955. \index{subject}{Expr@\texttt{Expr}}
  956. \index{subject}{Module@\texttt{Module}}
  957. }
  958. \caption{The abstract syntax of \LangInt{}.}
  959. \label{fig:r0-syntax}
  960. \end{figure}
  961. \section{Pattern Matching}
  962. \label{sec:pattern-matching}
  963. As mentioned in section~\ref{sec:ast}, compilers often need to access
  964. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python}
  965. provides the \texttt{match} feature to access the parts of a value.
  966. Consider the following example: \index{subject}{match} \index{subject}{pattern matching}
  967. \begin{center}
  968. \begin{minipage}{0.5\textwidth}
  969. {\if\edition\racketEd
  970. \begin{lstlisting}
  971. (match ast1_1
  972. [(Prim op (list child1 child2))
  973. (print op)])
  974. \end{lstlisting}
  975. \fi}
  976. {\if\edition\pythonEd\pythonColor
  977. \begin{lstlisting}
  978. match ast1_1:
  979. case BinOp(child1, op, child2):
  980. print(op)
  981. \end{lstlisting}
  982. \fi}
  983. \end{minipage}
  984. \end{center}
  985. {\if\edition\racketEd
  986. %
  987. In this example, the \texttt{match} form checks whether the AST
  988. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  989. three pattern variables \texttt{op}, \texttt{child1}, and
  990. \texttt{child2}. In general, a match clause consists of a
  991. \emph{pattern} and a \emph{body}.\index{subject}{pattern} Patterns are
  992. recursively defined to be a pattern variable, a structure name
  993. followed by a pattern for each of the structure's arguments, or an
  994. S-expression (a symbol, list, etc.). (See chapter 12 of The Racket
  995. Guide\footnote{See \url{https://docs.racket-lang.org/guide/match.html}.}
  996. and chapter 9 of The Racket
  997. Reference\footnote{See \url{https://docs.racket-lang.org/reference/match.html}.}
  998. for complete descriptions of \code{match}.)
  999. %
  1000. The body of a match clause may contain arbitrary Racket code. The
  1001. pattern variables can be used in the scope of the body, such as
  1002. \code{op} in \code{(print op)}.
  1003. %
  1004. \fi}
  1005. %
  1006. %
  1007. {\if\edition\pythonEd\pythonColor
  1008. %
  1009. In the above example, the \texttt{match} form checks whether the AST
  1010. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  1011. three pattern variables \texttt{child1}, \texttt{op}, and
  1012. \texttt{child2}, and then prints out the operator. In general, each
  1013. \code{case} consists of a \emph{pattern} and a
  1014. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  1015. to be either a pattern variable, a class name followed by a pattern
  1016. for each of its constructor's arguments, or other
  1017. literals\index{subject}{literals} such as strings, lists, etc.
  1018. %
  1019. The body of each \code{case} may contain arbitrary Python code. The
  1020. pattern variables can be used in the body, such as \code{op} in
  1021. \code{print(op)}.
  1022. %
  1023. \fi}
  1024. A \code{match} form may contain several clauses, as in the following
  1025. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  1026. the AST. The \code{match} proceeds through the clauses in order,
  1027. checking whether the pattern can match the input AST. The body of the
  1028. first clause that matches is executed. The output of \code{leaf} for
  1029. several ASTs is shown on the right side of the following:
  1030. \begin{center}
  1031. \begin{minipage}{0.6\textwidth}
  1032. {\if\edition\racketEd
  1033. \begin{lstlisting}
  1034. (define (leaf arith)
  1035. (match arith
  1036. [(Int n) #t]
  1037. [(Prim 'read '()) #t]
  1038. [(Prim '- (list e1)) #f]
  1039. [(Prim '+ (list e1 e2)) #f]
  1040. [(Prim '- (list e1 e2)) #f]))
  1041. (leaf (Prim 'read '()))
  1042. (leaf (Prim '- (list (Int 8))))
  1043. (leaf (Int 8))
  1044. \end{lstlisting}
  1045. \fi}
  1046. {\if\edition\pythonEd\pythonColor
  1047. \begin{lstlisting}
  1048. def leaf(arith):
  1049. match arith:
  1050. case Constant(n):
  1051. return True
  1052. case Call(Name('input_int'), []):
  1053. return True
  1054. case UnaryOp(USub(), e1):
  1055. return False
  1056. case BinOp(e1, Add(), e2):
  1057. return False
  1058. case BinOp(e1, Sub(), e2):
  1059. return False
  1060. print(leaf(Call(Name('input_int'), [])))
  1061. print(leaf(UnaryOp(USub(), eight)))
  1062. print(leaf(Constant(8)))
  1063. \end{lstlisting}
  1064. \fi}
  1065. \end{minipage}
  1066. \vrule
  1067. \begin{minipage}{0.25\textwidth}
  1068. {\if\edition\racketEd
  1069. \begin{lstlisting}
  1070. #t
  1071. #f
  1072. #t
  1073. \end{lstlisting}
  1074. \fi}
  1075. {\if\edition\pythonEd\pythonColor
  1076. \begin{lstlisting}
  1077. True
  1078. False
  1079. True
  1080. \end{lstlisting}
  1081. \fi}
  1082. \end{minipage}
  1083. \index{subject}{True@\TRUE{}}
  1084. \index{subject}{False@\FALSE{}}
  1085. \end{center}
  1086. When constructing a \code{match} expression, we refer to the grammar
  1087. definition to identify which nonterminal we are expecting to match
  1088. against, and then we make sure that (1) we have one
  1089. \racket{clause}\python{case} for each alternative of that nonterminal
  1090. and (2) the pattern in each \racket{clause}\python{case}
  1091. corresponds to the corresponding right-hand side of a grammar
  1092. rule. For the \code{match} in the \code{leaf} function, we refer to
  1093. the grammar for \LangInt{} shown in figure~\ref{fig:r0-syntax}. The $\Exp$
  1094. nonterminal has four alternatives, so the \code{match} has four
  1095. \racket{clauses}\python{cases}. The pattern in each
  1096. \racket{clause}\python{case} corresponds to the right-hand side of a
  1097. grammar rule. For example, the pattern \ADDP{\code{e1}}{\code{e2}}
  1098. corresponds to the right-hand side $\ADD{\Exp}{\Exp}$. When
  1099. translating from grammars to patterns, replace nonterminals such as
  1100. $\Exp$ with pattern variables of your choice (for example, \code{e1} and
  1101. \code{e2}).
  1102. \section{Recursive Functions}
  1103. \label{sec:recursion}
  1104. \index{subject}{recursive function}
  1105. Programs are inherently recursive. For example, an expression is often
  1106. made of smaller expressions. Thus, the natural way to process an
  1107. entire program is to use a recursive function. As a first example of
  1108. such a recursive function, we define the function \code{is\_exp} as
  1109. shown in figure~\ref{fig:exp-predicate}, to take an arbitrary
  1110. value and determine whether or not it is an expression in \LangInt{}.
  1111. %
  1112. We say that a function is defined by \emph{structural recursion} if
  1113. it is defined using a sequence of match \racket{clauses}\python{cases}
  1114. that correspond to a grammar and the body of each
  1115. \racket{clause}\python{case} makes a recursive call on each child
  1116. node.\footnote{This principle of structuring code according to the
  1117. data definition is advocated in the book \emph{How to Design
  1118. Programs} by \citet{Felleisen:2001aa}.} \python{We define a
  1119. second function, named \code{stmt}, that recognizes whether a value
  1120. is a \LangInt{} statement.} \python{Finally, }
  1121. Figure~\ref{fig:exp-predicate} \racket{also} contains the definition of
  1122. \code{is\_Lint}, which determines whether an AST is a program in \LangInt{}.
  1123. In general, we can write one recursive function to handle each
  1124. nonterminal in a grammar.\index{subject}{structural recursion} Of the
  1125. two examples at the bottom of the figure, the first is in
  1126. \LangInt{} and the second is not.
  1127. \begin{figure}[tp]
  1128. \begin{tcolorbox}[colback=white]
  1129. {\if\edition\racketEd
  1130. \begin{lstlisting}
  1131. (define (is_exp ast)
  1132. (match ast
  1133. [(Int n) #t]
  1134. [(Prim 'read '()) #t]
  1135. [(Prim '- (list e)) (is_exp e)]
  1136. [(Prim '+ (list e1 e2))
  1137. (and (is_exp e1) (is_exp e2))]
  1138. [(Prim '- (list e1 e2))
  1139. (and (is_exp e1) (is_exp e2))]
  1140. [else #f]))
  1141. (define (is_Lint ast)
  1142. (match ast
  1143. [(Program '() e) (is_exp e)]
  1144. [else #f]))
  1145. (is_Lint (Program '() ast1_1)
  1146. (is_Lint (Program '()
  1147. (Prim '* (list (Prim 'read '())
  1148. (Prim '+ (list (Int 8)))))))
  1149. \end{lstlisting}
  1150. \fi}
  1151. {\if\edition\pythonEd\pythonColor
  1152. \begin{lstlisting}
  1153. def is_exp(e):
  1154. match e:
  1155. case Constant(n):
  1156. return True
  1157. case Call(Name('input_int'), []):
  1158. return True
  1159. case UnaryOp(USub(), e1):
  1160. return is_exp(e1)
  1161. case BinOp(e1, Add(), e2):
  1162. return is_exp(e1) and is_exp(e2)
  1163. case BinOp(e1, Sub(), e2):
  1164. return is_exp(e1) and is_exp(e2)
  1165. case _:
  1166. return False
  1167. def stmt(s):
  1168. match s:
  1169. case Expr(Call(Name('print'), [e])):
  1170. return is_exp(e)
  1171. case Expr(e):
  1172. return is_exp(e)
  1173. case _:
  1174. return False
  1175. def is_Lint(p):
  1176. match p:
  1177. case Module(body):
  1178. return all([stmt(s) for s in body])
  1179. case _:
  1180. return False
  1181. print(is_Lint(Module([Expr(ast1_1)])))
  1182. print(is_Lint(Module([Expr(BinOp(read, Sub(),
  1183. UnaryOp(Add(), Constant(8))))])))
  1184. \end{lstlisting}
  1185. \fi}
  1186. \end{tcolorbox}
  1187. \caption{Example of recursive functions for \LangInt{}. These functions
  1188. recognize whether an AST is in \LangInt{}.}
  1189. \label{fig:exp-predicate}
  1190. \end{figure}
  1191. %% You may be tempted to merge the two functions into one, like this:
  1192. %% \begin{center}
  1193. %% \begin{minipage}{0.5\textwidth}
  1194. %% \begin{lstlisting}
  1195. %% (define (Lint ast)
  1196. %% (match ast
  1197. %% [(Int n) #t]
  1198. %% [(Prim 'read '()) #t]
  1199. %% [(Prim '- (list e)) (Lint e)]
  1200. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1201. %% [(Program '() e) (Lint e)]
  1202. %% [else #f]))
  1203. %% \end{lstlisting}
  1204. %% \end{minipage}
  1205. %% \end{center}
  1206. %% %
  1207. %% Sometimes such a trick will save a few lines of code, especially when
  1208. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1209. %% \emph{not} recommended because it can get you into trouble.
  1210. %% %
  1211. %% For example, the above function is subtly wrong:
  1212. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1213. %% returns true when it should return false.
  1214. \section{Interpreters}
  1215. \label{sec:interp_Lint}
  1216. \index{subject}{interpreter}
  1217. The behavior of a program is defined by the specification of the
  1218. programming language.
  1219. %
  1220. \racket{For example, the Scheme language is defined in the report by
  1221. \citet{SPERBER:2009aa}. The Racket language is defined in its
  1222. reference manual~\citep{plt-tr}.}
  1223. %
  1224. \python{For example, the Python language is defined in the Python
  1225. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1226. %
  1227. In this book we use interpreters to specify each language that we
  1228. consider. An interpreter that is designated as the definition of a
  1229. language is called a \emph{definitional
  1230. interpreter}~\citep{reynolds72:_def_interp}.
  1231. \index{subject}{definitional interpreter} We warm up by creating a
  1232. definitional interpreter for the \LangInt{} language. This interpreter
  1233. serves as a second example of structural recursion. The definition of the
  1234. \code{interp\_Lint} function is shown in
  1235. figure~\ref{fig:interp_Lint}.
  1236. %
  1237. \racket{The body of the function is a match on the input program
  1238. followed by a call to the \lstinline{interp_exp} auxiliary function,
  1239. which in turn has one match clause per grammar rule for \LangInt{}
  1240. expressions.}
  1241. %
  1242. \python{The body of the function matches on the \code{Module} AST node
  1243. and then invokes \code{interp\_stmt} on each statement in the
  1244. module. The \code{interp\_stmt} function includes a case for each
  1245. grammar rule of the \Stmt{} nonterminal and it calls
  1246. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1247. function includes a case for each grammar rule of the \Exp{}
  1248. nonterminal.}
  1249. \begin{figure}[tp]
  1250. \begin{tcolorbox}[colback=white]
  1251. {\if\edition\racketEd
  1252. \begin{lstlisting}
  1253. (define (interp_exp e)
  1254. (match e
  1255. [(Int n) n]
  1256. [(Prim 'read '())
  1257. (define r (read))
  1258. (cond [(fixnum? r) r]
  1259. [else (error 'interp_exp "read expected an integer" r)])]
  1260. [(Prim '- (list e))
  1261. (define v (interp_exp e))
  1262. (fx- 0 v)]
  1263. [(Prim '+ (list e1 e2))
  1264. (define v1 (interp_exp e1))
  1265. (define v2 (interp_exp e2))
  1266. (fx+ v1 v2)]
  1267. [(Prim '- (list e1 e2))
  1268. (define v1 (interp_exp e1))
  1269. (define v2 (interp_exp e2))
  1270. (fx- v1 v2)]))
  1271. (define (interp_Lint p)
  1272. (match p
  1273. [(Program '() e) (interp_exp e)]))
  1274. \end{lstlisting}
  1275. \fi}
  1276. {\if\edition\pythonEd\pythonColor
  1277. \begin{lstlisting}
  1278. def interp_exp(e):
  1279. match e:
  1280. case BinOp(left, Add(), right):
  1281. l = interp_exp(left); r = interp_exp(right)
  1282. return l + r
  1283. case BinOp(left, Sub(), right):
  1284. l = interp_exp(left); r = interp_exp(right)
  1285. return l - r
  1286. case UnaryOp(USub(), v):
  1287. return - interp_exp(v)
  1288. case Constant(value):
  1289. return value
  1290. case Call(Name('input_int'), []):
  1291. return int(input())
  1292. def interp_stmt(s):
  1293. match s:
  1294. case Expr(Call(Name('print'), [arg])):
  1295. print(interp_exp(arg))
  1296. case Expr(value):
  1297. interp_exp(value)
  1298. def interp_Lint(p):
  1299. match p:
  1300. case Module(body):
  1301. for s in body:
  1302. interp_stmt(s)
  1303. \end{lstlisting}
  1304. \fi}
  1305. \end{tcolorbox}
  1306. \caption{Interpreter for the \LangInt{} language.}
  1307. \label{fig:interp_Lint}
  1308. \end{figure}
  1309. Let us consider the result of interpreting a few \LangInt{} programs. The
  1310. following program adds two integers:
  1311. {\if\edition\racketEd
  1312. \begin{lstlisting}
  1313. (+ 10 32)
  1314. \end{lstlisting}
  1315. \fi}
  1316. {\if\edition\pythonEd\pythonColor
  1317. \begin{lstlisting}
  1318. print(10 + 32)
  1319. \end{lstlisting}
  1320. \fi}
  1321. %
  1322. \noindent The result is \key{42}, the answer to life, the universe,
  1323. and everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to
  1324. the Galaxy} by Douglas Adams.}
  1325. %
  1326. We wrote this program in concrete syntax, whereas the parsed
  1327. abstract syntax is
  1328. {\if\edition\racketEd
  1329. \begin{lstlisting}
  1330. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1331. \end{lstlisting}
  1332. \fi}
  1333. {\if\edition\pythonEd\pythonColor
  1334. \begin{lstlisting}
  1335. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1336. \end{lstlisting}
  1337. \fi}
  1338. The following program demonstrates that expressions may be nested within
  1339. each other, in this case nesting several additions and negations.
  1340. {\if\edition\racketEd
  1341. \begin{lstlisting}
  1342. (+ 10 (- (+ 12 20)))
  1343. \end{lstlisting}
  1344. \fi}
  1345. {\if\edition\pythonEd\pythonColor
  1346. \begin{lstlisting}
  1347. print(10 + -(12 + 20))
  1348. \end{lstlisting}
  1349. \fi}
  1350. %
  1351. \noindent What is the result of this program?
  1352. {\if\edition\racketEd
  1353. As mentioned previously, the \LangInt{} language does not support
  1354. arbitrarily large integers but only $63$-bit integers, so we
  1355. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1356. in Racket.
  1357. Suppose that
  1358. \[
  1359. n = 999999999999999999
  1360. \]
  1361. which indeed fits in $63$ bits. What happens when we run the
  1362. following program in our interpreter?
  1363. \begin{lstlisting}
  1364. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1365. \end{lstlisting}
  1366. It produces the following error:
  1367. \begin{lstlisting}
  1368. fx+: result is not a fixnum
  1369. \end{lstlisting}
  1370. We establish the convention that if running the definitional
  1371. interpreter on a program produces an error, then the meaning of that
  1372. program is \emph{unspecified}\index{subject}{unspecified behavior} unless the
  1373. error is a \code{trapped-error}. A compiler for the language is under
  1374. no obligation regarding programs with unspecified behavior; it does
  1375. not have to produce an executable, and if it does, that executable can
  1376. do anything. On the other hand, if the error is a
  1377. \code{trapped-error}, then the compiler must produce an executable and
  1378. it is required to report that an error occurred. To signal an error,
  1379. exit with a return code of \code{255}. The interpreters in chapters
  1380. \ref{ch:Ldyn} and \ref{ch:Lgrad} and in section \ref{sec:arrays} use
  1381. \code{trapped-error}.
  1382. \fi}
  1383. % TODO: how to deal with too-large integers in the Python interpreter?
  1384. %% This convention applies to the languages defined in this
  1385. %% book, as a way to simplify the student's task of implementing them,
  1386. %% but this convention is not applicable to all programming languages.
  1387. %%
  1388. The last feature of the \LangInt{} language, the \READOP{} operation,
  1389. prompts the user of the program for an integer. Recall that program
  1390. \eqref{eq:arith-prog} requests an integer input and then subtracts
  1391. \code{8}. So, if we run {\if\edition\racketEd
  1392. \begin{lstlisting}
  1393. (interp_Lint (Program '() ast1_1))
  1394. \end{lstlisting}
  1395. \fi}
  1396. {\if\edition\pythonEd\pythonColor
  1397. \begin{lstlisting}
  1398. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1399. \end{lstlisting}
  1400. \fi}
  1401. \noindent and if the input is \code{50}, the result is \code{42}.
  1402. We include the \READOP{} operation in \LangInt{} so that a clever
  1403. student cannot implement a compiler for \LangInt{} that simply runs
  1404. the interpreter during compilation to obtain the output and then
  1405. generates the trivial code to produce the output.\footnote{Yes, a
  1406. clever student did this in the first instance of this course!}
  1407. The job of a compiler is to translate a program in one language into a
  1408. program in another language so that the output program behaves the
  1409. same way as the input program. This idea is depicted in the
  1410. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1411. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1412. Given a compiler that translates from language $\mathcal{L}_1$ to
  1413. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1414. compiler must translate it into some program $P_2$ such that
  1415. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1416. same input $i$ yields the same output $o$.
  1417. \begin{equation} \label{eq:compile-correct}
  1418. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1419. \node (p1) at (0, 0) {$P_1$};
  1420. \node (p2) at (3, 0) {$P_2$};
  1421. \node (o) at (3, -2.5) {$o$};
  1422. \path[->] (p1) edge [above] node {compile} (p2);
  1423. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1424. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1425. \end{tikzpicture}
  1426. \end{equation}
  1427. \python{We establish the convention that if running the definitional
  1428. interpreter on a program produces an error, then the meaning of that
  1429. program is \emph{unspecified}\index{subject}{unspecified behavior}
  1430. unless the exception raised is a \code{TrappedError}. A compiler for
  1431. the language is under no obligation regarding programs with
  1432. unspecified behavior; it does not have to produce an executable, and
  1433. if it does, that executable can do anything. On the other hand, if
  1434. the error is a \code{TrappedError}, then the compiler must produce
  1435. an executable and it is required to report that an error
  1436. occurred. To signal an error, exit with a return code of \code{255}.
  1437. The interpreters in chapters \ref{ch:Ldyn} and \ref{ch:Lgrad} and in
  1438. section \ref{sec:arrays} use \code{TrappedError}.}
  1439. In the next section we see our first example of a compiler.
  1440. \section{Example Compiler: A Partial Evaluator}
  1441. \label{sec:partial-evaluation}
  1442. In this section we consider a compiler that translates \LangInt{}
  1443. programs into \LangInt{} programs that may be more efficient. The
  1444. compiler eagerly computes the parts of the program that do not depend
  1445. on any inputs, a process known as \emph{partial
  1446. evaluation}~\citep{Jones:1993uq}.\index{subject}{partialevaluation@partial evaluation}
  1447. For example, given the following program
  1448. {\if\edition\racketEd
  1449. \begin{lstlisting}
  1450. (+ (read) (- (+ 5 3)))
  1451. \end{lstlisting}
  1452. \fi}
  1453. {\if\edition\pythonEd\pythonColor
  1454. \begin{lstlisting}
  1455. print(input_int() + -(5 + 3) )
  1456. \end{lstlisting}
  1457. \fi}
  1458. \noindent our compiler translates it into the program
  1459. {\if\edition\racketEd
  1460. \begin{lstlisting}
  1461. (+ (read) -8)
  1462. \end{lstlisting}
  1463. \fi}
  1464. {\if\edition\pythonEd\pythonColor
  1465. \begin{lstlisting}
  1466. print(input_int() + -8)
  1467. \end{lstlisting}
  1468. \fi}
  1469. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1470. evaluator for the \LangInt{} language. The output of the partial evaluator
  1471. is a program in \LangInt{}. In figure~\ref{fig:pe-arith}, the structural
  1472. recursion over $\Exp$ is captured in the \code{pe\_exp} function,
  1473. whereas the code for partially evaluating the negation and addition
  1474. operations is factored into three auxiliary functions:
  1475. \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub}. The input to these
  1476. functions is the output of partially evaluating the children.
  1477. The \code{pe\_neg}, \code{pe\_add} and \code{pe\_sub} functions check whether their
  1478. arguments are integers and if they are, perform the appropriate
  1479. arithmetic. Otherwise, they create an AST node for the arithmetic
  1480. operation.
  1481. \begin{figure}[tp]
  1482. \begin{tcolorbox}[colback=white]
  1483. {\if\edition\racketEd
  1484. \begin{lstlisting}
  1485. (define (pe_neg r)
  1486. (match r
  1487. [(Int n) (Int (fx- 0 n))]
  1488. [else (Prim '- (list r))]))
  1489. (define (pe_add r1 r2)
  1490. (match* (r1 r2)
  1491. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1492. [(_ _) (Prim '+ (list r1 r2))]))
  1493. (define (pe_sub r1 r2)
  1494. (match* (r1 r2)
  1495. [((Int n1) (Int n2)) (Int (fx- n1 n2))]
  1496. [(_ _) (Prim '- (list r1 r2))]))
  1497. (define (pe_exp e)
  1498. (match e
  1499. [(Int n) (Int n)]
  1500. [(Prim 'read '()) (Prim 'read '())]
  1501. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1502. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]
  1503. [(Prim '- (list e1 e2)) (pe_sub (pe_exp e1) (pe_exp e2))]))
  1504. (define (pe_Lint p)
  1505. (match p
  1506. [(Program '() e) (Program '() (pe_exp e))]))
  1507. \end{lstlisting}
  1508. \fi}
  1509. {\if\edition\pythonEd\pythonColor
  1510. \begin{lstlisting}
  1511. def pe_neg(r):
  1512. match r:
  1513. case Constant(n):
  1514. return Constant(-n)
  1515. case _:
  1516. return UnaryOp(USub(), r)
  1517. def pe_add(r1, r2):
  1518. match (r1, r2):
  1519. case (Constant(n1), Constant(n2)):
  1520. return Constant(n1 + n2)
  1521. case _:
  1522. return BinOp(r1, Add(), r2)
  1523. def pe_sub(r1, r2):
  1524. match (r1, r2):
  1525. case (Constant(n1), Constant(n2)):
  1526. return Constant(n1 - n2)
  1527. case _:
  1528. return BinOp(r1, Sub(), r2)
  1529. def pe_exp(e):
  1530. match e:
  1531. case BinOp(left, Add(), right):
  1532. return pe_add(pe_exp(left), pe_exp(right))
  1533. case BinOp(left, Sub(), right):
  1534. return pe_sub(pe_exp(left), pe_exp(right))
  1535. case UnaryOp(USub(), v):
  1536. return pe_neg(pe_exp(v))
  1537. case Constant(value):
  1538. return e
  1539. case Call(Name('input_int'), []):
  1540. return e
  1541. def pe_stmt(s):
  1542. match s:
  1543. case Expr(Call(Name('print'), [arg])):
  1544. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1545. case Expr(value):
  1546. return Expr(pe_exp(value))
  1547. def pe_P_int(p):
  1548. match p:
  1549. case Module(body):
  1550. new_body = [pe_stmt(s) for s in body]
  1551. return Module(new_body)
  1552. \end{lstlisting}
  1553. \fi}
  1554. \end{tcolorbox}
  1555. \caption{A partial evaluator for \LangInt{}.}
  1556. \label{fig:pe-arith}
  1557. \end{figure}
  1558. To gain some confidence that the partial evaluator is correct, we can
  1559. test whether it produces programs that produce the same result as the
  1560. input programs. That is, we can test whether it satisfies the diagram
  1561. of \eqref{eq:compile-correct}.
  1562. %
  1563. {\if\edition\racketEd
  1564. The following code runs the partial evaluator on several examples and
  1565. tests the output program. The \texttt{parse-program} and
  1566. \texttt{assert} functions are defined in
  1567. appendix~\ref{appendix:utilities}.\\
  1568. \begin{minipage}{1.0\textwidth}
  1569. \begin{lstlisting}
  1570. (define (test_pe p)
  1571. (assert "testing pe_Lint"
  1572. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1573. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1574. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1575. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1576. \end{lstlisting}
  1577. \end{minipage}
  1578. \fi}
  1579. % TODO: python version of testing the PE
  1580. \begin{exercise}\normalfont\normalsize
  1581. Create three programs in the \LangInt{} language and test whether
  1582. partially evaluating them with \code{pe\_Lint} and then
  1583. interpreting them with \code{interp\_Lint} gives the same result
  1584. as directly interpreting them with \code{interp\_Lint}.
  1585. \end{exercise}
  1586. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1587. \chapter{Integers and Variables}
  1588. \label{ch:Lvar}
  1589. \setcounter{footnote}{0}
  1590. This chapter covers compiling a subset of
  1591. \racket{Racket}\python{Python} to x86-64 assembly
  1592. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1593. integer arithmetic and local variables. We often refer to x86-64
  1594. simply as x86. The chapter first describes the \LangVar{} language
  1595. (section~\ref{sec:s0}) and then introduces x86 assembly
  1596. (section~\ref{sec:x86}). Because x86 assembly language is large, we
  1597. discuss only the instructions needed for compiling \LangVar{}. We
  1598. introduce more x86 instructions in subsequent chapters. After
  1599. introducing \LangVar{} and x86, we reflect on their differences and
  1600. create a plan to break down the translation from \LangVar{} to x86
  1601. into a handful of steps (section~\ref{sec:plan-s0-x86}). The rest of
  1602. the chapter gives detailed hints regarding each step. We aim to give
  1603. enough hints that the well-prepared reader, together with a few
  1604. friends, can implement a compiler from \LangVar{} to x86 in a short
  1605. time. To suggest the scale of this first compiler, we note that the
  1606. instructor solution for the \LangVar{} compiler is approximately
  1607. \racket{500}\python{300} lines of code.
  1608. \section{The \LangVar{} Language}
  1609. \label{sec:s0}
  1610. \index{subject}{variable}
  1611. The \LangVar{} language extends the \LangInt{} language with
  1612. variables. The concrete syntax of the \LangVar{} language is defined
  1613. by the grammar presented in figure~\ref{fig:Lvar-concrete-syntax} and
  1614. the abstract syntax is presented in figure~\ref{fig:Lvar-syntax}. The
  1615. nonterminal \Var{} may be any \racket{Racket}\python{Python}
  1616. identifier. As in \LangInt{}, \READOP{} is a nullary operator,
  1617. \key{-} is a unary operator, and \key{+} is a binary operator.
  1618. Similarly to \LangInt{}, the abstract syntax of \LangVar{} includes the
  1619. \racket{\key{Program} struct}\python{\key{Module} instance} to mark
  1620. the top of the program.
  1621. %% The $\itm{info}$
  1622. %% field of the \key{Program} structure contains an \emph{association
  1623. %% list} (a list of key-value pairs) that is used to communicate
  1624. %% auxiliary data from one compiler pass the next.
  1625. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1626. exhibit several compilation techniques.
  1627. \newcommand{\LvarGrammarRacket}{
  1628. \begin{array}{rcl}
  1629. \Exp &::=& \Var \MID \CLET{\Var}{\Exp}{\Exp}
  1630. \end{array}
  1631. }
  1632. \newcommand{\LvarASTRacket}{
  1633. \begin{array}{rcl}
  1634. \Exp &::=& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp}
  1635. \end{array}
  1636. }
  1637. \newcommand{\LvarGrammarPython}{
  1638. \begin{array}{rcl}
  1639. \Exp &::=& \Var{} \\
  1640. \Stmt &::=& \Var\mathop{\key{=}}\Exp
  1641. \end{array}
  1642. }
  1643. \newcommand{\LvarASTPython}{
  1644. \begin{array}{rcl}
  1645. \Exp{} &::=& \VAR{\Var{}} \\
  1646. \Stmt{} &::=& \ASSIGN{\VAR{\Var}}{\Exp}
  1647. \end{array}
  1648. }
  1649. \begin{figure}[tp]
  1650. \centering
  1651. \begin{tcolorbox}[colback=white]
  1652. {\if\edition\racketEd
  1653. \[
  1654. \begin{array}{l}
  1655. \gray{\LintGrammarRacket{}} \\ \hline
  1656. \LvarGrammarRacket{} \\
  1657. \begin{array}{rcl}
  1658. \LangVarM{} &::=& \Exp
  1659. \end{array}
  1660. \end{array}
  1661. \]
  1662. \fi}
  1663. {\if\edition\pythonEd\pythonColor
  1664. \[
  1665. \begin{array}{l}
  1666. \gray{\LintGrammarPython} \\ \hline
  1667. \LvarGrammarPython \\
  1668. \begin{array}{rcl}
  1669. \LangVarM{} &::=& \Stmt^{*}
  1670. \end{array}
  1671. \end{array}
  1672. \]
  1673. \fi}
  1674. \end{tcolorbox}
  1675. \caption{The concrete syntax of \LangVar{}.}
  1676. \label{fig:Lvar-concrete-syntax}
  1677. \end{figure}
  1678. \begin{figure}[tp]
  1679. \centering
  1680. \begin{tcolorbox}[colback=white]
  1681. {\if\edition\racketEd
  1682. \[
  1683. \begin{array}{l}
  1684. \gray{\LintASTRacket{}} \\ \hline
  1685. \LvarASTRacket \\
  1686. \begin{array}{rcl}
  1687. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1688. \end{array}
  1689. \end{array}
  1690. \]
  1691. \fi}
  1692. {\if\edition\pythonEd\pythonColor
  1693. \[
  1694. \begin{array}{l}
  1695. \gray{\LintASTPython}\\ \hline
  1696. \LvarASTPython \\
  1697. \begin{array}{rcl}
  1698. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1699. \end{array}
  1700. \end{array}
  1701. \]
  1702. \fi}
  1703. \end{tcolorbox}
  1704. \caption{The abstract syntax of \LangVar{}.}
  1705. \label{fig:Lvar-syntax}
  1706. \end{figure}
  1707. {\if\edition\racketEd
  1708. Let us dive further into the syntax and semantics of the \LangVar{}
  1709. language. The \key{let} feature defines a variable for use within its
  1710. body and initializes the variable with the value of an expression.
  1711. The abstract syntax for \key{let} is shown in
  1712. figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1713. \begin{lstlisting}
  1714. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1715. \end{lstlisting}
  1716. For example, the following program initializes \code{x} to $32$ and then
  1717. evaluates the body \code{(+ 10 x)}, producing $42$.
  1718. \begin{lstlisting}
  1719. (let ([x (+ 12 20)]) (+ 10 x))
  1720. \end{lstlisting}
  1721. \fi}
  1722. %
  1723. {\if\edition\pythonEd\pythonColor
  1724. %
  1725. The \LangVar{} language includes assignment statements, which define a
  1726. variable for use in later statements and initializes the variable with
  1727. the value of an expression. The abstract syntax for assignment is
  1728. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1729. assignment is \index{subject}{Assign@\texttt{Assign}}
  1730. \begin{lstlisting}
  1731. |$\itm{var}$| = |$\itm{exp}$|
  1732. \end{lstlisting}
  1733. For example, the following program initializes the variable \code{x}
  1734. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1735. \begin{lstlisting}
  1736. x = 12 + 20
  1737. print(10 + x)
  1738. \end{lstlisting}
  1739. \fi}
  1740. {\if\edition\racketEd
  1741. %
  1742. When there are multiple \key{let}s for the same variable, the closest
  1743. enclosing \key{let} is used. That is, variable definitions overshadow
  1744. prior definitions. Consider the following program with two \key{let}s
  1745. that define two variables named \code{x}. Can you figure out the
  1746. result?
  1747. \begin{lstlisting}
  1748. (let ([x 32]) (+ (let ([x 10]) x) x))
  1749. \end{lstlisting}
  1750. For the purposes of depicting which variable occurrences correspond to
  1751. which definitions, the following shows the \code{x}'s annotated with
  1752. subscripts to distinguish them. Double-check that your answer for the
  1753. previous program is the same as your answer for this annotated version
  1754. of the program.
  1755. \begin{lstlisting}
  1756. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1757. \end{lstlisting}
  1758. The initializing expression is always evaluated before the body of the
  1759. \key{let}, so in the following, the \key{read} for \code{x} is
  1760. performed before the \key{read} for \code{y}. Given the input
  1761. $52$ then $10$, the following produces $42$ (not $-42$).
  1762. \begin{lstlisting}
  1763. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1764. \end{lstlisting}
  1765. \fi}
  1766. \subsection{Extensible Interpreters via Method Overriding}
  1767. \label{sec:extensible-interp}
  1768. \index{subject}{method overriding}
  1769. To prepare for discussing the interpreter of \LangVar{}, we explain
  1770. why we implement it in an object-oriented style. Throughout this book
  1771. we define many interpreters, one for each language that we
  1772. study. Because each language builds on the prior one, there is a lot
  1773. of commonality between these interpreters. We want to write down the
  1774. common parts just once instead of many times. A naive interpreter for
  1775. \LangVar{} would handle the \racket{cases for variables and
  1776. \code{let}} \python{case for variables} but dispatch to an
  1777. interpreter for \LangInt{} in the rest of the cases. The following
  1778. code sketches this idea. (We explain the \code{env} parameter in
  1779. section~\ref{sec:interp-Lvar}.)
  1780. \begin{center}
  1781. {\if\edition\racketEd
  1782. \begin{minipage}{0.45\textwidth}
  1783. \begin{lstlisting}
  1784. (define ((interp_Lint env) e)
  1785. (match e
  1786. [(Prim '- (list e1))
  1787. (fx- 0 ((interp_Lint env) e1))]
  1788. ...))
  1789. \end{lstlisting}
  1790. \end{minipage}
  1791. \begin{minipage}{0.45\textwidth}
  1792. \begin{lstlisting}
  1793. (define ((interp_Lvar env) e)
  1794. (match e
  1795. [(Var x)
  1796. (dict-ref env x)]
  1797. [(Let x e body)
  1798. (define v ((interp_Lvar env) e))
  1799. (define env^ (dict-set env x v))
  1800. ((interp_Lvar env^) body)]
  1801. [else ((interp_Lint env) e)]))
  1802. \end{lstlisting}
  1803. \end{minipage}
  1804. \fi}
  1805. {\if\edition\pythonEd\pythonColor
  1806. \begin{minipage}{0.45\textwidth}
  1807. \begin{lstlisting}
  1808. def interp_Lint(e, env):
  1809. match e:
  1810. case UnaryOp(USub(), e1):
  1811. return - interp_Lint(e1, env)
  1812. ...
  1813. \end{lstlisting}
  1814. \end{minipage}
  1815. \begin{minipage}{0.45\textwidth}
  1816. \begin{lstlisting}
  1817. def interp_Lvar(e, env):
  1818. match e:
  1819. case Name(id):
  1820. return env[id]
  1821. case _:
  1822. return interp_Lint(e, env)
  1823. \end{lstlisting}
  1824. \end{minipage}
  1825. \fi}
  1826. \end{center}
  1827. The problem with this naive approach is that it does not handle
  1828. situations in which an \LangVar{} feature, such as a variable, is
  1829. nested inside an \LangInt{} feature, such as the \code{-} operator, as
  1830. in the following program.
  1831. {\if\edition\racketEd
  1832. \begin{lstlisting}
  1833. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1834. \end{lstlisting}
  1835. \fi}
  1836. {\if\edition\pythonEd\pythonColor
  1837. \begin{minipage}{0.96\textwidth}
  1838. \begin{lstlisting}
  1839. y = 10
  1840. print(-y)
  1841. \end{lstlisting}
  1842. \end{minipage}
  1843. \fi}
  1844. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1845. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1846. then it recursively calls \code{interp\_Lint} again on its argument.
  1847. Because there is no case for \code{Var} in \code{interp\_Lint}, we get
  1848. an error!
  1849. To make our interpreters extensible we need something called
  1850. \emph{open recursion}\index{subject}{open recursion}, in which the
  1851. tying of the recursive knot is delayed until the functions are
  1852. composed. Object-oriented languages provide open recursion via method
  1853. overriding. The following code uses
  1854. method overriding to interpret \LangInt{} and \LangVar{} using
  1855. %
  1856. \racket{the
  1857. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1858. \index{subject}{class} feature of Racket.}
  1859. %
  1860. \python{a Python \code{class} definition.}
  1861. %
  1862. We define one class for each language and define a method for
  1863. interpreting expressions inside each class. The class for \LangVar{}
  1864. inherits from the class for \LangInt{}, and the method
  1865. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1866. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1867. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1868. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1869. \code{interp\_exp} in \LangInt{}.
  1870. \begin{center}
  1871. \hspace{-20pt}
  1872. {\if\edition\racketEd
  1873. \begin{minipage}{0.45\textwidth}
  1874. \begin{lstlisting}
  1875. (define interp-Lint-class
  1876. (class object%
  1877. (define/public ((interp_exp env) e)
  1878. (match e
  1879. [(Prim '- (list e))
  1880. (fx- 0 ((interp_exp env) e))]
  1881. ...))
  1882. ...))
  1883. \end{lstlisting}
  1884. \end{minipage}
  1885. \begin{minipage}{0.45\textwidth}
  1886. \begin{lstlisting}
  1887. (define interp-Lvar-class
  1888. (class interp-Lint-class
  1889. (define/override ((interp_exp env) e)
  1890. (match e
  1891. [(Var x)
  1892. (dict-ref env x)]
  1893. [(Let x e body)
  1894. (define v ((interp_exp env) e))
  1895. (define env^ (dict-set env x v))
  1896. ((interp_exp env^) body)]
  1897. [else
  1898. (super (interp_exp env) e)]))
  1899. ...
  1900. ))
  1901. \end{lstlisting}
  1902. \end{minipage}
  1903. \fi}
  1904. {\if\edition\pythonEd\pythonColor
  1905. \begin{minipage}{0.45\textwidth}
  1906. \begin{lstlisting}
  1907. class InterpLint:
  1908. def interp_exp(e):
  1909. match e:
  1910. case UnaryOp(USub(), e1):
  1911. return -self.interp_exp(e1)
  1912. ...
  1913. ...
  1914. \end{lstlisting}
  1915. \end{minipage}
  1916. \begin{minipage}{0.45\textwidth}
  1917. \begin{lstlisting}
  1918. def InterpLvar(InterpLint):
  1919. def interp_exp(e):
  1920. match e:
  1921. case Name(id):
  1922. return env[id]
  1923. case _:
  1924. return super().interp_exp(e)
  1925. ...
  1926. \end{lstlisting}
  1927. \end{minipage}
  1928. \fi}
  1929. \end{center}
  1930. Getting back to the troublesome example, repeated here:
  1931. {\if\edition\racketEd
  1932. \begin{lstlisting}
  1933. (Let 'y (Int 10) (Prim '- (Var 'y)))
  1934. \end{lstlisting}
  1935. \fi}
  1936. {\if\edition\pythonEd\pythonColor
  1937. \begin{lstlisting}
  1938. y = 10
  1939. print(-y)
  1940. \end{lstlisting}
  1941. \fi}
  1942. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1943. \racket{on this expression,}
  1944. \python{on the \code{-y} expression,}%
  1945. %
  1946. which we call \code{e0}, by creating an object of the \LangVar{} class
  1947. and calling the \code{interp\_exp} method
  1948. {\if\edition\racketEd
  1949. \begin{lstlisting}
  1950. ((send (new interp-Lvar-class) interp_exp '()) e0)
  1951. \end{lstlisting}
  1952. \fi}
  1953. {\if\edition\pythonEd\pythonColor
  1954. \begin{lstlisting}
  1955. InterpLvar().interp_exp(e0)
  1956. \end{lstlisting}
  1957. \fi}
  1958. \noindent To process the \code{-} operator, the default case of
  1959. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1960. method in \LangInt{}. But then for the recursive method call, it
  1961. dispatches to \code{interp\_exp} in \LangVar{}, where the
  1962. \code{Var} node is handled correctly. Thus, method overriding gives us
  1963. the open recursion that we need to implement our interpreters in an
  1964. extensible way.
  1965. \subsection{Definitional Interpreter for \LangVar{}}
  1966. \label{sec:interp-Lvar}
  1967. Having justified the use of classes and methods to implement
  1968. interpreters, we revisit the definitional interpreter for \LangInt{}
  1969. shown in figure~\ref{fig:interp-Lint-class} and then extend it to
  1970. create an interpreter for \LangVar{}, shown in
  1971. figure~\ref{fig:interp-Lvar}.
  1972. %
  1973. \python{We change the \code{interp\_stmt} method in the interpreter
  1974. for \LangInt{} to take two extra parameters named \code{env}, which
  1975. we discuss in the next paragraph, and \code{cont} for
  1976. \emph{continuation}, which is the technical name for what comes
  1977. after a particular point in a program. The \code{cont} parameter is
  1978. the list of statements that that follow the current statement. Note
  1979. that \code{interp\_stmts} invokes \code{interp\_stmt} on the first
  1980. statement and passes the rest of the statements as the argument for
  1981. \code{cont}. This organization enables each statement to decide what
  1982. if anything should be evaluated after it, for example, allowing a
  1983. \code{return} statement to exit early from a function (see
  1984. Chapter~\ref{ch:Lfun}).}
  1985. The interpreter for \LangVar{} adds two new cases for
  1986. variables and \racket{\key{let}}\python{assignment}. For
  1987. \racket{\key{let}}\python{assignment}, we need a way to communicate the
  1988. value bound to a variable to all the uses of the variable. To
  1989. accomplish this, we maintain a mapping from variables to values called
  1990. an \emph{environment}\index{subject}{environment}.
  1991. %
  1992. We use
  1993. %
  1994. \racket{an association list (alist) }%
  1995. %
  1996. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary} }%
  1997. %
  1998. to represent the environment.
  1999. %
  2000. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  2001. and the \code{racket/dict} package.}
  2002. %
  2003. The \code{interp\_exp} function takes the current environment,
  2004. \code{env}, as an extra parameter. When the interpreter encounters a
  2005. variable, it looks up the corresponding value in the environment. If
  2006. the variable is not in the environment (because the variable was not
  2007. defined) then the lookup will fail and the interpreter will
  2008. halt with an error. Recall that the compiler is not obligated to
  2009. compile such programs (Section~\ref{sec:interp_Lint}).\footnote{In
  2010. Chapter~\ref{ch:Lif} we introduce type checking rules that
  2011. prohibit access to undefined variables.}
  2012. %
  2013. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  2014. initializing expression, extends the environment with the result
  2015. value bound to the variable, using \code{dict-set}, then evaluates
  2016. the body of the \key{Let}.}
  2017. %
  2018. \python{When the interpreter encounters an assignment, it evaluates
  2019. the initializing expression and then associates the resulting value
  2020. with the variable in the environment.}
  2021. \begin{figure}[tp]
  2022. \begin{tcolorbox}[colback=white]
  2023. {\if\edition\racketEd
  2024. \begin{lstlisting}
  2025. (define interp-Lint-class
  2026. (class object%
  2027. (super-new)
  2028. (define/public ((interp_exp env) e)
  2029. (match e
  2030. [(Int n) n]
  2031. [(Prim 'read '())
  2032. (define r (read))
  2033. (cond [(fixnum? r) r]
  2034. [else (error 'interp_exp "expected an integer" r)])]
  2035. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  2036. [(Prim '+ (list e1 e2))
  2037. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]
  2038. [(Prim '- (list e1 e2))
  2039. (fx- ((interp_exp env) e1) ((interp_exp env) e2))]))
  2040. (define/public (interp_program p)
  2041. (match p
  2042. [(Program '() e) ((interp_exp '()) e)]))
  2043. ))
  2044. \end{lstlisting}
  2045. \fi}
  2046. {\if\edition\pythonEd\pythonColor
  2047. \begin{lstlisting}
  2048. class InterpLint:
  2049. def interp_exp(self, e, env):
  2050. match e:
  2051. case BinOp(left, Add(), right):
  2052. return self.interp_exp(left, env) + self.interp_exp(right, env)
  2053. case BinOp(left, Sub(), right):
  2054. return self.interp_exp(left, env) - self.interp_exp(right, env)
  2055. case UnaryOp(USub(), v):
  2056. return - self.interp_exp(v, env)
  2057. case Constant(value):
  2058. return value
  2059. case Call(Name('input_int'), []):
  2060. return int(input())
  2061. def interp_stmt(self, s, env, cont):
  2062. match s:
  2063. case Expr(Call(Name('print'), [arg])):
  2064. val = self.interp_exp(arg, env)
  2065. print(val, end='')
  2066. return self.interp_stmts(cont, env)
  2067. case Expr(value):
  2068. self.interp_exp(value, env)
  2069. return self.interp_stmts(cont, env)
  2070. case _:
  2071. raise Exception('error in interp_stmt, unexpected ' + repr(s))
  2072. def interp_stmts(self, ss, env):
  2073. match ss:
  2074. case []:
  2075. return 0
  2076. case [s, *ss]:
  2077. return self.interp_stmt(s, env, ss)
  2078. def interp(self, p):
  2079. match p:
  2080. case Module(body):
  2081. self.interp_stmts(body, {})
  2082. def interp_Lint(p):
  2083. return InterpLint().interp(p)
  2084. \end{lstlisting}
  2085. \fi}
  2086. \end{tcolorbox}
  2087. \caption{Interpreter for \LangInt{} as a class.}
  2088. \label{fig:interp-Lint-class}
  2089. \end{figure}
  2090. \begin{figure}[tp]
  2091. \begin{tcolorbox}[colback=white]
  2092. {\if\edition\racketEd
  2093. \begin{lstlisting}
  2094. (define interp-Lvar-class
  2095. (class interp-Lint-class
  2096. (super-new)
  2097. (define/override ((interp_exp env) e)
  2098. (match e
  2099. [(Var x) (dict-ref env x)]
  2100. [(Let x e body)
  2101. (define new-env (dict-set env x ((interp_exp env) e)))
  2102. ((interp_exp new-env) body)]
  2103. [else ((super interp_exp env) e)]))
  2104. ))
  2105. (define (interp_Lvar p)
  2106. (send (new interp-Lvar-class) interp_program p))
  2107. \end{lstlisting}
  2108. \fi}
  2109. {\if\edition\pythonEd\pythonColor
  2110. \begin{lstlisting}
  2111. class InterpLvar(InterpLint):
  2112. def interp_exp(self, e, env):
  2113. match e:
  2114. case Name(id):
  2115. return env[id]
  2116. case _:
  2117. return super().interp_exp(e, env)
  2118. def interp_stmt(self, s, env, cont):
  2119. match s:
  2120. case Assign([lhs], value):
  2121. env[lhs.id] = self.interp_exp(value, env)
  2122. return self.interp_stmts(cont, env)
  2123. case _:
  2124. return super().interp_stmt(s, env, cont)
  2125. def interp_Lvar(p):
  2126. return InterpLvar().interp(p)
  2127. \end{lstlisting}
  2128. \fi}
  2129. \end{tcolorbox}
  2130. \caption{Interpreter for the \LangVar{} language.}
  2131. \label{fig:interp-Lvar}
  2132. \end{figure}
  2133. {\if\edition\racketEd
  2134. \begin{figure}[tp]
  2135. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  2136. \small
  2137. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  2138. An \emph{association list} (called an alist) is a list of key-value pairs.
  2139. For example, we can map people to their ages with an alist
  2140. \index{subject}{alist}\index{subject}{association list}
  2141. \begin{lstlisting}[basicstyle=\ttfamily]
  2142. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  2143. \end{lstlisting}
  2144. The \emph{dictionary} interface is for mapping keys to values.
  2145. Every alist implements this interface. \index{subject}{dictionary}
  2146. The package
  2147. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  2148. provides many functions for working with dictionaries, such as
  2149. \begin{description}
  2150. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  2151. returns the value associated with the given $\itm{key}$.
  2152. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  2153. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  2154. and otherwise is the same as $\itm{dict}$.
  2155. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  2156. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  2157. of keys and values in $\itm{dict}$. For example, the following
  2158. creates a new alist in which the ages are incremented:
  2159. \end{description}
  2160. \vspace{-10pt}
  2161. \begin{lstlisting}[basicstyle=\ttfamily]
  2162. (for/list ([(k v) (in-dict ages)])
  2163. (cons k (add1 v)))
  2164. \end{lstlisting}
  2165. \end{tcolorbox}
  2166. %\end{wrapfigure}
  2167. \caption{Association lists implement the dictionary interface.}
  2168. \label{fig:alist}
  2169. \end{figure}
  2170. \fi}
  2171. The goal for this chapter is to implement a compiler that translates
  2172. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  2173. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  2174. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  2175. That is, they output the same integer $n$. We depict this correctness
  2176. criteria in the following diagram:
  2177. \[
  2178. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2179. \node (p1) at (0, 0) {$P_1$};
  2180. \node (p2) at (4, 0) {$P_2$};
  2181. \node (o) at (4, -2) {$n$};
  2182. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  2183. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  2184. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  2185. \end{tikzpicture}
  2186. \]
  2187. Next we introduce the \LangXInt{} subset of x86 that suffices for
  2188. compiling \LangVar{}.
  2189. \section{The \LangXInt{} Assembly Language}
  2190. \label{sec:x86}
  2191. \index{subject}{x86}
  2192. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  2193. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  2194. assembler.
  2195. %
  2196. A program begins with a \code{main} label followed by a sequence of
  2197. instructions. The \key{globl} directive makes the \key{main} procedure
  2198. externally visible so that the operating system can call it.
  2199. %
  2200. An x86 program is stored in the computer's memory. For our purposes,
  2201. the computer's memory is a mapping of 64-bit addresses to 64-bit
  2202. values. The computer has a \emph{program counter}
  2203. (PC)\index{subject}{program counter}\index{subject}{PC} stored in the
  2204. \code{rip} register that points to the address of the next instruction
  2205. to be executed. For most instructions, the program counter is
  2206. incremented after the instruction is executed so that it points to the
  2207. next instruction in memory. Most x86 instructions take two operands,
  2208. each of which is an integer constant (called an \emph{immediate
  2209. value}\index{subject}{immediate value}), a
  2210. \emph{register}\index{subject}{register}, or a memory location.
  2211. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2212. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2213. && \key{r8} \MID \key{r9} \MID \key{r10}
  2214. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2215. \MID \key{r14} \MID \key{r15}}
  2216. \newcommand{\GrammarXInt}{
  2217. \begin{array}{rcl}
  2218. \Reg &::=& \allregisters{} \\
  2219. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2220. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2221. \key{subq} \; \Arg\key{,} \Arg \MID
  2222. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2223. && \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID
  2224. \key{callq} \; \mathit{label} \MID
  2225. \key{retq} \MID
  2226. \key{jmp}\,\itm{label} \MID \\
  2227. && \itm{label}\key{:}\; \Instr
  2228. \end{array}
  2229. }
  2230. \begin{figure}[tp]
  2231. \begin{tcolorbox}[colback=white]
  2232. {\if\edition\racketEd
  2233. \[
  2234. \begin{array}{l}
  2235. \GrammarXInt \\
  2236. \begin{array}{lcl}
  2237. \LangXIntM{} &::= & \key{.globl main}\\
  2238. & & \key{main:} \; \Instr\ldots
  2239. \end{array}
  2240. \end{array}
  2241. \]
  2242. \fi}
  2243. {\if\edition\pythonEd\pythonColor
  2244. \[
  2245. \begin{array}{lcl}
  2246. \Reg &::=& \allregisters{} \\
  2247. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2248. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2249. \key{subq} \; \Arg\key{,} \Arg \MID
  2250. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2251. && \key{callq} \; \mathit{label} \MID
  2252. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2253. \LangXIntM{} &::= & \key{.globl main}\\
  2254. & & \key{main:} \; \Instr^{*}
  2255. \end{array}
  2256. \]
  2257. \fi}
  2258. \end{tcolorbox}
  2259. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2260. \label{fig:x86-int-concrete}
  2261. \end{figure}
  2262. A register is a special kind of variable that holds a 64-bit
  2263. value. There are 16 general-purpose registers in the computer; their
  2264. names are given in figure~\ref{fig:x86-int-concrete}. A register is
  2265. written with a percent sign, \key{\%}, followed by the register name,
  2266. for example \key{\%rax}.
  2267. An immediate value is written using the notation \key{\$}$n$ where $n$
  2268. is an integer.
  2269. %
  2270. %
  2271. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2272. which obtains the address stored in register $r$ and then adds $n$
  2273. bytes to the address. The resulting address is used to load or to store
  2274. to memory depending on whether it occurs as a source or destination
  2275. argument of an instruction.
  2276. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from
  2277. the source $s$ and destination $d$, applies the arithmetic operation,
  2278. and then writes the result to the destination $d$. \index{subject}{instruction}
  2279. %
  2280. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2281. stores the result in $d$.
  2282. %
  2283. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2284. specified by the label, and $\key{retq}$ returns from a procedure to
  2285. its caller.
  2286. %
  2287. We discuss procedure calls in more detail further in this chapter and
  2288. in chapter~\ref{ch:Lfun}.
  2289. %
  2290. The last letter \key{q} indicates that these instructions operate on
  2291. quadwords, which are 64-bit values.
  2292. %
  2293. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2294. counter to the address of the instruction immediately after the
  2295. specified label.}
  2296. Appendix~\ref{sec:x86-quick-reference} contains a quick reference for
  2297. all the x86 instructions used in this book.
  2298. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2299. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2300. \lstinline{movq $10, %rax}
  2301. puts $10$ into register \key{rax}, and then \lstinline{addq $32, %rax}
  2302. adds $32$ to the $10$ in \key{rax} and
  2303. puts the result, $42$, into \key{rax}.
  2304. %
  2305. The last instruction \key{retq} finishes the \key{main} function by
  2306. returning the integer in \key{rax} to the operating system. The
  2307. operating system interprets this integer as the program's exit
  2308. code. By convention, an exit code of 0 indicates that a program has
  2309. completed successfully, and all other exit codes indicate various
  2310. errors.
  2311. %
  2312. \racket{However, in this book we return the result of the program
  2313. as the exit code.}
  2314. \begin{figure}[tbp]
  2315. \begin{minipage}{0.45\textwidth}
  2316. \begin{tcolorbox}[colback=white]
  2317. \begin{lstlisting}
  2318. .globl main
  2319. main:
  2320. movq $10, %rax
  2321. addq $32, %rax
  2322. retq
  2323. \end{lstlisting}
  2324. \end{tcolorbox}
  2325. \end{minipage}
  2326. \caption{An x86 program that computes
  2327. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2328. \label{fig:p0-x86}
  2329. \end{figure}
  2330. We exhibit the use of memory for storing intermediate results in the
  2331. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2332. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2333. uses a region of memory called the \emph{procedure call stack}
  2334. (\emph{stack} for
  2335. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2336. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2337. for each procedure call. The memory layout for an individual frame is
  2338. shown in figure~\ref{fig:frame}. The register \key{rsp} is called the
  2339. \emph{stack pointer}\index{subject}{stack pointer} and contains the
  2340. address of the item at the top of the stack. In general, we use the
  2341. term \emph{pointer}\index{subject}{pointer} for something that
  2342. contains an address. The stack grows downward in memory, so we
  2343. increase the size of the stack by subtracting from the stack pointer.
  2344. In the context of a procedure call, the \emph{return
  2345. address}\index{subject}{return address} is the location of the
  2346. instruction that immediately follows the call instruction on the
  2347. caller side. The function call instruction, \code{callq}, pushes the
  2348. return address onto the stack prior to jumping to the procedure. The
  2349. register \key{rbp} is the \emph{base pointer}\index{subject}{base
  2350. pointer} and is used to access variables that are stored in the
  2351. frame of the current procedure call. The base pointer of the caller
  2352. is stored immediately after the return address.
  2353. Figure~\ref{fig:frame} shows the memory layout of a frame with storage
  2354. for $n$ variables, which are numbered from $1$ to $n$. Variable $1$ is
  2355. stored at address $-8\key{(\%rbp)}$, variable $2$ at
  2356. $-16\key{(\%rbp)}$, and so on.
  2357. \begin{figure}[tbp]
  2358. \begin{minipage}{0.66\textwidth}
  2359. \begin{tcolorbox}[colback=white]
  2360. {\if\edition\racketEd
  2361. \begin{lstlisting}
  2362. start:
  2363. movq $10, -8(%rbp)
  2364. negq -8(%rbp)
  2365. movq -8(%rbp), %rax
  2366. addq $52, %rax
  2367. jmp conclusion
  2368. .globl main
  2369. main:
  2370. pushq %rbp
  2371. movq %rsp, %rbp
  2372. subq $16, %rsp
  2373. jmp start
  2374. conclusion:
  2375. addq $16, %rsp
  2376. popq %rbp
  2377. retq
  2378. \end{lstlisting}
  2379. \fi}
  2380. {\if\edition\pythonEd\pythonColor
  2381. \begin{lstlisting}
  2382. .globl main
  2383. main:
  2384. pushq %rbp
  2385. movq %rsp, %rbp
  2386. subq $16, %rsp
  2387. movq $10, -8(%rbp)
  2388. negq -8(%rbp)
  2389. movq -8(%rbp), %rax
  2390. addq $52, %rax
  2391. addq $16, %rsp
  2392. popq %rbp
  2393. retq
  2394. \end{lstlisting}
  2395. \fi}
  2396. \end{tcolorbox}
  2397. \end{minipage}
  2398. \caption{An x86 program that computes
  2399. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2400. \label{fig:p1-x86}
  2401. \end{figure}
  2402. \begin{figure}[tbp]
  2403. \begin{minipage}{0.66\textwidth}
  2404. \begin{tcolorbox}[colback=white]
  2405. \centering
  2406. \begin{tabular}{|r|l|} \hline
  2407. Position & Contents \\ \hline
  2408. $8$(\key{\%rbp}) & return address \\
  2409. $0$(\key{\%rbp}) & old \key{rbp} \\
  2410. $-8$(\key{\%rbp}) & variable $1$ \\
  2411. $-16$(\key{\%rbp}) & variable $2$ \\
  2412. \ldots & \ldots \\
  2413. $0$(\key{\%rsp}) & variable $n$\\ \hline
  2414. \end{tabular}
  2415. \end{tcolorbox}
  2416. \end{minipage}
  2417. \caption{Memory layout of a frame.}
  2418. \label{fig:frame}
  2419. \end{figure}
  2420. In the program shown in figure~\ref{fig:p1-x86}, consider how control
  2421. is transferred from the operating system to the \code{main} function.
  2422. The operating system issues a \code{callq main} instruction that
  2423. pushes its return address on the stack and then jumps to
  2424. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2425. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2426. that when control arrives at \code{main}, the \code{rsp} is 8 bytes
  2427. out of alignment (because the \code{callq} pushed the return address).
  2428. The first three instructions are the typical
  2429. \emph{prelude}\index{subject}{prelude} for a procedure. The
  2430. instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2431. pointer \code{rsp} and then saves the base pointer of the caller at
  2432. address \code{rsp} on the stack. The next instruction \code{movq
  2433. \%rsp, \%rbp} sets the base pointer to the current stack pointer,
  2434. which is pointing to the location of the old base pointer. The
  2435. instruction \code{subq \$16, \%rsp} moves the stack pointer down to
  2436. make enough room for storing variables. This program needs one
  2437. variable ($8$ bytes), but we round up to 16 bytes so that \code{rsp} is
  2438. 16-byte-aligned, and then we are ready to make calls to other functions.
  2439. \racket{The last instruction of the prelude is \code{jmp start}, which
  2440. transfers control to the instructions that were generated from the
  2441. expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2442. \racket{The first instruction under the \code{start} label is}
  2443. %
  2444. \python{The first instruction after the prelude is}
  2445. %
  2446. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2447. %
  2448. The instruction \code{negq -8(\%rbp)} changes the contents of variable
  2449. $1$ to $-10$.
  2450. %
  2451. The next instruction moves the $-10$ from variable $1$ into the
  2452. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2453. the value in \code{rax}, updating its contents to $42$.
  2454. \racket{The three instructions under the label \code{conclusion} are the
  2455. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2456. %
  2457. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2458. \code{main} function consists of the last three instructions.}
  2459. %
  2460. The first two restore the \code{rsp} and \code{rbp} registers to their
  2461. states at the beginning of the procedure. In particular,
  2462. \key{addq \$16, \%rsp} moves the stack pointer to point to the
  2463. old base pointer. Then \key{popq \%rbp} restores the old base pointer
  2464. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2465. \key{retq}, jumps back to the procedure that called this one and adds
  2466. $8$ to the stack pointer.
  2467. Our compiler needs a convenient representation for manipulating x86
  2468. programs, so we define an abstract syntax for x86, shown in
  2469. figure~\ref{fig:x86-int-ast}. We refer to this language as
  2470. \LangXInt{}.
  2471. %
  2472. {\if\edition\pythonEd\pythonColor%
  2473. The main difference between this and the concrete syntax of \LangXInt{}
  2474. (figure~\ref{fig:x86-int-concrete}) is that labels, instruction
  2475. names, and register names are explicitly represented by strings.
  2476. \fi} %
  2477. {\if\edition\racketEd
  2478. The main difference between this and the concrete syntax of \LangXInt{}
  2479. (figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2480. front of every instruction. Instead instructions are grouped into
  2481. \emph{basic blocks}\index{subject}{basic block} with a
  2482. label associated with every basic block; this is why the \key{X86Program}
  2483. struct includes an alist mapping labels to basic blocks. The reason for this
  2484. organization becomes apparent in chapter~\ref{ch:Lif} when we
  2485. introduce conditional branching. The \code{Block} structure includes
  2486. an $\itm{info}$ field that is not needed in this chapter but becomes
  2487. useful in chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2488. $\itm{info}$ field should contain an empty list.
  2489. \fi}
  2490. %
  2491. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2492. node includes an integer for representing the arity of the function,
  2493. that is, the number of arguments, which is helpful to know during
  2494. register allocation (chapter~\ref{ch:register-allocation-Lvar}).
  2495. \newcommand{\allastregisters}{\skey{rsp} \MID \skey{rbp} \MID \skey{rax} \MID \skey{rbx} \MID \skey{rcx}
  2496. \MID \skey{rdx} \MID \skey{rsi} \MID \skey{rdi} \MID \\
  2497. && \skey{r8} \MID \skey{r9} \MID \skey{r10}
  2498. \MID \skey{r11} \MID \skey{r12} \MID \skey{r13}
  2499. \MID \skey{r14} \MID \skey{r15}}
  2500. \newcommand{\ASTXIntRacket}{
  2501. \begin{array}{lcl}
  2502. \Reg &::=& \allregisters{} \\
  2503. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2504. \MID \DEREF{\Reg}{\Int} \\
  2505. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2506. \MID \BININSTR{\code{subq}}{\Arg}{\Arg}\\
  2507. &\MID& \UNIINSTR{\code{negq}}{\Arg}
  2508. \MID \BININSTR{\code{movq}}{\Arg}{\Arg}\\
  2509. &\MID& \PUSHQ{\Arg}
  2510. \MID \POPQ{\Arg} \\
  2511. &\MID& \CALLQ{\itm{label}}{\itm{int}}
  2512. \MID \RETQ{}
  2513. \MID \JMP{\itm{label}} \\
  2514. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}
  2515. \end{array}
  2516. }
  2517. \begin{figure}[tp]
  2518. \begin{tcolorbox}[colback=white]
  2519. \small
  2520. {\if\edition\racketEd
  2521. \[\arraycolsep=3pt
  2522. \begin{array}{l}
  2523. \ASTXIntRacket \\
  2524. \begin{array}{lcl}
  2525. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2526. \end{array}
  2527. \end{array}
  2528. \]
  2529. \fi}
  2530. {\if\edition\pythonEd\pythonColor
  2531. \[
  2532. \begin{array}{lcl}
  2533. \Reg &::=& \allastregisters{} \\
  2534. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2535. \MID \DEREF{\Reg}{\Int} \\
  2536. \Instr &::=& \BININSTR{\scode{addq}}{\Arg}{\Arg}
  2537. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} \\
  2538. &\MID& \BININSTR{\scode{movq}}{\Arg}{\Arg}
  2539. \MID \UNIINSTR{\scode{negq}}{\Arg}\\
  2540. &\MID& \PUSHQ{\Arg} \MID \POPQ{\Arg} \\
  2541. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{} \MID \JMP{\itm{label}} \\
  2542. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2543. \end{array}
  2544. \]
  2545. \fi}
  2546. \end{tcolorbox}
  2547. \caption{The abstract syntax of \LangXInt{} assembly.}
  2548. \label{fig:x86-int-ast}
  2549. \end{figure}
  2550. \section{Planning the Trip to x86}
  2551. \label{sec:plan-s0-x86}
  2552. To compile one language to another, it helps to focus on the
  2553. differences between the two languages because the compiler will need
  2554. to bridge those differences. What are the differences between \LangVar{}
  2555. and x86 assembly? Here are some of the most important ones:
  2556. \begin{enumerate}
  2557. \item x86 arithmetic instructions typically have two arguments and
  2558. update the second argument in place. In contrast, \LangVar{}
  2559. arithmetic operations take two arguments and produce a new value.
  2560. An x86 instruction may have at most one memory-accessing argument.
  2561. Furthermore, some x86 instructions place special restrictions on
  2562. their arguments.
  2563. \item An argument of an \LangVar{} operator can be a deeply nested
  2564. expression, whereas x86 instructions restrict their arguments to be
  2565. integer constants, registers, and memory locations.
  2566. {\if\edition\racketEd
  2567. \item The order of execution in x86 is explicit in the syntax, which
  2568. is a sequence of instructions and jumps to labeled positions,
  2569. whereas in \LangVar{} the order of evaluation is a left-to-right
  2570. depth-first traversal of the abstract syntax tree. \fi}
  2571. \item A program in \LangVar{} can have any number of variables,
  2572. whereas x86 has 16 registers and the procedure call stack.
  2573. {\if\edition\racketEd
  2574. \item Variables in \LangVar{} can shadow other variables with the
  2575. same name. In x86, registers have unique names, and memory locations
  2576. have unique addresses.
  2577. \fi}
  2578. \end{enumerate}
  2579. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2580. down the problem into several steps, which deal with these differences
  2581. one at a time. Each of these steps is called a \emph{pass} of the
  2582. compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2583. %
  2584. This term indicates that each step passes over, or traverses, the AST
  2585. of the program.
  2586. %
  2587. Furthermore, we follow the nanopass approach, which means that we
  2588. strive for each pass to accomplish one clear objective rather than two
  2589. or three at the same time.
  2590. %
  2591. We begin by sketching how we might implement each pass and give each
  2592. pass a name. We then figure out an ordering of the passes and the
  2593. input/output language for each pass. The very first pass has
  2594. \LangVar{} as its input language, and the last pass has \LangXInt{} as
  2595. its output language. In between these two passes, we can choose
  2596. whichever language is most convenient for expressing the output of
  2597. each pass, whether that be \LangVar{}, \LangXInt{}, or a new
  2598. \emph{intermediate language} of our own design. Finally, to
  2599. implement each pass we write one recursive function per nonterminal in
  2600. the grammar of the input language of the pass.
  2601. \index{subject}{intermediate language}
  2602. Our compiler for \LangVar{} consists of the following passes:
  2603. %
  2604. \begin{description}
  2605. {\if\edition\racketEd
  2606. \item[\key{uniquify}] deals with the shadowing of variables by
  2607. renaming every variable to a unique name.
  2608. \fi}
  2609. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2610. of a primitive operation or function call is a variable or integer,
  2611. that is, an \emph{atomic} expression. We refer to nonatomic
  2612. expressions as \emph{complex}. This pass introduces temporary
  2613. variables to hold the results of complex
  2614. subexpressions.\index{subject}{atomic
  2615. expression}\index{subject}{complex expression}%
  2616. {\if\edition\racketEd
  2617. \item[\key{explicate\_control}] makes the execution order of the
  2618. program explicit. It converts the abstract syntax tree
  2619. representation into a graph in which each node is a labeled sequence
  2620. of statements and the edges are \code{goto} statements.
  2621. \fi}
  2622. \item[\key{select\_instructions}]\index{subject}{select instructions}
  2623. handles the difference between
  2624. \LangVar{} operations and x86 instructions. This pass converts each
  2625. \LangVar{} operation to a short sequence of instructions that
  2626. accomplishes the same task.
  2627. \item[\key{assign\_homes}] replaces variables with registers or stack
  2628. locations.
  2629. \end{description}
  2630. %
  2631. {\if\edition\racketEd
  2632. %
  2633. Our treatment of \code{remove\_complex\_operands} and
  2634. \code{explicate\_control} as separate passes is an example of the
  2635. nanopass approach.\footnote{For analogous decompositions of the
  2636. translation into continuation passing style, see the work of
  2637. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.} The traditional
  2638. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2639. %
  2640. \fi}
  2641. The next question is, in what order should we apply these passes? This
  2642. question can be challenging because it is difficult to know ahead of
  2643. time which orderings will be better (that is, will be easier to
  2644. implement, produce more efficient code, and so on), and therefore
  2645. ordering often involves trial and error. Nevertheless, we can plan
  2646. ahead and make educated choices regarding the ordering.
  2647. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2648. \key{uniquify}? The \key{uniquify} pass should come first because
  2649. \key{explicate\_control} changes all the \key{let}-bound variables to
  2650. become local variables whose scope is the entire program, which would
  2651. confuse variables with the same name.}
  2652. %
  2653. \racket{We place \key{remove\_complex\_operands} before \key{explicate\_control}
  2654. because the later removes the \key{let} form, but it is convenient to
  2655. use \key{let} in the output of \key{remove\_complex\_operands}.}
  2656. %
  2657. \racket{The ordering of \key{uniquify} with respect to
  2658. \key{remove\_complex\_operands} does not matter, so we arbitrarily choose
  2659. \key{uniquify} to come first.}
  2660. The \key{select\_instructions} and \key{assign\_homes} passes are
  2661. intertwined.
  2662. %
  2663. In chapter~\ref{ch:Lfun} we learn that in x86, registers are used for
  2664. passing arguments to functions and that it is preferable to assign
  2665. parameters to their corresponding registers. This suggests that it
  2666. would be better to start with the \key{select\_instructions} pass,
  2667. which generates the instructions for argument passing, before
  2668. performing register allocation.
  2669. %
  2670. On the other hand, by selecting instructions first we may run into a
  2671. dead end in \key{assign\_homes}. Recall that only one argument of an
  2672. x86 instruction may be a memory access, but \key{assign\_homes} might
  2673. be forced to assign both arguments to memory locations.
  2674. %
  2675. A sophisticated approach is to repeat the two passes until a solution
  2676. is found. However, to reduce implementation complexity we recommend
  2677. placing \key{select\_instructions} first, followed by the
  2678. \key{assign\_homes}, and then a third pass named \key{patch\_instructions}
  2679. that uses a reserved register to fix outstanding problems.
  2680. \begin{figure}[tbp]
  2681. \begin{tcolorbox}[colback=white]
  2682. {\if\edition\racketEd
  2683. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  2684. \node (Lvar) at (0,2) {\large \LangVar{}};
  2685. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2686. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  2687. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2688. \node (Cvar-2) at (0,0) {\large \LangCVar{}};
  2689. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  2690. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  2691. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  2692. \node (x86-5) at (11,-2) {\large \LangXInt{}};
  2693. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2694. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  2695. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize\ \ explicate\_control} (Cvar-2);
  2696. \path[->,bend right=15] (Cvar-2) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  2697. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2698. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  2699. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  2700. \end{tikzpicture}
  2701. \fi}
  2702. {\if\edition\pythonEd\pythonColor
  2703. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  2704. \node (Lvar) at (0,2) {\large \LangVar{}};
  2705. \node (Lvar-2) at (4,2) {\large \LangVarANF{}};
  2706. \node (x86-1) at (0,0) {\large \LangXVar{}};
  2707. \node (x86-2) at (4,0) {\large \LangXVar{}};
  2708. \node (x86-3) at (8,0) {\large \LangXInt{}};
  2709. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2710. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-2);
  2711. \path[->,bend left=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instructions\ \ } (x86-1);
  2712. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2713. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  2714. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  2715. \end{tikzpicture}
  2716. \fi}
  2717. \end{tcolorbox}
  2718. \caption{Diagram of the passes for compiling \LangVar{}. }
  2719. \label{fig:Lvar-passes}
  2720. \end{figure}
  2721. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2722. passes and identifies the input and output language of each pass.
  2723. %
  2724. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2725. language, which extends \LangXInt{} with an unbounded number of
  2726. program-scope variables and removes the restrictions regarding
  2727. instruction arguments.
  2728. %
  2729. The last pass, \key{prelude\_and\_conclusion}, places the program
  2730. instructions inside a \code{main} function with instructions for the
  2731. prelude and conclusion.
  2732. %
  2733. \racket{In the next section we discuss the \LangCVar{} intermediate
  2734. language that serves as the output of \code{explicate\_control}.}
  2735. %
  2736. The remainder of this chapter provides guidance on the implementation
  2737. of each of the compiler passes represented in
  2738. figure~\ref{fig:Lvar-passes}.
  2739. %% The output of \key{uniquify} and \key{remove-complex-operands}
  2740. %% are programs that are still in the \LangVar{} language, though the
  2741. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2742. %% (section~\ref{sec:remove-complex-opera-Lvar}).
  2743. %% %
  2744. %% The output of \code{explicate\_control} is in an intermediate language
  2745. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2746. %% syntax, which we introduce in the next section. The
  2747. %% \key{select-instruction} pass translates from \LangCVar{} to
  2748. %% \LangXVar{}. The \key{assign-homes} and
  2749. %% \key{patch-instructions}
  2750. %% passes input and output variants of x86 assembly.
  2751. \newcommand{\CvarGrammarRacket}{
  2752. \begin{array}{lcl}
  2753. \Atm &::=& \Int \MID \Var \\
  2754. \Exp &::=& \Atm \MID \CREAD{} \MID \CNEG{\Atm} \MID \CADD{\Atm}{\Atm} \MID \CSUB{\Atm}{\Atm}\\
  2755. \Stmt &::=& \CASSIGN{\Var}{\Exp} \\
  2756. \Tail &::= & \CRETURN{\Exp} \MID \Stmt~\Tail
  2757. \end{array}
  2758. }
  2759. \newcommand{\CvarASTRacket}{
  2760. \begin{array}{lcl}
  2761. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2762. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2763. &\MID& \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm}\\
  2764. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2765. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  2766. \end{array}
  2767. }
  2768. {\if\edition\racketEd
  2769. \subsection{The \LangCVar{} Intermediate Language}
  2770. The output of \code{explicate\_control} is similar to the C
  2771. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2772. categories for expressions and statements, so we name it \LangCVar{}.
  2773. This style of intermediate language is also known as
  2774. \emph{three-address code}, to emphasize that the typical form of a
  2775. statement such as \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2776. addresses: \code{x}, \code{y}, and \code{z}~\citep{Aho:2006wb}.
  2777. The concrete syntax for \LangCVar{} is shown in
  2778. figure~\ref{fig:c0-concrete-syntax}, and the abstract syntax for
  2779. \LangCVar{} is shown in figure~\ref{fig:c0-syntax}.
  2780. %
  2781. The \LangCVar{} language supports the same operators as \LangVar{} but
  2782. the arguments of operators are restricted to atomic
  2783. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2784. assignment statements that can be executed in sequence using the
  2785. \key{Seq} form. A sequence of statements always ends with
  2786. \key{Return}, a guarantee that is baked into the grammar rules for
  2787. \itm{tail}. The naming of this nonterminal comes from the term
  2788. \emph{tail position}\index{subject}{tail position}, which refers to an
  2789. expression that is the last one to execute within a function or
  2790. program.
  2791. A \LangCVar{} program consists of an alist mapping labels to
  2792. tails. This is more general than necessary for the present chapter, as
  2793. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2794. us from having to change the syntax in chapter~\ref{ch:Lif}. For now
  2795. there is just one label, \key{start}, and the whole program is
  2796. its tail.
  2797. %
  2798. The $\itm{info}$ field of the \key{CProgram} form, after the
  2799. \code{explicate\_control} pass, contains an alist that associates the
  2800. symbol \key{locals} with a list of all the variables used in the
  2801. program. At the start of the program, these variables are
  2802. uninitialized; they become initialized on their first assignment.
  2803. \begin{figure}[tbp]
  2804. \begin{tcolorbox}[colback=white]
  2805. \[
  2806. \begin{array}{l}
  2807. \CvarGrammarRacket \\
  2808. \begin{array}{lcl}
  2809. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2810. \end{array}
  2811. \end{array}
  2812. \]
  2813. \end{tcolorbox}
  2814. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2815. \label{fig:c0-concrete-syntax}
  2816. \end{figure}
  2817. \begin{figure}[tbp]
  2818. \begin{tcolorbox}[colback=white]
  2819. \[
  2820. \begin{array}{l}
  2821. \CvarASTRacket \\
  2822. \begin{array}{lcl}
  2823. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2824. \end{array}
  2825. \end{array}
  2826. \]
  2827. \end{tcolorbox}
  2828. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2829. \label{fig:c0-syntax}
  2830. \end{figure}
  2831. The definitional interpreter for \LangCVar{} is in the support code,
  2832. in the file \code{interp-Cvar.rkt}.
  2833. \fi}
  2834. {\if\edition\racketEd
  2835. \section{Uniquify Variables}
  2836. \label{sec:uniquify-Lvar}
  2837. The \code{uniquify} pass replaces the variable bound by each \key{let}
  2838. with a unique name. Both the input and output of the \code{uniquify}
  2839. pass is the \LangVar{} language. For example, the \code{uniquify} pass
  2840. should translate the program on the left into the program on the
  2841. right.
  2842. \begin{transformation}
  2843. \begin{lstlisting}
  2844. (let ([x 32])
  2845. (+ (let ([x 10]) x) x))
  2846. \end{lstlisting}
  2847. \compilesto
  2848. \begin{lstlisting}
  2849. (let ([x.1 32])
  2850. (+ (let ([x.2 10]) x.2) x.1))
  2851. \end{lstlisting}
  2852. \end{transformation}
  2853. The following is another example translation, this time of a program
  2854. with a \key{let} nested inside the initializing expression of another
  2855. \key{let}.
  2856. \begin{transformation}
  2857. \begin{lstlisting}
  2858. (let ([x (let ([x 4])
  2859. (+ x 1))])
  2860. (+ x 2))
  2861. \end{lstlisting}
  2862. \compilesto
  2863. \begin{lstlisting}
  2864. (let ([x.2 (let ([x.1 4])
  2865. (+ x.1 1))])
  2866. (+ x.2 2))
  2867. \end{lstlisting}
  2868. \end{transformation}
  2869. We recommend implementing \code{uniquify} by creating a structurally
  2870. recursive function named \code{uniquify\_exp} that does little other
  2871. than copy an expression. However, when encountering a \key{let}, it
  2872. should generate a unique name for the variable and associate the old
  2873. name with the new name in an alist.\footnote{The Racket function
  2874. \code{gensym} is handy for generating unique variable names.} The
  2875. \code{uniquify\_exp} function needs to access this alist when it gets
  2876. to a variable reference, so we add a parameter to \code{uniquify\_exp}
  2877. for the alist.
  2878. The skeleton of the \code{uniquify\_exp} function is shown in
  2879. figure~\ref{fig:uniquify-Lvar}.
  2880. %% The function is curried so that it is
  2881. %% convenient to partially apply it to an alist and then apply it to
  2882. %% different expressions, as in the last case for primitive operations in
  2883. %% figure~\ref{fig:uniquify-Lvar}.
  2884. The
  2885. %
  2886. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2887. %
  2888. form of Racket is useful for transforming the element of a list to
  2889. produce a new list.\index{subject}{for/list}
  2890. \begin{figure}[tbp]
  2891. \begin{tcolorbox}[colback=white]
  2892. \begin{lstlisting}
  2893. (define (uniquify_exp env)
  2894. (lambda (e)
  2895. (match e
  2896. [(Var x) ___]
  2897. [(Int n) (Int n)]
  2898. [(Let x e body) ___]
  2899. [(Prim op es)
  2900. (Prim op (for/list ([e es]) ((uniquify_exp env) e)))])))
  2901. (define (uniquify p)
  2902. (match p
  2903. [(Program '() e) (Program '() ((uniquify_exp '()) e))]))
  2904. \end{lstlisting}
  2905. \end{tcolorbox}
  2906. \caption{Skeleton for the \key{uniquify} pass.}
  2907. \label{fig:uniquify-Lvar}
  2908. \end{figure}
  2909. \begin{exercise}
  2910. \normalfont\normalsize % I don't like the italics for exercises. -Jeremy
  2911. Complete the \code{uniquify} pass by filling in the blanks in
  2912. figure~\ref{fig:uniquify-Lvar}; that is, implement the cases for
  2913. variables and for the \key{let} form in the file \code{compiler.rkt}
  2914. in the support code.
  2915. \end{exercise}
  2916. \begin{exercise}
  2917. \normalfont\normalsize
  2918. \label{ex:Lvar}
  2919. Create five \LangVar{} programs that exercise the most interesting
  2920. parts of the \key{uniquify} pass; that is, the programs should include
  2921. \key{let} forms, variables, and variables that shadow each other.
  2922. The five programs should be placed in the subdirectory named
  2923. \key{tests}, and the file names should start with \code{var\_test\_}
  2924. followed by a unique integer and end with the file extension
  2925. \key{.rkt}.
  2926. %
  2927. The \key{run-tests.rkt} script in the support code checks whether the
  2928. output programs produce the same result as the input programs. The
  2929. script uses the \key{interp-tests} function
  2930. (appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2931. your \key{uniquify} pass on the example programs. The \code{passes}
  2932. parameter of \key{interp-tests} is a list that should have one entry
  2933. for each pass in your compiler. For now, define \code{passes} to
  2934. contain just one entry for \code{uniquify} as follows:
  2935. \begin{lstlisting}
  2936. (define passes
  2937. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2938. \end{lstlisting}
  2939. Run the \key{run-tests.rkt} script in the support code to check
  2940. whether the output programs produce the same result as the input
  2941. programs.
  2942. \end{exercise}
  2943. \fi}
  2944. \section{Remove Complex Operands}
  2945. \label{sec:remove-complex-opera-Lvar}
  2946. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2947. into a restricted form in which the arguments of operations are atomic
  2948. expressions. Put another way, this pass removes complex
  2949. operands\index{subject}{complex operand}, such as the expression
  2950. \racket{\code{(- 10)}}\python{\code{-10}}
  2951. in the following program. This is accomplished by introducing a new
  2952. temporary variable, assigning the complex operand to the new
  2953. variable, and then using the new variable in place of the complex
  2954. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2955. right.
  2956. {\if\edition\racketEd
  2957. \begin{transformation}
  2958. % var_test_19.rkt
  2959. \begin{lstlisting}
  2960. (let ([x (+ 42 (- 10))])
  2961. (+ x 10))
  2962. \end{lstlisting}
  2963. \compilesto
  2964. \begin{lstlisting}
  2965. (let ([x (let ([tmp.1 (- 10)])
  2966. (+ 42 tmp.1))])
  2967. (+ x 10))
  2968. \end{lstlisting}
  2969. \end{transformation}
  2970. \fi}
  2971. {\if\edition\pythonEd\pythonColor
  2972. \begin{transformation}
  2973. \begin{lstlisting}
  2974. x = 42 + -10
  2975. print(x + 10)
  2976. \end{lstlisting}
  2977. \compilesto
  2978. \begin{lstlisting}
  2979. tmp_0 = -10
  2980. x = 42 + tmp_0
  2981. tmp_1 = x + 10
  2982. print(tmp_1)
  2983. \end{lstlisting}
  2984. \end{transformation}
  2985. \fi}
  2986. \newcommand{\LvarMonadASTRacket}{
  2987. \begin{array}{rcl}
  2988. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2989. \Exp &::=& \Atm \MID \READ{} \\
  2990. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \MID \SUB{\Atm}{\Atm} \\
  2991. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2992. \end{array}
  2993. }
  2994. \newcommand{\LvarMonadASTPython}{
  2995. \begin{array}{rcl}
  2996. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2997. \Exp{} &::=& \Atm \MID \READ{} \\
  2998. &\MID& \UNIOP{\itm{unaryop}}{\Atm} \MID \BINOP{\Atm}{\itm{binaryop}}{\Atm} \\
  2999. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  3000. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  3001. \end{array}
  3002. }
  3003. \begin{figure}[tp]
  3004. \centering
  3005. \begin{tcolorbox}[colback=white]
  3006. {\if\edition\racketEd
  3007. \[
  3008. \begin{array}{l}
  3009. \LvarMonadASTRacket \\
  3010. \begin{array}{rcl}
  3011. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  3012. \end{array}
  3013. \end{array}
  3014. \]
  3015. \fi}
  3016. {\if\edition\pythonEd\pythonColor
  3017. \[
  3018. \begin{array}{l}
  3019. \LvarMonadASTPython \\
  3020. \begin{array}{rcl}
  3021. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  3022. \end{array}
  3023. \end{array}
  3024. \]
  3025. \fi}
  3026. \end{tcolorbox}
  3027. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  3028. atomic expressions.}
  3029. \label{fig:Lvar-anf-syntax}
  3030. \end{figure}
  3031. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  3032. of this pass, the language \LangVarANF{}. The only difference is that
  3033. operator arguments are restricted to be atomic expressions that are
  3034. defined by the \Atm{} nonterminal. In particular, integer constants
  3035. and variables are atomic.
  3036. The atomic expressions are pure (they do not cause or depend on side
  3037. effects) whereas complex expressions may have side effects, such as
  3038. \READ{}. A language with this separation between pure expressions
  3039. versus expressions with side effects is said to be in monadic normal
  3040. form~\citep{Moggi:1991in,Danvy:2003fk}, which explains the \textit{mon}
  3041. in the name \LangVarANF{}. An important invariant of the
  3042. \code{remove\_complex\_operands} pass is that the relative ordering
  3043. among complex expressions is not changed, but the relative ordering
  3044. between atomic expressions and complex expressions can change and
  3045. often does. The reason that these changes are behavior preserving is
  3046. that the atomic expressions are pure.
  3047. {\if\edition\racketEd
  3048. Another well-known form for intermediate languages is the
  3049. \emph{administrative normal form}
  3050. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  3051. \index{subject}{administrative normal form} \index{subject}{ANF}
  3052. %
  3053. The \LangVarANF{} language is not quite in ANF because it allows the
  3054. right-hand side of a \code{let} to be a complex expression, such as
  3055. another \code{let}. The flattening of nested \code{let} expressions is
  3056. instead one of the responsibilities of the \code{explicate\_control}
  3057. pass.
  3058. \fi}
  3059. {\if\edition\racketEd
  3060. We recommend implementing this pass with two mutually recursive
  3061. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  3062. \code{rco\_atom} to subexpressions that need to become atomic and to
  3063. apply \code{rco\_exp} to subexpressions that do not. Both functions
  3064. take an \LangVar{} expression as input. The \code{rco\_exp} function
  3065. returns an expression. The \code{rco\_atom} function returns two
  3066. things: an atomic expression and an alist mapping temporary variables to
  3067. complex subexpressions. You can return multiple things from a function
  3068. using Racket's \key{values} form, and you can receive multiple things
  3069. from a function call using the \key{define-values} form.
  3070. \fi}
  3071. %
  3072. {\if\edition\pythonEd\pythonColor
  3073. %
  3074. We recommend implementing this pass with an auxiliary method named
  3075. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  3076. Boolean that specifies whether the expression needs to become atomic
  3077. or not. The \code{rco\_exp} method should return a pair consisting of
  3078. the new expression and a list of pairs, associating new temporary
  3079. variables with their initializing expressions.
  3080. %
  3081. \fi}
  3082. {\if\edition\racketEd
  3083. %
  3084. Returning to the example program with the expression \code{(+ 42 (-
  3085. 10))}, the subexpression \code{(- 10)} should be processed using the
  3086. \code{rco\_atom} function because it is an argument of the \code{+}
  3087. operator and therefore needs to become atomic. The output of
  3088. \code{rco\_atom} applied to \code{(- 10)} is as follows:
  3089. \begin{transformation}
  3090. \begin{lstlisting}
  3091. (- 10)
  3092. \end{lstlisting}
  3093. \compilesto
  3094. \begin{lstlisting}
  3095. tmp.1
  3096. ((tmp.1 . (- 10)))
  3097. \end{lstlisting}
  3098. \end{transformation}
  3099. \fi}
  3100. %
  3101. {\if\edition\pythonEd\pythonColor
  3102. %
  3103. Returning to the example program with the expression \code{42 + -10},
  3104. the subexpression \code{-10} should be processed using the
  3105. \code{rco\_exp} function with \code{True} as the second argument
  3106. because \code{-10} is an argument of the \code{+} operator and
  3107. therefore needs to become atomic. The output of \code{rco\_exp}
  3108. applied to \code{-10} is as follows.
  3109. \begin{transformation}
  3110. \begin{lstlisting}
  3111. -10
  3112. \end{lstlisting}
  3113. \compilesto
  3114. \begin{lstlisting}
  3115. tmp_1
  3116. [(tmp_1, -10)]
  3117. \end{lstlisting}
  3118. \end{transformation}
  3119. %
  3120. \fi}
  3121. Take special care of programs, such as the following, that
  3122. %
  3123. \racket{bind a variable to an atomic expression.}
  3124. %
  3125. \python{assign an atomic expression to a variable.}
  3126. %
  3127. You should leave such \racket{variable bindings}\python{assignments}
  3128. unchanged, as shown in the program on the right:\\
  3129. %
  3130. {\if\edition\racketEd
  3131. \begin{transformation}
  3132. % var_test_20.rkt
  3133. \begin{lstlisting}
  3134. (let ([a 42])
  3135. (let ([b a])
  3136. b))
  3137. \end{lstlisting}
  3138. \compilesto
  3139. \begin{lstlisting}
  3140. (let ([a 42])
  3141. (let ([b a])
  3142. b))
  3143. \end{lstlisting}
  3144. \end{transformation}
  3145. \fi}
  3146. {\if\edition\pythonEd\pythonColor
  3147. \begin{transformation}
  3148. \begin{lstlisting}
  3149. a = 42
  3150. b = a
  3151. print(b)
  3152. \end{lstlisting}
  3153. \compilesto
  3154. \begin{lstlisting}
  3155. a = 42
  3156. b = a
  3157. print(b)
  3158. \end{lstlisting}
  3159. \end{transformation}
  3160. \fi}
  3161. %
  3162. \noindent A careless implementation might produce the following output with
  3163. unnecessary temporary variables.
  3164. \begin{center}
  3165. \begin{minipage}{0.4\textwidth}
  3166. {\if\edition\racketEd
  3167. \begin{lstlisting}
  3168. (let ([tmp.1 42])
  3169. (let ([a tmp.1])
  3170. (let ([tmp.2 a])
  3171. (let ([b tmp.2])
  3172. b))))
  3173. \end{lstlisting}
  3174. \fi}
  3175. {\if\edition\pythonEd\pythonColor
  3176. \begin{lstlisting}
  3177. tmp_1 = 42
  3178. a = tmp_1
  3179. tmp_2 = a
  3180. b = tmp_2
  3181. print(b)
  3182. \end{lstlisting}
  3183. \fi}
  3184. \end{minipage}
  3185. \end{center}
  3186. \begin{exercise}
  3187. \normalfont\normalsize
  3188. {\if\edition\racketEd
  3189. Implement the \code{remove\_complex\_operands} function in
  3190. \code{compiler.rkt}.
  3191. %
  3192. Create three new \LangVar{} programs that exercise the interesting
  3193. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  3194. regarding file names described in exercise~\ref{ex:Lvar}.
  3195. %
  3196. In the \code{run-tests.rkt} script, add the following entry to the
  3197. list of \code{passes}, and then run the script to test your compiler.
  3198. \begin{lstlisting}
  3199. (list "remove-complex" remove_complex_operands interp_Lvar type-check-Lvar)
  3200. \end{lstlisting}
  3201. In debugging your compiler, it is often useful to see the intermediate
  3202. programs that are output from each pass. To print the intermediate
  3203. programs, place \lstinline{(debug-level 1)} before the call to
  3204. \code{interp-tests} in \code{run-tests.rkt}. \fi}
  3205. %
  3206. {\if\edition\pythonEd\pythonColor
  3207. Implement the \code{remove\_complex\_operands} pass in
  3208. \code{compiler.py}, creating auxiliary functions for each
  3209. nonterminal in the grammar, i.e., \code{rco\_exp}
  3210. and \code{rco\_stmt}. We recommend you use the function
  3211. \code{utils.generate\_name()} to generate fresh names from a stub string.
  3212. \fi}
  3213. \end{exercise}
  3214. {\if\edition\pythonEd\pythonColor
  3215. \begin{exercise}
  3216. \normalfont\normalsize
  3217. \label{ex:Lvar}
  3218. Create five \LangVar{} programs that exercise the most interesting
  3219. parts of the \code{remove\_complex\_operands} pass. The five programs
  3220. should be placed in the subdirectory named \key{tests}, and the file
  3221. names should start with \code{var\_test\_} followed by a unique
  3222. integer and end with the file extension \key{.py}.
  3223. %% The \key{run-tests.rkt} script in the support code checks whether the
  3224. %% output programs produce the same result as the input programs. The
  3225. %% script uses the \key{interp-tests} function
  3226. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  3227. %% your \key{uniquify} pass on the example programs. The \code{passes}
  3228. %% parameter of \key{interp-tests} is a list that should have one entry
  3229. %% for each pass in your compiler. For now, define \code{passes} to
  3230. %% contain just one entry for \code{uniquify} as shown below.
  3231. %% \begin{lstlisting}
  3232. %% (define passes
  3233. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  3234. %% \end{lstlisting}
  3235. Run the \key{run-tests.py} script in the support code to check
  3236. whether the output programs produce the same result as the input
  3237. programs.
  3238. \end{exercise}
  3239. \fi}
  3240. {\if\edition\racketEd
  3241. \section{Explicate Control}
  3242. \label{sec:explicate-control-Lvar}
  3243. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  3244. programs that make the order of execution explicit in their
  3245. syntax. For now this amounts to flattening \key{let} constructs into a
  3246. sequence of assignment statements. For example, consider the following
  3247. \LangVar{} program:\\
  3248. % var_test_11.rkt
  3249. \begin{minipage}{0.96\textwidth}
  3250. \begin{lstlisting}
  3251. (let ([y (let ([x 20])
  3252. (+ x (let ([x 22]) x)))])
  3253. y)
  3254. \end{lstlisting}
  3255. \end{minipage}\\
  3256. %
  3257. The output of the previous pass is shown next, on the left, and the
  3258. output of \code{explicate\_control} is on the right. Recall that the
  3259. right-hand side of a \key{let} executes before its body, so that the order
  3260. of evaluation for this program is to assign \code{20} to \code{x.1},
  3261. \code{22} to \code{x.2}, and \code{(+ x.1 x.2)} to \code{y}, and then to
  3262. return \code{y}. Indeed, the output of \code{explicate\_control} makes
  3263. this ordering explicit.
  3264. \begin{transformation}
  3265. \begin{lstlisting}
  3266. (let ([y (let ([x.1 20])
  3267. (let ([x.2 22])
  3268. (+ x.1 x.2)))])
  3269. y)
  3270. \end{lstlisting}
  3271. \compilesto
  3272. \begin{lstlisting}[language=C]
  3273. start:
  3274. x.1 = 20;
  3275. x.2 = 22;
  3276. y = (+ x.1 x.2);
  3277. return y;
  3278. \end{lstlisting}
  3279. \end{transformation}
  3280. \begin{figure}[tbp]
  3281. \begin{tcolorbox}[colback=white]
  3282. \begin{lstlisting}
  3283. (define (explicate_tail e)
  3284. (match e
  3285. [(Var x) ___]
  3286. [(Int n) (Return (Int n))]
  3287. [(Let x rhs body) ___]
  3288. [(Prim op es) ___]
  3289. [else (error "explicate_tail unhandled case" e)]))
  3290. (define (explicate_assign e x cont)
  3291. (match e
  3292. [(Var x) ___]
  3293. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3294. [(Let y rhs body) ___]
  3295. [(Prim op es) ___]
  3296. [else (error "explicate_assign unhandled case" e)]))
  3297. (define (explicate_control p)
  3298. (match p
  3299. [(Program info body) ___]))
  3300. \end{lstlisting}
  3301. \end{tcolorbox}
  3302. \caption{Skeleton for the \code{explicate\_control} pass.}
  3303. \label{fig:explicate-control-Lvar}
  3304. \end{figure}
  3305. The organization of this pass depends on the notion of tail position
  3306. to which we have alluded. Here is the definition.
  3307. \begin{definition}\normalfont
  3308. The following rules define when an expression is in \emph{tail
  3309. position}\index{subject}{tail position} for the language \LangVar{}.
  3310. \begin{enumerate}
  3311. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3312. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3313. \end{enumerate}
  3314. \end{definition}
  3315. We recommend implementing \code{explicate\_control} using two
  3316. recursive functions, \code{explicate\_tail} and
  3317. \code{explicate\_assign}, as suggested in the skeleton code shown in
  3318. figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3319. function should be applied to expressions in tail position, whereas the
  3320. \code{explicate\_assign} should be applied to expressions that occur on
  3321. the right-hand side of a \key{let}.
  3322. %
  3323. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3324. input and produces a \Tail{} in \LangCVar{} (see
  3325. figure~\ref{fig:c0-syntax}).
  3326. %
  3327. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3328. the variable to which it is to be assigned, and a \Tail{} in
  3329. \LangCVar{} for the code that comes after the assignment. The
  3330. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3331. The \code{explicate\_assign} function is in accumulator-passing style:
  3332. the \code{cont} parameter is used for accumulating the output. This
  3333. accumulator-passing style plays an important role in the way that we
  3334. generate high-quality code for conditional expressions in
  3335. chapter~\ref{ch:Lif}. The abbreviation \code{cont} is for
  3336. continuation because it contains the generated code that should come
  3337. after the current assignment. This code organization is also related
  3338. to continuation-passing style, except that \code{cont} is not what
  3339. happens next during compilation but is what happens next in the
  3340. generated code.
  3341. \begin{exercise}\normalfont\normalsize
  3342. %
  3343. Implement the \code{explicate\_control} function in
  3344. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3345. exercise the code in \code{explicate\_control}.
  3346. %
  3347. In the \code{run-tests.rkt} script, add the following entry to the
  3348. list of \code{passes} and then run the script to test your compiler.
  3349. \begin{lstlisting}
  3350. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3351. \end{lstlisting}
  3352. \end{exercise}
  3353. \fi}
  3354. \section{Select Instructions}
  3355. \label{sec:select-Lvar}
  3356. \index{subject}{select instructions}
  3357. In the \code{select\_instructions} pass we begin the work of
  3358. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3359. language of this pass is a variant of x86 that still uses variables,
  3360. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3361. nonterminal of the \LangXInt{} abstract syntax
  3362. (figure~\ref{fig:x86-int-ast}).
  3363. \racket{We recommend implementing the
  3364. \code{select\_instructions} with three auxiliary functions, one for
  3365. each of the nonterminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3366. $\Tail$.}
  3367. \python{We recommend implementing an auxiliary function
  3368. named \code{select\_stmt} for the $\Stmt$ nonterminal.}
  3369. \racket{The cases for $\Atm$ are straightforward; variables stay the
  3370. same and integer constants change to immediates; that is, $\INT{n}$
  3371. changes to $\IMM{n}$.}
  3372. Next consider the cases for the $\Stmt$ nonterminal, starting with
  3373. arithmetic operations. For example, consider the following addition
  3374. operation, on the left side. (Let $\Arg_1$ and $\Arg_2$ be the
  3375. translations of $\Atm_1$ and $\Atm_2$, respectively.) There is an
  3376. \key{addq} instruction in x86, but it performs an in-place update.
  3377. %
  3378. So, we could move $\Arg_1$ into the \code{rax} register, then add
  3379. $\Arg_2$ to \code{rax}, and then finally move \code{rax} into the
  3380. left-hand \itm{var}.
  3381. \begin{transformation}
  3382. {\if\edition\racketEd
  3383. \begin{lstlisting}
  3384. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3385. \end{lstlisting}
  3386. \fi}
  3387. {\if\edition\pythonEd\pythonColor
  3388. \begin{lstlisting}
  3389. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3390. \end{lstlisting}
  3391. \fi}
  3392. \compilesto
  3393. \begin{lstlisting}
  3394. movq |$\Arg_1$|, %rax
  3395. addq |$\Arg_2$|, %rax
  3396. movq %rax, |$\itm{var}$|
  3397. \end{lstlisting}
  3398. \end{transformation}
  3399. %
  3400. However, with some care we can generate shorter sequences of
  3401. instructions. Suppose that one or more of the arguments of the
  3402. addition is the same variable as the left-hand side of the assignment.
  3403. Then the assignment statement can be translated into a single
  3404. \key{addq} instruction, as follows.
  3405. \begin{transformation}
  3406. {\if\edition\racketEd
  3407. \begin{lstlisting}
  3408. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3409. \end{lstlisting}
  3410. \fi}
  3411. {\if\edition\pythonEd\pythonColor
  3412. \begin{lstlisting}
  3413. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3414. \end{lstlisting}
  3415. \fi}
  3416. \compilesto
  3417. \begin{lstlisting}
  3418. addq |$\Arg_1$|, |$\itm{var}$|
  3419. \end{lstlisting}
  3420. \end{transformation}
  3421. %
  3422. On the other hand, if $\Atm_1$ is not the same variable as the
  3423. left-hand side, then we can move $\Arg_1$ into the left-hand \itm{var}
  3424. and then add $\Arg_2$ to \itm{var}.
  3425. %
  3426. \begin{transformation}
  3427. {\if\edition\racketEd
  3428. \begin{lstlisting}
  3429. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3430. \end{lstlisting}
  3431. \fi}
  3432. {\if\edition\pythonEd\pythonColor
  3433. \begin{lstlisting}
  3434. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3435. \end{lstlisting}
  3436. \fi}
  3437. \compilesto
  3438. \begin{lstlisting}
  3439. movq |$\Arg_1$|, |$\itm{var}$|
  3440. addq |$\Arg_2$|, |$\itm{var}$|
  3441. \end{lstlisting}
  3442. \end{transformation}
  3443. The \READOP{} operation does not have a direct counterpart in x86
  3444. assembly, so we provide this functionality with the function
  3445. \code{read\_int} in the file \code{runtime.c}, written in
  3446. C~\citep{Kernighan:1988nx}. In general, we refer to all the
  3447. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3448. system}, or simply the \emph{runtime} for short. When compiling your
  3449. generated x86 assembly code, you need to compile \code{runtime.c} to
  3450. \code{runtime.o} (an \emph{object file}, using \code{gcc} with option
  3451. \code{-c}) and link it into the executable. For our purposes of code
  3452. generation, all you need to do is translate an assignment of
  3453. \READOP{} into a call to the \code{read\_int} function followed by a
  3454. move from \code{rax} to the left-hand side variable. (Recall that the
  3455. return value of a function goes into \code{rax}.)
  3456. \begin{transformation}
  3457. {\if\edition\racketEd
  3458. \begin{lstlisting}
  3459. |$\itm{var}$| = (read);
  3460. \end{lstlisting}
  3461. \fi}
  3462. {\if\edition\pythonEd\pythonColor
  3463. \begin{lstlisting}
  3464. |$\itm{var}$| = input_int();
  3465. \end{lstlisting}
  3466. \fi}
  3467. \compilesto
  3468. \begin{lstlisting}
  3469. callq read_int
  3470. movq %rax, |$\itm{var}$|
  3471. \end{lstlisting}
  3472. \end{transformation}
  3473. {\if\edition\pythonEd\pythonColor
  3474. %
  3475. Similarly, we translate the \code{print} operation, shown below, into
  3476. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3477. In x86, the first six arguments to functions are passed in registers,
  3478. with the first argument passed in register \code{rdi}. So we move the
  3479. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3480. \code{callq} instruction.
  3481. \begin{transformation}
  3482. \begin{lstlisting}
  3483. print(|$\Atm$|)
  3484. \end{lstlisting}
  3485. \compilesto
  3486. \begin{lstlisting}
  3487. movq |$\Arg$|, %rdi
  3488. callq print_int
  3489. \end{lstlisting}
  3490. \end{transformation}
  3491. %
  3492. \fi}
  3493. {\if\edition\racketEd
  3494. There are two cases for the $\Tail$ nonterminal: \key{Return} and
  3495. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3496. assignment to the \key{rax} register followed by a jump to the
  3497. conclusion of the program (so the conclusion needs to be labeled).
  3498. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3499. recursively and then append the resulting instructions.
  3500. \fi}
  3501. {\if\edition\pythonEd\pythonColor
  3502. We recommend that you use the function \code{utils.label\_name()} to
  3503. transform strings into labels, for example, in
  3504. the target of the \code{callq} instruction. This practice makes your
  3505. compiler portable across Linus and Mac OS X, which requires an underscore
  3506. prefixed to all labels.
  3507. \fi}
  3508. \begin{exercise}
  3509. \normalfont\normalsize
  3510. {\if\edition\racketEd
  3511. Implement the \code{select\_instructions} pass in
  3512. \code{compiler.rkt}. Create three new example programs that are
  3513. designed to exercise all the interesting cases in this pass.
  3514. %
  3515. In the \code{run-tests.rkt} script, add the following entry to the
  3516. list of \code{passes} and then run the script to test your compiler.
  3517. \begin{lstlisting}
  3518. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3519. \end{lstlisting}
  3520. \fi}
  3521. {\if\edition\pythonEd\pythonColor
  3522. Implement the \key{select\_instructions} pass in
  3523. \code{compiler.py}. Create three new example programs that are
  3524. designed to exercise all the interesting cases in this pass.
  3525. Run the \code{run-tests.py} script to to check
  3526. whether the output programs produce the same result as the input
  3527. programs.
  3528. \fi}
  3529. \end{exercise}
  3530. \section{Assign Homes}
  3531. \label{sec:assign-Lvar}
  3532. The \code{assign\_homes} pass compiles \LangXVar{} programs to
  3533. \LangXVar{} programs that no longer use program variables. Thus, the
  3534. \code{assign\_homes} pass is responsible for placing all the program
  3535. variables in registers or on the stack. For runtime efficiency, it is
  3536. better to place variables in registers, but because there are only
  3537. sixteen registers, some programs must necessarily resort to placing
  3538. some variables on the stack. In this chapter we focus on the mechanics
  3539. of placing variables on the stack. We study an algorithm for placing
  3540. variables in registers in chapter~\ref{ch:register-allocation-Lvar}.
  3541. Consider again the following \LangVar{} program from
  3542. section~\ref{sec:remove-complex-opera-Lvar}:\\
  3543. % var_test_20.rkt
  3544. \begin{minipage}{0.96\textwidth}
  3545. {\if\edition\racketEd
  3546. \begin{lstlisting}
  3547. (let ([a 42])
  3548. (let ([b a])
  3549. b))
  3550. \end{lstlisting}
  3551. \fi}
  3552. {\if\edition\pythonEd\pythonColor
  3553. \begin{lstlisting}
  3554. a = 42
  3555. b = a
  3556. print(b)
  3557. \end{lstlisting}
  3558. \fi}
  3559. \end{minipage}\\
  3560. %
  3561. The output of \code{select\_instructions} is shown next, on the left,
  3562. and the output of \code{assign\_homes} is on the right. In this
  3563. example, we assign variable \code{a} to stack location
  3564. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3565. \begin{transformation}
  3566. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3567. movq $42, a
  3568. movq a, b
  3569. movq b, %rax
  3570. \end{lstlisting}
  3571. \compilesto
  3572. %stack-space: 16
  3573. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3574. movq $42, -8(%rbp)
  3575. movq -8(%rbp), -16(%rbp)
  3576. movq -16(%rbp), %rax
  3577. \end{lstlisting}
  3578. \end{transformation}
  3579. \racket{
  3580. The \code{assign\_homes} pass should replace all variables
  3581. with stack locations.
  3582. The list of variables can be obtained from
  3583. the \code{locals-types} entry in the $\itm{info}$ of the
  3584. \code{X86Program} node. The \code{locals-types} entry is an alist
  3585. mapping all the variables in the program to their types
  3586. (for now, just \code{Integer}).
  3587. As an aside, the \code{locals-types} entry is
  3588. computed by \code{type-check-Cvar} in the support code, which
  3589. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3590. which you should propagate to the \code{X86Program} node.}
  3591. %
  3592. \python{The \code{assign\_homes} pass should replace all uses of
  3593. variables with stack locations.}
  3594. %
  3595. In the process of assigning variables to stack locations, it is
  3596. convenient for you to compute and store the size of the frame (in
  3597. bytes) in
  3598. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space},}
  3599. %
  3600. \python{the field \code{stack\_space} of the \key{X86Program} node,}
  3601. %
  3602. which is needed later to generate the conclusion of the \code{main}
  3603. procedure. The x86-64 standard requires the frame size to be a
  3604. multiple of 16 bytes.\index{subject}{frame}
  3605. % TODO: store the number of variables instead? -Jeremy
  3606. \begin{exercise}\normalfont\normalsize
  3607. Implement the \code{assign\_homes} pass in
  3608. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3609. auxiliary functions for each of the nonterminals in the \LangXVar{}
  3610. grammar. We recommend that the auxiliary functions take an extra
  3611. parameter that maps variable names to homes (stack locations for now).
  3612. %
  3613. {\if\edition\racketEd
  3614. In the \code{run-tests.rkt} script, add the following entry to the
  3615. list of \code{passes} and then run the script to test your compiler.
  3616. \begin{lstlisting}
  3617. (list "assign homes" assign-homes interp_x86-0)
  3618. \end{lstlisting}
  3619. \fi}
  3620. {\if\edition\pythonEd\pythonColor
  3621. Run the \code{run-tests.py} script to to check
  3622. whether the output programs produce the same result as the input
  3623. programs.
  3624. \fi}
  3625. \end{exercise}
  3626. \section{Patch Instructions}
  3627. \label{sec:patch-s0}
  3628. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3629. \LangXInt{} by making sure that each instruction adheres to the
  3630. restriction that at most one argument of an instruction may be a
  3631. memory reference.
  3632. We return to the following example.\\
  3633. \begin{minipage}{0.5\textwidth}
  3634. % var_test_20.rkt
  3635. {\if\edition\racketEd
  3636. \begin{lstlisting}
  3637. (let ([a 42])
  3638. (let ([b a])
  3639. b))
  3640. \end{lstlisting}
  3641. \fi}
  3642. {\if\edition\pythonEd\pythonColor
  3643. \begin{lstlisting}
  3644. a = 42
  3645. b = a
  3646. print(b)
  3647. \end{lstlisting}
  3648. \fi}
  3649. \end{minipage}\\
  3650. The \code{assign\_homes} pass produces the following translation. \\
  3651. \begin{minipage}{0.5\textwidth}
  3652. {\if\edition\racketEd
  3653. \begin{lstlisting}
  3654. movq $42, -8(%rbp)
  3655. movq -8(%rbp), -16(%rbp)
  3656. movq -16(%rbp), %rax
  3657. \end{lstlisting}
  3658. \fi}
  3659. {\if\edition\pythonEd\pythonColor
  3660. \begin{lstlisting}
  3661. movq 42, -8(%rbp)
  3662. movq -8(%rbp), -16(%rbp)
  3663. movq -16(%rbp), %rdi
  3664. callq print_int
  3665. \end{lstlisting}
  3666. \fi}
  3667. \end{minipage}\\
  3668. The second \key{movq} instruction is problematic because both
  3669. arguments are stack locations. We suggest fixing this problem by
  3670. moving from the source location to the register \key{rax} and then
  3671. from \key{rax} to the destination location, as follows.
  3672. \begin{lstlisting}
  3673. movq -8(%rbp), %rax
  3674. movq %rax, -16(%rbp)
  3675. \end{lstlisting}
  3676. There is a similar corner case that also needs to be dealt with. If
  3677. one argument is an immediate integer larger than $2^{16}$ and the
  3678. other is a memory reference, then the instruction is invalid. One can
  3679. fix this, for example, by first moving the immediate integer into
  3680. \key{rax} and then using \key{rax} in place of the integer.
  3681. \begin{exercise}
  3682. \normalfont\normalsize Implement the \key{patch\_instructions} pass in
  3683. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3684. Create three new example programs that are
  3685. designed to exercise all the interesting cases in this pass.
  3686. %
  3687. {\if\edition\racketEd
  3688. In the \code{run-tests.rkt} script, add the following entry to the
  3689. list of \code{passes} and then run the script to test your compiler.
  3690. \begin{lstlisting}
  3691. (list "patch instructions" patch_instructions interp_x86-0)
  3692. \end{lstlisting}
  3693. \fi}
  3694. {\if\edition\pythonEd\pythonColor
  3695. Run the \code{run-tests.py} script to to check
  3696. whether the output programs produce the same result as the input
  3697. programs.
  3698. \fi}
  3699. \end{exercise}
  3700. \section{Generate Prelude and Conclusion}
  3701. \label{sec:print-x86}
  3702. \index{subject}{prelude}\index{subject}{conclusion}
  3703. The last step of the compiler from \LangVar{} to x86 is to generate
  3704. the \code{main} function with a prelude and conclusion wrapped around
  3705. the rest of the program, as shown in figure~\ref{fig:p1-x86} and
  3706. discussed in section~\ref{sec:x86}.
  3707. When running on Mac OS X, your compiler should prefix an underscore to
  3708. all labels (for example, changing \key{main} to \key{\_main}).
  3709. %
  3710. \racket{The Racket call \code{(system-type 'os)} is useful for
  3711. determining which operating system the compiler is running on. It
  3712. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3713. %
  3714. \python{The Python \code{platform} library includes a \code{system()}
  3715. function that returns \code{'Linux'}, \code{'Windows'}, or
  3716. \code{'Darwin'} (for Mac).}
  3717. \begin{exercise}\normalfont\normalsize
  3718. %
  3719. Implement the \key{prelude\_and\_conclusion} pass in
  3720. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3721. %
  3722. {\if\edition\racketEd
  3723. In the \code{run-tests.rkt} script, add the following entry to the
  3724. list of \code{passes} and then run the script to test your compiler.
  3725. \begin{lstlisting}
  3726. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3727. \end{lstlisting}
  3728. %
  3729. Uncomment the call to the \key{compiler-tests} function
  3730. (appendix~\ref{appendix:utilities}), which tests your complete
  3731. compiler by executing the generated x86 code. It translates the x86
  3732. AST that you produce into a string by invoking the \code{print-x86}
  3733. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3734. the provided \key{runtime.c} file to \key{runtime.o} using
  3735. \key{gcc}. Run the script to test your compiler.
  3736. %
  3737. \fi}
  3738. {\if\edition\pythonEd\pythonColor
  3739. %
  3740. Run the \code{run-tests.py} script to to check whether the output
  3741. programs produce the same result as the input programs. That script
  3742. translates the x86 AST that you produce into a string by invoking the
  3743. \code{repr} method that is implemented by the x86 AST classes in
  3744. \code{x86\_ast.py}.
  3745. %
  3746. \fi}
  3747. \end{exercise}
  3748. \section{Challenge: Partial Evaluator for \LangVar{}}
  3749. \label{sec:pe-Lvar}
  3750. \index{subject}{partialevaluation@partial evaluation}
  3751. This section describes two optional challenge exercises that involve
  3752. adapting and improving the partial evaluator for \LangInt{} that was
  3753. introduced in section~\ref{sec:partial-evaluation}.
  3754. \begin{exercise}\label{ex:pe-Lvar}
  3755. \normalfont\normalsize
  3756. Adapt the partial evaluator from section~\ref{sec:partial-evaluation}
  3757. (figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3758. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3759. %
  3760. \racket{\key{let} binding}\python{assignment}
  3761. %
  3762. to the \LangInt{} language, so you will need to add cases for them in
  3763. the \code{pe\_exp}
  3764. %
  3765. \racket{function.}
  3766. %
  3767. \python{and \code{pe\_stmt} functions.}
  3768. %
  3769. Once complete, add the partial evaluation pass to the front of your
  3770. compiler, and make sure that your compiler still passes all the
  3771. tests.
  3772. \end{exercise}
  3773. \begin{exercise}
  3774. \normalfont\normalsize
  3775. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3776. \code{pe\_add} auxiliary functions with functions that know more about
  3777. arithmetic. For example, your partial evaluator should translate
  3778. {\if\edition\racketEd
  3779. \[
  3780. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3781. \code{(+ 2 (read))}
  3782. \]
  3783. \fi}
  3784. {\if\edition\pythonEd\pythonColor
  3785. \[
  3786. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3787. \code{2 + input\_int()}
  3788. \]
  3789. \fi}
  3790. %
  3791. To accomplish this, the \code{pe\_exp} function should produce output
  3792. in the form of the $\itm{residual}$ nonterminal of the following
  3793. grammar. The idea is that when processing an addition expression, we
  3794. can always produce one of the following: (1) an integer constant, (2)
  3795. an addition expression with an integer constant on the left-hand side
  3796. but not the right-hand side, or (3) an addition expression in which
  3797. neither subexpression is a constant.
  3798. %
  3799. {\if\edition\racketEd
  3800. \[
  3801. \begin{array}{lcl}
  3802. \itm{inert} &::=& \Var
  3803. \MID \LP\key{read}\RP
  3804. \MID \LP\key{-} ~\Var\RP
  3805. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3806. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3807. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3808. \itm{residual} &::=& \Int
  3809. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3810. \MID \itm{inert}
  3811. \end{array}
  3812. \]
  3813. \fi}
  3814. {\if\edition\pythonEd\pythonColor
  3815. \[
  3816. \begin{array}{lcl}
  3817. \itm{inert} &::=& \Var
  3818. \MID \key{input\_int}\LP\RP
  3819. \MID \key{-} \Var
  3820. \MID \key{-} \key{input\_int}\LP\RP
  3821. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3822. \itm{residual} &::=& \Int
  3823. \MID \Int ~ \key{+} ~ \itm{inert}
  3824. \MID \itm{inert}
  3825. \end{array}
  3826. \]
  3827. \fi}
  3828. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3829. inputs are $\itm{residual}$ expressions and they should return
  3830. $\itm{residual}$ expressions. Once the improvements are complete,
  3831. make sure that your compiler still passes all the tests. After
  3832. all, fast code is useless if it produces incorrect results!
  3833. \end{exercise}
  3834. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3835. {\if\edition\pythonEd\pythonColor
  3836. \chapter{Parsing}
  3837. \label{ch:parsing}
  3838. \setcounter{footnote}{0}
  3839. \index{subject}{parsing}
  3840. In this chapter we learn how to use the Lark parser
  3841. framework~\citep{shinan20:_lark_docs} to translate the concrete syntax
  3842. of \LangInt{} (a sequence of characters) into an abstract syntax tree.
  3843. You will then be asked to use Lark to create a parser for \LangVar{}.
  3844. We also describe the parsing algorithms used inside Lark, studying the
  3845. \citet{Earley:1970ly} and LALR(1) algorithms~\citep{DeRemer69,Anderson73}.
  3846. A parser framework such as Lark takes in a specification of the
  3847. concrete syntax and an input program and produces a parse tree. Even
  3848. though a parser framework does most of the work for us, using one
  3849. properly requires some knowledge. In particular, we must learn about
  3850. its specification languages and we must learn how to deal with
  3851. ambiguity in our language specifications. Also, some algorithms, such
  3852. as LALR(1) place restrictions on the grammars they can handle, in
  3853. which case it helps to know the algorithm when trying to decipher the
  3854. error messages.
  3855. The process of parsing is traditionally subdivided into two phases:
  3856. \emph{lexical analysis} (also called scanning) and \emph{syntax
  3857. analysis} (also called parsing). The lexical analysis phase
  3858. translates the sequence of characters into a sequence of
  3859. \emph{tokens}, that is, words consisting of several characters. The
  3860. parsing phase organizes the tokens into a \emph{parse tree} that
  3861. captures how the tokens were matched by rules in the grammar of the
  3862. language. The reason for the subdivision into two phases is to enable
  3863. the use of a faster but less powerful algorithm for lexical analysis
  3864. and the use of a slower but more powerful algorithm for parsing.
  3865. %
  3866. %% Likewise, parser generators typical come in pairs, with separate
  3867. %% generators for the lexical analyzer (or lexer for short) and for the
  3868. %% parser. A particularly influential pair of generators were
  3869. %% \texttt{lex} and \texttt{yacc}. The \texttt{lex} generator was written
  3870. %% by \citet{Lesk:1975uq} at Bell Labs. The \texttt{yacc} generator was
  3871. %% written by \citet{Johnson:1979qy} at AT\&T and stands for Yet Another
  3872. %% Compiler Compiler.
  3873. %
  3874. The Lark parser framework that we use in this chapter includes both
  3875. lexical analyzers and parsers. The next section discusses lexical
  3876. analysis and the remainder of the chapter discusses parsing.
  3877. \section{Lexical Analysis and Regular Expressions}
  3878. \label{sec:lex}
  3879. The lexical analyzers produced by Lark turn a sequence of characters
  3880. (a string) into a sequence of token objects. For example, a Lark
  3881. generated lexer for \LangInt{} converts the string
  3882. \begin{lstlisting}
  3883. 'print(1 + 3)'
  3884. \end{lstlisting}
  3885. \noindent into the following sequence of token objects
  3886. \begin{center}
  3887. \begin{minipage}{0.95\textwidth}
  3888. \begin{lstlisting}
  3889. Token('PRINT', 'print')
  3890. Token('LPAR', '(')
  3891. Token('INT', '1')
  3892. Token('PLUS', '+')
  3893. Token('INT', '3')
  3894. Token('RPAR', ')')
  3895. Token('NEWLINE', '\n')
  3896. \end{lstlisting}
  3897. \end{minipage}
  3898. \end{center}
  3899. Each token includes a field for its \code{type}, such as \code{'INT'},
  3900. and a field for its \code{value}, such as \code{'1'}.
  3901. Following in the tradition of \code{lex}~\citep{Lesk:1975uq}, the
  3902. specification language for Lark's lexer is one regular expression for
  3903. each type of token. The term \emph{regular} comes from the term
  3904. \emph{regular languages}, which are the languages that can be
  3905. recognized by a finite state machine. A \emph{regular expression} is a
  3906. pattern formed of the following core elements:\index{subject}{regular
  3907. expression}\footnote{Regular expressions traditionally include the
  3908. empty regular expression that matches any zero-length part of a
  3909. string, but Lark does not support the empty regular expression.}
  3910. \begin{itemize}
  3911. \item A single character $c$ is a regular expression and it only
  3912. matches itself. For example, the regular expression \code{a} only
  3913. matches with the string \code{'a'}.
  3914. \item Two regular expressions separated by a vertical bar $R_1 \ttm{|}
  3915. R_2$ form a regular expression that matches any string that matches
  3916. $R_1$ or $R_2$. For example, the regular expression \code{a|c}
  3917. matches the string \code{'a'} and the string \code{'c'}.
  3918. \item Two regular expressions in sequence $R_1 R_2$ form a regular
  3919. expression that matches any string that can be formed by
  3920. concatenating two strings, where the first string matches $R_1$ and
  3921. the second string matches $R_2$. For example, the regular expression
  3922. \code{(a|c)b} matches the strings \code{'ab'} and \code{'cb'}.
  3923. (Parentheses can be used to control the grouping of operators within
  3924. a regular expression.)
  3925. \item A regular expression followed by an asterisks $R\ttm{*}$ (called
  3926. Kleene closure) is a regular expression that matches any string that
  3927. can be formed by concatenating zero or more strings that each match
  3928. the regular expression $R$. For example, the regular expression
  3929. \code{"((a|c)b)*"} matches the strings \code{'abcbab'} but not
  3930. \code{'abc'}.
  3931. \end{itemize}
  3932. For our convenience, Lark also accepts the following extended set of
  3933. regular expressions that are automatically translated into the core
  3934. regular expressions.
  3935. \begin{itemize}
  3936. \item A set of characters enclosed in square brackets $[c_1 c_2 \ldots
  3937. c_n]$ is a regular expression that matches any one of the
  3938. characters. So $[c_1 c_2 \ldots c_n]$ is equivalent to
  3939. the regular expression $c_1\mid c_2\mid \ldots \mid c_n$.
  3940. \item A range of characters enclosed in square brackets $[c_1\ttm{-}c_2]$ is
  3941. a regular expression that matches any character between $c_1$ and
  3942. $c_2$, inclusive. For example, \code{[a-z]} matches any lowercase
  3943. letter in the alphabet.
  3944. \item A regular expression followed by the plus symbol $R\ttm{+}$
  3945. is a regular expression that matches any string that can
  3946. be formed by concatenating one or more strings that each match $R$.
  3947. So $R+$ is equivalent to $R(R*)$. For example, \code{[a-z]+}
  3948. matches \code{'b'} and \code{'bzca'}.
  3949. \item A regular expression followed by a question mark $R\ttm{?}$
  3950. is a regular expression that matches any string that either
  3951. matches $R$ or that is the empty string.
  3952. For example, \code{a?b} matches both \code{'ab'} and \code{'b'}.
  3953. \item A string, such as \code{"hello"}, which matches itself,
  3954. that is, \code{'hello'}.
  3955. \end{itemize}
  3956. In a Lark grammar file, specify a name for each type of token followed
  3957. by a colon and then a regular expression surrounded by \code{/}
  3958. characters. For example, the \code{DIGIT}, \code{INT}, and
  3959. \code{NEWLINE} types of tokens are specified in the following way.
  3960. \begin{center}
  3961. \begin{minipage}{0.95\textwidth}
  3962. \begin{lstlisting}
  3963. DIGIT: /[0-9]/
  3964. INT: "-"? DIGIT+
  3965. NEWLINE: (/\r/? /\n/)+
  3966. \end{lstlisting}
  3967. \end{minipage}
  3968. \end{center}
  3969. \noindent In Lark, the regular expression operators can be used both
  3970. inside a regular expression, that is, between the \code{/} characters,
  3971. and they can be used to combine regular expressions, outside the
  3972. \code{/} characters.
  3973. \section{Grammars and Parse Trees}
  3974. \label{sec:CFG}
  3975. In section~\ref{sec:grammar} we learned how to use grammar rules to
  3976. specify the abstract syntax of a language. We now take a closer look
  3977. at using grammar rules to specify the concrete syntax. Recall that
  3978. each rule has a left-hand side and a right-hand side where the
  3979. left-hand side is a nonterminal and the right-hand side is a pattern
  3980. that defines what can be parsed as that nonterminal.
  3981. For concrete syntax, each right-hand side expresses a pattern for a
  3982. string, instead of a pattern for an abstract syntax tree. In
  3983. particular, each right-hand side is a sequence of
  3984. \emph{symbols}\index{subject}{symbol}, where a symbol is either a
  3985. terminal or nonterminal. A \emph{terminal}\index{subject}{terminal} is
  3986. a string. The nonterminals play the same role as in the abstract
  3987. syntax, defining categories of syntax. The nonterminals of a grammar
  3988. include the tokens defined in the lexer and all the nonterminals
  3989. defined by the grammar rules.
  3990. As an example, let us take a closer look at the concrete syntax of the
  3991. \LangInt{} language, repeated here.
  3992. \[
  3993. \begin{array}{l}
  3994. \LintGrammarPython \\
  3995. \begin{array}{rcl}
  3996. \LangInt{} &::=& \Stmt^{*}
  3997. \end{array}
  3998. \end{array}
  3999. \]
  4000. The Lark syntax for grammar rules differs slightly from the variant of
  4001. BNF that we use in this book. In particular, the notation $::=$ is
  4002. replaced by a single colon and the use of typewriter font for string
  4003. literals is replaced by quotation marks. The following grammar serves
  4004. as a first draft of a Lark grammar for \LangInt{}.
  4005. \begin{center}
  4006. \begin{minipage}{0.95\textwidth}
  4007. \begin{lstlisting}[escapechar=$]
  4008. exp: INT
  4009. | "input_int" "(" ")"
  4010. | "-" exp
  4011. | exp "+" exp
  4012. | exp "-" exp
  4013. | "(" exp ")"
  4014. stmt_list:
  4015. | stmt NEWLINE stmt_list
  4016. lang_int: stmt_list
  4017. \end{lstlisting}
  4018. \end{minipage}
  4019. \end{center}
  4020. Let us begin by discussing the rule \code{exp: INT} which says that if
  4021. the lexer matches a string to \code{INT}, then the parser also
  4022. categorizes the string as an \code{exp}. Recall that in
  4023. Section~\ref{sec:grammar} we defined the corresponding \Int{}
  4024. nonterminal with an English sentence. Here we specify \code{INT} more
  4025. formally using a type of token \code{INT} and its regular expression
  4026. \code{"-"? DIGIT+}.
  4027. The rule \code{exp: exp "+" exp} says that any string that matches
  4028. \code{exp}, followed by the \code{+} character, followed by another
  4029. string that matches \code{exp}, is itself an \code{exp}. For example,
  4030. the string \code{'1+3'} is an \code{exp} because \code{'1'} and
  4031. \code{'3'} are both \code{exp} by the rule \code{exp: INT}, and then
  4032. the rule for addition applies to categorize \code{'1+3'} as an
  4033. \code{exp}. We can visualize the application of grammar rules to parse
  4034. a string using a \emph{parse tree}\index{subject}{parse tree}. Each
  4035. internal node in the tree is an application of a grammar rule and is
  4036. labeled with its left-hand side nonterminal. Each leaf node is a
  4037. substring of the input program. The parse tree for \code{'1+3'} is
  4038. shown in figure~\ref{fig:simple-parse-tree}.
  4039. \begin{figure}[tbp]
  4040. \begin{tcolorbox}[colback=white]
  4041. \centering
  4042. \includegraphics[width=1.9in]{figs/simple-parse-tree}
  4043. \end{tcolorbox}
  4044. \caption{The parse tree for \code{'1+3'}.}
  4045. \label{fig:simple-parse-tree}
  4046. \end{figure}
  4047. The result of parsing \code{'1+3'} with this Lark grammar is the
  4048. following parse tree as represented by \code{Tree} and \code{Token}
  4049. objects.
  4050. \begin{lstlisting}
  4051. Tree('lang_int',
  4052. [Tree('stmt', [Tree('exp', [Tree('exp', [Token('INT', '1')]),
  4053. Tree('exp', [Token('INT', '3')])])]),
  4054. Token('NEWLINE', '\n')])
  4055. \end{lstlisting}
  4056. The nodes that come from the lexer are \code{Token} objects whereas
  4057. the nodes from the parser are \code{Tree} objects. Each \code{Tree}
  4058. object has a \code{data} field containing the name of the nonterminal
  4059. for the grammar rule that was applied. Each \code{Tree} object also
  4060. has a \code{children} field that is a list containing trees and/or
  4061. tokens. Note that Lark does not produce nodes for string literals in
  4062. the grammar. For example, the \code{Tree} node for the addition
  4063. expression has only two children for the two integers but is missing
  4064. its middle child for the \code{"+"} terminal. This would be
  4065. problematic except that Lark provides a mechanism for customizing the
  4066. \code{data} field of each \code{Tree} node based on which rule was
  4067. applied. Next to each alternative in a grammar rule, write \code{->}
  4068. followed by a string that you would like to appear in the \code{data}
  4069. field. The following is a second draft of a Lark grammar for
  4070. \LangInt{}, this time with more specific labels on the \code{Tree}
  4071. nodes.
  4072. \begin{center}
  4073. \begin{minipage}{0.95\textwidth}
  4074. \begin{lstlisting}[escapechar=$]
  4075. exp: INT -> int
  4076. | "input_int" "(" ")" -> input_int
  4077. | "-" exp -> usub
  4078. | exp "+" exp -> add
  4079. | exp "-" exp -> sub
  4080. | "(" exp ")" -> paren
  4081. stmt: "print" "(" exp ")" -> print
  4082. | exp -> expr
  4083. stmt_list: -> empty_stmt
  4084. | stmt NEWLINE stmt_list -> add_stmt
  4085. lang_int: stmt_list -> module
  4086. \end{lstlisting}
  4087. \end{minipage}
  4088. \end{center}
  4089. Here is the resulting parse tree.
  4090. \begin{lstlisting}
  4091. Tree('module',
  4092. [Tree('expr', [Tree('add', [Tree('int', [Token('INT', '1')]),
  4093. Tree('int', [Token('INT', '3')])])]),
  4094. Token('NEWLINE', '\n')])
  4095. \end{lstlisting}
  4096. \section{Ambiguous Grammars}
  4097. A grammar is \emph{ambiguous}\index{subject}{ambiguous} when a string
  4098. can be parsed in more than one way. For example, consider the string
  4099. \code{'1-2+3'}. This string can parsed in two different ways using
  4100. our draft grammar, resulting in the two parse trees shown in
  4101. figure~\ref{fig:ambig-parse-tree}. This example is problematic because
  4102. interpreting the second parse tree would yield \code{-4} even through
  4103. the correct answer is \code{2}.
  4104. \begin{figure}[tbp]
  4105. \begin{tcolorbox}[colback=white]
  4106. \centering
  4107. \includegraphics[width=0.95\textwidth]{figs/ambig-parse-tree}
  4108. \end{tcolorbox}
  4109. \caption{The two parse trees for \code{'1-2+3'}.}
  4110. \label{fig:ambig-parse-tree}
  4111. \end{figure}
  4112. To deal with this problem we can change the grammar by categorizing
  4113. the syntax in a more fine grained fashion. In this case we want to
  4114. disallow the application of the rule \code{exp: exp "-" exp} when the
  4115. child on the right is an addition. To do this we can replace the
  4116. \code{exp} after \code{"-"} with a nonterminal that categorizes all
  4117. the expressions except for addition, as in the following.
  4118. \begin{center}
  4119. \begin{minipage}{0.95\textwidth}
  4120. \begin{lstlisting}[escapechar=$]
  4121. exp: exp "-" exp_no_add -> sub
  4122. | exp "+" exp -> add
  4123. | exp_no_add
  4124. exp_no_add: INT -> int
  4125. | "input_int" "(" ")" -> input_int
  4126. | "-" exp -> usub
  4127. | exp "-" exp_no_add -> sub
  4128. | "(" exp ")" -> paren
  4129. \end{lstlisting}
  4130. \end{minipage}
  4131. \end{center}
  4132. However, there remains some ambiguity in the grammar. For example, the
  4133. string \code{'1-2-3'} can still be parsed in two different ways, as
  4134. \code{'(1-2)-3'} (correct) or \code{'1-(2-3)'} (incorrect). That is
  4135. to say, subtraction is left associative. Likewise, addition in Python
  4136. is left associative. We also need to consider the interaction of unary
  4137. subtraction with both addition and subtraction. How should we parse
  4138. \code{'-1+2'}? Unary subtraction has higher
  4139. \emph{precendence}\index{subject}{precedence} than addition and
  4140. subtraction, so \code{'-1+2'} should parse the same as \code{'(-1)+2'}
  4141. and not \code{'-(1+2)'}. The grammar in
  4142. figure~\ref{fig:Lint-lark-grammar} handles the associativity of
  4143. addition and subtraction by using the nonterminal \code{exp\_hi} for
  4144. all the other expressions, and uses \code{exp\_hi} for the second
  4145. child in the rules for addition and subtraction. Furthermore, unary
  4146. subtraction uses \code{exp\_hi} for its child.
  4147. For languages with more operators and more precedence levels, one must
  4148. refine the \code{exp} nonterminal into several nonterminals, one for
  4149. each precedence level.
  4150. \begin{figure}[tbp]
  4151. \begin{tcolorbox}[colback=white]
  4152. \centering
  4153. \begin{lstlisting}[escapechar=$]
  4154. exp: exp "+" exp_hi -> add
  4155. | exp "-" exp_hi -> sub
  4156. | exp_hi
  4157. exp_hi: INT -> int
  4158. | "input_int" "(" ")" -> input_int
  4159. | "-" exp_hi -> usub
  4160. | "(" exp ")" -> paren
  4161. stmt: "print" "(" exp ")" -> print
  4162. | exp -> expr
  4163. stmt_list: -> empty_stmt
  4164. | stmt NEWLINE stmt_list -> add_stmt
  4165. lang_int: stmt_list -> module
  4166. \end{lstlisting}
  4167. \end{tcolorbox}
  4168. \caption{An unambiguous Lark grammar for \LangInt{}.}
  4169. \label{fig:Lint-lark-grammar}
  4170. \end{figure}
  4171. \section{From Parse Trees to Abstract Syntax Trees}
  4172. As we have seen, the output of a Lark parser is a parse tree, that is,
  4173. a tree consisting of \code{Tree} and \code{Token} nodes. So the next
  4174. step is to convert the parse tree to an abstract syntax tree. This can
  4175. be accomplished with a recursive function that inspects the
  4176. \code{data} field of each node and then constructs the corresponding
  4177. AST node, using recursion to handle its children. The following is an
  4178. excerpt of the \code{parse\_tree\_to\_ast} function for \LangInt{}.
  4179. \begin{center}
  4180. \begin{minipage}{0.95\textwidth}
  4181. \begin{lstlisting}
  4182. def parse_tree_to_ast(e):
  4183. if e.data == 'int':
  4184. return Constant(int(e.children[0].value))
  4185. elif e.data == 'input_int':
  4186. return Call(Name('input_int'), [])
  4187. elif e.data == 'add':
  4188. e1, e2 = e.children
  4189. return BinOp(parse_tree_to_ast(e1), Add(), parse_tree_to_ast(e2))
  4190. ...
  4191. else:
  4192. raise Exception('unhandled parse tree', e)
  4193. \end{lstlisting}
  4194. \end{minipage}
  4195. \end{center}
  4196. \begin{exercise}
  4197. \normalfont\normalsize
  4198. %
  4199. Use Lark to create a lexer and parser for \LangVar{}. Use Lark's
  4200. default parsing algorithm (Earley) with the \code{ambiguity} option
  4201. set to \code{'explicit'} so that if your grammar is ambiguous, the
  4202. output will include multiple parse trees which will indicate to you
  4203. that there is a problem with your grammar. Your parser should ignore
  4204. white space so we recommend using Lark's \code{\%ignore} directive
  4205. as follows.
  4206. \begin{lstlisting}
  4207. WS: /[ \t\f\r\n]/+
  4208. %ignore WS
  4209. \end{lstlisting}
  4210. Change your compiler from chapter~\ref{ch:Lvar} to use your
  4211. Lark parser instead of using the \code{parse} function from
  4212. the \code{ast} module. Test your compiler on all of the \LangVar{}
  4213. programs that you have created and create four additional programs
  4214. that test for ambiguities in your grammar.
  4215. \end{exercise}
  4216. \section{The Earley Algorithm}
  4217. \label{sec:earley}
  4218. In this section we discuss the parsing algorithm of
  4219. \citet{Earley:1970ly}, the default algorithm used by Lark. The
  4220. algorithm is powerful in that it can handle any context-free grammar,
  4221. which makes it easy to use. However, it is not the most efficient
  4222. parsing algorithm: it is $O(n^3)$ for ambiguous grammars and $O(n^2)$
  4223. for unambiguous grammars, where $n$ is the number of tokens in the
  4224. input string~\citep{Hopcroft06:_automata}. In section~\ref{sec:lalr}
  4225. we learn about the LALR(1) algorithm, which is more efficient but
  4226. cannot handle all context-free grammars.
  4227. The Earley algorithm can be viewed as an interpreter; it treats the
  4228. grammar as the program being interpreted and it treats the concrete
  4229. syntax of the program-to-be-parsed as its input. The Earley algorithm
  4230. uses a data structure called a \emph{chart}\index{subject}{chart} to
  4231. keep track of its progress and to memoize its results. The chart is an
  4232. array with one slot for each position in the input string, where
  4233. position $0$ is before the first character and position $n$ is
  4234. immediately after the last character. So the array has length $n+1$
  4235. for an input string of length $n$. Each slot in the chart contains a
  4236. set of \emph{dotted rules}. A dotted rule is simply a grammar rule
  4237. with a period indicating how much of its right-hand side has already
  4238. been parsed. For example, the dotted rule
  4239. \begin{lstlisting}
  4240. exp: exp "+" . exp_hi
  4241. \end{lstlisting}
  4242. represents a partial parse that has matched an \code{exp} followed by
  4243. \code{+}, but has not yet parsed an \code{exp} to the right of
  4244. \code{+}.
  4245. %
  4246. The Earley algorithm starts with an initialization phase, and then
  4247. repeats three actions---prediction, scanning, and completion---for as
  4248. long as opportunities arise. We demonstrate the Earley algorithm on a
  4249. running example, parsing the following program:
  4250. \begin{lstlisting}
  4251. print(1 + 3)
  4252. \end{lstlisting}
  4253. The algorithm's initialization phase creates dotted rules for all the
  4254. grammar rules whose left-hand side is the start symbol and places them
  4255. in slot $0$ of the chart. We also record the starting position of the
  4256. dotted rule in parentheses on the right. For example, given the
  4257. grammar in figure~\ref{fig:Lint-lark-grammar}, we place
  4258. \begin{lstlisting}
  4259. lang_int: . stmt_list (0)
  4260. \end{lstlisting}
  4261. in slot $0$ of the chart. The algorithm then proceeds with
  4262. \emph{prediction} actions in which it adds more dotted rules to the
  4263. chart based on which nonterminals come immediately after a period. In
  4264. the above, the nonterminal \code{stmt\_list} appears after a period,
  4265. so we add all the rules for \code{stmt\_list} to slot $0$, with a
  4266. period at the beginning of their right-hand sides, as follows:
  4267. \begin{lstlisting}
  4268. stmt_list: . (0)
  4269. stmt_list: . stmt NEWLINE stmt_list (0)
  4270. \end{lstlisting}
  4271. We continue to perform prediction actions as more opportunities
  4272. arise. For example, the \code{stmt} nonterminal now appears after a
  4273. period, so we add all the rules for \code{stmt}.
  4274. \begin{lstlisting}
  4275. stmt: . "print" "(" exp ")" (0)
  4276. stmt: . exp (0)
  4277. \end{lstlisting}
  4278. This reveals yet more opportunities for prediction, so we add the grammar
  4279. rules for \code{exp} and \code{exp\_hi} to slot $0$.
  4280. \begin{lstlisting}[escapechar=$]
  4281. exp: . exp "+" exp_hi (0)
  4282. exp: . exp "-" exp_hi (0)
  4283. exp: . exp_hi (0)
  4284. exp_hi: . INT (0)
  4285. exp_hi: . "input_int" "(" ")" (0)
  4286. exp_hi: . "-" exp_hi (0)
  4287. exp_hi: . "(" exp ")" (0)
  4288. \end{lstlisting}
  4289. We have exhausted the opportunities for prediction, so the algorithm
  4290. proceeds to \emph{scanning}, in which we inspect the next input token
  4291. and look for a dotted rule at the current position that has a matching
  4292. terminal immediately following the period. In our running example, the
  4293. first input token is \code{"print"} so we identify the rule in slot
  4294. $0$ of the chart where \code{"print"} follows the period:
  4295. \begin{lstlisting}
  4296. stmt: . "print" "(" exp ")" (0)
  4297. \end{lstlisting}
  4298. We advance the period past \code{"print"} and add the resulting rule
  4299. to slot $1$ of the chart:
  4300. \begin{lstlisting}
  4301. stmt: "print" . "(" exp ")" (0)
  4302. \end{lstlisting}
  4303. If the new dotted rule had a nonterminal after the period, we would
  4304. need to carry out a prediction action, adding more dotted rules into
  4305. slot $1$. That is not the case, so we continue scanning. The next
  4306. input token is \code{"("}, so we add the following to slot $2$ of the
  4307. chart.
  4308. \begin{lstlisting}
  4309. stmt: "print" "(" . exp ")" (0)
  4310. \end{lstlisting}
  4311. Now we have a nonterminal after the period, so we carry out several
  4312. prediction actions, adding dotted rules for \code{exp} and
  4313. \code{exp\_hi} to slot $2$ with a period at the beginning and with
  4314. starting position $2$.
  4315. \begin{lstlisting}[escapechar=$]
  4316. exp: . exp "+" exp_hi (2)
  4317. exp: . exp "-" exp_hi (2)
  4318. exp: . exp_hi (2)
  4319. exp_hi: . INT (2)
  4320. exp_hi: . "input_int" "(" ")" (2)
  4321. exp_hi: . "-" exp_hi (2)
  4322. exp_hi: . "(" exp ")" (2)
  4323. \end{lstlisting}
  4324. With this prediction complete, we return to scanning, noting that the
  4325. next input token is \code{"1"} which the lexer parses as an
  4326. \code{INT}. There is a matching rule in slot $2$:
  4327. \begin{lstlisting}
  4328. exp_hi: . INT (2)
  4329. \end{lstlisting}
  4330. so we advance the period and put the following rule is slot $3$.
  4331. \begin{lstlisting}
  4332. exp_hi: INT . (2)
  4333. \end{lstlisting}
  4334. This brings us to \emph{completion} actions. When the period reaches
  4335. the end of a dotted rule, we recognize that the substring
  4336. has matched the nonterminal on the left-hand side of the rule, in this case
  4337. \code{exp\_hi}. We therefore need to advance the periods in any dotted
  4338. rules in slot $2$ (the starting position for the finished rule) if
  4339. the period is immediately followed by \code{exp\_hi}. So we identify
  4340. \begin{lstlisting}
  4341. exp: . exp_hi (2)
  4342. \end{lstlisting}
  4343. and add the following dotted rule to slot $3$
  4344. \begin{lstlisting}
  4345. exp: exp_hi . (2)
  4346. \end{lstlisting}
  4347. This triggers another completion step for the nonterminal \code{exp},
  4348. adding two more dotted rules to slot $3$.
  4349. \begin{lstlisting}[escapechar=$]
  4350. exp: exp . "+" exp_hi (2)
  4351. exp: exp . "-" exp_hi (2)
  4352. \end{lstlisting}
  4353. Returning to scanning, the next input token is \code{"+"}, so
  4354. we add the following to slot $4$.
  4355. \begin{lstlisting}[escapechar=$]
  4356. exp: exp "+" . exp_hi (2)
  4357. \end{lstlisting}
  4358. The period precedes the nonterminal \code{exp\_hi}, so prediction adds
  4359. the following dotted rules to slot $4$ of the chart.
  4360. \begin{lstlisting}[escapechar=$]
  4361. exp_hi: . INT (4)
  4362. exp_hi: . "input_int" "(" ")" (4)
  4363. exp_hi: . "-" exp_hi (4)
  4364. exp_hi: . "(" exp ")" (4)
  4365. \end{lstlisting}
  4366. The next input token is \code{"3"} which the lexer categorized as an
  4367. \code{INT}, so we advance the period past \code{INT} for the rules in
  4368. slot $4$, of which there is just one, and put the following in slot $5$.
  4369. \begin{lstlisting}[escapechar=$]
  4370. exp_hi: INT . (4)
  4371. \end{lstlisting}
  4372. The period at the end of the rule triggers a completion action for the
  4373. rules in slot $4$, one of which has a period before \code{exp\_hi}.
  4374. So we advance the period and put the following in slot $5$.
  4375. \begin{lstlisting}[escapechar=$]
  4376. exp: exp "+" exp_hi . (2)
  4377. \end{lstlisting}
  4378. This triggers another completion action for the rules in slot $2$ that
  4379. have a period before \code{exp}.
  4380. \begin{lstlisting}[escapechar=$]
  4381. stmt: "print" "(" exp . ")" (0)
  4382. exp: exp . "+" exp_hi (2)
  4383. exp: exp . "-" exp_hi (2)
  4384. \end{lstlisting}
  4385. We scan the next input token \code{")"}, placing the following dotted
  4386. rule in slot $6$.
  4387. \begin{lstlisting}[escapechar=$]
  4388. stmt: "print" "(" exp ")" . (0)
  4389. \end{lstlisting}
  4390. This triggers the completion of \code{stmt} in slot $0$
  4391. \begin{lstlisting}
  4392. stmt_list: stmt . NEWLINE stmt_list (0)
  4393. \end{lstlisting}
  4394. The last input token is a \code{NEWLINE}, so we advance the period
  4395. and place the new dotted rule in slot $7$.
  4396. \begin{lstlisting}
  4397. stmt_list: stmt NEWLINE . stmt_list (0)
  4398. \end{lstlisting}
  4399. We are close to the end of parsing the input!
  4400. The period is before the \code{stmt\_list} nonterminal, so we
  4401. apply prediction for \code{stmt\_list} and then \code{stmt}.
  4402. \begin{lstlisting}
  4403. stmt_list: . (7)
  4404. stmt_list: . stmt NEWLINE stmt_list (7)
  4405. stmt: . "print" "(" exp ")" (7)
  4406. stmt: . exp (7)
  4407. \end{lstlisting}
  4408. There is immediately an opportunity for completion of \code{stmt\_list},
  4409. so we add the following to slot $7$.
  4410. \begin{lstlisting}
  4411. stmt_list: stmt NEWLINE stmt_list . (0)
  4412. \end{lstlisting}
  4413. This triggers another completion action for \code{stmt\_list} in slot $0$
  4414. \begin{lstlisting}
  4415. lang_int: stmt_list . (0)
  4416. \end{lstlisting}
  4417. which in turn completes \code{lang\_int}, the start symbol of the
  4418. grammar, so the parsing of the input is complete.
  4419. For reference, we now give a general description of the Earley
  4420. algorithm.
  4421. \begin{enumerate}
  4422. \item The algorithm begins by initializing slot $0$ of the chart with the
  4423. grammar rule for the start symbol, placing a period at the beginning
  4424. of the right-hand side, and recording its starting position as $0$.
  4425. \item The algorithm repeatedly applies the following three kinds of
  4426. actions for as long as there are opportunities to do so.
  4427. \begin{itemize}
  4428. \item Prediction: if there is a rule in slot $k$ whose period comes
  4429. before a nonterminal, add the rules for that nonterminal into slot
  4430. $k$, placing a period at the beginning of their right-hand sides
  4431. and recording their starting position as $k$.
  4432. \item Scanning: If the token at position $k$ of the input string
  4433. matches the symbol after the period in a dotted rule in slot $k$
  4434. of the chart, advance the period in the dotted rule, adding
  4435. the result to slot $k+1$.
  4436. \item Completion: If a dotted rule in slot $k$ has a period at the
  4437. end, inspect the rules in the slot corresponding to the starting
  4438. position of the completed rule. If any of those rules have a
  4439. nonterminal following their period that matches the left-hand side
  4440. of the completed rule, then advance their period, placing the new
  4441. dotted rule in slot $k$.
  4442. \end{itemize}
  4443. While repeating these three actions, take care to never add
  4444. duplicate dotted rules to the chart.
  4445. \end{enumerate}
  4446. We have described how the Earley algorithm recognizes that an input
  4447. string matches a grammar, but we have not described how it builds a
  4448. parse tree. The basic idea is simple, but building parse trees in an
  4449. efficient way is more complex, requiring a data structure called a
  4450. shared packed parse forest~\citep{Tomita:1985qr}. The simple idea is
  4451. to attach a partial parse tree to every dotted rule in the chart.
  4452. Initially, the tree node associated with a dotted rule has no
  4453. children. As the period moves to the right, the nodes from the
  4454. subparses are added as children to the tree node.
  4455. As mentioned at the beginning of this section, the Earley algorithm is
  4456. $O(n^2)$ for unambiguous grammars, which means that it can parse input
  4457. files that contain thousands of tokens in a reasonable amount of time,
  4458. but not millions.
  4459. %
  4460. In the next section we discuss the LALR(1) parsing algorithm, which is
  4461. efficient enough to use with even the largest of input files.
  4462. \section{The LALR(1) Algorithm}
  4463. \label{sec:lalr}
  4464. The LALR(1) algorithm~\citep{DeRemer69,Anderson73} can be viewed as a
  4465. two phase approach in which it first compiles the grammar into a state
  4466. machine and then runs the state machine to parse an input string. The
  4467. second phase has time complexity $O(n)$ where $n$ is the number of
  4468. tokens in the input, so LALR(1) is the best one could hope for with
  4469. respect to efficiency.
  4470. %
  4471. A particularly influential implementation of LALR(1) is the
  4472. \texttt{yacc} parser generator by \citet{Johnson:1979qy}, which stands
  4473. for Yet Another Compiler Compiler.
  4474. %
  4475. The LALR(1) state machine uses a stack to record its progress in
  4476. parsing the input string. Each element of the stack is a pair: a
  4477. state number and a grammar symbol (a terminal or nonterminal). The
  4478. symbol characterizes the input that has been parsed so-far and the
  4479. state number is used to remember how to proceed once the next
  4480. symbol-worth of input has been parsed. Each state in the machine
  4481. represents where the parser stands in the parsing process with respect
  4482. to certain grammar rules. In particular, each state is associated with
  4483. a set of dotted rules.
  4484. Figure~\ref{fig:shift-reduce} shows an example LALR(1) state machine
  4485. (also called parse table) for the following simple but ambiguous
  4486. grammar:
  4487. \begin{lstlisting}[escapechar=$]
  4488. exp: INT
  4489. | exp "+" exp
  4490. stmt: "print" exp
  4491. start: stmt
  4492. \end{lstlisting}
  4493. Consider state 1 in Figure~\ref{fig:shift-reduce}. The parser has just
  4494. read in a \lstinline{"print"} token, so the top of the stack is
  4495. \lstinline{(1,"print")}. The parser is part of the way through parsing
  4496. the input according to grammar rule 1, which is signified by showing
  4497. rule 1 with a period after the \code{"print"} token and before the
  4498. \code{exp} nonterminal. There are several rules that could apply next,
  4499. both rule 2 and 3, so state 1 also shows those rules with a period at
  4500. the beginning of their right-hand sides. The edges between states
  4501. indicate which transitions the machine should make depending on the
  4502. next input token. So, for example, if the next input token is
  4503. \code{INT} then the parser will push \code{INT} and the target state 4
  4504. on the stack and transition to state 4. Suppose we are now at the end
  4505. of the input. In state 4 it says we should reduce by rule 3, so we pop
  4506. from the stack the same number of items as the number of symbols in
  4507. the right-hand side of the rule, in this case just one. We then
  4508. momentarily jump to the state at the top of the stack (state 1) and
  4509. then follow the goto edge that corresponds to the left-hand side of
  4510. the rule we just reduced by, in this case \code{exp}, so we arrive at
  4511. state 3. (A slightly longer example parse is shown in
  4512. Figure~\ref{fig:shift-reduce}.)
  4513. \begin{figure}[htbp]
  4514. \centering
  4515. \includegraphics[width=5.0in]{figs/shift-reduce-conflict}
  4516. \caption{An LALR(1) parse table and a trace of an example run.}
  4517. \label{fig:shift-reduce}
  4518. \end{figure}
  4519. In general, the algorithm works as follows. Set the current state to
  4520. state $0$. Then repeat the following, looking at the next input token.
  4521. \begin{itemize}
  4522. \item If there there is a shift edge for the input token in the
  4523. current state, push the edge's target state and the input token on
  4524. the stack and proceed to the edge's target state.
  4525. \item If there is a reduce action for the input token in the current
  4526. state, pop $k$ elements from the stack, where $k$ is the number of
  4527. symbols in the right-hand side of the rule being reduced. Jump to
  4528. the state at the top of the stack and then follow the goto edge for
  4529. the nonterminal that matches the left-hand side of the rule that we
  4530. reducing by. Push the edge's target state and the nonterminal on the
  4531. stack.
  4532. \end{itemize}
  4533. Notice that in state 6 of Figure~\ref{fig:shift-reduce} there is both
  4534. a shift and a reduce action for the token \lstinline{PLUS}, so the
  4535. algorithm does not know which action to take in this case. When a
  4536. state has both a shift and a reduce action for the same token, we say
  4537. there is a \emph{shift/reduce conflict}. In this case, the conflict
  4538. will arise, for example, when trying to parse the input
  4539. \lstinline{print 1 + 2 + 3}. After having consumed \lstinline{print 1 + 2}
  4540. the parser will be in state 6, and it will not know whether to
  4541. reduce to form an \code{exp} of \lstinline{1 + 2}, or whether it
  4542. should proceed by shifting the next \lstinline{+} from the input.
  4543. A similar kind of problem, known as a \emph{reduce/reduce} conflict,
  4544. arises when there are two reduce actions in a state for the same
  4545. token. To understand which grammars gives rise to shift/reduce and
  4546. reduce/reduce conflicts, it helps to know how the parse table is
  4547. generated from the grammar, which we discuss next.
  4548. The parse table is generated one state at a time. State 0 represents
  4549. the start of the parser. We add the grammar rule for the start symbol
  4550. to this state with a period at the beginning of the right-hand side,
  4551. similar to the initialization phase of the Earley parser. If the
  4552. period appears immediately before another nonterminal, we add all the
  4553. rules with that nonterminal on the left-hand side. Again, we place a
  4554. period at the beginning of the right-hand side of each the new
  4555. rules. This process, called \emph{state closure}, is continued
  4556. until there are no more rules to add (similar to the prediction
  4557. actions of an Earley parser). We then examine each dotted rule in the
  4558. current state $I$. Suppose a dotted rule has the form $A ::=
  4559. s_1.\,X s_2$, where $A$ and $X$ are symbols and $s_1$ and $s_2$
  4560. are sequences of symbols. We create a new state, call it $J$. If $X$
  4561. is a terminal, we create a shift edge from $I$ to $J$ (analogous to
  4562. scanning in Earley), whereas if $X$ is a nonterminal, we create a
  4563. goto edge from $I$ to $J$. We then need to add some dotted rules to
  4564. state $J$. We start by adding all dotted rules from state $I$ that
  4565. have the form $B ::= s_1.\,Xs_2$ (where $B$ is any nonterminal and
  4566. $s_1$ and $s_2$ are arbitrary sequences of symbols), but with
  4567. the period moved past the $X$. (This is analogous to completion in
  4568. the Earley algorithm.) We then perform state closure on $J$. This
  4569. process repeats until there are no more states or edges to add.
  4570. We then mark states as accepting states if they have a dotted rule
  4571. that is the start rule with a period at the end. Also, to add
  4572. in the reduce actions, we look for any state containing a dotted rule
  4573. with a period at the end. Let $n$ be the rule number for this dotted
  4574. rule. We then put a reduce $n$ action into that state for every token
  4575. $Y$. For example, in Figure~\ref{fig:shift-reduce} state 4 has an
  4576. dotted rule with a period at the end. We therefore put a reduce by
  4577. rule 3 action into state 4 for every
  4578. token.
  4579. When inserting reduce actions, take care to spot any shift/reduce or
  4580. reduce/reduce conflicts. If there are any, abort the construction of
  4581. the parse table.
  4582. \begin{exercise}
  4583. \normalfont\normalsize
  4584. %
  4585. On a piece of paper, walk through the parse table generation process
  4586. for the grammar at the top of figure~\ref{fig:shift-reduce} and check
  4587. your results against parse table in figure~\ref{fig:shift-reduce}.
  4588. \end{exercise}
  4589. \begin{exercise}
  4590. \normalfont\normalsize
  4591. %
  4592. Change the parser in your compiler for \LangVar{} to set the
  4593. \code{parser} option of Lark to \code{'lalr'}. Test your compiler on
  4594. all the \LangVar{} programs that you have created. In doing so, Lark
  4595. may signal an error due to shift/reduce or reduce/reduce conflicts
  4596. in your grammar. If so, change your Lark grammar for \LangVar{} to
  4597. remove those conflicts.
  4598. \end{exercise}
  4599. \section{Further Reading}
  4600. In this chapter we have just scratched the surface of the field of
  4601. parsing, with the study of a very general but less efficient algorithm
  4602. (Earley) and with a more limited but highly efficient algorithm
  4603. (LALR). There are many more algorithms, and classes of grammars, that
  4604. fall between these two ends of the spectrum. We recommend the reader
  4605. to \citet{Aho:2006wb} for a thorough treatment of parsing.
  4606. Regarding lexical analysis, we described the specification language,
  4607. the regular expressions, but not the algorithms for recognizing them.
  4608. In short, regular expressions can be translated to nondeterministic
  4609. finite automata, which in turn are translated to finite automata. We
  4610. refer the reader again to \citet{Aho:2006wb} for all the details on
  4611. lexical analysis.
  4612. \fi}
  4613. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  4614. \chapter{Register Allocation}
  4615. \label{ch:register-allocation-Lvar}
  4616. \setcounter{footnote}{0}
  4617. \index{subject}{register allocation}
  4618. In chapter~\ref{ch:Lvar} we learned how to compile \LangVar{} to x86,
  4619. storing variables on the procedure call stack. The CPU may require tens
  4620. to hundreds of cycles to access a location on the stack, whereas
  4621. accessing a register takes only a single cycle. In this chapter we
  4622. improve the efficiency of our generated code by storing some variables
  4623. in registers. The goal of register allocation is to fit as many
  4624. variables into registers as possible. Some programs have more
  4625. variables than registers, so we cannot always map each variable to a
  4626. different register. Fortunately, it is common for different variables
  4627. to be in use during different periods of time during program
  4628. execution, and in those cases we can map multiple variables to the
  4629. same register.
  4630. The program shown in figure~\ref{fig:reg-eg} serves as a running
  4631. example. The source program is on the left and the output of
  4632. instruction selection\index{subject}{instruction selection}
  4633. is on the right. The program is almost
  4634. completely in the x86 assembly language, but it still uses variables.
  4635. Consider variables \code{x} and \code{z}. After the variable \code{x}
  4636. has been moved to \code{z}, it is no longer in use. Variable \code{z}, on
  4637. the other hand, is used only after this point, so \code{x} and
  4638. \code{z} could share the same register.
  4639. \begin{figure}
  4640. \begin{tcolorbox}[colback=white]
  4641. \begin{minipage}{0.45\textwidth}
  4642. Example \LangVar{} program:
  4643. % var_test_28.rkt
  4644. {\if\edition\racketEd
  4645. \begin{lstlisting}
  4646. (let ([v 1])
  4647. (let ([w 42])
  4648. (let ([x (+ v 7)])
  4649. (let ([y x])
  4650. (let ([z (+ x w)])
  4651. (+ z (- y)))))))
  4652. \end{lstlisting}
  4653. \fi}
  4654. {\if\edition\pythonEd\pythonColor
  4655. \begin{lstlisting}
  4656. v = 1
  4657. w = 42
  4658. x = v + 7
  4659. y = x
  4660. z = x + w
  4661. print(z + (- y))
  4662. \end{lstlisting}
  4663. \fi}
  4664. \end{minipage}
  4665. \begin{minipage}{0.45\textwidth}
  4666. After instruction selection:
  4667. {\if\edition\racketEd
  4668. \begin{lstlisting}
  4669. locals-types:
  4670. x : Integer, y : Integer,
  4671. z : Integer, t : Integer,
  4672. v : Integer, w : Integer
  4673. start:
  4674. movq $1, v
  4675. movq $42, w
  4676. movq v, x
  4677. addq $7, x
  4678. movq x, y
  4679. movq x, z
  4680. addq w, z
  4681. movq y, t
  4682. negq t
  4683. movq z, %rax
  4684. addq t, %rax
  4685. jmp conclusion
  4686. \end{lstlisting}
  4687. \fi}
  4688. {\if\edition\pythonEd\pythonColor
  4689. \begin{lstlisting}
  4690. movq $1, v
  4691. movq $42, w
  4692. movq v, x
  4693. addq $7, x
  4694. movq x, y
  4695. movq x, z
  4696. addq w, z
  4697. movq y, tmp_0
  4698. negq tmp_0
  4699. movq z, tmp_1
  4700. addq tmp_0, tmp_1
  4701. movq tmp_1, %rdi
  4702. callq print_int
  4703. \end{lstlisting}
  4704. \fi}
  4705. \end{minipage}
  4706. \end{tcolorbox}
  4707. \caption{A running example for register allocation.}
  4708. \label{fig:reg-eg}
  4709. \end{figure}
  4710. The topic of section~\ref{sec:liveness-analysis-Lvar} is how to
  4711. compute where a variable is in use. Once we have that information, we
  4712. compute which variables are in use at the same time, that is, which ones
  4713. \emph{interfere}\index{subject}{interfere} with each other, and
  4714. represent this relation as an undirected graph whose vertices are
  4715. variables and edges indicate when two variables interfere
  4716. (section~\ref{sec:build-interference}). We then model register
  4717. allocation as a graph coloring problem
  4718. (section~\ref{sec:graph-coloring}).
  4719. If we run out of registers despite these efforts, we place the
  4720. remaining variables on the stack, similarly to how we handled
  4721. variables in chapter~\ref{ch:Lvar}. It is common to use the verb
  4722. \emph{spill}\index{subject}{spill} for assigning a variable to a stack
  4723. location. The decision to spill a variable is handled as part of the
  4724. graph coloring process.
  4725. We make the simplifying assumption that each variable is assigned to
  4726. one location (a register or stack address). A more sophisticated
  4727. approach is to assign a variable to one or more locations in different
  4728. regions of the program. For example, if a variable is used many times
  4729. in short sequence and then used again only after many other
  4730. instructions, it could be more efficient to assign the variable to a
  4731. register during the initial sequence and then move it to the stack for
  4732. the rest of its lifetime. We refer the interested reader to
  4733. \citet{Cooper:2011aa} (chapter 13) for more information about that
  4734. approach.
  4735. % discuss prioritizing variables based on how much they are used.
  4736. \section{Registers and Calling Conventions}
  4737. \label{sec:calling-conventions}
  4738. \index{subject}{calling conventions}
  4739. As we perform register allocation, we must be aware of the
  4740. \emph{calling conventions} \index{subject}{calling conventions} that
  4741. govern how function calls are performed in x86.
  4742. %
  4743. Even though \LangVar{} does not include programmer-defined functions,
  4744. our generated code includes a \code{main} function that is called by
  4745. the operating system and our generated code contains calls to the
  4746. \code{read\_int} function.
  4747. Function calls require coordination between two pieces of code that
  4748. may be written by different programmers or generated by different
  4749. compilers. Here we follow the System V calling conventions that are
  4750. used by the GNU C compiler on Linux and
  4751. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  4752. %
  4753. The calling conventions include rules about how functions share the
  4754. use of registers. In particular, the caller is responsible for freeing
  4755. some registers prior to the function call for use by the callee.
  4756. These are called the \emph{caller-saved registers}
  4757. \index{subject}{caller-saved registers}
  4758. and they are
  4759. \begin{lstlisting}
  4760. rax rcx rdx rsi rdi r8 r9 r10 r11
  4761. \end{lstlisting}
  4762. On the other hand, the callee is responsible for preserving the values
  4763. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  4764. which are
  4765. \begin{lstlisting}
  4766. rsp rbp rbx r12 r13 r14 r15
  4767. \end{lstlisting}
  4768. We can think about this caller/callee convention from two points of
  4769. view, the caller view and the callee view, as follows:
  4770. \begin{itemize}
  4771. \item The caller should assume that all the caller-saved registers get
  4772. overwritten with arbitrary values by the callee. On the other hand,
  4773. the caller can safely assume that all the callee-saved registers
  4774. retain their original values.
  4775. \item The callee can freely use any of the caller-saved registers.
  4776. However, if the callee wants to use a callee-saved register, the
  4777. callee must arrange to put the original value back in the register
  4778. prior to returning to the caller. This can be accomplished by saving
  4779. the value to the stack in the prelude of the function and restoring
  4780. the value in the conclusion of the function.
  4781. \end{itemize}
  4782. In x86, registers are also used for passing arguments to a function
  4783. and for the return value. In particular, the first six arguments of a
  4784. function are passed in the following six registers, in this order.
  4785. \begin{lstlisting}
  4786. rdi rsi rdx rcx r8 r9
  4787. \end{lstlisting}
  4788. We refer to these six registers are the argument-passing registers
  4789. \index{subject}{argument-passing registers}.
  4790. If there are more than six arguments, the convention is to use space
  4791. on the frame of the caller for the rest of the arguments. In
  4792. chapter~\ref{ch:Lfun}, we instead pass a tuple containing the sixth
  4793. argument and the rest of the arguments, which simplifies the treatment
  4794. of efficient tail calls.
  4795. %
  4796. \racket{For now, the only function we care about is \code{read\_int},
  4797. which takes zero arguments.}
  4798. %
  4799. \python{For now, the only functions we care about are \code{read\_int}
  4800. and \code{print\_int}, which take zero and one argument, respectively.}
  4801. %
  4802. The register \code{rax} is used for the return value of a function.
  4803. The next question is how these calling conventions impact register
  4804. allocation. Consider the \LangVar{} program presented in
  4805. figure~\ref{fig:example-calling-conventions}. We first analyze this
  4806. example from the caller point of view and then from the callee point
  4807. of view. We refer to a variable that is in use during a function call
  4808. as a \emph{call-live variable}\index{subject}{call-live variable}.
  4809. The program makes two calls to \READOP{}. The variable \code{x} is
  4810. call-live because it is in use during the second call to \READOP{}; we
  4811. must ensure that the value in \code{x} does not get overwritten during
  4812. the call to \READOP{}. One obvious approach is to save all the values
  4813. that reside in caller-saved registers to the stack prior to each
  4814. function call and to restore them after each call. That way, if the
  4815. register allocator chooses to assign \code{x} to a caller-saved
  4816. register, its value will be preserved across the call to \READOP{}.
  4817. However, saving and restoring to the stack is relatively slow. If
  4818. \code{x} is not used many times, it may be better to assign \code{x}
  4819. to a stack location in the first place. Or better yet, if we can
  4820. arrange for \code{x} to be placed in a callee-saved register, then it
  4821. won't need to be saved and restored during function calls.
  4822. We recommend an approach that captures these issues in the
  4823. interference graph, without complicating the graph coloring algorithm.
  4824. During liveness analysis we know which variables are call-live because
  4825. we compute which variables are in use at every instruction
  4826. (section~\ref{sec:liveness-analysis-Lvar}). When we build the
  4827. interference graph (section~\ref{sec:build-interference}), we can
  4828. place an edge in the interference graph between each call-live
  4829. variable and the caller-saved registers. This will prevent the graph
  4830. coloring algorithm from assigning call-live variables to caller-saved
  4831. registers.
  4832. On the other hand, for variables that are not call-live, we prefer
  4833. placing them in caller-saved registers to leave more room for
  4834. call-live variables in the callee-saved registers. This can also be
  4835. implemented without complicating the graph coloring algorithm. We
  4836. recommend that the graph coloring algorithm assign variables to
  4837. natural numbers, choosing the lowest number for which there is no
  4838. interference. After the coloring is complete, we map the numbers to
  4839. registers and stack locations: mapping the lowest numbers to
  4840. caller-saved registers, the next lowest to callee-saved registers, and
  4841. the largest numbers to stack locations. This ordering gives preference
  4842. to registers over stack locations and to caller-saved registers over
  4843. callee-saved registers.
  4844. Returning to the example in
  4845. figure~\ref{fig:example-calling-conventions}, let us analyze the
  4846. generated x86 code on the right-hand side. Variable \code{x} is
  4847. assigned to \code{rbx}, a callee-saved register. Thus, it is already
  4848. in a safe place during the second call to \code{read\_int}. Next,
  4849. variable \code{y} is assigned to \code{rcx}, a caller-saved register,
  4850. because \code{y} is not a call-live variable.
  4851. We have completed the analysis from the caller point of view, so now
  4852. we switch to the callee point of view, focusing on the prelude and
  4853. conclusion of the \code{main} function. As usual, the prelude begins
  4854. with saving the \code{rbp} register to the stack and setting the
  4855. \code{rbp} to the current stack pointer. We now know why it is
  4856. necessary to save the \code{rbp}: it is a callee-saved register. The
  4857. prelude then pushes \code{rbx} to the stack because (1) \code{rbx} is
  4858. a callee-saved register and (2) \code{rbx} is assigned to a variable
  4859. (\code{x}). The other callee-saved registers are not saved in the
  4860. prelude because they are not used. The prelude subtracts 8 bytes from
  4861. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  4862. conclusion, we see that \code{rbx} is restored from the stack with a
  4863. \code{popq} instruction.
  4864. \index{subject}{prelude}\index{subject}{conclusion}
  4865. \begin{figure}[tp]
  4866. \begin{tcolorbox}[colback=white]
  4867. \begin{minipage}{0.45\textwidth}
  4868. Example \LangVar{} program:
  4869. %var_test_14.rkt
  4870. {\if\edition\racketEd
  4871. \begin{lstlisting}
  4872. (let ([x (read)])
  4873. (let ([y (read)])
  4874. (+ (+ x y) 42)))
  4875. \end{lstlisting}
  4876. \fi}
  4877. {\if\edition\pythonEd\pythonColor
  4878. \begin{lstlisting}
  4879. x = input_int()
  4880. y = input_int()
  4881. print((x + y) + 42)
  4882. \end{lstlisting}
  4883. \fi}
  4884. \end{minipage}
  4885. \begin{minipage}{0.45\textwidth}
  4886. Generated x86 assembly:
  4887. {\if\edition\racketEd
  4888. \begin{lstlisting}
  4889. start:
  4890. callq read_int
  4891. movq %rax, %rbx
  4892. callq read_int
  4893. movq %rax, %rcx
  4894. addq %rcx, %rbx
  4895. movq %rbx, %rax
  4896. addq $42, %rax
  4897. jmp _conclusion
  4898. .globl main
  4899. main:
  4900. pushq %rbp
  4901. movq %rsp, %rbp
  4902. pushq %rbx
  4903. subq $8, %rsp
  4904. jmp start
  4905. conclusion:
  4906. addq $8, %rsp
  4907. popq %rbx
  4908. popq %rbp
  4909. retq
  4910. \end{lstlisting}
  4911. \fi}
  4912. {\if\edition\pythonEd\pythonColor
  4913. \begin{lstlisting}
  4914. .globl main
  4915. main:
  4916. pushq %rbp
  4917. movq %rsp, %rbp
  4918. pushq %rbx
  4919. subq $8, %rsp
  4920. callq read_int
  4921. movq %rax, %rbx
  4922. callq read_int
  4923. movq %rax, %rcx
  4924. movq %rbx, %rdx
  4925. addq %rcx, %rdx
  4926. movq %rdx, %rcx
  4927. addq $42, %rcx
  4928. movq %rcx, %rdi
  4929. callq print_int
  4930. addq $8, %rsp
  4931. popq %rbx
  4932. popq %rbp
  4933. retq
  4934. \end{lstlisting}
  4935. \fi}
  4936. \end{minipage}
  4937. \end{tcolorbox}
  4938. \caption{An example with function calls.}
  4939. \label{fig:example-calling-conventions}
  4940. \end{figure}
  4941. %\clearpage
  4942. \section{Liveness Analysis}
  4943. \label{sec:liveness-analysis-Lvar}
  4944. \index{subject}{liveness analysis}
  4945. The \code{uncover\_live} \racket{pass}\python{function} performs
  4946. \emph{liveness analysis}; that is, it discovers which variables are
  4947. in use in different regions of a program.
  4948. %
  4949. A variable or register is \emph{live} at a program point if its
  4950. current value is used at some later point in the program. We refer to
  4951. variables, stack locations, and registers collectively as
  4952. \emph{locations}.
  4953. %
  4954. Consider the following code fragment in which there are two writes to
  4955. \code{b}. Are variables \code{a} and \code{b} both live at the same
  4956. time?
  4957. \begin{center}
  4958. \begin{minipage}{0.96\textwidth}
  4959. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  4960. movq $5, a
  4961. movq $30, b
  4962. movq a, c
  4963. movq $10, b
  4964. addq b, c
  4965. \end{lstlisting}
  4966. \end{minipage}
  4967. \end{center}
  4968. The answer is no, because \code{a} is live from line 1 to 3 and
  4969. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  4970. line 2 is never used because it is overwritten (line 4) before the
  4971. next read (line 5).
  4972. The live locations for each instruction can be computed by traversing
  4973. the instruction sequence back to front (i.e., backward in execution
  4974. order). Let $I_1,\ldots, I_n$ be the instruction sequence. We write
  4975. $L_{\mathsf{after}}(k)$ for the set of live locations after
  4976. instruction $I_k$ and write $L_{\mathsf{before}}(k)$ for the set of live
  4977. locations before instruction $I_k$. \racket{We recommend representing
  4978. these sets with the Racket \code{set} data structure described in
  4979. figure~\ref{fig:set}.} \python{We recommend representing these sets
  4980. with the Python
  4981. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  4982. data structure.}
  4983. {\if\edition\racketEd
  4984. \begin{figure}[tp]
  4985. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  4986. \small
  4987. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  4988. A \emph{set} is an unordered collection of elements without duplicates.
  4989. Here are some of the operations defined on sets.
  4990. \index{subject}{set}
  4991. \begin{description}
  4992. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  4993. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  4994. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  4995. difference of the two sets.
  4996. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  4997. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  4998. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  4999. \end{description}
  5000. \end{tcolorbox}
  5001. %\end{wrapfigure}
  5002. \caption{The \code{set} data structure.}
  5003. \label{fig:set}
  5004. \end{figure}
  5005. \fi}
  5006. The locations that are live after an instruction are its
  5007. \emph{live-after}\index{subject}{live-after} set, and the locations
  5008. that are live before an instruction are its
  5009. \emph{live-before}\index{subject}{live-before} set. The live-after
  5010. set of an instruction is always the same as the live-before set of the
  5011. next instruction.
  5012. \begin{equation} \label{eq:live-after-before-next}
  5013. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  5014. \end{equation}
  5015. To start things off, there are no live locations after the last
  5016. instruction, so
  5017. \begin{equation}\label{eq:live-last-empty}
  5018. L_{\mathsf{after}}(n) = \emptyset
  5019. \end{equation}
  5020. We then apply the following rule repeatedly, traversing the
  5021. instruction sequence back to front.
  5022. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  5023. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  5024. \end{equation}
  5025. where $W(k)$ are the locations written to by instruction $I_k$, and
  5026. $R(k)$ are the locations read by instruction $I_k$.
  5027. {\if\edition\racketEd
  5028. %
  5029. There is a special case for \code{jmp} instructions. The locations
  5030. that are live before a \code{jmp} should be the locations in
  5031. $L_{\mathsf{before}}$ at the target of the jump. So, we recommend
  5032. maintaining an alist named \code{label->live} that maps each label to
  5033. the $L_{\mathsf{before}}$ for the first instruction in its block. For
  5034. now the only \code{jmp} in a \LangXVar{} program is the jump to the
  5035. conclusion. (For example, see figure~\ref{fig:reg-eg}.) The
  5036. conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should map
  5037. \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  5038. %
  5039. \fi}
  5040. Let us walk through the previous example, applying these formulas
  5041. starting with the instruction on line 5 of the code fragment. We
  5042. collect the answers in figure~\ref{fig:liveness-example-0}. The
  5043. $L_{\mathsf{after}}$ for the \code{addq b, c} instruction is
  5044. $\emptyset$ because it is the last instruction
  5045. (formula~\eqref{eq:live-last-empty}). The $L_{\mathsf{before}}$ for
  5046. this instruction is $\{\ttm{b},\ttm{c}\}$ because it reads from
  5047. variables \code{b} and \code{c}
  5048. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}):
  5049. \[
  5050. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  5051. \]
  5052. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  5053. the live-before set from line 5 to be the live-after set for this
  5054. instruction (formula~\eqref{eq:live-after-before-next}).
  5055. \[
  5056. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  5057. \]
  5058. This move instruction writes to \code{b} and does not read from any
  5059. variables, so we have the following live-before set
  5060. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}).
  5061. \[
  5062. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  5063. \]
  5064. The live-before for instruction \code{movq a, c}
  5065. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  5066. (formula~\eqref{eq:live-before-after-minus-writes-plus-reads}). The
  5067. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  5068. variable that is not live and does not read from a variable.
  5069. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  5070. because it writes to variable \code{a}.
  5071. \begin{figure}[tbp]
  5072. \centering
  5073. \begin{tcolorbox}[colback=white]
  5074. \hspace{10pt}
  5075. \begin{minipage}{0.4\textwidth}
  5076. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  5077. movq $5, a
  5078. movq $30, b
  5079. movq a, c
  5080. movq $10, b
  5081. addq b, c
  5082. \end{lstlisting}
  5083. \end{minipage}
  5084. \vrule\hspace{10pt}
  5085. \begin{minipage}{0.45\textwidth}
  5086. \begin{align*}
  5087. L_{\mathsf{before}}(1)= \emptyset,
  5088. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  5089. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  5090. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  5091. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  5092. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  5093. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  5094. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  5095. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  5096. L_{\mathsf{after}}(5)= \emptyset
  5097. \end{align*}
  5098. \end{minipage}
  5099. \end{tcolorbox}
  5100. \caption{Example output of liveness analysis on a short example.}
  5101. \label{fig:liveness-example-0}
  5102. \end{figure}
  5103. \begin{exercise}\normalfont\normalsize
  5104. Perform liveness analysis by hand on the running example in
  5105. figure~\ref{fig:reg-eg}, computing the live-before and live-after
  5106. sets for each instruction. Compare your answers to the solution
  5107. shown in figure~\ref{fig:live-eg}.
  5108. \end{exercise}
  5109. \begin{figure}[tp]
  5110. \hspace{20pt}
  5111. \begin{minipage}{0.55\textwidth}
  5112. \begin{tcolorbox}[colback=white]
  5113. {\if\edition\racketEd
  5114. \begin{lstlisting}
  5115. |$\{\ttm{rsp}\}$|
  5116. movq $1, v
  5117. |$\{\ttm{v},\ttm{rsp}\}$|
  5118. movq $42, w
  5119. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  5120. movq v, x
  5121. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5122. addq $7, x
  5123. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  5124. movq x, y
  5125. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  5126. movq x, z
  5127. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5128. addq w, z
  5129. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  5130. movq y, t
  5131. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5132. negq t
  5133. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  5134. movq z, %rax
  5135. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  5136. addq t, %rax
  5137. |$\{\ttm{rax},\ttm{rsp}\}$|
  5138. jmp conclusion
  5139. \end{lstlisting}
  5140. \fi}
  5141. {\if\edition\pythonEd\pythonColor
  5142. \begin{lstlisting}
  5143. movq $1, v
  5144. |$\{\ttm{v}\}$|
  5145. movq $42, w
  5146. |$\{\ttm{w}, \ttm{v}\}$|
  5147. movq v, x
  5148. |$\{\ttm{w}, \ttm{x}\}$|
  5149. addq $7, x
  5150. |$\{\ttm{w}, \ttm{x}\}$|
  5151. movq x, y
  5152. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  5153. movq x, z
  5154. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  5155. addq w, z
  5156. |$\{\ttm{y}, \ttm{z}\}$|
  5157. movq y, tmp_0
  5158. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5159. negq tmp_0
  5160. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  5161. movq z, tmp_1
  5162. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  5163. addq tmp_0, tmp_1
  5164. |$\{\ttm{tmp\_1}\}$|
  5165. movq tmp_1, %rdi
  5166. |$\{\ttm{rdi}\}$|
  5167. callq print_int
  5168. |$\{\}$|
  5169. \end{lstlisting}
  5170. \fi}
  5171. \end{tcolorbox}
  5172. \end{minipage}
  5173. \caption{The running example annotated with live-after sets.}
  5174. \label{fig:live-eg}
  5175. \end{figure}
  5176. \begin{exercise}\normalfont\normalsize
  5177. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  5178. %
  5179. \racket{Store the sequence of live-after sets in the $\itm{info}$
  5180. field of the \code{Block} structure.}
  5181. %
  5182. \python{Return a dictionary that maps each instruction to its
  5183. live-after set.}
  5184. %
  5185. \racket{We recommend creating an auxiliary function that takes a list
  5186. of instructions and an initial live-after set (typically empty) and
  5187. returns the list of live-after sets.}
  5188. %
  5189. We recommend creating auxiliary functions to (1) compute the set
  5190. of locations that appear in an \Arg{}, (2) compute the locations read
  5191. by an instruction (the $R$ function), and (3) the locations written by
  5192. an instruction (the $W$ function). The \code{callq} instruction should
  5193. include all the caller-saved registers in its write set $W$ because
  5194. the calling convention says that those registers may be written to
  5195. during the function call. Likewise, the \code{callq} instruction
  5196. should include the appropriate argument-passing registers in its
  5197. read set $R$, depending on the arity of the function being
  5198. called. (This is why the abstract syntax for \code{callq} includes the
  5199. arity.)
  5200. \end{exercise}
  5201. %\clearpage
  5202. \section{Build the Interference Graph}
  5203. \label{sec:build-interference}
  5204. {\if\edition\racketEd
  5205. \begin{figure}[tp]
  5206. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  5207. \small
  5208. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  5209. A \emph{graph} is a collection of vertices and edges where each
  5210. edge connects two vertices. A graph is \emph{directed} if each
  5211. edge points from a source to a target. Otherwise the graph is
  5212. \emph{undirected}.
  5213. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  5214. \begin{description}
  5215. %% We currently don't use directed graphs. We instead use
  5216. %% directed multi-graphs. -Jeremy
  5217. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  5218. directed graph from a list of edges. Each edge is a list
  5219. containing the source and target vertex.
  5220. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  5221. undirected graph from a list of edges. Each edge is represented by
  5222. a list containing two vertices.
  5223. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  5224. inserts a vertex into the graph.
  5225. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  5226. inserts an edge between the two vertices.
  5227. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  5228. returns a sequence of vertices adjacent to the vertex.
  5229. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  5230. returns a sequence of all vertices in the graph.
  5231. \end{description}
  5232. \end{tcolorbox}
  5233. %\end{wrapfigure}
  5234. \caption{The Racket \code{graph} package.}
  5235. \label{fig:graph}
  5236. \end{figure}
  5237. \fi}
  5238. On the basis of the liveness analysis, we know where each location is
  5239. live. However, during register allocation, we need to answer
  5240. questions of the specific form: are locations $u$ and $v$ live at the
  5241. same time? (If so, they cannot be assigned to the same register.) To
  5242. make this question more efficient to answer, we create an explicit
  5243. data structure, an \emph{interference
  5244. graph}\index{subject}{interference graph}. An interference graph is
  5245. an undirected graph that has a node for every variable and register
  5246. and has an edge between two nodes if they are
  5247. live at the same time, that is, if they interfere with each other.
  5248. %
  5249. \racket{We recommend using the Racket \code{graph} package
  5250. (figure~\ref{fig:graph}) to represent the interference graph.}
  5251. %
  5252. \python{We provide implementations of directed and undirected graph
  5253. data structures in the file \code{graph.py} of the support code.}
  5254. A straightforward way to compute the interference graph is to look at
  5255. the set of live locations between each instruction and add an edge to
  5256. the graph for every pair of variables in the same set. This approach
  5257. is less than ideal for two reasons. First, it can be expensive because
  5258. it takes $O(n^2)$ time to consider every pair in a set of $n$ live
  5259. locations. Second, in the special case in which two locations hold the
  5260. same value (because one was assigned to the other), they can be live
  5261. at the same time without interfering with each other.
  5262. A better way to compute the interference graph is to focus on
  5263. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  5264. must not overwrite something in a live location. So for each
  5265. instruction, we create an edge between the locations being written to
  5266. and the live locations. (However, a location never interferes with
  5267. itself.) For the \key{callq} instruction, we consider all the
  5268. caller-saved registers to have been written to, so an edge is added
  5269. between every live variable and every caller-saved register. Also, for
  5270. \key{movq} there is the special case of two variables holding the same
  5271. value. If a live variable $v$ is the same as the source of the
  5272. \key{movq}, then there is no need to add an edge between $v$ and the
  5273. destination, because they both hold the same value.
  5274. %
  5275. Hence we have the following two rules:
  5276. \begin{enumerate}
  5277. \item If instruction $I_k$ is a move instruction of the form
  5278. \key{movq} $s$\key{,} $d$, then for every $v \in
  5279. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  5280. $(d,v)$.
  5281. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  5282. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  5283. $(d,v)$.
  5284. \end{enumerate}
  5285. Working from the top to bottom of figure~\ref{fig:live-eg}, we apply
  5286. these rules to each instruction. We highlight a few of the
  5287. instructions. \racket{The first instruction is \lstinline{movq $1, v},
  5288. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  5289. so \code{v} interferes with \code{rsp}.}
  5290. %
  5291. \python{The first instruction is \lstinline{movq $1, v}, and the
  5292. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  5293. no interference because $\ttm{v}$ is the destination of the move.}
  5294. %
  5295. \racket{The fourth instruction is \lstinline{addq $7, x}, and the
  5296. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  5297. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  5298. %
  5299. \python{The fourth instruction is \lstinline{addq $7, x}, and the
  5300. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  5301. $\ttm{x}$ interferes with \ttm{w}.}
  5302. %
  5303. \racket{The next instruction is \lstinline{movq x, y}, and the
  5304. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  5305. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  5306. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5307. \ttm{x} and \ttm{y} hold the same value.}
  5308. %
  5309. \python{The next instruction is \lstinline{movq x, y}, and the
  5310. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  5311. applies, so \ttm{y} interferes with \ttm{w} but not
  5312. \ttm{x}, because \ttm{x} is the source of the move and therefore
  5313. \ttm{x} and \ttm{y} hold the same value.}
  5314. %
  5315. Figure~\ref{fig:interference-results} lists the interference results
  5316. for all the instructions, and the resulting interference graph is
  5317. shown in figure~\ref{fig:interfere}. We elide the register nodes from
  5318. the interference graph in figure~\ref{fig:interfere} because there
  5319. were no interference edges involving registers and we did not wish to
  5320. clutter the graph, but in general one needs to include all the
  5321. registers in the interference graph.
  5322. \begin{figure}[tbp]
  5323. \begin{tcolorbox}[colback=white]
  5324. \begin{quote}
  5325. {\if\edition\racketEd
  5326. \begin{tabular}{ll}
  5327. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  5328. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  5329. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5330. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  5331. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  5332. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  5333. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  5334. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5335. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  5336. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  5337. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  5338. \lstinline!jmp conclusion!& no interference.
  5339. \end{tabular}
  5340. \fi}
  5341. {\if\edition\pythonEd\pythonColor
  5342. \begin{tabular}{ll}
  5343. \lstinline!movq $1, v!& no interference\\
  5344. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  5345. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  5346. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  5347. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  5348. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  5349. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  5350. \lstinline!movq y, tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5351. \lstinline!negq tmp_0!& \ttm{tmp\_0} interferes with \ttm{z} \\
  5352. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  5353. \lstinline!addq tmp_0, tmp_1! & no interference\\
  5354. \lstinline!movq tmp_1, %rdi! & no interference \\
  5355. \lstinline!callq print_int!& no interference.
  5356. \end{tabular}
  5357. \fi}
  5358. \end{quote}
  5359. \end{tcolorbox}
  5360. \caption{Interference results for the running example.}
  5361. \label{fig:interference-results}
  5362. \end{figure}
  5363. \begin{figure}[tbp]
  5364. \begin{tcolorbox}[colback=white]
  5365. \large
  5366. {\if\edition\racketEd
  5367. \[
  5368. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5369. \node (rax) at (0,0) {$\ttm{rax}$};
  5370. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5371. \node (t1) at (0,2) {$\ttm{t}$};
  5372. \node (z) at (3,2) {$\ttm{z}$};
  5373. \node (x) at (6,2) {$\ttm{x}$};
  5374. \node (y) at (3,0) {$\ttm{y}$};
  5375. \node (w) at (6,0) {$\ttm{w}$};
  5376. \node (v) at (9,0) {$\ttm{v}$};
  5377. \draw (t1) to (rax);
  5378. \draw (t1) to (z);
  5379. \draw (z) to (y);
  5380. \draw (z) to (w);
  5381. \draw (x) to (w);
  5382. \draw (y) to (w);
  5383. \draw (v) to (w);
  5384. \draw (v) to (rsp);
  5385. \draw (w) to (rsp);
  5386. \draw (x) to (rsp);
  5387. \draw (y) to (rsp);
  5388. \path[-.,bend left=15] (z) edge node {} (rsp);
  5389. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5390. \draw (rax) to (rsp);
  5391. \end{tikzpicture}
  5392. \]
  5393. \fi}
  5394. {\if\edition\pythonEd\pythonColor
  5395. \[
  5396. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5397. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5398. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5399. \node (z) at (3,2) {$\ttm{z}$};
  5400. \node (x) at (6,2) {$\ttm{x}$};
  5401. \node (y) at (3,0) {$\ttm{y}$};
  5402. \node (w) at (6,0) {$\ttm{w}$};
  5403. \node (v) at (9,0) {$\ttm{v}$};
  5404. \draw (t0) to (t1);
  5405. \draw (t0) to (z);
  5406. \draw (z) to (y);
  5407. \draw (z) to (w);
  5408. \draw (x) to (w);
  5409. \draw (y) to (w);
  5410. \draw (v) to (w);
  5411. \end{tikzpicture}
  5412. \]
  5413. \fi}
  5414. \end{tcolorbox}
  5415. \caption{The interference graph of the example program.}
  5416. \label{fig:interfere}
  5417. \end{figure}
  5418. \begin{exercise}\normalfont\normalsize
  5419. \racket{Implement the compiler pass named \code{build\_interference} according
  5420. to the algorithm suggested here. We recommend using the Racket
  5421. \code{graph} package to create and inspect the interference graph.
  5422. The output graph of this pass should be stored in the $\itm{info}$ field of
  5423. the program, under the key \code{conflicts}.}
  5424. %
  5425. \python{Implement a function named \code{build\_interference}
  5426. according to the algorithm suggested above that
  5427. returns the interference graph.}
  5428. \end{exercise}
  5429. \section{Graph Coloring via Sudoku}
  5430. \label{sec:graph-coloring}
  5431. \index{subject}{graph coloring}
  5432. \index{subject}{sudoku}
  5433. \index{subject}{color}
  5434. We come to the main event discussed in this chapter, mapping variables
  5435. to registers and stack locations. Variables that interfere with each
  5436. other must be mapped to different locations. In terms of the
  5437. interference graph, this means that adjacent vertices must be mapped
  5438. to different locations. If we think of locations as colors, the
  5439. register allocation problem becomes the graph coloring
  5440. problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  5441. The reader may be more familiar with the graph coloring problem than he
  5442. or she realizes; the popular game of sudoku is an instance of the
  5443. graph coloring problem. The following describes how to build a graph
  5444. out of an initial sudoku board.
  5445. \begin{itemize}
  5446. \item There is one vertex in the graph for each sudoku square.
  5447. \item There is an edge between two vertices if the corresponding squares
  5448. are in the same row, in the same column, or in the same $3\times 3$ region.
  5449. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  5450. \item On the basis of the initial assignment of numbers to squares on the
  5451. sudoku board, assign the corresponding colors to the corresponding
  5452. vertices in the graph.
  5453. \end{itemize}
  5454. If you can color the remaining vertices in the graph with the nine
  5455. colors, then you have also solved the corresponding game of sudoku.
  5456. Figure~\ref{fig:sudoku-graph} shows an initial sudoku game board and
  5457. the corresponding graph with colored vertices. Here we use a
  5458. monochrome representation of colors, mapping the sudoku number 1 to
  5459. black, 2 to white, and 3 to gray. We show edges for only a sampling
  5460. of the vertices (the colored ones) because showing edges for all the
  5461. vertices would make the graph unreadable.
  5462. \begin{figure}[tbp]
  5463. \begin{tcolorbox}[colback=white]
  5464. \includegraphics[width=0.5\textwidth]{figs/sudoku}
  5465. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  5466. \end{tcolorbox}
  5467. \caption{A sudoku game board and the corresponding colored graph.}
  5468. \label{fig:sudoku-graph}
  5469. \end{figure}
  5470. Some techniques for playing sudoku correspond to heuristics used in
  5471. graph coloring algorithms. For example, one of the basic techniques
  5472. for sudoku is called Pencil Marks. The idea is to use a process of
  5473. elimination to determine what numbers are no longer available for a
  5474. square and to write those numbers in the square (writing very
  5475. small). For example, if the number $1$ is assigned to a square, then
  5476. write the pencil mark $1$ in all the squares in the same row, column,
  5477. and region to indicate that $1$ is no longer an option for those other
  5478. squares.
  5479. %
  5480. The Pencil Marks technique corresponds to the notion of
  5481. \emph{saturation}\index{subject}{saturation} due to \citet{Brelaz:1979eu}. The
  5482. saturation of a vertex, in sudoku terms, is the set of numbers that
  5483. are no longer available. In graph terminology, we have the following
  5484. definition:
  5485. \begin{equation*}
  5486. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  5487. \text{ and } \mathrm{color}(v) = c \}
  5488. \end{equation*}
  5489. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  5490. edge with $u$.
  5491. The Pencil Marks technique leads to a simple strategy for filling in
  5492. numbers: if there is a square with only one possible number left, then
  5493. choose that number! But what if there are no squares with only one
  5494. possibility left? One brute-force approach is to try them all: choose
  5495. the first one, and if that ultimately leads to a solution, great. If
  5496. not, backtrack and choose the next possibility. One good thing about
  5497. Pencil Marks is that it reduces the degree of branching in the search
  5498. tree. Nevertheless, backtracking can be terribly time consuming. One
  5499. way to reduce the amount of backtracking is to use the
  5500. most-constrained-first heuristic (aka minimum remaining
  5501. values)~\citep{Russell2003}. That is, in choosing a square, always
  5502. choose one with the fewest possibilities left (the vertex with the
  5503. highest saturation). The idea is that choosing highly constrained
  5504. squares earlier rather than later is better, because later on there may
  5505. not be any possibilities left in the highly saturated squares.
  5506. However, register allocation is easier than sudoku, because the
  5507. register allocator can fall back to assigning variables to stack
  5508. locations when the registers run out. Thus, it makes sense to replace
  5509. backtracking with greedy search: make the best choice at the time and
  5510. keep going. We still wish to minimize the number of colors needed, so
  5511. we use the most-constrained-first heuristic in the greedy search.
  5512. Figure~\ref{fig:satur-algo} gives the pseudocode for a simple greedy
  5513. algorithm for register allocation based on saturation and the
  5514. most-constrained-first heuristic. It is roughly equivalent to the
  5515. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}. Just as in
  5516. sudoku, the algorithm represents colors with integers. The integers
  5517. $0$ through $k-1$ correspond to the $k$ registers that we use for
  5518. register allocation. In particular, we recommend the following
  5519. correspondence, with $k=11$.
  5520. \begin{lstlisting}
  5521. 0: rcx, 1: rdx, 2: rsi, 3: rdi, 4: r8, 5: r9,
  5522. 6: r10, 7: rbx, 8: r12, 9: r13, 10: r14
  5523. \end{lstlisting}
  5524. The integers $k$ and larger correspond to stack locations. The
  5525. registers that are not used for register allocation, such as
  5526. \code{rax}, are assigned to negative integers. In particular, we
  5527. recommend the following correspondence.
  5528. \begin{lstlisting}
  5529. -1: rax, -2: rsp, -3: rbp, -4: r11, -5: r15
  5530. \end{lstlisting}
  5531. %% One might wonder why we include registers at all in the liveness
  5532. %% analysis and interference graph. For example, we never allocate a
  5533. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  5534. %% leave them out. As we see in chapter~\ref{ch:Lvec}, when we begin
  5535. %% to use register for passing arguments to functions, it will be
  5536. %% necessary for those registers to appear in the interference graph
  5537. %% because those registers will also be assigned to variables, and we
  5538. %% don't want those two uses to encroach on each other. Regarding
  5539. %% registers such as \code{rax} and \code{rsp} that are not used for
  5540. %% variables, we could omit them from the interference graph but that
  5541. %% would require adding special cases to our algorithm, which would
  5542. %% complicate the logic for little gain.
  5543. \begin{figure}[btp]
  5544. \begin{tcolorbox}[colback=white]
  5545. \centering
  5546. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  5547. Algorithm: DSATUR
  5548. Input: A graph |$G$|
  5549. Output: An assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  5550. |$W \gets \mathrm{vertices}(G)$|
  5551. while |$W \neq \emptyset$| do
  5552. pick a vertex |$u$| from |$W$| with the highest saturation,
  5553. breaking ties randomly
  5554. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  5555. |$\mathrm{color}[u] \gets c$|
  5556. |$W \gets W - \{u\}$|
  5557. \end{lstlisting}
  5558. \end{tcolorbox}
  5559. \caption{The saturation-based greedy graph coloring algorithm.}
  5560. \label{fig:satur-algo}
  5561. \end{figure}
  5562. {\if\edition\racketEd
  5563. With the DSATUR algorithm in hand, let us return to the running
  5564. example and consider how to color the interference graph shown in
  5565. figure~\ref{fig:interfere}.
  5566. %
  5567. We start by assigning each register node to its own color. For
  5568. example, \code{rax} is assigned the color $-1$, \code{rsp} is assign
  5569. $-2$, \code{rcx} is assigned $0$, and \code{rdx} is assigned $1$.
  5570. (To reduce clutter in the interference graph, we elide nodes
  5571. that do not have interference edges, such as \code{rcx}.)
  5572. The variables are not yet colored, so they are annotated with a dash. We
  5573. then update the saturation for vertices that are adjacent to a
  5574. register, obtaining the following annotated graph. For example, the
  5575. saturation for \code{t} is $\{-1,-2\}$ because it interferes with both
  5576. \code{rax} and \code{rsp}.
  5577. \[
  5578. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5579. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  5580. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  5581. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  5582. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  5583. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5584. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5585. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5586. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5587. \draw (t1) to (rax);
  5588. \draw (t1) to (z);
  5589. \draw (z) to (y);
  5590. \draw (z) to (w);
  5591. \draw (x) to (w);
  5592. \draw (y) to (w);
  5593. \draw (v) to (w);
  5594. \draw (v) to (rsp);
  5595. \draw (w) to (rsp);
  5596. \draw (x) to (rsp);
  5597. \draw (y) to (rsp);
  5598. \path[-.,bend left=15] (z) edge node {} (rsp);
  5599. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5600. \draw (rax) to (rsp);
  5601. \end{tikzpicture}
  5602. \]
  5603. The algorithm says to select a maximally saturated vertex. So, we pick
  5604. $\ttm{t}$ and color it with the first available integer, which is
  5605. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  5606. and \ttm{rsp} because they interfere with $\ttm{t}$.
  5607. \[
  5608. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5609. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5610. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  5611. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  5612. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  5613. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5614. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  5615. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  5616. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5617. \draw (t1) to (rax);
  5618. \draw (t1) to (z);
  5619. \draw (z) to (y);
  5620. \draw (z) to (w);
  5621. \draw (x) to (w);
  5622. \draw (y) to (w);
  5623. \draw (v) to (w);
  5624. \draw (v) to (rsp);
  5625. \draw (w) to (rsp);
  5626. \draw (x) to (rsp);
  5627. \draw (y) to (rsp);
  5628. \path[-.,bend left=15] (z) edge node {} (rsp);
  5629. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5630. \draw (rax) to (rsp);
  5631. \end{tikzpicture}
  5632. \]
  5633. We repeat the process, selecting a maximally saturated vertex,
  5634. choosing \code{z}, and coloring it with the first available number, which
  5635. is $1$. We add $1$ to the saturation for the neighboring vertices
  5636. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  5637. \[
  5638. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5639. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5640. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5641. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5642. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5643. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5644. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5645. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5646. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  5647. \draw (t1) to (rax);
  5648. \draw (t1) to (z);
  5649. \draw (z) to (y);
  5650. \draw (z) to (w);
  5651. \draw (x) to (w);
  5652. \draw (y) to (w);
  5653. \draw (v) to (w);
  5654. \draw (v) to (rsp);
  5655. \draw (w) to (rsp);
  5656. \draw (x) to (rsp);
  5657. \draw (y) to (rsp);
  5658. \path[-.,bend left=15] (z) edge node {} (rsp);
  5659. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5660. \draw (rax) to (rsp);
  5661. \end{tikzpicture}
  5662. \]
  5663. The most saturated vertices are now \code{w} and \code{y}. We color
  5664. \code{w} with the first available color, which is $0$.
  5665. \[
  5666. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5667. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5668. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  5669. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5670. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5671. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5672. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  5673. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  5674. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5675. \draw (t1) to (rax);
  5676. \draw (t1) to (z);
  5677. \draw (z) to (y);
  5678. \draw (z) to (w);
  5679. \draw (x) to (w);
  5680. \draw (y) to (w);
  5681. \draw (v) to (w);
  5682. \draw (v) to (rsp);
  5683. \draw (w) to (rsp);
  5684. \draw (x) to (rsp);
  5685. \draw (y) to (rsp);
  5686. \path[-.,bend left=15] (z) edge node {} (rsp);
  5687. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5688. \draw (rax) to (rsp);
  5689. \end{tikzpicture}
  5690. \]
  5691. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  5692. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  5693. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  5694. and \code{z}, whose colors are $0$ and $1$ respectively.
  5695. \[
  5696. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5697. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5698. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5699. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5700. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5701. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5702. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5703. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5704. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  5705. \draw (t1) to (rax);
  5706. \draw (t1) to (z);
  5707. \draw (z) to (y);
  5708. \draw (z) to (w);
  5709. \draw (x) to (w);
  5710. \draw (y) to (w);
  5711. \draw (v) to (w);
  5712. \draw (v) to (rsp);
  5713. \draw (w) to (rsp);
  5714. \draw (x) to (rsp);
  5715. \draw (y) to (rsp);
  5716. \path[-.,bend left=15] (z) edge node {} (rsp);
  5717. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5718. \draw (rax) to (rsp);
  5719. \end{tikzpicture}
  5720. \]
  5721. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  5722. \[
  5723. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5724. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5725. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5726. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5727. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5728. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  5729. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5730. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5731. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5732. \draw (t1) to (rax);
  5733. \draw (t1) to (z);
  5734. \draw (z) to (y);
  5735. \draw (z) to (w);
  5736. \draw (x) to (w);
  5737. \draw (y) to (w);
  5738. \draw (v) to (w);
  5739. \draw (v) to (rsp);
  5740. \draw (w) to (rsp);
  5741. \draw (x) to (rsp);
  5742. \draw (y) to (rsp);
  5743. \path[-.,bend left=15] (z) edge node {} (rsp);
  5744. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5745. \draw (rax) to (rsp);
  5746. \end{tikzpicture}
  5747. \]
  5748. In the last step of the algorithm, we color \code{x} with $1$.
  5749. \[
  5750. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5751. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5752. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5753. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  5754. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5755. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  5756. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  5757. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  5758. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  5759. \draw (t1) to (rax);
  5760. \draw (t1) to (z);
  5761. \draw (z) to (y);
  5762. \draw (z) to (w);
  5763. \draw (x) to (w);
  5764. \draw (y) to (w);
  5765. \draw (v) to (w);
  5766. \draw (v) to (rsp);
  5767. \draw (w) to (rsp);
  5768. \draw (x) to (rsp);
  5769. \draw (y) to (rsp);
  5770. \path[-.,bend left=15] (z) edge node {} (rsp);
  5771. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5772. \draw (rax) to (rsp);
  5773. \end{tikzpicture}
  5774. \]
  5775. So, we obtain the following coloring:
  5776. \[
  5777. \{
  5778. \ttm{rax} \mapsto -1,
  5779. \ttm{rsp} \mapsto -2,
  5780. \ttm{t} \mapsto 0,
  5781. \ttm{z} \mapsto 1,
  5782. \ttm{x} \mapsto 1,
  5783. \ttm{y} \mapsto 2,
  5784. \ttm{w} \mapsto 0,
  5785. \ttm{v} \mapsto 1
  5786. \}
  5787. \]
  5788. \fi}
  5789. %
  5790. {\if\edition\pythonEd\pythonColor
  5791. %
  5792. With the DSATUR algorithm in hand, let us return to the running
  5793. example and consider how to color the interference graph in
  5794. figure~\ref{fig:interfere}. We annotate each variable node with a dash
  5795. to indicate that it has not yet been assigned a color. Each register
  5796. node (not shown) should be assigned the number that the register
  5797. corresponds to, for example, color \code{rcx} with the number \code{0}
  5798. and \code{rdx} with \code{1}. The saturation sets are also shown for
  5799. each node; all of them start as the empty set. We do not show the
  5800. register nodes in the graph below because there were no interference
  5801. edges involving registers in this program, but in general there can
  5802. be.
  5803. %
  5804. \[
  5805. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5806. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  5807. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  5808. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  5809. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5810. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5811. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5812. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5813. \draw (t0) to (t1);
  5814. \draw (t0) to (z);
  5815. \draw (z) to (y);
  5816. \draw (z) to (w);
  5817. \draw (x) to (w);
  5818. \draw (y) to (w);
  5819. \draw (v) to (w);
  5820. \end{tikzpicture}
  5821. \]
  5822. The algorithm says to select a maximally saturated vertex, but they
  5823. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  5824. then color it with the first available integer, which is $0$. We mark
  5825. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  5826. they interfere with $\ttm{tmp\_0}$.
  5827. \[
  5828. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5829. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  5830. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5831. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  5832. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5833. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  5834. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  5835. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5836. \draw (t0) to (t1);
  5837. \draw (t0) to (z);
  5838. \draw (z) to (y);
  5839. \draw (z) to (w);
  5840. \draw (x) to (w);
  5841. \draw (y) to (w);
  5842. \draw (v) to (w);
  5843. \end{tikzpicture}
  5844. \]
  5845. We repeat the process. The most saturated vertices are \code{z} and
  5846. \code{tmp\_1}, so we choose \code{z} and color it with the first
  5847. available number, which is $1$. We add $1$ to the saturation for the
  5848. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  5849. \[
  5850. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5851. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5852. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5853. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5854. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5855. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5856. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5857. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5858. \draw (t0) to (t1);
  5859. \draw (t0) to (z);
  5860. \draw (z) to (y);
  5861. \draw (z) to (w);
  5862. \draw (x) to (w);
  5863. \draw (y) to (w);
  5864. \draw (v) to (w);
  5865. \end{tikzpicture}
  5866. \]
  5867. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  5868. \code{y}. We color \code{w} with the first available color, which
  5869. is $0$.
  5870. \[
  5871. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5872. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5873. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5874. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5875. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5876. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  5877. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  5878. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5879. \draw (t0) to (t1);
  5880. \draw (t0) to (z);
  5881. \draw (z) to (y);
  5882. \draw (z) to (w);
  5883. \draw (x) to (w);
  5884. \draw (y) to (w);
  5885. \draw (v) to (w);
  5886. \end{tikzpicture}
  5887. \]
  5888. Now \code{y} is the most saturated, so we color it with $2$.
  5889. \[
  5890. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5891. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5892. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5893. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5894. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5895. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5896. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5897. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  5898. \draw (t0) to (t1);
  5899. \draw (t0) to (z);
  5900. \draw (z) to (y);
  5901. \draw (z) to (w);
  5902. \draw (x) to (w);
  5903. \draw (y) to (w);
  5904. \draw (v) to (w);
  5905. \end{tikzpicture}
  5906. \]
  5907. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  5908. We choose to color \code{v} with $1$.
  5909. \[
  5910. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5911. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5912. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5913. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5914. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  5915. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5916. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5917. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5918. \draw (t0) to (t1);
  5919. \draw (t0) to (z);
  5920. \draw (z) to (y);
  5921. \draw (z) to (w);
  5922. \draw (x) to (w);
  5923. \draw (y) to (w);
  5924. \draw (v) to (w);
  5925. \end{tikzpicture}
  5926. \]
  5927. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  5928. \[
  5929. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5930. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5931. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5932. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  5933. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  5934. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  5935. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  5936. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  5937. \draw (t0) to (t1);
  5938. \draw (t0) to (z);
  5939. \draw (z) to (y);
  5940. \draw (z) to (w);
  5941. \draw (x) to (w);
  5942. \draw (y) to (w);
  5943. \draw (v) to (w);
  5944. \end{tikzpicture}
  5945. \]
  5946. So, we obtain the following coloring:
  5947. \[
  5948. \{ \ttm{tmp\_0} \mapsto 0,
  5949. \ttm{tmp\_1} \mapsto 1,
  5950. \ttm{z} \mapsto 1,
  5951. \ttm{x} \mapsto 1,
  5952. \ttm{y} \mapsto 2,
  5953. \ttm{w} \mapsto 0,
  5954. \ttm{v} \mapsto 1 \}
  5955. \]
  5956. \fi}
  5957. We recommend creating an auxiliary function named \code{color\_graph}
  5958. that takes an interference graph and a list of all the variables in
  5959. the program. This function should return a mapping of variables to
  5960. their colors (represented as natural numbers). By creating this helper
  5961. function, you will be able to reuse it in chapter~\ref{ch:Lfun}
  5962. when we add support for functions.
  5963. To prioritize the processing of highly saturated nodes inside the
  5964. \code{color\_graph} function, we recommend using the priority queue
  5965. data structure \racket{described in figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  5966. addition, you will need to maintain a mapping from variables to their
  5967. handles in the priority queue so that you can notify the priority
  5968. queue when their saturation changes.}
  5969. {\if\edition\racketEd
  5970. \begin{figure}[tp]
  5971. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  5972. \small
  5973. \begin{tcolorbox}[title=Priority Queue]
  5974. A \emph{priority queue}\index{subject}{priority queue}
  5975. is a collection of items in which the
  5976. removal of items is governed by priority. In a \emph{min} queue,
  5977. lower priority items are removed first. An implementation is in
  5978. \code{priority\_queue.rkt} of the support code.\index{subject}{min queue}
  5979. \begin{description}
  5980. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  5981. priority queue that uses the $\itm{cmp}$ predicate to determine
  5982. whether its first argument has lower or equal priority to its
  5983. second argument.
  5984. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  5985. items in the queue.
  5986. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  5987. the item into the queue and returns a handle for the item in the
  5988. queue.
  5989. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  5990. the lowest priority.
  5991. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  5992. notifies the queue that the priority has decreased for the item
  5993. associated with the given handle.
  5994. \end{description}
  5995. \end{tcolorbox}
  5996. %\end{wrapfigure}
  5997. \caption{The priority queue data structure.}
  5998. \label{fig:priority-queue}
  5999. \end{figure}
  6000. \fi}
  6001. With the coloring complete, we finalize the assignment of variables to
  6002. registers and stack locations. We map the first $k$ colors to the $k$
  6003. registers and the rest of the colors to stack locations. Suppose for
  6004. the moment that we have just one register to use for register
  6005. allocation, \key{rcx}. Then we have the following map from colors to
  6006. locations.
  6007. \[
  6008. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  6009. \]
  6010. Composing this mapping with the coloring, we arrive at the following
  6011. assignment of variables to locations.
  6012. {\if\edition\racketEd
  6013. \begin{gather*}
  6014. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6015. \ttm{w} \mapsto \key{\%rcx}, \,
  6016. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6017. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6018. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6019. \ttm{t} \mapsto \key{\%rcx} \}
  6020. \end{gather*}
  6021. \fi}
  6022. {\if\edition\pythonEd\pythonColor
  6023. \begin{gather*}
  6024. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  6025. \ttm{w} \mapsto \key{\%rcx}, \,
  6026. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  6027. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  6028. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6029. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6030. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6031. \end{gather*}
  6032. \fi}
  6033. Adapt the code from the \code{assign\_homes} pass
  6034. (section~\ref{sec:assign-Lvar}) to replace the variables with their
  6035. assigned location. Applying this assignment to our running
  6036. example shown next, on the left, yields the program on the right.
  6037. % why frame size of 32? -JGS
  6038. \begin{center}
  6039. {\if\edition\racketEd
  6040. \begin{minipage}{0.35\textwidth}
  6041. \begin{lstlisting}
  6042. movq $1, v
  6043. movq $42, w
  6044. movq v, x
  6045. addq $7, x
  6046. movq x, y
  6047. movq x, z
  6048. addq w, z
  6049. movq y, t
  6050. negq t
  6051. movq z, %rax
  6052. addq t, %rax
  6053. jmp conclusion
  6054. \end{lstlisting}
  6055. \end{minipage}
  6056. $\Rightarrow\qquad$
  6057. \begin{minipage}{0.45\textwidth}
  6058. \begin{lstlisting}
  6059. movq $1, -8(%rbp)
  6060. movq $42, %rcx
  6061. movq -8(%rbp), -8(%rbp)
  6062. addq $7, -8(%rbp)
  6063. movq -8(%rbp), -16(%rbp)
  6064. movq -8(%rbp), -8(%rbp)
  6065. addq %rcx, -8(%rbp)
  6066. movq -16(%rbp), %rcx
  6067. negq %rcx
  6068. movq -8(%rbp), %rax
  6069. addq %rcx, %rax
  6070. jmp conclusion
  6071. \end{lstlisting}
  6072. \end{minipage}
  6073. \fi}
  6074. {\if\edition\pythonEd\pythonColor
  6075. \begin{minipage}{0.35\textwidth}
  6076. \begin{lstlisting}
  6077. movq $1, v
  6078. movq $42, w
  6079. movq v, x
  6080. addq $7, x
  6081. movq x, y
  6082. movq x, z
  6083. addq w, z
  6084. movq y, tmp_0
  6085. negq tmp_0
  6086. movq z, tmp_1
  6087. addq tmp_0, tmp_1
  6088. movq tmp_1, %rdi
  6089. callq print_int
  6090. \end{lstlisting}
  6091. \end{minipage}
  6092. $\Rightarrow\qquad$
  6093. \begin{minipage}{0.45\textwidth}
  6094. \begin{lstlisting}
  6095. movq $1, -8(%rbp)
  6096. movq $42, %rcx
  6097. movq -8(%rbp), -8(%rbp)
  6098. addq $7, -8(%rbp)
  6099. movq -8(%rbp), -16(%rbp)
  6100. movq -8(%rbp), -8(%rbp)
  6101. addq %rcx, -8(%rbp)
  6102. movq -16(%rbp), %rcx
  6103. negq %rcx
  6104. movq -8(%rbp), -8(%rbp)
  6105. addq %rcx, -8(%rbp)
  6106. movq -8(%rbp), %rdi
  6107. callq print_int
  6108. \end{lstlisting}
  6109. \end{minipage}
  6110. \fi}
  6111. \end{center}
  6112. \begin{exercise}\normalfont\normalsize
  6113. Implement the \code{allocate\_registers} pass.
  6114. Create five programs that exercise all aspects of the register
  6115. allocation algorithm, including spilling variables to the stack.
  6116. %
  6117. {\if\edition\racketEd
  6118. Replace \code{assign\_homes} in the list of \code{passes} in the
  6119. \code{run-tests.rkt} script with the three new passes:
  6120. \code{uncover\_live}, \code{build\_interference}, and
  6121. \code{allocate\_registers}.
  6122. Temporarily remove the call to \code{compiler-tests}.
  6123. Run the script to test the register allocator.
  6124. \fi}
  6125. %
  6126. {\if\edition\pythonEd\pythonColor
  6127. Run the \code{run-tests.py} script to to check whether the
  6128. output programs produce the same result as the input programs.
  6129. \fi}
  6130. \end{exercise}
  6131. \section{Patch Instructions}
  6132. \label{sec:patch-instructions}
  6133. The remaining step in the compilation to x86 is to ensure that the
  6134. instructions have at most one argument that is a memory access.
  6135. %
  6136. In the running example, the instruction \code{movq -8(\%rbp),
  6137. -16(\%rbp)} is problematic. Recall from section~\ref{sec:patch-s0}
  6138. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  6139. then move \code{rax} into \code{-16(\%rbp)}.
  6140. %
  6141. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  6142. problematic, but they can simply be deleted. In general, we recommend
  6143. deleting all the trivial moves whose source and destination are the
  6144. same location.
  6145. %
  6146. The following is the output of \code{patch\_instructions} on the
  6147. running example.
  6148. \begin{center}
  6149. {\if\edition\racketEd
  6150. \begin{minipage}{0.35\textwidth}
  6151. \begin{lstlisting}
  6152. movq $1, -8(%rbp)
  6153. movq $42, %rcx
  6154. movq -8(%rbp), -8(%rbp)
  6155. addq $7, -8(%rbp)
  6156. movq -8(%rbp), -16(%rbp)
  6157. movq -8(%rbp), -8(%rbp)
  6158. addq %rcx, -8(%rbp)
  6159. movq -16(%rbp), %rcx
  6160. negq %rcx
  6161. movq -8(%rbp), %rax
  6162. addq %rcx, %rax
  6163. jmp conclusion
  6164. \end{lstlisting}
  6165. \end{minipage}
  6166. $\Rightarrow\qquad$
  6167. \begin{minipage}{0.45\textwidth}
  6168. \begin{lstlisting}
  6169. movq $1, -8(%rbp)
  6170. movq $42, %rcx
  6171. addq $7, -8(%rbp)
  6172. movq -8(%rbp), %rax
  6173. movq %rax, -16(%rbp)
  6174. addq %rcx, -8(%rbp)
  6175. movq -16(%rbp), %rcx
  6176. negq %rcx
  6177. movq -8(%rbp), %rax
  6178. addq %rcx, %rax
  6179. jmp conclusion
  6180. \end{lstlisting}
  6181. \end{minipage}
  6182. \fi}
  6183. {\if\edition\pythonEd\pythonColor
  6184. \begin{minipage}{0.35\textwidth}
  6185. \begin{lstlisting}
  6186. movq $1, -8(%rbp)
  6187. movq $42, %rcx
  6188. movq -8(%rbp), -8(%rbp)
  6189. addq $7, -8(%rbp)
  6190. movq -8(%rbp), -16(%rbp)
  6191. movq -8(%rbp), -8(%rbp)
  6192. addq %rcx, -8(%rbp)
  6193. movq -16(%rbp), %rcx
  6194. negq %rcx
  6195. movq -8(%rbp), -8(%rbp)
  6196. addq %rcx, -8(%rbp)
  6197. movq -8(%rbp), %rdi
  6198. callq print_int
  6199. \end{lstlisting}
  6200. \end{minipage}
  6201. $\Rightarrow\qquad$
  6202. \begin{minipage}{0.45\textwidth}
  6203. \begin{lstlisting}
  6204. movq $1, -8(%rbp)
  6205. movq $42, %rcx
  6206. addq $7, -8(%rbp)
  6207. movq -8(%rbp), %rax
  6208. movq %rax, -16(%rbp)
  6209. addq %rcx, -8(%rbp)
  6210. movq -16(%rbp), %rcx
  6211. negq %rcx
  6212. addq %rcx, -8(%rbp)
  6213. movq -8(%rbp), %rdi
  6214. callq print_int
  6215. \end{lstlisting}
  6216. \end{minipage}
  6217. \fi}
  6218. \end{center}
  6219. \begin{exercise}\normalfont\normalsize
  6220. %
  6221. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  6222. %
  6223. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  6224. %in the \code{run-tests.rkt} script.
  6225. %
  6226. Run the script to test the \code{patch\_instructions} pass.
  6227. \end{exercise}
  6228. \section{Prelude and Conclusion}
  6229. \label{sec:print-x86-reg-alloc}
  6230. \index{subject}{calling conventions}
  6231. \index{subject}{prelude}\index{subject}{conclusion}
  6232. Recall that this pass generates the prelude and conclusion
  6233. instructions to satisfy the x86 calling conventions
  6234. (section~\ref{sec:calling-conventions}). With the addition of the
  6235. register allocator, the callee-saved registers used by the register
  6236. allocator must be saved in the prelude and restored in the conclusion.
  6237. In the \code{allocate\_registers} pass,
  6238. %
  6239. \racket{add an entry to the \itm{info}
  6240. of \code{X86Program} named \code{used\_callee}}
  6241. %
  6242. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  6243. %
  6244. that stores the set of callee-saved registers that were assigned to
  6245. variables. The \code{prelude\_and\_conclusion} pass can then access
  6246. this information to decide which callee-saved registers need to be
  6247. saved and restored.
  6248. %
  6249. When calculating the amount to adjust the \code{rsp} in the prelude,
  6250. make sure to take into account the space used for saving the
  6251. callee-saved registers. Also, remember that the frame needs to be a
  6252. multiple of 16 bytes! We recommend using the following equation for
  6253. the amount $A$ to subtract from the \code{rsp}. Let $S$ be the number
  6254. of stack locations used by spilled variables\footnote{Sometimes two or
  6255. more spilled variables are assigned to the same stack location, so
  6256. $S$ can be less than the number of spilled variables.} and $C$ be
  6257. the number of callee-saved registers that were
  6258. allocated\index{subject}{allocate} to
  6259. variables. The $\itm{align}$ function rounds a number up to the
  6260. nearest 16 bytes.
  6261. \[
  6262. \itm{A} = \itm{align}(8\itm{S} + 8\itm{C}) - 8\itm{C}
  6263. \]
  6264. The reason we subtract $8\itm{C}$ in this equation is that the
  6265. prelude uses \code{pushq} to save each of the callee-saved registers,
  6266. and \code{pushq} subtracts $8$ from the \code{rsp}.
  6267. \racket{An overview of all the passes involved in register
  6268. allocation is shown in figure~\ref{fig:reg-alloc-passes}.}
  6269. {\if\edition\racketEd
  6270. \begin{figure}[tbp]
  6271. \begin{tcolorbox}[colback=white]
  6272. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6273. \node (Lvar) at (0,2) {\large \LangVar{}};
  6274. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  6275. \node (Lvar-3) at (7,2) {\large \LangVarANF{}};
  6276. \node (Cvar-1) at (0,0) {\large \LangCVar{}};
  6277. \node (x86-2) at (0,-2) {\large \LangXVar{}};
  6278. \node (x86-3) at (3,-2) {\large \LangXVar{}};
  6279. \node (x86-4) at (7,-2) {\large \LangXInt{}};
  6280. \node (x86-5) at (7,-4) {\large \LangXInt{}};
  6281. \node (x86-2-1) at (0,-4) {\large \LangXVar{}};
  6282. \node (x86-2-2) at (3,-4) {\large \LangXVar{}};
  6283. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  6284. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvar-3);
  6285. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (Cvar-1);
  6286. \path[->,bend right=15] (Cvar-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  6287. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  6288. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  6289. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  6290. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  6291. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  6292. \end{tikzpicture}
  6293. \end{tcolorbox}
  6294. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  6295. \label{fig:reg-alloc-passes}
  6296. \end{figure}
  6297. \fi}
  6298. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  6299. the running example (figure~\ref{fig:reg-eg}). To demonstrate both the
  6300. use of registers and the stack, we limit the register allocator for
  6301. this example to use just two registers: \code{rcx} (color $0$) and
  6302. \code{rbx} (color $1$). In the prelude\index{subject}{prelude} of the
  6303. \code{main} function, we push \code{rbx} onto the stack because it is
  6304. a callee-saved register and it was assigned to a variable by the
  6305. register allocator. We subtract \code{8} from the \code{rsp} at the
  6306. end of the prelude to reserve space for the one spilled variable.
  6307. After that subtraction, the \code{rsp} is aligned to 16 bytes.
  6308. Moving on to the program proper, we see how the registers were
  6309. allocated.
  6310. %
  6311. \racket{Variables \code{v}, \code{x}, and \code{z} were assigned to
  6312. \code{rbx}, and variables \code{w} and \code{t} was assigned to \code{rcx}.}
  6313. %
  6314. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  6315. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  6316. were assigned to \code{rbx}.}
  6317. %
  6318. Variable \racket{\code{y}}\python{\code{z}} was spilled to the stack
  6319. location \code{-16(\%rbp)}. Recall that the prelude saved the
  6320. callee-save register \code{rbx} onto the stack. The spilled variables
  6321. must be placed lower on the stack than the saved callee-save
  6322. registers, so in this case \racket{\code{y}}\python{z} is placed at
  6323. \code{-16(\%rbp)}.
  6324. In the conclusion\index{subject}{conclusion}, we undo the work that was
  6325. done in the prelude. We move the stack pointer up by \code{8} bytes
  6326. (the room for spilled variables), then pop the old values of
  6327. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  6328. \code{retq} to return control to the operating system.
  6329. \begin{figure}[tbp]
  6330. \begin{minipage}{0.55\textwidth}
  6331. \begin{tcolorbox}[colback=white]
  6332. % var_test_28.rkt
  6333. % (use-minimal-set-of-registers! #t)
  6334. % 0 -> rcx
  6335. % 1 -> rbx
  6336. %
  6337. % t 0 rcx
  6338. % z 1 rbx
  6339. % w 0 rcx
  6340. % y 2 rbp -16
  6341. % v 1 rbx
  6342. % x 1 rbx
  6343. {\if\edition\racketEd
  6344. \begin{lstlisting}
  6345. start:
  6346. movq $1, %rbx
  6347. movq $42, %rcx
  6348. addq $7, %rbx
  6349. movq %rbx, -16(%rbp)
  6350. addq %rcx, %rbx
  6351. movq -16(%rbp), %rcx
  6352. negq %rcx
  6353. movq %rbx, %rax
  6354. addq %rcx, %rax
  6355. jmp conclusion
  6356. .globl main
  6357. main:
  6358. pushq %rbp
  6359. movq %rsp, %rbp
  6360. pushq %rbx
  6361. subq $8, %rsp
  6362. jmp start
  6363. conclusion:
  6364. addq $8, %rsp
  6365. popq %rbx
  6366. popq %rbp
  6367. retq
  6368. \end{lstlisting}
  6369. \fi}
  6370. {\if\edition\pythonEd\pythonColor
  6371. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  6372. \begin{lstlisting}
  6373. .globl main
  6374. main:
  6375. pushq %rbp
  6376. movq %rsp, %rbp
  6377. pushq %rbx
  6378. subq $8, %rsp
  6379. movq $1, %rcx
  6380. movq $42, %rbx
  6381. addq $7, %rcx
  6382. movq %rcx, -16(%rbp)
  6383. addq %rbx, -16(%rbp)
  6384. negq %rcx
  6385. movq -16(%rbp), %rbx
  6386. addq %rcx, %rbx
  6387. movq %rbx, %rdi
  6388. callq print_int
  6389. addq $8, %rsp
  6390. popq %rbx
  6391. popq %rbp
  6392. retq
  6393. \end{lstlisting}
  6394. \fi}
  6395. \end{tcolorbox}
  6396. \end{minipage}
  6397. \caption{The x86 output from the running example
  6398. (figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  6399. and \code{rcx}.}
  6400. \label{fig:running-example-x86}
  6401. \end{figure}
  6402. \begin{exercise}\normalfont\normalsize
  6403. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  6404. %
  6405. \racket{
  6406. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  6407. list of passes and the call to \code{compiler-tests}.}
  6408. %
  6409. Run the script to test the complete compiler for \LangVar{} that
  6410. performs register allocation.
  6411. \end{exercise}
  6412. \section{Challenge: Move Biasing}
  6413. \label{sec:move-biasing}
  6414. \index{subject}{move biasing}
  6415. This section describes an enhancement to the register allocator,
  6416. called move biasing, for students who are looking for an extra
  6417. challenge.
  6418. {\if\edition\racketEd
  6419. To motivate the need for move biasing we return to the running example,
  6420. but this time we use all the general purpose registers. So, we have
  6421. the following mapping of color numbers to registers.
  6422. \[
  6423. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi}, \ldots \}
  6424. \]
  6425. Using the same assignment of variables to color numbers that was
  6426. produced by the register allocator described in the last section, we
  6427. get the following program.
  6428. \begin{center}
  6429. \begin{minipage}{0.35\textwidth}
  6430. \begin{lstlisting}
  6431. movq $1, v
  6432. movq $42, w
  6433. movq v, x
  6434. addq $7, x
  6435. movq x, y
  6436. movq x, z
  6437. addq w, z
  6438. movq y, t
  6439. negq t
  6440. movq z, %rax
  6441. addq t, %rax
  6442. jmp conclusion
  6443. \end{lstlisting}
  6444. \end{minipage}
  6445. $\Rightarrow\qquad$
  6446. \begin{minipage}{0.45\textwidth}
  6447. \begin{lstlisting}
  6448. movq $1, %rdx
  6449. movq $42, %rcx
  6450. movq %rdx, %rdx
  6451. addq $7, %rdx
  6452. movq %rdx, %rsi
  6453. movq %rdx, %rdx
  6454. addq %rcx, %rdx
  6455. movq %rsi, %rcx
  6456. negq %rcx
  6457. movq %rdx, %rax
  6458. addq %rcx, %rax
  6459. jmp conclusion
  6460. \end{lstlisting}
  6461. \end{minipage}
  6462. \end{center}
  6463. In this output code there are two \key{movq} instructions that
  6464. can be removed because their source and target are the same. However,
  6465. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  6466. register, we could instead remove three \key{movq} instructions. We
  6467. can accomplish this by taking into account which variables appear in
  6468. \key{movq} instructions with which other variables.
  6469. \fi}
  6470. {\if\edition\pythonEd\pythonColor
  6471. %
  6472. To motivate the need for move biasing we return to the running example
  6473. and recall that in section~\ref{sec:patch-instructions} we were able to
  6474. remove three trivial move instructions from the running
  6475. example. However, we could remove another trivial move if we were able
  6476. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  6477. We say that two variables $p$ and $q$ are \emph{move
  6478. related}\index{subject}{move related} if they participate together in
  6479. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  6480. \key{movq} $q$\key{,} $p$.
  6481. %
  6482. Recall that we color variables that are more saturated before coloring
  6483. variables that are less saturated, and in the case of equally
  6484. saturated variables, we choose randomly. Now we break such ties by
  6485. giving preference to variables that have an available color that is
  6486. the same as the color of a move-related variable.
  6487. %
  6488. Furthermore, when the register allocator chooses a color for a
  6489. variable, it should prefer a color that has already been used for a
  6490. move-related variable if one exists (and assuming that they do not
  6491. interfere). This preference should not override the preference for
  6492. registers over stack locations. So, this preference should be used as
  6493. a tie breaker in choosing between two registers or in choosing between
  6494. two stack locations.
  6495. We recommend representing the move relationships in a graph, similarly
  6496. to how we represented interference. The following is the \emph{move
  6497. graph} for our running example.
  6498. {\if\edition\racketEd
  6499. \[
  6500. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6501. \node (rax) at (0,0) {$\ttm{rax}$};
  6502. \node (rsp) at (9,2) {$\ttm{rsp}$};
  6503. \node (t) at (0,2) {$\ttm{t}$};
  6504. \node (z) at (3,2) {$\ttm{z}$};
  6505. \node (x) at (6,2) {$\ttm{x}$};
  6506. \node (y) at (3,0) {$\ttm{y}$};
  6507. \node (w) at (6,0) {$\ttm{w}$};
  6508. \node (v) at (9,0) {$\ttm{v}$};
  6509. \draw (v) to (x);
  6510. \draw (x) to (y);
  6511. \draw (x) to (z);
  6512. \draw (y) to (t);
  6513. \end{tikzpicture}
  6514. \]
  6515. \fi}
  6516. %
  6517. {\if\edition\pythonEd\pythonColor
  6518. \[
  6519. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6520. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  6521. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  6522. \node (z) at (3,2) {$\ttm{z}$};
  6523. \node (x) at (6,2) {$\ttm{x}$};
  6524. \node (y) at (3,0) {$\ttm{y}$};
  6525. \node (w) at (6,0) {$\ttm{w}$};
  6526. \node (v) at (9,0) {$\ttm{v}$};
  6527. \draw (y) to (t0);
  6528. \draw (z) to (x);
  6529. \draw (z) to (t1);
  6530. \draw (x) to (y);
  6531. \draw (x) to (v);
  6532. \end{tikzpicture}
  6533. \]
  6534. \fi}
  6535. {\if\edition\racketEd
  6536. Now we replay the graph coloring, pausing to see the coloring of
  6537. \code{y}. Recall the following configuration. The most saturated vertices
  6538. were \code{w} and \code{y}.
  6539. \[
  6540. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6541. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6542. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6543. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6544. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6545. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6546. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  6547. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  6548. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6549. \draw (t1) to (rax);
  6550. \draw (t1) to (z);
  6551. \draw (z) to (y);
  6552. \draw (z) to (w);
  6553. \draw (x) to (w);
  6554. \draw (y) to (w);
  6555. \draw (v) to (w);
  6556. \draw (v) to (rsp);
  6557. \draw (w) to (rsp);
  6558. \draw (x) to (rsp);
  6559. \draw (y) to (rsp);
  6560. \path[-.,bend left=15] (z) edge node {} (rsp);
  6561. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6562. \draw (rax) to (rsp);
  6563. \end{tikzpicture}
  6564. \]
  6565. %
  6566. The last time, we chose to color \code{w} with $0$. This time, we see
  6567. that \code{w} is not move-related to any vertex, but \code{y} is
  6568. move-related to \code{t}. So we choose to color \code{y} with $0$,
  6569. the same color as \code{t}.
  6570. \[
  6571. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6572. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6573. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6574. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6575. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  6576. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  6577. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  6578. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  6579. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  6580. \draw (t1) to (rax);
  6581. \draw (t1) to (z);
  6582. \draw (z) to (y);
  6583. \draw (z) to (w);
  6584. \draw (x) to (w);
  6585. \draw (y) to (w);
  6586. \draw (v) to (w);
  6587. \draw (v) to (rsp);
  6588. \draw (w) to (rsp);
  6589. \draw (x) to (rsp);
  6590. \draw (y) to (rsp);
  6591. \path[-.,bend left=15] (z) edge node {} (rsp);
  6592. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6593. \draw (rax) to (rsp);
  6594. \end{tikzpicture}
  6595. \]
  6596. Now \code{w} is the most saturated, so we color it $2$.
  6597. \[
  6598. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6599. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6600. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6601. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6602. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6603. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  6604. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6605. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6606. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  6607. \draw (t1) to (rax);
  6608. \draw (t1) to (z);
  6609. \draw (z) to (y);
  6610. \draw (z) to (w);
  6611. \draw (x) to (w);
  6612. \draw (y) to (w);
  6613. \draw (v) to (w);
  6614. \draw (v) to (rsp);
  6615. \draw (w) to (rsp);
  6616. \draw (x) to (rsp);
  6617. \draw (y) to (rsp);
  6618. \path[-.,bend left=15] (z) edge node {} (rsp);
  6619. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6620. \draw (rax) to (rsp);
  6621. \end{tikzpicture}
  6622. \]
  6623. At this point, vertices \code{x} and \code{v} are most saturated, but
  6624. \code{x} is move related to \code{y} and \code{z}, so we color
  6625. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  6626. \[
  6627. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6628. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  6629. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  6630. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  6631. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  6632. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  6633. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  6634. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  6635. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  6636. \draw (t1) to (rax);
  6637. \draw (t) to (z);
  6638. \draw (z) to (y);
  6639. \draw (z) to (w);
  6640. \draw (x) to (w);
  6641. \draw (y) to (w);
  6642. \draw (v) to (w);
  6643. \draw (v) to (rsp);
  6644. \draw (w) to (rsp);
  6645. \draw (x) to (rsp);
  6646. \draw (y) to (rsp);
  6647. \path[-.,bend left=15] (z) edge node {} (rsp);
  6648. \path[-.,bend left=10] (t1) edge node {} (rsp);
  6649. \draw (rax) to (rsp);
  6650. \end{tikzpicture}
  6651. \]
  6652. \fi}
  6653. %
  6654. {\if\edition\pythonEd\pythonColor
  6655. Now we replay the graph coloring, pausing before the coloring of
  6656. \code{w}. Recall the following configuration. The most saturated vertices
  6657. were \code{tmp\_1}, \code{w}, and \code{y}.
  6658. \[
  6659. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6660. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6661. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6662. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6663. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6664. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  6665. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  6666. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6667. \draw (t0) to (t1);
  6668. \draw (t0) to (z);
  6669. \draw (z) to (y);
  6670. \draw (z) to (w);
  6671. \draw (x) to (w);
  6672. \draw (y) to (w);
  6673. \draw (v) to (w);
  6674. \end{tikzpicture}
  6675. \]
  6676. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  6677. or \code{y}, but note that \code{w} is not move related to any
  6678. variables, whereas \code{y} and \code{tmp\_1} are move related to
  6679. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  6680. \code{y} and color it $0$, we can delete another move instruction.
  6681. \[
  6682. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6683. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6684. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6685. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6686. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  6687. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  6688. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  6689. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  6690. \draw (t0) to (t1);
  6691. \draw (t0) to (z);
  6692. \draw (z) to (y);
  6693. \draw (z) to (w);
  6694. \draw (x) to (w);
  6695. \draw (y) to (w);
  6696. \draw (v) to (w);
  6697. \end{tikzpicture}
  6698. \]
  6699. Now \code{w} is the most saturated, so we color it $2$.
  6700. \[
  6701. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6702. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6703. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  6704. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6705. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  6706. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6707. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6708. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  6709. \draw (t0) to (t1);
  6710. \draw (t0) to (z);
  6711. \draw (z) to (y);
  6712. \draw (z) to (w);
  6713. \draw (x) to (w);
  6714. \draw (y) to (w);
  6715. \draw (v) to (w);
  6716. \end{tikzpicture}
  6717. \]
  6718. To finish the coloring, \code{x} and \code{v} get $0$ and
  6719. \code{tmp\_1} gets $1$.
  6720. \[
  6721. \begin{tikzpicture}[baseline=(current bounding box.center)]
  6722. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  6723. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  6724. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  6725. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  6726. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  6727. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  6728. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  6729. \draw (t0) to (t1);
  6730. \draw (t0) to (z);
  6731. \draw (z) to (y);
  6732. \draw (z) to (w);
  6733. \draw (x) to (w);
  6734. \draw (y) to (w);
  6735. \draw (v) to (w);
  6736. \end{tikzpicture}
  6737. \]
  6738. \fi}
  6739. So, we have the following assignment of variables to registers.
  6740. {\if\edition\racketEd
  6741. \begin{gather*}
  6742. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6743. \ttm{w} \mapsto \key{\%rsi}, \,
  6744. \ttm{x} \mapsto \key{\%rcx}, \,
  6745. \ttm{y} \mapsto \key{\%rcx}, \,
  6746. \ttm{z} \mapsto \key{\%rdx}, \,
  6747. \ttm{t} \mapsto \key{\%rcx} \}
  6748. \end{gather*}
  6749. \fi}
  6750. {\if\edition\pythonEd\pythonColor
  6751. \begin{gather*}
  6752. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  6753. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  6754. \ttm{x} \mapsto \key{\%rcx}, \,
  6755. \ttm{y} \mapsto \key{\%rcx}, \\
  6756. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  6757. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  6758. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  6759. \end{gather*}
  6760. \fi}
  6761. %
  6762. We apply this register assignment to the running example shown next,
  6763. on the left, to obtain the code in the middle. The
  6764. \code{patch\_instructions} then deletes the trivial moves to obtain
  6765. the code on the right.
  6766. {\if\edition\racketEd
  6767. \begin{center}
  6768. \begin{minipage}{0.2\textwidth}
  6769. \begin{lstlisting}
  6770. movq $1, v
  6771. movq $42, w
  6772. movq v, x
  6773. addq $7, x
  6774. movq x, y
  6775. movq x, z
  6776. addq w, z
  6777. movq y, t
  6778. negq t
  6779. movq z, %rax
  6780. addq t, %rax
  6781. jmp conclusion
  6782. \end{lstlisting}
  6783. \end{minipage}
  6784. $\Rightarrow\qquad$
  6785. \begin{minipage}{0.25\textwidth}
  6786. \begin{lstlisting}
  6787. movq $1, %rcx
  6788. movq $42, %rsi
  6789. movq %rcx, %rcx
  6790. addq $7, %rcx
  6791. movq %rcx, %rcx
  6792. movq %rcx, %rdx
  6793. addq %rsi, %rdx
  6794. movq %rcx, %rcx
  6795. negq %rcx
  6796. movq %rdx, %rax
  6797. addq %rcx, %rax
  6798. jmp conclusion
  6799. \end{lstlisting}
  6800. \end{minipage}
  6801. $\Rightarrow\qquad$
  6802. \begin{minipage}{0.23\textwidth}
  6803. \begin{lstlisting}
  6804. movq $1, %rcx
  6805. movq $42, %rsi
  6806. addq $7, %rcx
  6807. movq %rcx, %rdx
  6808. addq %rsi, %rdx
  6809. negq %rcx
  6810. movq %rdx, %rax
  6811. addq %rcx, %rax
  6812. jmp conclusion
  6813. \end{lstlisting}
  6814. \end{minipage}
  6815. \end{center}
  6816. \fi}
  6817. {\if\edition\pythonEd\pythonColor
  6818. \begin{center}
  6819. \begin{minipage}{0.20\textwidth}
  6820. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6821. movq $1, v
  6822. movq $42, w
  6823. movq v, x
  6824. addq $7, x
  6825. movq x, y
  6826. movq x, z
  6827. addq w, z
  6828. movq y, tmp_0
  6829. negq tmp_0
  6830. movq z, tmp_1
  6831. addq tmp_0, tmp_1
  6832. movq tmp_1, %rdi
  6833. callq _print_int
  6834. \end{lstlisting}
  6835. \end{minipage}
  6836. ${\Rightarrow\qquad}$
  6837. \begin{minipage}{0.35\textwidth}
  6838. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6839. movq $1, %rcx
  6840. movq $42, -16(%rbp)
  6841. movq %rcx, %rcx
  6842. addq $7, %rcx
  6843. movq %rcx, %rcx
  6844. movq %rcx, -8(%rbp)
  6845. addq -16(%rbp), -8(%rbp)
  6846. movq %rcx, %rcx
  6847. negq %rcx
  6848. movq -8(%rbp), -8(%rbp)
  6849. addq %rcx, -8(%rbp)
  6850. movq -8(%rbp), %rdi
  6851. callq _print_int
  6852. \end{lstlisting}
  6853. \end{minipage}
  6854. ${\Rightarrow\qquad}$
  6855. \begin{minipage}{0.20\textwidth}
  6856. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6857. movq $1, %rcx
  6858. movq $42, -16(%rbp)
  6859. addq $7, %rcx
  6860. movq %rcx, -8(%rbp)
  6861. movq -16(%rbp), %rax
  6862. addq %rax, -8(%rbp)
  6863. negq %rcx
  6864. addq %rcx, -8(%rbp)
  6865. movq -8(%rbp), %rdi
  6866. callq print_int
  6867. \end{lstlisting}
  6868. \end{minipage}
  6869. \end{center}
  6870. \fi}
  6871. \begin{exercise}\normalfont\normalsize
  6872. Change your implementation of \code{allocate\_registers} to take move
  6873. biasing into account. Create two new tests that include at least one
  6874. opportunity for move biasing, and visually inspect the output x86
  6875. programs to make sure that your move biasing is working properly. Make
  6876. sure that your compiler still passes all the tests.
  6877. \end{exercise}
  6878. %To do: another neat challenge would be to do
  6879. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  6880. %% \subsection{Output of the Running Example}
  6881. %% \label{sec:reg-alloc-output}
  6882. % challenge: prioritize variables based on execution frequencies
  6883. % and the number of uses of a variable
  6884. % challenge: enhance the coloring algorithm using Chaitin's
  6885. % approach of prioritizing high-degree variables
  6886. % by removing low-degree variables (coloring them later)
  6887. % from the interference graph
  6888. \section{Further Reading}
  6889. \label{sec:register-allocation-further-reading}
  6890. Early register allocation algorithms were developed for Fortran
  6891. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  6892. of graph coloring began in the late 1970s and early 1980s with the
  6893. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  6894. algorithm is based on the following observation of
  6895. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  6896. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  6897. $v$ removed is also $k$ colorable. To see why, suppose that the
  6898. subgraph is $k$ colorable. At worst, the neighbors of $v$ are assigned
  6899. different colors, but because there are fewer than $k$ neighbors, there
  6900. will be one or more colors left over to use for coloring $v$ in $G$.
  6901. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  6902. less than $k$ from the graph and recursively colors the rest of the
  6903. graph. Upon returning from the recursion, it colors $v$ with one of
  6904. the available colors and returns. \citet{Chaitin:1982vn} augments
  6905. this algorithm to handle spilling as follows. If there are no vertices
  6906. of degree lower than $k$ then pick a vertex at random, spill it,
  6907. remove it from the graph, and proceed recursively to color the rest of
  6908. the graph.
  6909. Prior to coloring, \citet{Chaitin:1981vl} merged variables that are
  6910. move-related and that don't interfere with each other, in a process
  6911. called \emph{coalescing}. Although coalescing decreases the number of
  6912. moves, it can make the graph more difficult to
  6913. color. \citet{Briggs:1994kx} proposed \emph{conservative coalescing} in
  6914. which two variables are merged only if they have fewer than $k$
  6915. neighbors of high degree. \citet{George:1996aa} observes that
  6916. conservative coalescing is sometimes too conservative and made it more
  6917. aggressive by iterating the coalescing with the removal of low-degree
  6918. vertices.
  6919. %
  6920. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  6921. also proposed \emph{biased coloring}, in which a variable is assigned to
  6922. the same color as another move-related variable if possible, as
  6923. discussed in section~\ref{sec:move-biasing}.
  6924. %
  6925. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  6926. performs coalescing, graph coloring, and spill code insertion until
  6927. all variables have been assigned a location.
  6928. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  6929. spilled variables that don't have to be: a high-degree variable can be
  6930. colorable if many of its neighbors are assigned the same color.
  6931. \citet{Briggs:1994kx} proposed \emph{optimistic coloring}, in which a
  6932. high-degree vertex is not immediately spilled. Instead the decision is
  6933. deferred until after the recursive call, at which point it is apparent
  6934. whether there is actually an available color or not. We observe that
  6935. this algorithm is equivalent to the smallest-last ordering
  6936. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  6937. be registers and the rest to be stack locations.
  6938. %% biased coloring
  6939. Earlier editions of the compiler course at Indiana University
  6940. \citep{Dybvig:2010aa} were based on the algorithm of
  6941. \citet{Briggs:1994kx}.
  6942. The smallest-last ordering algorithm is one of many \emph{greedy}
  6943. coloring algorithms. A greedy coloring algorithm visits all the
  6944. vertices in a particular order and assigns each one the first
  6945. available color. An \emph{offline} greedy algorithm chooses the
  6946. ordering up front, prior to assigning colors. The algorithm of
  6947. \citet{Chaitin:1981vl} should be considered offline because the vertex
  6948. ordering does not depend on the colors assigned. Other orderings are
  6949. possible. For example, \citet{Chow:1984ys} ordered variables according
  6950. to an estimate of runtime cost.
  6951. An \emph{online} greedy coloring algorithm uses information about the
  6952. current assignment of colors to influence the order in which the
  6953. remaining vertices are colored. The saturation-based algorithm
  6954. described in this chapter is one such algorithm. We choose to use
  6955. saturation-based coloring because it is fun to introduce graph
  6956. coloring via sudoku!
  6957. A register allocator may choose to map each variable to just one
  6958. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  6959. variable to one or more locations. The latter can be achieved by
  6960. \emph{live range splitting}, where a variable is replaced by several
  6961. variables that each handle part of its live
  6962. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  6963. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  6964. %% replacement algorithm, bottom-up local
  6965. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  6966. %% Cooper: top-down (priority bassed), bottom-up
  6967. %% top-down
  6968. %% order variables by priority (estimated cost)
  6969. %% caveat: split variables into two groups:
  6970. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  6971. %% color the constrained ones first
  6972. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  6973. %% cite J. Cocke for an algorithm that colors variables
  6974. %% in a high-degree first ordering
  6975. %Register Allocation via Usage Counts, Freiburghouse CACM
  6976. \citet{Palsberg:2007si} observes that many of the interference graphs
  6977. that arise from Java programs in the JoeQ compiler are \emph{chordal};
  6978. that is, every cycle with four or more edges has an edge that is not
  6979. part of the cycle but that connects two vertices on the cycle. Such
  6980. graphs can be optimally colored by the greedy algorithm with a vertex
  6981. ordering determined by maximum cardinality search.
  6982. In situations in which compile time is of utmost importance, such as
  6983. in just-in-time compilers, graph coloring algorithms can be too
  6984. expensive, and the linear scan algorithm of \citet{Poletto:1999uq} may
  6985. be more appropriate.
  6986. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  6987. {\if\edition\racketEd
  6988. \addtocontents{toc}{\newpage}
  6989. \fi}
  6990. \chapter{Booleans and Conditionals}
  6991. \label{ch:Lif}
  6992. \setcounter{footnote}{0}
  6993. The \LangVar{} language has only a single kind of value, the
  6994. integers. In this chapter we add a second kind of value, the Booleans,
  6995. to create the \LangIf{} language. In \racket{Racket}\python{Python},
  6996. the Boolean\index{subject}{Boolean} values \emph{true} and \emph{false}
  6997. are written
  6998. \TRUE{}\index{subject}{True@\TRUE{}} and
  6999. \FALSE{}\index{subject}{False@\FALSE{}}, respectively. The \LangIf{}
  7000. language includes several operations that involve Booleans
  7001. (\key{and}\index{subject}{and@\ANDNAME{}},
  7002. \key{or}\index{subject}{or@\ORNAME{}},
  7003. \key{not}\index{subject}{not@\NOTNAME{}},
  7004. \racket{\key{eq?}\index{subject}{equal@\EQNAME{}}}\python{==},
  7005. \key{<}\index{subject}{lessthan@\texttt{<}}, etc.) and the
  7006. \key{if}\index{subject}{IfExp@\IFNAME{}}
  7007. conditional expression\index{subject}{conditional expression}
  7008. \python{ and statement\index{subject}{IfStmt@\IFSTMTNAME{}}}.
  7009. With the addition of \key{if}, programs can have
  7010. nontrivial control flow\index{subject}{control flow} which
  7011. %
  7012. \racket{impacts \code{explicate\_control} and liveness analysis.}
  7013. %
  7014. \python{impacts liveness analysis and motivates a new pass named
  7015. \code{explicate\_control}.}%
  7016. %
  7017. Also, because we now have two kinds of values, we need to handle
  7018. programs that apply an operation to the wrong kind of value, such as
  7019. \racket{\code{(not 1)}}\python{\code{not 1}}.
  7020. There are two language design options for such situations. One option
  7021. is to signal an error and the other is to provide a wider
  7022. interpretation of the operation. \racket{The Racket
  7023. language}\python{Python} uses a mixture of these two options,
  7024. depending on the operation and the kind of value. For example, the
  7025. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  7026. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  7027. treats nonzero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  7028. %
  7029. \racket{On the other hand, \code{(car 1)} results in a runtime error
  7030. in Racket because \code{car} expects a pair.}
  7031. %
  7032. \python{On the other hand, \code{1[0]} results in a runtime error
  7033. in Python because an ``\code{int} object is not subscriptable''.}
  7034. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  7035. design choices as \racket{Racket}\python{Python}, except that much of the
  7036. error detection happens at compile time instead of runtime\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  7037. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  7038. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed Racket}
  7039. \python{MyPy} reports a compile-time error
  7040. %
  7041. \racket{because Racket expects the type of the argument to be of the form
  7042. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  7043. %
  7044. \python{stating that a ``value of type \code{int} is not indexable''.}
  7045. The \LangIf{} language performs type checking during compilation just as
  7046. \racket{Typed Racket}\python{MyPy}. In chapter~\ref{ch:Ldyn} we study
  7047. the alternative choice, that is, a dynamically typed language like
  7048. \racket{Racket}\python{Python}. The \LangIf{} language is a subset of
  7049. \racket{Typed Racket}\python{MyPy}; for some operations we are more
  7050. restrictive, for example, rejecting \racket{\code{(not
  7051. 1)}}\python{\code{not 1}}. We keep the type checker for \LangIf{}
  7052. fairly simple because the focus of this book is on compilation and not
  7053. type systems, about which there are already several excellent
  7054. books~\citep{Pierce:2002hj,Pierce:2004fk,Harper2016,Pierce:SF2}.
  7055. This chapter is organized as follows. We begin by defining the syntax
  7056. and interpreter for the \LangIf{} language
  7057. (section~\ref{sec:lang-if}). We then introduce the idea of type
  7058. checking (aka semantic analysis\index{subject}{semantic analysis})
  7059. and define a type checker for \LangIf{}
  7060. (section~\ref{sec:type-check-Lif}).
  7061. %
  7062. \racket{To compile \LangIf{} we need to enlarge the intermediate
  7063. language \LangCVar{} into \LangCIf{} (section~\ref{sec:Cif}) and
  7064. \LangXInt{} into \LangXIf{} (section~\ref{sec:x86-if}).}
  7065. %
  7066. The remaining sections of this chapter discuss how Booleans and
  7067. conditional control flow require changes to the existing compiler
  7068. passes and the addition of new ones. We introduce the \code{shrink}
  7069. pass to translate some operators into others, thereby reducing the
  7070. number of operators that need to be handled in later passes.
  7071. %
  7072. The main event of this chapter is the \code{explicate\_control} pass
  7073. that is responsible for translating \code{if}s into conditional
  7074. \code{goto}s (section~\ref{sec:explicate-control-Lif}).
  7075. %
  7076. Regarding register allocation, there is the interesting question of
  7077. how to handle conditional \code{goto}s during liveness analysis.
  7078. \section{The \LangIf{} Language}
  7079. \label{sec:lang-if}
  7080. Definitions of the concrete syntax and abstract syntax of the
  7081. \LangIf{} language are shown in figures~\ref{fig:Lif-concrete-syntax}
  7082. and~\ref{fig:Lif-syntax}, respectively. The \LangIf{} language
  7083. includes all of \LangVar{} {(shown in gray)}, the Boolean
  7084. literals\index{subject}{literals}
  7085. \TRUE{} and \FALSE{}, \racket{and} the \code{if} expression%
  7086. \python{, and the \code{if} statement}. We expand the set of
  7087. operators to include
  7088. \begin{enumerate}
  7089. \item the logical operators \key{and}, \key{or}, and \key{not},
  7090. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  7091. for comparing integers or Booleans for equality, and
  7092. \item the \key{<}, \key{<=}\index{subject}{lessthaneq@\texttt{<=}},
  7093. \key{>}\index{subject}{greaterthan@\texttt{>}}, and
  7094. \key{>=}\index{subject}{greaterthaneq@\texttt{>=}} operations for
  7095. comparing integers.
  7096. \end{enumerate}
  7097. \racket{We reorganize the abstract syntax for the primitive
  7098. operations given in figure~\ref{fig:Lif-syntax}, using only one grammar
  7099. rule for all of them. This means that the grammar no longer checks
  7100. whether the arity of an operator matches the number of
  7101. arguments. That responsibility is moved to the type checker for
  7102. \LangIf{} (section~\ref{sec:type-check-Lif}).}
  7103. \newcommand{\LifGrammarRacket}{
  7104. \begin{array}{lcl}
  7105. \Type &::=& \key{Boolean} \\
  7106. \itm{bool} &::=& \TRUE \MID \FALSE \\
  7107. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7108. \Exp &::=& \itm{bool}
  7109. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  7110. \MID (\key{not}\;\Exp) \\
  7111. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp}
  7112. \end{array}
  7113. }
  7114. \newcommand{\LifASTRacket}{
  7115. \begin{array}{lcl}
  7116. \Type &::=& \key{Boolean} \\
  7117. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  7118. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7119. \itm{op} &::= & \itm{cmp} \MID \code{and} \MID \code{or} \MID \code{not} \\
  7120. \Exp &::=& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp}
  7121. \end{array}
  7122. }
  7123. \newcommand{\LintOpAST}{
  7124. \begin{array}{rcl}
  7125. \Type &::=& \key{Integer} \\
  7126. \itm{op} &::= & \code{read} \MID \code{+} \MID \code{-}\\
  7127. \Exp{} &::=& \INT{\Int} \MID \PRIM{\itm{op}}{\Exp\ldots}
  7128. \end{array}
  7129. }
  7130. \newcommand{\LifGrammarPython}{
  7131. \begin{array}{rcl}
  7132. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  7133. \Exp &::=& \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp} \MID \COR{\Exp}{\Exp}
  7134. \MID \key{not}~\Exp \\
  7135. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  7136. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  7137. \Stmt &::=& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  7138. \end{array}
  7139. }
  7140. \newcommand{\LifASTPython}{
  7141. \begin{array}{lcl}
  7142. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  7143. \itm{unaryop} &::=& \code{Not()} \\
  7144. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  7145. \itm{bool} &::=& \code{True} \MID \code{False} \\
  7146. \Exp &::=& \BOOL{\itm{bool}}
  7147. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  7148. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  7149. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  7150. \end{array}
  7151. }
  7152. \begin{figure}[tp]
  7153. \centering
  7154. \begin{tcolorbox}[colback=white]
  7155. {\if\edition\racketEd
  7156. \[
  7157. \begin{array}{l}
  7158. \gray{\LintGrammarRacket{}} \\ \hline
  7159. \gray{\LvarGrammarRacket{}} \\ \hline
  7160. \LifGrammarRacket{} \\
  7161. \begin{array}{lcl}
  7162. \LangIfM{} &::=& \Exp
  7163. \end{array}
  7164. \end{array}
  7165. \]
  7166. \fi}
  7167. {\if\edition\pythonEd\pythonColor
  7168. \[
  7169. \begin{array}{l}
  7170. \gray{\LintGrammarPython} \\ \hline
  7171. \gray{\LvarGrammarPython} \\ \hline
  7172. \LifGrammarPython \\
  7173. \begin{array}{rcl}
  7174. \LangIfM{} &::=& \Stmt^{*}
  7175. \end{array}
  7176. \end{array}
  7177. \]
  7178. \fi}
  7179. \end{tcolorbox}
  7180. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  7181. (figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  7182. \label{fig:Lif-concrete-syntax}
  7183. \end{figure}
  7184. \begin{figure}[tp]
  7185. %\begin{minipage}{0.66\textwidth}
  7186. \begin{tcolorbox}[colback=white]
  7187. \centering
  7188. {\if\edition\racketEd
  7189. \[
  7190. \begin{array}{l}
  7191. \gray{\LintOpAST} \\ \hline
  7192. \gray{\LvarASTRacket{}} \\ \hline
  7193. \LifASTRacket{} \\
  7194. \begin{array}{lcl}
  7195. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  7196. \end{array}
  7197. \end{array}
  7198. \]
  7199. \fi}
  7200. {\if\edition\pythonEd\pythonColor
  7201. \[
  7202. \begin{array}{l}
  7203. \gray{\LintASTPython} \\ \hline
  7204. \gray{\LvarASTPython} \\ \hline
  7205. \LifASTPython \\
  7206. \begin{array}{lcl}
  7207. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  7208. \end{array}
  7209. \end{array}
  7210. \]
  7211. \fi}
  7212. \end{tcolorbox}
  7213. %\end{minipage}
  7214. \python{\index{subject}{not equal@\NOTEQNAME{}}}
  7215. \python{
  7216. \index{subject}{BoolOp@\texttt{BoolOp}}
  7217. \index{subject}{Compare@\texttt{Compare}}
  7218. \index{subject}{Lt@\texttt{Lt}}
  7219. \index{subject}{LtE@\texttt{LtE}}
  7220. \index{subject}{Gt@\texttt{Gt}}
  7221. \index{subject}{GtE@\texttt{GtE}}
  7222. }
  7223. \caption{The abstract syntax of \LangIf{}.}
  7224. \label{fig:Lif-syntax}
  7225. \end{figure}
  7226. Figure~\ref{fig:interp-Lif} shows the definition of the interpreter
  7227. for \LangIf{}, which inherits from the interpreter for \LangVar{}
  7228. (figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  7229. evaluate to the corresponding Boolean values. The conditional
  7230. expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates expression $e_1$ and
  7231. then either evaluates $e_2$ or $e_3$, depending on whether $e_1$
  7232. produced \TRUE{} or \FALSE{}. The logical operations \code{and},
  7233. \code{or}, and \code{not} behave according to propositional logic. In
  7234. addition, the \code{and} and \code{or} operations perform
  7235. \emph{short-circuit evaluation}.
  7236. %
  7237. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  7238. is not evaluated if $e_1$ evaluates to \FALSE{}.
  7239. %
  7240. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  7241. evaluated if $e_1$ evaluates to \TRUE{}.
  7242. \racket{With the increase in the number of primitive operations, the
  7243. interpreter would become repetitive without some care. We refactor
  7244. the case for \code{Prim}, moving the code that differs with each
  7245. operation into the \code{interp\_op} method shown in
  7246. figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  7247. \code{or} operations separately because of their short-circuiting
  7248. behavior.}
  7249. \begin{figure}[tbp]
  7250. \begin{tcolorbox}[colback=white]
  7251. {\if\edition\racketEd
  7252. \begin{lstlisting}
  7253. (define interp-Lif-class
  7254. (class interp-Lvar-class
  7255. (super-new)
  7256. (define/public (interp_op op) ...)
  7257. (define/override ((interp_exp env) e)
  7258. (define recur (interp_exp env))
  7259. (match e
  7260. [(Bool b) b]
  7261. [(If cnd thn els)
  7262. (match (recur cnd)
  7263. [#t (recur thn)]
  7264. [#f (recur els)])]
  7265. [(Prim 'and (list e1 e2))
  7266. (match (recur e1)
  7267. [#t (match (recur e2) [#t #t] [#f #f])]
  7268. [#f #f])]
  7269. [(Prim 'or (list e1 e2))
  7270. (define v1 (recur e1))
  7271. (match v1
  7272. [#t #t]
  7273. [#f (match (recur e2) [#t #t] [#f #f])])]
  7274. [(Prim op args)
  7275. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  7276. [else ((super interp_exp env) e)]))
  7277. ))
  7278. (define (interp_Lif p)
  7279. (send (new interp-Lif-class) interp_program p))
  7280. \end{lstlisting}
  7281. \fi}
  7282. {\if\edition\pythonEd\pythonColor
  7283. \begin{lstlisting}
  7284. class InterpLif(InterpLvar):
  7285. def interp_exp(self, e, env):
  7286. match e:
  7287. case IfExp(test, body, orelse):
  7288. if self.interp_exp(test, env):
  7289. return self.interp_exp(body, env)
  7290. else:
  7291. return self.interp_exp(orelse, env)
  7292. case UnaryOp(Not(), v):
  7293. return not self.interp_exp(v, env)
  7294. case BoolOp(And(), values):
  7295. if self.interp_exp(values[0], env):
  7296. return self.interp_exp(values[1], env)
  7297. else:
  7298. return False
  7299. case BoolOp(Or(), values):
  7300. if self.interp_exp(values[0], env):
  7301. return True
  7302. else:
  7303. return self.interp_exp(values[1], env)
  7304. case Compare(left, [cmp], [right]):
  7305. l = self.interp_exp(left, env)
  7306. r = self.interp_exp(right, env)
  7307. return self.interp_cmp(cmp)(l, r)
  7308. case _:
  7309. return super().interp_exp(e, env)
  7310. def interp_stmt(self, s, env, cont):
  7311. match s:
  7312. case If(test, body, orelse):
  7313. match self.interp_exp(test, env):
  7314. case True:
  7315. return self.interp_stmts(body + cont, env)
  7316. case False:
  7317. return self.interp_stmts(orelse + cont, env)
  7318. case _:
  7319. return super().interp_stmt(s, env, cont)
  7320. ...
  7321. \end{lstlisting}
  7322. \fi}
  7323. \end{tcolorbox}
  7324. \caption{Interpreter for the \LangIf{} language. \racket{(See
  7325. figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  7326. \python{(See figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  7327. \label{fig:interp-Lif}
  7328. \end{figure}
  7329. {\if\edition\racketEd
  7330. \begin{figure}[tbp]
  7331. \begin{tcolorbox}[colback=white]
  7332. \begin{lstlisting}
  7333. (define/public (interp_op op)
  7334. (match op
  7335. ['+ fx+]
  7336. ['- fx-]
  7337. ['read read-fixnum]
  7338. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  7339. ['eq? (lambda (v1 v2)
  7340. (cond [(or (and (fixnum? v1) (fixnum? v2))
  7341. (and (boolean? v1) (boolean? v2))
  7342. (and (vector? v1) (vector? v2)))
  7343. (eq? v1 v2)]))]
  7344. ['< (lambda (v1 v2)
  7345. (cond [(and (fixnum? v1) (fixnum? v2))
  7346. (< v1 v2)]))]
  7347. ['<= (lambda (v1 v2)
  7348. (cond [(and (fixnum? v1) (fixnum? v2))
  7349. (<= v1 v2)]))]
  7350. ['> (lambda (v1 v2)
  7351. (cond [(and (fixnum? v1) (fixnum? v2))
  7352. (> v1 v2)]))]
  7353. ['>= (lambda (v1 v2)
  7354. (cond [(and (fixnum? v1) (fixnum? v2))
  7355. (>= v1 v2)]))]
  7356. [else (error 'interp_op "unknown operator")]))
  7357. \end{lstlisting}
  7358. \end{tcolorbox}
  7359. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  7360. \label{fig:interp-op-Lif}
  7361. \end{figure}
  7362. \fi}
  7363. {\if\edition\pythonEd\pythonColor
  7364. \begin{figure}
  7365. \begin{tcolorbox}[colback=white]
  7366. \begin{lstlisting}
  7367. class InterpLif(InterpLvar):
  7368. ...
  7369. def interp_cmp(self, cmp):
  7370. match cmp:
  7371. case Lt():
  7372. return lambda x, y: x < y
  7373. case LtE():
  7374. return lambda x, y: x <= y
  7375. case Gt():
  7376. return lambda x, y: x > y
  7377. case GtE():
  7378. return lambda x, y: x >= y
  7379. case Eq():
  7380. return lambda x, y: x == y
  7381. case NotEq():
  7382. return lambda x, y: x != y
  7383. \end{lstlisting}
  7384. \end{tcolorbox}
  7385. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  7386. \label{fig:interp-cmp-Lif}
  7387. \end{figure}
  7388. \fi}
  7389. \section{Type Checking \LangIf{} Programs}
  7390. \label{sec:type-check-Lif}
  7391. It is helpful to think about type checking\index{subject}{type
  7392. checking} in two complementary ways. A type checker predicts the
  7393. type of value that will be produced by each expression in the program.
  7394. For \LangIf{}, we have just two types, \INTTY{} and \BOOLTY{}. So, a
  7395. type checker should predict that {\if\edition\racketEd
  7396. \begin{lstlisting}
  7397. (+ 10 (- (+ 12 20)))
  7398. \end{lstlisting}
  7399. \fi}
  7400. {\if\edition\pythonEd\pythonColor
  7401. \begin{lstlisting}
  7402. 10 + -(12 + 20)
  7403. \end{lstlisting}
  7404. \fi}
  7405. \noindent produces a value of type \INTTY{}, whereas
  7406. {\if\edition\racketEd
  7407. \begin{lstlisting}
  7408. (and (not #f) #t)
  7409. \end{lstlisting}
  7410. \fi}
  7411. {\if\edition\pythonEd\pythonColor
  7412. \begin{lstlisting}
  7413. (not False) and True
  7414. \end{lstlisting}
  7415. \fi}
  7416. \noindent produces a value of type \BOOLTY{}.
  7417. A second way to think about type checking is that it enforces a set of
  7418. rules about which operators can be applied to which kinds of
  7419. values. For example, our type checker for \LangIf{} signals an error
  7420. for the following expression:
  7421. %
  7422. {\if\edition\racketEd
  7423. \begin{lstlisting}
  7424. (not (+ 10 (- (+ 12 20))))
  7425. \end{lstlisting}
  7426. \fi}
  7427. {\if\edition\pythonEd\pythonColor
  7428. \begin{lstlisting}
  7429. not (10 + -(12 + 20))
  7430. \end{lstlisting}
  7431. \fi}
  7432. \noindent The subexpression
  7433. \racket{\code{(+ 10 (- (+ 12 20)))}}
  7434. \python{\code{(10 + -(12 + 20))}}
  7435. has type \INTTY{}, but the type checker enforces the rule that the
  7436. argument of \code{not} must be an expression of type \BOOLTY{}.
  7437. We implement type checking using classes and methods because they
  7438. provide the open recursion needed to reuse code as we extend the type
  7439. checker in subsequent chapters, analogous to the use of classes and methods
  7440. for the interpreters (section~\ref{sec:extensible-interp}).
  7441. We separate the type checker for the \LangVar{} subset into its own
  7442. class, shown in figure~\ref{fig:type-check-Lvar}. The type checker for
  7443. \LangIf{} is shown in figure~\ref{fig:type-check-Lif}, and it inherits
  7444. from the type checker for \LangVar{}. These type checkers are in the
  7445. files
  7446. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  7447. and
  7448. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  7449. of the support code.
  7450. %
  7451. Each type checker is a structurally recursive function over the AST.
  7452. Given an input expression \code{e}, the type checker either signals an
  7453. error or returns \racket{an expression and} its type.
  7454. %
  7455. \racket{It returns an expression because there are situations in which
  7456. we want to change or update the expression.}
  7457. Next we discuss the \code{type\_check\_exp} function of \LangVar{}
  7458. shown in figure~\ref{fig:type-check-Lvar}. The type of an integer
  7459. constant is \INTTY{}. To handle variables, the type checker uses the
  7460. environment \code{env} to map variables to types.
  7461. %
  7462. \racket{Consider the case for \key{let}. We type check the
  7463. initializing expression to obtain its type \key{T} and then
  7464. associate type \code{T} with the variable \code{x} in the
  7465. environment used to type check the body of the \key{let}. Thus,
  7466. when the type checker encounters a use of variable \code{x}, it can
  7467. find its type in the environment.}
  7468. %
  7469. \python{Consider the case for assignment. We type check the
  7470. initializing expression to obtain its type \key{t}. If the variable
  7471. \code{lhs.id} is already in the environment because there was a
  7472. prior assignment, we check that this initializer has the same type
  7473. as the prior one. If this is the first assignment to the variable,
  7474. we associate type \code{t} with the variable \code{lhs.id} in the
  7475. environment. Thus, when the type checker encounters a use of
  7476. variable \code{x}, it can find its type in the environment.}
  7477. %
  7478. \racket{Regarding primitive operators, we recursively analyze the
  7479. arguments and then invoke \code{type\_check\_op} to check whether
  7480. the argument types are allowed.}
  7481. %
  7482. \python{Regarding addition, subtraction, and negation, we recursively analyze the
  7483. arguments, check that they have type \INTTY{}, and return \INTTY{}.}
  7484. \racket{Several auxiliary methods are used in the type checker. The
  7485. method \code{operator-types} defines a dictionary that maps the
  7486. operator names to their parameter and return types. The
  7487. \code{type-equal?} method determines whether two types are equal,
  7488. which for now simply dispatches to \code{equal?} (deep
  7489. equality). The \code{check-type-equal?} method triggers an error if
  7490. the two types are not equal. The \code{type-check-op} method looks
  7491. up the operator in the \code{operator-types} dictionary and then
  7492. checks whether the argument types are equal to the parameter types.
  7493. The result is the return type of the operator.}
  7494. %
  7495. \python{The auxiliary method \code{check\_type\_equal} triggers
  7496. an error if the two types are not equal.}
  7497. \begin{figure}[tbp]
  7498. \begin{tcolorbox}[colback=white]
  7499. {\if\edition\racketEd
  7500. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7501. (define type-check-Lvar-class
  7502. (class object%
  7503. (super-new)
  7504. (define/public (operator-types)
  7505. '((+ . ((Integer Integer) . Integer))
  7506. (- . ((Integer Integer) . Integer))
  7507. (read . (() . Integer))))
  7508. (define/public (type-equal? t1 t2) (equal? t1 t2))
  7509. (define/public (check-type-equal? t1 t2 e)
  7510. (unless (type-equal? t1 t2)
  7511. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  7512. (define/public (type-check-op op arg-types e)
  7513. (match (dict-ref (operator-types) op)
  7514. [`(,param-types . ,return-type)
  7515. (for ([at arg-types] [pt param-types])
  7516. (check-type-equal? at pt e))
  7517. return-type]
  7518. [else (error 'type-check-op "unrecognized ~a" op)]))
  7519. (define/public (type-check-exp env)
  7520. (lambda (e)
  7521. (match e
  7522. [(Int n) (values (Int n) 'Integer)]
  7523. [(Var x) (values (Var x) (dict-ref env x))]
  7524. [(Let x e body)
  7525. (define-values (e^ Te) ((type-check-exp env) e))
  7526. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  7527. (values (Let x e^ b) Tb)]
  7528. [(Prim op es)
  7529. (define-values (new-es ts)
  7530. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  7531. (values (Prim op new-es) (type-check-op op ts e))]
  7532. [else (error 'type-check-exp "couldn't match" e)])))
  7533. (define/public (type-check-program e)
  7534. (match e
  7535. [(Program info body)
  7536. (define-values (body^ Tb) ((type-check-exp '()) body))
  7537. (check-type-equal? Tb 'Integer body)
  7538. (Program info body^)]
  7539. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  7540. ))
  7541. (define (type-check-Lvar p)
  7542. (send (new type-check-Lvar-class) type-check-program p))
  7543. \end{lstlisting}
  7544. \fi}
  7545. {\if\edition\pythonEd\pythonColor
  7546. \begin{lstlisting}[escapechar=`]
  7547. class TypeCheckLvar:
  7548. def check_type_equal(self, t1, t2, e):
  7549. if t1 != t2:
  7550. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  7551. raise Exception(msg)
  7552. def type_check_exp(self, e, env):
  7553. match e:
  7554. case BinOp(left, (Add() | Sub()), right):
  7555. l = self.type_check_exp(left, env)
  7556. check_type_equal(l, int, left)
  7557. r = self.type_check_exp(right, env)
  7558. check_type_equal(r, int, right)
  7559. return int
  7560. case UnaryOp(USub(), v):
  7561. t = self.type_check_exp(v, env)
  7562. check_type_equal(t, int, v)
  7563. return int
  7564. case Name(id):
  7565. return env[id]
  7566. case Constant(value) if isinstance(value, int):
  7567. return int
  7568. case Call(Name('input_int'), []):
  7569. return int
  7570. def type_check_stmts(self, ss, env):
  7571. if len(ss) == 0:
  7572. return
  7573. match ss[0]:
  7574. case Assign([lhs], value):
  7575. t = self.type_check_exp(value, env)
  7576. if lhs.id in env:
  7577. check_type_equal(env[lhs.id], t, value)
  7578. else:
  7579. env[lhs.id] = t
  7580. return self.type_check_stmts(ss[1:], env)
  7581. case Expr(Call(Name('print'), [arg])):
  7582. t = self.type_check_exp(arg, env)
  7583. check_type_equal(t, int, arg)
  7584. return self.type_check_stmts(ss[1:], env)
  7585. case Expr(value):
  7586. self.type_check_exp(value, env)
  7587. return self.type_check_stmts(ss[1:], env)
  7588. def type_check_P(self, p):
  7589. match p:
  7590. case Module(body):
  7591. self.type_check_stmts(body, {})
  7592. \end{lstlisting}
  7593. \fi}
  7594. \end{tcolorbox}
  7595. \caption{Type checker for the \LangVar{} language.}
  7596. \label{fig:type-check-Lvar}
  7597. \end{figure}
  7598. \begin{figure}[tbp]
  7599. \begin{tcolorbox}[colback=white]
  7600. {\if\edition\racketEd
  7601. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7602. (define type-check-Lif-class
  7603. (class type-check-Lvar-class
  7604. (super-new)
  7605. (inherit check-type-equal?)
  7606. (define/override (operator-types)
  7607. (append '((and . ((Boolean Boolean) . Boolean))
  7608. (or . ((Boolean Boolean) . Boolean))
  7609. (< . ((Integer Integer) . Boolean))
  7610. (<= . ((Integer Integer) . Boolean))
  7611. (> . ((Integer Integer) . Boolean))
  7612. (>= . ((Integer Integer) . Boolean))
  7613. (not . ((Boolean) . Boolean)))
  7614. (super operator-types)))
  7615. (define/override (type-check-exp env)
  7616. (lambda (e)
  7617. (match e
  7618. [(Bool b) (values (Bool b) 'Boolean)]
  7619. [(Prim 'eq? (list e1 e2))
  7620. (define-values (e1^ T1) ((type-check-exp env) e1))
  7621. (define-values (e2^ T2) ((type-check-exp env) e2))
  7622. (check-type-equal? T1 T2 e)
  7623. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  7624. [(If cnd thn els)
  7625. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  7626. (define-values (thn^ Tt) ((type-check-exp env) thn))
  7627. (define-values (els^ Te) ((type-check-exp env) els))
  7628. (check-type-equal? Tc 'Boolean e)
  7629. (check-type-equal? Tt Te e)
  7630. (values (If cnd^ thn^ els^) Te)]
  7631. [else ((super type-check-exp env) e)])))
  7632. ))
  7633. (define (type-check-Lif p)
  7634. (send (new type-check-Lif-class) type-check-program p))
  7635. \end{lstlisting}
  7636. \fi}
  7637. {\if\edition\pythonEd\pythonColor
  7638. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7639. class TypeCheckLif(TypeCheckLvar):
  7640. def type_check_exp(self, e, env):
  7641. match e:
  7642. case Constant(value) if isinstance(value, bool):
  7643. return bool
  7644. case BinOp(left, Sub(), right):
  7645. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7646. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7647. return int
  7648. case UnaryOp(Not(), v):
  7649. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  7650. return bool
  7651. case BoolOp(op, values):
  7652. left = values[0] ; right = values[1]
  7653. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  7654. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  7655. return bool
  7656. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  7657. or isinstance(cmp, NotEq):
  7658. l = self.type_check_exp(left, env)
  7659. r = self.type_check_exp(right, env)
  7660. check_type_equal(l, r, e)
  7661. return bool
  7662. case Compare(left, [cmp], [right]):
  7663. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  7664. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  7665. return bool
  7666. case IfExp(test, body, orelse):
  7667. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7668. b = self.type_check_exp(body, env)
  7669. o = self.type_check_exp(orelse, env)
  7670. check_type_equal(b, o, e)
  7671. return b
  7672. case _:
  7673. return super().type_check_exp(e, env)
  7674. def type_check_stmts(self, ss, env):
  7675. if len(ss) == 0:
  7676. return
  7677. match ss[0]:
  7678. case If(test, body, orelse):
  7679. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  7680. b = self.type_check_stmts(body, env)
  7681. o = self.type_check_stmts(orelse, env)
  7682. check_type_equal(b, o, ss[0])
  7683. return self.type_check_stmts(ss[1:], env)
  7684. case _:
  7685. return super().type_check_stmts(ss, env)
  7686. \end{lstlisting}
  7687. \fi}
  7688. \end{tcolorbox}
  7689. \caption{Type checker for the \LangIf{} language.}
  7690. \label{fig:type-check-Lif}
  7691. \end{figure}
  7692. The definition of the type checker for \LangIf{} is shown in
  7693. figure~\ref{fig:type-check-Lif}.
  7694. %
  7695. The type of a Boolean constant is \BOOLTY{}.
  7696. %
  7697. \racket{The \code{operator-types} function adds dictionary entries for
  7698. the new operators.}
  7699. %
  7700. \python{Logical not requires its argument to be a \BOOLTY{} and
  7701. produces a \BOOLTY{}. Similarly for logical and and logical or. }
  7702. %
  7703. The equality operator requires the two arguments to have the same type,
  7704. and therefore we handle it separately from the other operators.
  7705. %
  7706. \python{The other comparisons (less-than, etc.) require their
  7707. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  7708. %
  7709. The condition of an \code{if} must
  7710. be of \BOOLTY{} type, and the two branches must have the same type.
  7711. \begin{exercise}\normalfont\normalsize
  7712. Create ten new test programs in \LangIf{}. Half the programs should
  7713. have a type error. For those programs, create an empty file with the
  7714. same base name and with file extension \code{.tyerr}. For example, if
  7715. the test
  7716. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  7717. is expected to error, then create
  7718. an empty file named \code{cond\_test\_14.tyerr}.
  7719. %
  7720. \racket{This indicates to \code{interp-tests} and
  7721. \code{compiler-tests} that a type error is expected. }
  7722. %
  7723. The other half of the test programs should not have type errors.
  7724. %
  7725. \racket{In the \code{run-tests.rkt} script, change the second argument
  7726. of \code{interp-tests} and \code{compiler-tests} to
  7727. \code{type-check-Lif}, which causes the type checker to run prior to
  7728. the compiler passes. Temporarily change the \code{passes} to an
  7729. empty list and run the script, thereby checking that the new test
  7730. programs either type check or do not, as intended.}
  7731. %
  7732. Run the test script to check that these test programs type check as
  7733. expected.
  7734. \end{exercise}
  7735. \clearpage
  7736. \section{The \LangCIf{} Intermediate Language}
  7737. \label{sec:Cif}
  7738. {\if\edition\racketEd
  7739. %
  7740. The \LangCIf{} language builds on \LangCVar{} by adding logical and
  7741. comparison operators to the \Exp{} nonterminal and the literals
  7742. \TRUE{} and \FALSE{} to the \Arg{} nonterminal. Regarding control
  7743. flow, \LangCIf{} adds \key{goto} and \code{if} statements to the
  7744. \Tail{} nonterminal. The condition of an \code{if} statement is a
  7745. comparison operation and the branches are \code{goto} statements,
  7746. making it straightforward to compile \code{if} statements to x86. The
  7747. \key{CProgram} construct contains an alist mapping labels to $\Tail$
  7748. expressions. A \code{goto} statement transfers control to the $\Tail$
  7749. expression corresponding to its label.
  7750. %
  7751. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  7752. \LangCIf{} intermediate language, and figure~\ref{fig:c1-syntax}
  7753. defines its abstract syntax.
  7754. %
  7755. \fi}
  7756. %
  7757. {\if\edition\pythonEd\pythonColor
  7758. %
  7759. The output of \key{explicate\_control} is a language similar to the
  7760. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  7761. \code{goto} statements, so we name it \LangCIf{}.
  7762. %
  7763. The \LangCIf{} language supports the same operators as \LangIf{} but
  7764. the arguments of operators are restricted to atomic expressions. The
  7765. \LangCIf{} language does not include \code{if} expressions but it does
  7766. include a restricted form of \code{if} statement. The condition must be
  7767. a comparison and the two branches may only contain \code{goto}
  7768. statements. These restrictions make it easier to translate \code{if}
  7769. statements to x86. The \LangCIf{} language also adds a \code{return}
  7770. statement to finish the program with a specified value.
  7771. %
  7772. The \key{CProgram} construct contains a dictionary mapping labels to
  7773. lists of statements that end with a \emph{tail} statement, which is
  7774. either a \code{return} statement, a \code{goto}, or an
  7775. \code{if} statement.
  7776. %
  7777. A \code{goto} transfers control to the sequence of statements
  7778. associated with its label.
  7779. %
  7780. The concrete syntax for \LangCIf{} is defined in
  7781. figure~\ref{fig:c1-concrete-syntax} and the abstract syntax is defined
  7782. in figure~\ref{fig:c1-syntax}.
  7783. %
  7784. \fi}
  7785. %
  7786. \newcommand{\CifGrammarRacket}{
  7787. \begin{array}{lcl}
  7788. \Atm &::=& \itm{bool} \\
  7789. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7790. \Exp &::=& \CNOT{\Atm} \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  7791. \Tail &::= & \key{goto}~\itm{label}\key{;}\\
  7792. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;}
  7793. \end{array}
  7794. }
  7795. \newcommand{\CifASTRacket}{
  7796. \begin{array}{lcl}
  7797. \Atm &::=& \BOOL{\itm{bool}} \\
  7798. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  7799. \Exp &::= & \UNIOP{\key{'not}}{\Atm} \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  7800. \Tail &::= & \GOTO{\itm{label}} \\
  7801. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}}
  7802. \end{array}
  7803. }
  7804. \newcommand{\CifGrammarPython}{
  7805. \begin{array}{lcl}
  7806. \Atm &::=& \Int \MID \Var \MID \itm{bool} \\
  7807. \Exp &::= & \Atm \MID \CREAD{}
  7808. \MID \CBINOP{\itm{binaryop}}{\Atm}{\Atm}
  7809. \MID \CUNIOP{\itm{unaryop}}{\Atm} \\
  7810. &\MID& \CCMP{\itm{cmp}}{\Atm}{\Atm} \\
  7811. \Stmt &::=& \CPRINT{\Atm} \MID \Exp \MID \CASSIGN{\Var}{\Exp} \\
  7812. \Tail &::=& \CRETURN{\Exp} \MID \CGOTO{\itm{label}} \\
  7813. &\MID& \CIFSTMT{\CCMP{\itm{cmp}}{\Atm}{\Atm}}{\CGOTO{\itm{label}}}{\CGOTO{\itm{label}}}
  7814. \end{array}
  7815. }
  7816. \newcommand{\CifASTPython}{
  7817. \begin{array}{lcl}
  7818. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  7819. \Exp &::= & \Atm \MID \READ{} \\
  7820. &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm}
  7821. \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  7822. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \\
  7823. \Stmt &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  7824. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  7825. \Tail &::= & \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  7826. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS}
  7827. \end{array}
  7828. }
  7829. \begin{figure}[tbp]
  7830. \begin{tcolorbox}[colback=white]
  7831. \small
  7832. {\if\edition\racketEd
  7833. \[
  7834. \begin{array}{l}
  7835. \gray{\CvarGrammarRacket} \\ \hline
  7836. \CifGrammarRacket \\
  7837. \begin{array}{lcl}
  7838. \LangCIfM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  7839. \end{array}
  7840. \end{array}
  7841. \]
  7842. \fi}
  7843. {\if\edition\pythonEd\pythonColor
  7844. \[
  7845. \begin{array}{l}
  7846. \CifGrammarPython \\
  7847. \begin{array}{lcl}
  7848. \LangCIfM{} & ::= & (\itm{label}\code{:}~\Stmt^{*}\;\Tail) \ldots
  7849. \end{array}
  7850. \end{array}
  7851. \]
  7852. \fi}
  7853. \end{tcolorbox}
  7854. \caption{The concrete syntax of the \LangCIf{} intermediate language%
  7855. \racket{, an extension of \LangCVar{} (figure~\ref{fig:c0-concrete-syntax})}.}
  7856. \label{fig:c1-concrete-syntax}
  7857. \end{figure}
  7858. \begin{figure}[tp]
  7859. \begin{tcolorbox}[colback=white]
  7860. \small
  7861. {\if\edition\racketEd
  7862. \[
  7863. \begin{array}{l}
  7864. \gray{\CvarASTRacket} \\ \hline
  7865. \CifASTRacket \\
  7866. \begin{array}{lcl}
  7867. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  7868. \end{array}
  7869. \end{array}
  7870. \]
  7871. \fi}
  7872. {\if\edition\pythonEd\pythonColor
  7873. \[
  7874. \begin{array}{l}
  7875. \CifASTPython \\
  7876. \begin{array}{lcl}
  7877. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\LS\Stmt,\ldots,\Tail\RS, \ldots \RC}
  7878. \end{array}
  7879. \end{array}
  7880. \]
  7881. \fi}
  7882. \end{tcolorbox}
  7883. \racket{
  7884. \index{subject}{IfStmt@\IFSTMTNAME{}}
  7885. }
  7886. \index{subject}{Goto@\texttt{Goto}}
  7887. \index{subject}{Return@\texttt{Return}}
  7888. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  7889. (figure~\ref{fig:c0-syntax})}.}
  7890. \label{fig:c1-syntax}
  7891. \end{figure}
  7892. \section{The \LangXIf{} Language}
  7893. \label{sec:x86-if}
  7894. \index{subject}{x86} To implement the new logical operations, the
  7895. comparison operations, and the \key{if} expression\python{ and
  7896. statement}, we delve further into the x86
  7897. language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1} present
  7898. the definitions of the concrete and abstract syntax for the \LangXIf{}
  7899. subset of x86, which includes instructions for logical operations,
  7900. comparisons, and \racket{conditional} jumps.
  7901. %
  7902. \python{The abstract syntax for an \LangXIf{} program contains a
  7903. dictionary mapping labels to sequences of instructions, each of
  7904. which we refer to as a \emph{basic block}\index{subject}{basic
  7905. block}.}
  7906. One challenge is that x86 does not provide an instruction that
  7907. directly implements logical negation (\code{not} in \LangIf{} and
  7908. \LangCIf{}). However, the \code{xorq} instruction can be used to
  7909. encode \code{not}. The \key{xorq} instruction takes two arguments,
  7910. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  7911. bit of its arguments, and writes the results into its second argument.
  7912. Recall the following truth table for exclusive-or:
  7913. \begin{center}
  7914. \begin{tabular}{l|cc}
  7915. & 0 & 1 \\ \hline
  7916. 0 & 0 & 1 \\
  7917. 1 & 1 & 0
  7918. \end{tabular}
  7919. \end{center}
  7920. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  7921. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  7922. for the bit $1$, the result is the opposite of the second bit. Thus,
  7923. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  7924. the first argument, as follows, where $\Arg$ is the translation of
  7925. $\Atm$ to x86:
  7926. \[
  7927. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  7928. \qquad\Rightarrow\qquad
  7929. \begin{array}{l}
  7930. \key{movq}~ \Arg\key{,} \Var\\
  7931. \key{xorq}~ \key{\$1,} \Var
  7932. \end{array}
  7933. \]
  7934. \newcommand{\GrammarXIf}{
  7935. \begin{array}{lcl}
  7936. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7937. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7938. \Arg &::=& \key{\%}\itm{bytereg}\\
  7939. \itm{cc} & ::= & \key{e} \MID \key{ne} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7940. \Instr &::=& \key{xorq}~\Arg\key{,}~\Arg
  7941. \MID \key{cmpq}~\Arg\key{,}~\Arg
  7942. \MID \key{set}cc~\Arg
  7943. \MID \key{movzbq}~\Arg\key{,}~\Arg \\
  7944. &\MID& \key{j}cc~\itm{label} \\
  7945. \end{array}
  7946. }
  7947. \begin{figure}[tp]
  7948. \begin{tcolorbox}[colback=white]
  7949. \[
  7950. \begin{array}{l}
  7951. \gray{\GrammarXInt} \\ \hline
  7952. \GrammarXIf \\
  7953. \begin{array}{lcl}
  7954. \LangXIfM{} &::= & \key{.globl main} \\
  7955. & & \key{main:} \; \Instr\ldots
  7956. \end{array}
  7957. \end{array}
  7958. \]
  7959. \end{tcolorbox}
  7960. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of figure~\ref{fig:x86-int-concrete}).}
  7961. \label{fig:x86-1-concrete}
  7962. \end{figure}
  7963. \newcommand{\ASTXIfRacket}{
  7964. \begin{array}{lcl}
  7965. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  7966. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  7967. \Arg &::=& \BYTEREG{\itm{bytereg}} \\
  7968. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  7969. \Instr &::=& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  7970. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  7971. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  7972. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  7973. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}}
  7974. \end{array}
  7975. }
  7976. \begin{figure}[tp]
  7977. \begin{tcolorbox}[colback=white]
  7978. \small
  7979. {\if\edition\racketEd
  7980. \[\arraycolsep=3pt
  7981. \begin{array}{l}
  7982. \gray{\ASTXIntRacket} \\ \hline
  7983. \ASTXIfRacket \\
  7984. \begin{array}{lcl}
  7985. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  7986. \end{array}
  7987. \end{array}
  7988. \]
  7989. \fi}
  7990. %
  7991. {\if\edition\pythonEd\pythonColor
  7992. \[
  7993. \begin{array}{lcl}
  7994. \itm{bytereg} &::=& \skey{ah} \MID \skey{al} \MID \skey{bh} \MID \skey{bl}
  7995. \MID \skey{ch} \MID \skey{cl} \MID \skey{dh} \MID \skey{dl} \\
  7996. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  7997. \MID \BYTEREG{\itm{bytereg}} \\
  7998. \itm{cc} & ::= & \skey{e} \MID \skey{ne} \MID \skey{l} \MID \skey{le} \MID \skey{g} \MID \skey{ge} \\
  7999. \Instr &::=& \gray{ \BININSTR{\scode{addq}}{\Arg}{\Arg}
  8000. \MID \BININSTR{\scode{subq}}{\Arg}{\Arg} } \\
  8001. &\MID& \gray{ \BININSTR{\scode{movq}}{\Arg}{\Arg}
  8002. \MID \UNIINSTR{\scode{negq}}{\Arg} } \\
  8003. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  8004. \MID \PUSHQ{\Arg}} \\
  8005. &\MID& \gray{ \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  8006. &\MID& \BININSTR{\scode{xorq}}{\Arg}{\Arg}
  8007. \MID \BININSTR{\scode{cmpq}}{\Arg}{\Arg}\\
  8008. &\MID& \BININSTR{\scode{set}}{\itm{cc}}{\Arg}
  8009. \MID \BININSTR{\scode{movzbq}}{\Arg}{\Arg}\\
  8010. &\MID& \JMPIF{\itm{cc}}{\itm{label}} \\
  8011. \Block &::= & \Instr^{+} \\
  8012. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Block \key{,} \ldots \RC }
  8013. \end{array}
  8014. \]
  8015. \fi}
  8016. \end{tcolorbox}
  8017. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} shown in figure~\ref{fig:x86-int-ast}).}
  8018. \label{fig:x86-1}
  8019. \end{figure}
  8020. Next we consider the x86 instructions that are relevant for compiling
  8021. the comparison operations. The \key{cmpq} instruction compares its two
  8022. arguments to determine whether one argument is less than, equal to, or
  8023. greater than the other argument. The \key{cmpq} instruction is unusual
  8024. regarding the order of its arguments and where the result is
  8025. placed. The argument order is backward: if you want to test whether
  8026. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  8027. \key{cmpq} is placed in the special EFLAGS register. This register
  8028. cannot be accessed directly, but it can be queried by a number of
  8029. instructions, including the \key{set} instruction. The instruction
  8030. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$,
  8031. depending on whether the contents of the EFLAGS register matches the
  8032. condition code \itm{cc}: \key{e} for equal, \key{l} for less, \key{le}
  8033. for less-or-equal, \key{g} for greater, \key{ge} for greater-or-equal.
  8034. The \key{set} instruction has a quirk in that its destination argument
  8035. must be a single-byte register, such as \code{al} (\code{l} for lower bits) or
  8036. \code{ah} (\code{h} for higher bits), which are part of the \code{rax}
  8037. register. Thankfully, the \key{movzbq} instruction can be used to
  8038. move from a single-byte register to a normal 64-bit register. The
  8039. abstract syntax for the \code{set} instruction differs from the
  8040. concrete syntax in that it separates the instruction name from the
  8041. condition code.
  8042. \python{The x86 instructions for jumping are relevant to the
  8043. compilation of \key{if} expressions.}
  8044. %
  8045. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  8046. counter to the address of the instruction after the specified
  8047. label.}
  8048. %
  8049. \racket{The x86 instruction for conditional jump is relevant to the
  8050. compilation of \key{if} expressions.}
  8051. %
  8052. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  8053. counter to point to the instruction after \itm{label}, depending on
  8054. whether the result in the EFLAGS register matches the condition code
  8055. \itm{cc}; otherwise, the jump instruction falls through to the next
  8056. instruction. Like the abstract syntax for \code{set}, the abstract
  8057. syntax for conditional jump separates the instruction name from the
  8058. condition code. For example, \JMPIF{\QUOTE{\code{le}}}{\QUOTE{\code{foo}}}
  8059. corresponds to \code{jle foo}. Because the conditional jump instruction
  8060. relies on the EFLAGS register, it is common for it to be immediately preceded by
  8061. a \key{cmpq} instruction to set the EFLAGS register.
  8062. \section{Shrink the \LangIf{} Language}
  8063. \label{sec:shrink-Lif}
  8064. The \LangIf{} language includes several features that are easily
  8065. expressible with other features. For example, \code{and} and \code{or}
  8066. are expressible using \code{if} as follows.
  8067. \begin{align*}
  8068. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  8069. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  8070. \end{align*}
  8071. By performing these translations in the front end of the compiler,
  8072. subsequent passes of the compiler do not need to deal with these features,
  8073. thus making the passes shorter.
  8074. On the other hand, translations sometimes reduce the efficiency of the
  8075. generated code by increasing the number of instructions. For example,
  8076. expressing subtraction in terms of negation
  8077. \[
  8078. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  8079. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  8080. \]
  8081. produces code with two x86 instructions (\code{negq} and \code{addq})
  8082. instead of just one (\code{subq}).
  8083. \begin{exercise}\normalfont\normalsize
  8084. %
  8085. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  8086. the language by translating them to \code{if} expressions in \LangIf{}.
  8087. %
  8088. Create four test programs that involve these operators.
  8089. %
  8090. {\if\edition\racketEd
  8091. In the \code{run-tests.rkt} script, add the following entry for
  8092. \code{shrink} to the list of passes (it should be the only pass at
  8093. this point).
  8094. \begin{lstlisting}
  8095. (list "shrink" shrink interp_Lif type-check-Lif)
  8096. \end{lstlisting}
  8097. This instructs \code{interp-tests} to run the interpreter
  8098. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  8099. output of \code{shrink}.
  8100. \fi}
  8101. %
  8102. Run the script to test your compiler on all the test programs.
  8103. \end{exercise}
  8104. {\if\edition\racketEd
  8105. \section{Uniquify Variables}
  8106. \label{sec:uniquify-Lif}
  8107. Add cases to \code{uniquify\_exp} to handle Boolean constants and
  8108. \code{if} expressions.
  8109. \begin{exercise}\normalfont\normalsize
  8110. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  8111. entry to the list of \code{passes} in the \code{run-tests.rkt} script:
  8112. \begin{lstlisting}
  8113. (list "uniquify" uniquify interp_Lif type_check_Lif)
  8114. \end{lstlisting}
  8115. Run the script to test your compiler.
  8116. \end{exercise}
  8117. \fi}
  8118. \section{Remove Complex Operands}
  8119. \label{sec:remove-complex-opera-Lif}
  8120. The output language of \code{remove\_complex\_operands} is
  8121. \LangIfANF{} (figure~\ref{fig:Lif-anf-syntax}), the monadic
  8122. normal form of \LangIf{}. A Boolean constant is an atomic expression,
  8123. but the \code{if} expression is not. All three subexpressions of an
  8124. \code{if} are allowed to be complex expressions, but the operands of
  8125. the \code{not} operator and comparison operators must be atomic.
  8126. %
  8127. \python{We add a new language form, the \code{Begin} expression, to aid
  8128. in the translation of \code{if} expressions. When we recursively
  8129. process the two branches of the \code{if}, we generate temporary
  8130. variables and their initializing expressions. However, these
  8131. expressions may contain side effects and should only be executed
  8132. when the condition of the \code{if} is true (for the ``then''
  8133. branch) or false (for the ``else'' branch). The \code{Begin} provides
  8134. a way to initialize the temporary variables within the two branches
  8135. of the \code{if} expression. In general, the $\BEGIN{ss}{e}$
  8136. form execute the statements $ss$ and then returns the result of
  8137. expression $e$.}
  8138. Add cases to the \code{rco\_exp} and \code{rco\_atom} functions for
  8139. the new features in \LangIf{}. In recursively processing
  8140. subexpressions, recall that you should invoke \code{rco\_atom} when
  8141. the output needs to be an \Atm{} (as specified in the grammar for
  8142. \LangIfANF{}) and invoke \code{rco\_exp} when the output should be
  8143. \Exp{}. Regarding \code{if}, it is particularly important
  8144. \emph{not} to replace its condition with a temporary variable, because
  8145. that would interfere with the generation of high-quality output in the
  8146. upcoming \code{explicate\_control} pass.
  8147. \newcommand{\LifMonadASTRacket}{
  8148. \begin{array}{rcl}
  8149. \Atm &::=& \BOOL{\itm{bool}}\\
  8150. \Exp &::=& \UNIOP{\key{not}}{\Atm}
  8151. \MID \BINOP{\itm{cmp}}{\Atm}{\Atm}
  8152. \MID \IF{\Exp}{\Exp}{\Exp}
  8153. \end{array}
  8154. }
  8155. \newcommand{\LifMonadASTPython}{
  8156. \begin{array}{rcl}
  8157. %% \itm{binaryop} &::=& \code{Add()} \MID \code{Sub()} \\
  8158. %% \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  8159. %% \itm{unaryop} &::=& \code{USub()} \MID \code{Not()} \\
  8160. %% \itm{bool} &::=& \code{True} \MID \code{False} \\
  8161. \Atm &::=& \BOOL{\itm{bool}}\\
  8162. \Exp &::=& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  8163. &\MID& \BEGIN{\Stmt^{*}}{\Exp}\\
  8164. \Stmt{} &::=& \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}
  8165. \end{array}
  8166. }
  8167. \begin{figure}[tp]
  8168. \centering
  8169. \begin{tcolorbox}[colback=white]
  8170. {\if\edition\racketEd
  8171. \[
  8172. \begin{array}{l}
  8173. \gray{\LvarMonadASTRacket} \\ \hline
  8174. \LifMonadASTRacket \\
  8175. \begin{array}{rcl}
  8176. \LangIfANF &::=& \PROGRAM{\code{()}}{\Exp}
  8177. \end{array}
  8178. \end{array}
  8179. \]
  8180. \fi}
  8181. {\if\edition\pythonEd\pythonColor
  8182. \[
  8183. \begin{array}{l}
  8184. \gray{\LvarMonadASTPython} \\ \hline
  8185. \LifMonadASTPython \\
  8186. \begin{array}{rcl}
  8187. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  8188. \end{array}
  8189. \end{array}
  8190. \]
  8191. \fi}
  8192. \end{tcolorbox}
  8193. \python{\index{subject}{Begin@\texttt{Begin}}}
  8194. \caption{\LangIfANF{} is \LangIf{} in monadic normal form
  8195. (extends \LangVarANF in figure~\ref{fig:Lvar-anf-syntax}).}
  8196. \label{fig:Lif-anf-syntax}
  8197. \end{figure}
  8198. \begin{exercise}\normalfont\normalsize
  8199. %
  8200. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  8201. and \code{rco\_exp} functions in \code{compiler.rkt}.
  8202. %
  8203. Create three new \LangIf{} programs that exercise the interesting
  8204. code in this pass.
  8205. %
  8206. {\if\edition\racketEd
  8207. In the \code{run-tests.rkt} script, add the following entry to the
  8208. list of \code{passes} and then run the script to test your compiler.
  8209. \begin{lstlisting}
  8210. (list "remove-complex" remove_complex_operands interp-Lif type-check-Lif)
  8211. \end{lstlisting}
  8212. \fi}
  8213. \end{exercise}
  8214. \section{Explicate Control}
  8215. \label{sec:explicate-control-Lif}
  8216. \racket{Recall that the purpose of \code{explicate\_control} is to
  8217. make the order of evaluation explicit in the syntax of the program.
  8218. With the addition of \key{if}, this becomes more interesting.}
  8219. %
  8220. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  8221. %
  8222. The main challenge to overcome is that the condition of an \key{if}
  8223. can be an arbitrary expression in \LangIf{}, whereas in \LangCIf{} the
  8224. condition must be a comparison.
  8225. As a motivating example, consider the following program that has an
  8226. \key{if} expression nested in the condition of another \key{if}:%
  8227. \python{\footnote{Programmers rarely write nested \code{if}
  8228. expressions, but it is not uncommon for the condition of an
  8229. \code{if} statement to be a call of a function that also contains an
  8230. \code{if} statement. When such a function is inlined, the result is
  8231. a nested \code{if} that requires the techniques discussed in this
  8232. section.}}
  8233. % cond_test_41.rkt, if_lt_eq.py
  8234. \begin{center}
  8235. \begin{minipage}{0.96\textwidth}
  8236. {\if\edition\racketEd
  8237. \begin{lstlisting}
  8238. (let ([x (read)])
  8239. (let ([y (read)])
  8240. (if (if (< x 1) (eq? x 0) (eq? x 2))
  8241. (+ y 2)
  8242. (+ y 10))))
  8243. \end{lstlisting}
  8244. \fi}
  8245. {\if\edition\pythonEd\pythonColor
  8246. \begin{lstlisting}
  8247. x = input_int()
  8248. y = input_int()
  8249. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  8250. \end{lstlisting}
  8251. \fi}
  8252. \end{minipage}
  8253. \end{center}
  8254. %
  8255. The naive way to compile \key{if} and the comparison operations would
  8256. be to handle each of them in isolation, regardless of their context.
  8257. Each comparison would be translated into a \key{cmpq} instruction
  8258. followed by several instructions to move the result from the EFLAGS
  8259. register into a general purpose register or stack location. Each
  8260. \key{if} would be translated into a \key{cmpq} instruction followed by
  8261. a conditional jump. The generated code for the inner \key{if} in this
  8262. example would be as follows:
  8263. \begin{center}
  8264. \begin{minipage}{0.96\textwidth}
  8265. \begin{lstlisting}
  8266. cmpq $1, x
  8267. setl %al
  8268. movzbq %al, tmp
  8269. cmpq $1, tmp
  8270. je then_branch_1
  8271. jmp else_branch_1
  8272. \end{lstlisting}
  8273. \end{minipage}
  8274. \end{center}
  8275. Notice that the three instructions starting with \code{setl} are
  8276. redundant; the conditional jump could come immediately after the first
  8277. \code{cmpq}.
  8278. Our goal is to compile \key{if} expressions so that the relevant
  8279. comparison instruction appears directly before the conditional jump.
  8280. For example, we want to generate the following code for the inner
  8281. \code{if}:
  8282. \begin{center}
  8283. \begin{minipage}{0.96\textwidth}
  8284. \begin{lstlisting}
  8285. cmpq $1, x
  8286. jl then_branch_1
  8287. jmp else_branch_1
  8288. \end{lstlisting}
  8289. \end{minipage}
  8290. \end{center}
  8291. One way to achieve this goal is to reorganize the code at the level of
  8292. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  8293. the following code:
  8294. \begin{center}
  8295. \begin{minipage}{0.96\textwidth}
  8296. {\if\edition\racketEd
  8297. \begin{lstlisting}
  8298. (let ([x (read)])
  8299. (let ([y (read)])
  8300. (if (< x 1)
  8301. (if (eq? x 0)
  8302. (+ y 2)
  8303. (+ y 10))
  8304. (if (eq? x 2)
  8305. (+ y 2)
  8306. (+ y 10)))))
  8307. \end{lstlisting}
  8308. \fi}
  8309. {\if\edition\pythonEd\pythonColor
  8310. \begin{lstlisting}
  8311. x = input_int()
  8312. y = input_int()
  8313. print(((y + 2) if x == 0 else (y + 10)) \
  8314. if (x < 1) \
  8315. else ((y + 2) if (x == 2) else (y + 10)))
  8316. \end{lstlisting}
  8317. \fi}
  8318. \end{minipage}
  8319. \end{center}
  8320. Unfortunately, this approach duplicates the two branches from the
  8321. outer \code{if}, and a compiler must never duplicate code! After all,
  8322. the two branches could be very large expressions.
  8323. How can we apply this transformation without duplicating code? In
  8324. other words, how can two different parts of a program refer to one
  8325. piece of code?
  8326. %
  8327. The answer is that we must move away from abstract syntax \emph{trees}
  8328. and instead use \emph{graphs}.
  8329. %
  8330. At the level of x86 assembly, this is straightforward because we can
  8331. label the code for each branch and insert jumps in all the places that
  8332. need to execute the branch. In this way, jump instructions are edges
  8333. in the graph and the basic blocks are the nodes.
  8334. %
  8335. Likewise, our language \LangCIf{} provides the ability to label a
  8336. sequence of statements and to jump to a label via \code{goto}.
  8337. As a preview of what \code{explicate\_control} will do,
  8338. figure~\ref{fig:explicate-control-s1-38} shows the output of
  8339. \code{explicate\_control} on this example. Note how the condition of
  8340. every \code{if} is a comparison operation and that we have not
  8341. duplicated any code but instead have used labels and \code{goto} to
  8342. enable sharing of code.
  8343. \begin{figure}[tbp]
  8344. \begin{tcolorbox}[colback=white]
  8345. {\if\edition\racketEd
  8346. \begin{tabular}{lll}
  8347. \begin{minipage}{0.4\textwidth}
  8348. % cond_test_41.rkt
  8349. \begin{lstlisting}
  8350. (let ([x (read)])
  8351. (let ([y (read)])
  8352. (if (if (< x 1)
  8353. (eq? x 0)
  8354. (eq? x 2))
  8355. (+ y 2)
  8356. (+ y 10))))
  8357. \end{lstlisting}
  8358. \end{minipage}
  8359. &
  8360. $\Rightarrow$
  8361. &
  8362. \begin{minipage}{0.55\textwidth}
  8363. \begin{lstlisting}
  8364. start:
  8365. x = (read);
  8366. y = (read);
  8367. if (< x 1)
  8368. goto block_4;
  8369. else
  8370. goto block_5;
  8371. block_4:
  8372. if (eq? x 0)
  8373. goto block_2;
  8374. else
  8375. goto block_3;
  8376. block_5:
  8377. if (eq? x 2)
  8378. goto block_2;
  8379. else
  8380. goto block_3;
  8381. block_2:
  8382. return (+ y 2);
  8383. block_3:
  8384. return (+ y 10);
  8385. \end{lstlisting}
  8386. \end{minipage}
  8387. \end{tabular}
  8388. \fi}
  8389. {\if\edition\pythonEd\pythonColor
  8390. \begin{tabular}{lll}
  8391. \begin{minipage}{0.4\textwidth}
  8392. % cond_test_41.rkt
  8393. \begin{lstlisting}
  8394. x = input_int()
  8395. y = input_int()
  8396. print(y + 2 \
  8397. if (x == 0 \
  8398. if x < 1 \
  8399. else x == 2) \
  8400. else y + 10)
  8401. \end{lstlisting}
  8402. \end{minipage}
  8403. &
  8404. $\Rightarrow$
  8405. &
  8406. \begin{minipage}{0.55\textwidth}
  8407. \begin{lstlisting}
  8408. start:
  8409. x = input_int()
  8410. y = input_int()
  8411. if x < 1:
  8412. goto block_8
  8413. else:
  8414. goto block_9
  8415. block_8:
  8416. if x == 0:
  8417. goto block_4
  8418. else:
  8419. goto block_5
  8420. block_9:
  8421. if x == 2:
  8422. goto block_6
  8423. else:
  8424. goto block_7
  8425. block_4:
  8426. goto block_2
  8427. block_5:
  8428. goto block_3
  8429. block_6:
  8430. goto block_2
  8431. block_7:
  8432. goto block_3
  8433. block_2:
  8434. tmp_0 = y + 2
  8435. goto block_1
  8436. block_3:
  8437. tmp_0 = y + 10
  8438. goto block_1
  8439. block_1:
  8440. print(tmp_0)
  8441. return 0
  8442. \end{lstlisting}
  8443. \end{minipage}
  8444. \end{tabular}
  8445. \fi}
  8446. \end{tcolorbox}
  8447. \caption{Translation from \LangIf{} to \LangCIf{}
  8448. via the \code{explicate\_control}.}
  8449. \label{fig:explicate-control-s1-38}
  8450. \end{figure}
  8451. {\if\edition\racketEd
  8452. %
  8453. Recall that in section~\ref{sec:explicate-control-Lvar} we implement
  8454. \code{explicate\_control} for \LangVar{} using two recursive
  8455. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  8456. former function translates expressions in tail position, whereas the
  8457. latter function translates expressions on the right-hand side of a
  8458. \key{let}. With the addition of \key{if} expression to \LangIf{} we
  8459. have a new kind of position to deal with: the predicate position of
  8460. the \key{if}. We need another function, \code{explicate\_pred}, that
  8461. decides how to compile an \key{if} by analyzing its condition. So,
  8462. \code{explicate\_pred} takes an \LangIf{} expression and two
  8463. \LangCIf{} tails for the \emph{then} branch and \emph{else} branch
  8464. and outputs a tail. In the following paragraphs we discuss specific
  8465. cases in the \code{explicate\_tail}, \code{explicate\_assign}, and
  8466. \code{explicate\_pred} functions.
  8467. %
  8468. \fi}
  8469. %
  8470. {\if\edition\pythonEd\pythonColor
  8471. %
  8472. We recommend implementing \code{explicate\_control} using the
  8473. following four auxiliary functions.
  8474. \begin{description}
  8475. \item[\code{explicate\_effect}] generates code for expressions as
  8476. statements, so their result is ignored and only their side effects
  8477. matter.
  8478. \item[\code{explicate\_assign}] generates code for expressions
  8479. on the right-hand side of an assignment.
  8480. \item[\code{explicate\_pred}] generates code for an \code{if}
  8481. expression or statement by analyzing the condition expression.
  8482. \item[\code{explicate\_stmt}] generates code for statements.
  8483. \end{description}
  8484. These four functions should build the dictionary of basic blocks. The
  8485. following auxiliary function can be used to create a new basic block
  8486. from a list of statements. It returns a \code{goto} statement that
  8487. jumps to the new basic block.
  8488. \begin{center}
  8489. \begin{minipage}{\textwidth}
  8490. \begin{lstlisting}
  8491. def create_block(stmts, basic_blocks):
  8492. label = label_name(generate_name('block'))
  8493. basic_blocks[label] = stmts
  8494. return [Goto(label)]
  8495. \end{lstlisting}
  8496. \end{minipage}
  8497. \end{center}
  8498. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  8499. \code{explicate\_control} pass.
  8500. The \code{explicate\_effect} function has three parameters: 1) the
  8501. expression to be compiled, 2) the already-compiled code for this
  8502. expression's \emph{continuation}, that is, the list of statements that
  8503. should execute after this expression, and 3) the dictionary of
  8504. generated basic blocks. The \code{explicate\_effect} function returns
  8505. a list of \LangCIf{} statements and it may add to the dictionary of
  8506. basic blocks.
  8507. %
  8508. Let's consider a few of the cases for the expression to be compiled.
  8509. If the expression to be compiled is a constant, then it can be
  8510. discarded because it has no side effects. If it's a \CREAD{}, then it
  8511. has a side-effect and should be preserved. So the expression should be
  8512. translated into a statement using the \code{Expr} AST class. If the
  8513. expression to be compiled is an \code{if} expression, we translate the
  8514. two branches using \code{explicate\_effect} and then translate the
  8515. condition expression using \code{explicate\_pred}, which generates
  8516. code for the entire \code{if}.
  8517. The \code{explicate\_assign} function has four parameters: 1) the
  8518. right-hand side of the assignment, 2) the left-hand side of the
  8519. assignment (the variable), 3) the continuation, and 4) the dictionary
  8520. of basic blocks. The \code{explicate\_assign} function returns a list
  8521. of \LangCIf{} statements and it may add to the dictionary of basic
  8522. blocks.
  8523. When the right-hand side is an \code{if} expression, there is some
  8524. work to do. In particular, the two branches should be translated using
  8525. \code{explicate\_assign} and the condition expression should be
  8526. translated using \code{explicate\_pred}. Otherwise we can simply
  8527. generate an assignment statement, with the given left and right-hand
  8528. sides, concatenated with its continuation.
  8529. \begin{figure}[tbp]
  8530. \begin{tcolorbox}[colback=white]
  8531. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8532. def explicate_effect(e, cont, basic_blocks):
  8533. match e:
  8534. case IfExp(test, body, orelse):
  8535. ...
  8536. case Call(func, args):
  8537. ...
  8538. case Begin(body, result):
  8539. ...
  8540. case _:
  8541. ...
  8542. def explicate_assign(rhs, lhs, cont, basic_blocks):
  8543. match rhs:
  8544. case IfExp(test, body, orelse):
  8545. ...
  8546. case Begin(body, result):
  8547. ...
  8548. case _:
  8549. return [Assign([lhs], rhs)] + cont
  8550. def explicate_pred(cnd, thn, els, basic_blocks):
  8551. match cnd:
  8552. case Compare(left, [op], [right]):
  8553. goto_thn = create_block(thn, basic_blocks)
  8554. goto_els = create_block(els, basic_blocks)
  8555. return [If(cnd, goto_thn, goto_els)]
  8556. case Constant(True):
  8557. return thn;
  8558. case Constant(False):
  8559. return els;
  8560. case UnaryOp(Not(), operand):
  8561. ...
  8562. case IfExp(test, body, orelse):
  8563. ...
  8564. case Begin(body, result):
  8565. ...
  8566. case _:
  8567. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  8568. create_block(els, basic_blocks),
  8569. create_block(thn, basic_blocks))]
  8570. def explicate_stmt(s, cont, basic_blocks):
  8571. match s:
  8572. case Assign([lhs], rhs):
  8573. return explicate_assign(rhs, lhs, cont, basic_blocks)
  8574. case Expr(value):
  8575. return explicate_effect(value, cont, basic_blocks)
  8576. case If(test, body, orelse):
  8577. ...
  8578. def explicate_control(p):
  8579. match p:
  8580. case Module(body):
  8581. new_body = [Return(Constant(0))]
  8582. basic_blocks = {}
  8583. for s in reversed(body):
  8584. new_body = explicate_stmt(s, new_body, basic_blocks)
  8585. basic_blocks[label_name('start')] = new_body
  8586. return CProgram(basic_blocks)
  8587. \end{lstlisting}
  8588. \end{tcolorbox}
  8589. \caption{Skeleton for the \code{explicate\_control} pass.}
  8590. \label{fig:explicate-control-Lif}
  8591. \end{figure}
  8592. \fi}
  8593. {\if\edition\racketEd
  8594. \subsection{Explicate Tail and Assign}
  8595. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  8596. additional cases for Boolean constants and \key{if}. The cases for
  8597. \code{if} should recursively compile the two branches using either
  8598. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  8599. cases should then invoke \code{explicate\_pred} on the condition
  8600. expression, passing in the generated code for the two branches. For
  8601. example, consider the following program with an \code{if} in tail
  8602. position.
  8603. % cond_test_6.rkt
  8604. \begin{lstlisting}
  8605. (let ([x (read)])
  8606. (if (eq? x 0) 42 777))
  8607. \end{lstlisting}
  8608. The two branches are recursively compiled to return statements. We
  8609. then delegate to \code{explicate\_pred}, passing the condition
  8610. \code{(eq? x 0)} and the two return statements. We return to this
  8611. example shortly when we discuss \code{explicate\_pred}.
  8612. Next let us consider a program with an \code{if} on the right-hand
  8613. side of a \code{let}.
  8614. \begin{lstlisting}
  8615. (let ([y (read)])
  8616. (let ([x (if (eq? y 0) 40 777)])
  8617. (+ x 2)))
  8618. \end{lstlisting}
  8619. Note that the body of the inner \code{let} will have already been
  8620. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  8621. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  8622. to recursively process both branches of the \code{if}, and we do not
  8623. want to duplicate code, so we generate the following block using an
  8624. auxiliary function named \code{create\_block}, discussed in the next
  8625. section.
  8626. \begin{lstlisting}
  8627. block_6:
  8628. return (+ x 2)
  8629. \end{lstlisting}
  8630. We then use \code{goto block\_6;} as the \code{cont} argument for
  8631. compiling the branches. So the two branches compile to
  8632. \begin{center}
  8633. \begin{minipage}{0.2\textwidth}
  8634. \begin{lstlisting}
  8635. x = 40;
  8636. goto block_6;
  8637. \end{lstlisting}
  8638. \end{minipage}
  8639. \hspace{0.5in} and \hspace{0.5in}
  8640. \begin{minipage}{0.2\textwidth}
  8641. \begin{lstlisting}
  8642. x = 777;
  8643. goto block_6;
  8644. \end{lstlisting}
  8645. \end{minipage}
  8646. \end{center}
  8647. Finally, we delegate to \code{explicate\_pred}, passing the condition
  8648. \code{(eq? y 0)} and the previously presented code for the branches.
  8649. \subsection{Create Block}
  8650. We recommend implementing the \code{create\_block} auxiliary function
  8651. as follows, using a global variable \code{basic-blocks} to store a
  8652. dictionary that maps labels to $\Tail$ expressions. The main idea is
  8653. that \code{create\_block} generates a new label and then associates
  8654. the given \code{tail} with the new label in the \code{basic-blocks}
  8655. dictionary. The result of \code{create\_block} is a \code{Goto} to the
  8656. new label. However, if the given \code{tail} is already a \code{Goto},
  8657. then there is no need to generate a new label and entry in
  8658. \code{basic-blocks}; we can simply return that \code{Goto}.
  8659. %
  8660. \begin{lstlisting}
  8661. (define (create_block tail)
  8662. (match tail
  8663. [(Goto label) (Goto label)]
  8664. [else
  8665. (let ([label (gensym 'block)])
  8666. (set! basic-blocks (cons (cons label tail) basic-blocks))
  8667. (Goto label))]))
  8668. \end{lstlisting}
  8669. \fi}
  8670. {\if\edition\racketEd
  8671. \subsection{Explicate Predicate}
  8672. The skeleton for the \code{explicate\_pred} function is given in
  8673. figure~\ref{fig:explicate-pred}. It takes three parameters: (1)
  8674. \code{cnd}, the condition expression of the \code{if}; (2) \code{thn},
  8675. the code generated by explicate for the \emph{then} branch; and (3)
  8676. \code{els}, the code generated by explicate for the \emph{else}
  8677. branch. The \code{explicate\_pred} function should match on
  8678. \code{cnd} with a case for every kind of expression that can have type
  8679. \BOOLTY{}.
  8680. \begin{figure}[tbp]
  8681. \begin{tcolorbox}[colback=white]
  8682. \begin{lstlisting}
  8683. (define (explicate_pred cnd thn els)
  8684. (match cnd
  8685. [(Var x) ___]
  8686. [(Let x rhs body) ___]
  8687. [(Prim 'not (list e)) ___]
  8688. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  8689. (IfStmt (Prim op es) (create_block thn)
  8690. (create_block els))]
  8691. [(Bool b) (if b thn els)]
  8692. [(If cnd^ thn^ els^) ___]
  8693. [else (error "explicate_pred unhandled case" cnd)]))
  8694. \end{lstlisting}
  8695. \end{tcolorbox}
  8696. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  8697. \label{fig:explicate-pred}
  8698. \end{figure}
  8699. \fi}
  8700. %
  8701. {\if\edition\pythonEd\pythonColor
  8702. The \code{explicate\_pred} function has four parameters: 1) the
  8703. condition expression, 2) the generated statements for the ``then''
  8704. branch, 3) the generated statements for the ``else'' branch, and 4)
  8705. the dictionary of basic blocks. The \code{explicate\_pred} function
  8706. returns a list of \LangCIf{} statements and it may add to the
  8707. dictionary of basic blocks.
  8708. \fi}
  8709. Consider the case for comparison operators. We translate the
  8710. comparison to an \code{if} statement whose branches are \code{goto}
  8711. statements created by applying \code{create\_block} to the code
  8712. generated for the \code{thn} and \code{els} branches. Let us
  8713. illustrate this translation by returning to the program with an
  8714. \code{if} expression in tail position, shown next. We invoke
  8715. \code{explicate\_pred} on its condition
  8716. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}.
  8717. %
  8718. {\if\edition\racketEd
  8719. \begin{lstlisting}
  8720. (let ([x (read)])
  8721. (if (eq? x 0) 42 777))
  8722. \end{lstlisting}
  8723. \fi}
  8724. %
  8725. {\if\edition\pythonEd\pythonColor
  8726. \begin{lstlisting}
  8727. x = input_int()
  8728. 42 if x == 0 else 777
  8729. \end{lstlisting}
  8730. \fi}
  8731. %
  8732. \noindent The two branches \code{42} and \code{777} were already
  8733. compiled to \code{return} statements, from which we now create the
  8734. following blocks:
  8735. %
  8736. \begin{center}
  8737. \begin{minipage}{\textwidth}
  8738. \begin{lstlisting}
  8739. block_1:
  8740. return 42;
  8741. block_2:
  8742. return 777;
  8743. \end{lstlisting}
  8744. \end{minipage}
  8745. \end{center}
  8746. %
  8747. After that, \code{explicate\_pred} compiles the comparison
  8748. \racket{\code{(eq? x 0)}}
  8749. \python{\code{x == 0}}
  8750. to the following \code{if} statement:
  8751. %
  8752. {\if\edition\racketEd
  8753. \begin{center}
  8754. \begin{minipage}{\textwidth}
  8755. \begin{lstlisting}
  8756. if (eq? x 0)
  8757. goto block_1;
  8758. else
  8759. goto block_2;
  8760. \end{lstlisting}
  8761. \end{minipage}
  8762. \end{center}
  8763. \fi}
  8764. {\if\edition\pythonEd\pythonColor
  8765. \begin{center}
  8766. \begin{minipage}{\textwidth}
  8767. \begin{lstlisting}
  8768. if x == 0:
  8769. goto block_1;
  8770. else
  8771. goto block_2;
  8772. \end{lstlisting}
  8773. \end{minipage}
  8774. \end{center}
  8775. \fi}
  8776. Next consider the case for Boolean constants. We perform a kind of
  8777. partial evaluation\index{subject}{partialevaluation@partial evaluation} and output
  8778. either the \code{thn} or \code{els} branch, depending on whether the
  8779. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  8780. following program:
  8781. {\if\edition\racketEd
  8782. \begin{lstlisting}
  8783. (if #t 42 777)
  8784. \end{lstlisting}
  8785. \fi}
  8786. {\if\edition\pythonEd\pythonColor
  8787. \begin{lstlisting}
  8788. 42 if True else 777
  8789. \end{lstlisting}
  8790. \fi}
  8791. %
  8792. \noindent Again, the two branches \code{42} and \code{777} were
  8793. compiled to \code{return} statements, so \code{explicate\_pred}
  8794. compiles the constant \racket{\code{\#t}} \python{\code{True}} to the
  8795. code for the \emph{then} branch.
  8796. \begin{lstlisting}
  8797. return 42;
  8798. \end{lstlisting}
  8799. This case demonstrates that we sometimes discard the \code{thn} or
  8800. \code{els} blocks that are input to \code{explicate\_pred}.
  8801. The case for \key{if} expressions in \code{explicate\_pred} is
  8802. particularly illuminating because it deals with the challenges
  8803. discussed previously regarding nested \key{if} expressions
  8804. (figure~\ref{fig:explicate-control-s1-38}). The
  8805. \racket{\lstinline{thn^}}\python{\code{body}} and
  8806. \racket{\lstinline{els^}}\python{\code{orelse}} branches of the
  8807. \key{if} inherit their context from the current one, that is,
  8808. predicate context. So, you should recursively apply
  8809. \code{explicate\_pred} to the
  8810. \racket{\lstinline{thn^}}\python{\code{body}} and
  8811. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  8812. those recursive calls, pass \code{thn} and \code{els} as the extra
  8813. parameters. Thus, \code{thn} and \code{els} may be used twice, once
  8814. inside each recursive call. As discussed previously, to avoid
  8815. duplicating code, we need to add them to the dictionary of basic
  8816. blocks so that we can instead refer to them by name and execute them
  8817. with a \key{goto}.
  8818. {\if\edition\pythonEd\pythonColor
  8819. %
  8820. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  8821. three parameters: 1) the statement to be compiled, 2) the code for its
  8822. continuation, and 3) the dictionary of basic blocks. The
  8823. \code{explicate\_stmt} returns a list of statements and it may add to
  8824. the dictionary of basic blocks. The cases for assignment and an
  8825. expression-statement are given in full in the skeleton code: they
  8826. simply dispatch to \code{explicate\_assign} and
  8827. \code{explicate\_effect}, respectively. The case for \code{if}
  8828. statements is not given, and is similar to the case for \code{if}
  8829. expressions.
  8830. The \code{explicate\_control} function itself is given in
  8831. figure~\ref{fig:explicate-control-Lif}. It applies
  8832. \code{explicate\_stmt} to each statement in the program, from back to
  8833. front. Thus, the result so-far, stored in \code{new\_body}, can be
  8834. used as the continuation parameter in the next call to
  8835. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  8836. \code{Return} statement. Once complete, we add the \code{new\_body} to
  8837. the dictionary of basic blocks, labeling it as the ``start'' block.
  8838. %
  8839. \fi}
  8840. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  8841. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  8842. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  8843. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  8844. %% results from the two recursive calls. We complete the case for
  8845. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  8846. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  8847. %% the result $B_5$.
  8848. %% \[
  8849. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  8850. %% \quad\Rightarrow\quad
  8851. %% B_5
  8852. %% \]
  8853. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  8854. %% inherit the current context, so they are in tail position. Thus, the
  8855. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  8856. %% \code{explicate\_tail}.
  8857. %% %
  8858. %% We need to pass $B_0$ as the accumulator argument for both of these
  8859. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  8860. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  8861. %% to the control-flow graph and obtain a promised goto $G_0$.
  8862. %% %
  8863. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  8864. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  8865. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  8866. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  8867. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  8868. %% \[
  8869. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  8870. %% \]
  8871. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  8872. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  8873. %% should not be confused with the labels for the blocks that appear in
  8874. %% the generated code. We initially construct unlabeled blocks; we only
  8875. %% attach labels to blocks when we add them to the control-flow graph, as
  8876. %% we see in the next case.
  8877. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  8878. %% function. The context of the \key{if} is an assignment to some
  8879. %% variable $x$ and then the control continues to some promised block
  8880. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  8881. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  8882. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  8883. %% branches of the \key{if} inherit the current context, so they are in
  8884. %% assignment positions. Let $B_2$ be the result of applying
  8885. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  8886. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  8887. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  8888. %% the result of applying \code{explicate\_pred} to the predicate
  8889. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  8890. %% translates to the promise $B_4$.
  8891. %% \[
  8892. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  8893. %% \]
  8894. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  8895. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  8896. \code{remove\_complex\_operands} pass and then the
  8897. \code{explicate\_control} pass on the example program. We walk through
  8898. the output program.
  8899. %
  8900. Following the order of evaluation in the output of
  8901. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  8902. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  8903. in the predicate of the inner \key{if}. In the output of
  8904. \code{explicate\_control}, in the
  8905. block labeled \code{start}, two assignment statements are followed by an
  8906. \code{if} statement that branches to \code{block\_4} or
  8907. \code{block\_5}. The blocks associated with those labels contain the
  8908. translations of the code
  8909. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8910. and
  8911. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  8912. respectively. In particular, we start \code{block\_4} with the
  8913. comparison
  8914. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  8915. and then branch to \code{block\_2} or \code{block\_3},
  8916. which correspond to the two branches of the outer \key{if}, that is,
  8917. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  8918. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  8919. %
  8920. The story for \code{block\_5} is similar to that of \code{block\_4}.
  8921. %
  8922. \python{The \code{block\_1} corresponds to the \code{print} statement
  8923. at the end of the program.}
  8924. {\if\edition\racketEd
  8925. \subsection{Interactions between Explicate and Shrink}
  8926. The way in which the \code{shrink} pass transforms logical operations
  8927. such as \code{and} and \code{or} can impact the quality of code
  8928. generated by \code{explicate\_control}. For example, consider the
  8929. following program:
  8930. % cond_test_21.rkt, and_eq_input.py
  8931. \begin{lstlisting}
  8932. (if (and (eq? (read) 0) (eq? (read) 1))
  8933. 0
  8934. 42)
  8935. \end{lstlisting}
  8936. The \code{and} operation should transform into something that the
  8937. \code{explicate\_pred} function can analyze and descend through to
  8938. reach the underlying \code{eq?} conditions. Ideally, for this program
  8939. your \code{explicate\_control} pass should generate code similar to
  8940. the following:
  8941. \begin{center}
  8942. \begin{minipage}{\textwidth}
  8943. \begin{lstlisting}
  8944. start:
  8945. tmp1 = (read);
  8946. if (eq? tmp1 0) goto block40;
  8947. else goto block39;
  8948. block40:
  8949. tmp2 = (read);
  8950. if (eq? tmp2 1) goto block38;
  8951. else goto block39;
  8952. block38:
  8953. return 0;
  8954. block39:
  8955. return 42;
  8956. \end{lstlisting}
  8957. \end{minipage}
  8958. \end{center}
  8959. \fi}
  8960. \begin{exercise}\normalfont\normalsize
  8961. \racket{
  8962. Implement the pass \code{explicate\_control} by adding the cases for
  8963. Boolean constants and \key{if} to the \code{explicate\_tail} and
  8964. \code{explicate\_assign} functions. Implement the auxiliary function
  8965. \code{explicate\_pred} for predicate contexts.}
  8966. \python{Implement \code{explicate\_control} pass with its
  8967. four auxiliary functions.}
  8968. %
  8969. Create test cases that exercise all the new cases in the code for
  8970. this pass.
  8971. %
  8972. {\if\edition\racketEd
  8973. Add the following entry to the list of \code{passes} in
  8974. \code{run-tests.rkt}:
  8975. \begin{lstlisting}
  8976. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  8977. \end{lstlisting}
  8978. and then run \code{run-tests.rkt} to test your compiler.
  8979. \fi}
  8980. \end{exercise}
  8981. \section{Select Instructions}
  8982. \label{sec:select-Lif}
  8983. \index{subject}{select instructions}
  8984. The \code{select\_instructions} pass translates \LangCIf{} to
  8985. \LangXIfVar{}.
  8986. %
  8987. \racket{Recall that we implement this pass using three auxiliary
  8988. functions, one for each of the nonterminals $\Atm$, $\Stmt$, and
  8989. $\Tail$ in \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  8990. %
  8991. \racket{For $\Atm$, we have new cases for the Booleans.}
  8992. %
  8993. \python{We begin with the Boolean constants.}
  8994. We take the usual approach of encoding them as integers.
  8995. \[
  8996. \TRUE{} \quad\Rightarrow\quad \key{1}
  8997. \qquad\qquad
  8998. \FALSE{} \quad\Rightarrow\quad \key{0}
  8999. \]
  9000. For translating statements, we discuss some of the cases. The
  9001. \code{not} operation can be implemented in terms of \code{xorq}, as we
  9002. discussed at the beginning of this section. Given an assignment, if
  9003. the left-hand-side variable is the same as the argument of \code{not},
  9004. then just the \code{xorq} instruction suffices.
  9005. \[
  9006. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  9007. \quad\Rightarrow\quad
  9008. \key{xorq}~\key{\$}1\key{,}~\Var
  9009. \]
  9010. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  9011. semantics of x86. In the following translation, let $\Arg$ be the
  9012. result of translating $\Atm$ to x86.
  9013. \[
  9014. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  9015. \quad\Rightarrow\quad
  9016. \begin{array}{l}
  9017. \key{movq}~\Arg\key{,}~\Var\\
  9018. \key{xorq}~\key{\$}1\key{,}~\Var
  9019. \end{array}
  9020. \]
  9021. Next consider the cases for equality comparisons. Translating this
  9022. operation to x86 is slightly involved due to the unusual nature of the
  9023. \key{cmpq} instruction that we discussed in section~\ref{sec:x86-if}.
  9024. We recommend translating an assignment with an equality on the
  9025. right-hand side into a sequence of three instructions. \\
  9026. \begin{tabular}{lll}
  9027. \begin{minipage}{0.4\textwidth}
  9028. $\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$
  9029. \end{minipage}
  9030. &
  9031. $\Rightarrow$
  9032. &
  9033. \begin{minipage}{0.4\textwidth}
  9034. \begin{lstlisting}
  9035. cmpq |$\Arg_2$|, |$\Arg_1$|
  9036. sete %al
  9037. movzbq %al, |$\Var$|
  9038. \end{lstlisting}
  9039. \end{minipage}
  9040. \end{tabular} \\
  9041. The translations for the other comparison operators are similar to
  9042. this but use different condition codes for the \code{set} instruction.
  9043. \racket{Regarding the $\Tail$ nonterminal, we have two new cases:
  9044. \key{goto} and \key{if} statements. Both are straightforward to
  9045. translate to x86.}
  9046. %
  9047. A \key{goto} statement becomes a jump instruction.
  9048. \[
  9049. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  9050. \]
  9051. %
  9052. An \key{if} statement becomes a compare instruction followed by a
  9053. conditional jump (for the \emph{then} branch), and the fall-through is to
  9054. a regular jump (for the \emph{else} branch).\\
  9055. \begin{tabular}{lll}
  9056. \begin{minipage}{0.4\textwidth}
  9057. \begin{lstlisting}
  9058. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  9059. goto |$\ell_1$||$\racket{\key{;}}$|
  9060. else|$\python{\key{:}}$|
  9061. goto |$\ell_2$||$\racket{\key{;}}$|
  9062. \end{lstlisting}
  9063. \end{minipage}
  9064. &
  9065. $\Rightarrow$
  9066. &
  9067. \begin{minipage}{0.4\textwidth}
  9068. \begin{lstlisting}
  9069. cmpq |$\Arg_2$|, |$\Arg_1$|
  9070. je |$\ell_1$|
  9071. jmp |$\ell_2$|
  9072. \end{lstlisting}
  9073. \end{minipage}
  9074. \end{tabular} \\
  9075. Again, the translations for the other comparison operators are similar to this
  9076. but use different condition codes for the conditional jump instruction.
  9077. \python{Regarding the \key{return} statement, we recommend treating it
  9078. as an assignment to the \key{rax} register followed by a jump to the
  9079. conclusion of the \code{main} function.}
  9080. \begin{exercise}\normalfont\normalsize
  9081. Expand your \code{select\_instructions} pass to handle the new
  9082. features of the \LangCIf{} language.
  9083. %
  9084. {\if\edition\racketEd
  9085. Add the following entry to the list of \code{passes} in
  9086. \code{run-tests.rkt}
  9087. \begin{lstlisting}
  9088. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  9089. \end{lstlisting}
  9090. \fi}
  9091. %
  9092. Run the script to test your compiler on all the test programs.
  9093. \end{exercise}
  9094. \section{Register Allocation}
  9095. \label{sec:register-allocation-Lif}
  9096. \index{subject}{register allocation}
  9097. The changes required for compiling \LangIf{} affect liveness analysis,
  9098. building the interference graph, and assigning homes, but the graph
  9099. coloring algorithm itself does not change.
  9100. \subsection{Liveness Analysis}
  9101. \label{sec:liveness-analysis-Lif}
  9102. \index{subject}{liveness analysis}
  9103. Recall that for \LangVar{} we implemented liveness analysis for a
  9104. single basic block (section~\ref{sec:liveness-analysis-Lvar}). With
  9105. the addition of \key{if} expressions to \LangIf{},
  9106. \code{explicate\_control} produces many basic blocks.
  9107. %% We recommend that you create a new auxiliary function named
  9108. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  9109. %% control-flow graph.
  9110. The first question is, in what order should we process the basic blocks?
  9111. Recall that to perform liveness analysis on a basic block we need to
  9112. know the live-after set for the last instruction in the block. If a
  9113. basic block has no successors (i.e., contains no jumps to other
  9114. blocks), then it has an empty live-after set and we can immediately
  9115. apply liveness analysis to it. If a basic block has some successors,
  9116. then we need to complete liveness analysis on those blocks
  9117. first. These ordering constraints are the reverse of a
  9118. \emph{topological order}\index{subject}{topological order} on a graph
  9119. representation of the program. In particular, the \emph{control flow
  9120. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  9121. of a program has a node for each basic block and an edge for each jump
  9122. from one block to another. It is straightforward to generate a CFG
  9123. from the dictionary of basic blocks. One then transposes the CFG and
  9124. applies the topological sort algorithm.
  9125. %
  9126. %
  9127. \racket{We recommend using the \code{tsort} and \code{transpose}
  9128. functions of the Racket \code{graph} package to accomplish this.}
  9129. %
  9130. \python{We provide implementations of \code{topological\_sort} and
  9131. \code{transpose} in the file \code{graph.py} of the support code.}
  9132. %
  9133. As an aside, a topological ordering is only guaranteed to exist if the
  9134. graph does not contain any cycles. This is the case for the
  9135. control-flow graphs that we generate from \LangIf{} programs.
  9136. However, in chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  9137. and learn how to handle cycles in the control-flow graph.
  9138. \racket{You need to construct a directed graph to represent the
  9139. control-flow graph. Do not use the \code{directed-graph} of the
  9140. \code{graph} package because that allows at most one edge
  9141. between each pair of vertices, whereas a control-flow graph may have
  9142. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  9143. file in the support code implements a graph representation that
  9144. allows multiple edges between a pair of vertices.}
  9145. {\if\edition\racketEd
  9146. The next question is how to analyze jump instructions. Recall that in
  9147. section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  9148. \code{label->live} that maps each label to the set of live locations
  9149. at the beginning of its block. We use \code{label->live} to determine
  9150. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  9151. that we have many basic blocks, \code{label->live} needs to be updated
  9152. as we process the blocks. In particular, after performing liveness
  9153. analysis on a block, we take the live-before set of its first
  9154. instruction and associate that with the block's label in the
  9155. \code{label->live} alist.
  9156. \fi}
  9157. %
  9158. {\if\edition\pythonEd\pythonColor
  9159. %
  9160. The next question is how to analyze jump instructions. The locations
  9161. that are live before a \code{jmp} should be the locations in
  9162. $L_{\mathsf{before}}$ at the target of the jump. So we recommend
  9163. maintaining a dictionary named \code{live\_before\_block} that maps each
  9164. label to the $L_{\mathsf{before}}$ for the first instruction in its
  9165. block. After performing liveness analysis on each block, we take the
  9166. live-before set of its first instruction and associate that with the
  9167. block's label in the \code{live\_before\_block} dictionary.
  9168. %
  9169. \fi}
  9170. In \LangXIfVar{} we also have the conditional jump
  9171. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  9172. this instruction is particularly interesting because during
  9173. compilation, we do not know which way a conditional jump will go. Thus
  9174. we do not know whether to use the live-before set for the block
  9175. associated with the $\itm{label}$ or the live-before set for the
  9176. following instruction. However, there is no harm to the correctness
  9177. of the generated code if we classify more locations as live than the
  9178. ones that are truly live during one particular execution of the
  9179. instruction. Thus, we can take the union of the live-before sets from
  9180. the following instruction and from the mapping for $\itm{label}$ in
  9181. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  9182. The auxiliary functions for computing the variables in an
  9183. instruction's argument and for computing the variables read-from ($R$)
  9184. or written-to ($W$) by an instruction need to be updated to handle the
  9185. new kinds of arguments and instructions in \LangXIfVar{}.
  9186. \begin{exercise}\normalfont\normalsize
  9187. {\if\edition\racketEd
  9188. %
  9189. Update the \code{uncover\_live} pass to apply liveness analysis to
  9190. every basic block in the program.
  9191. %
  9192. Add the following entry to the list of \code{passes} in the
  9193. \code{run-tests.rkt} script:
  9194. \begin{lstlisting}
  9195. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  9196. \end{lstlisting}
  9197. \fi}
  9198. {\if\edition\pythonEd\pythonColor
  9199. %
  9200. Update the \code{uncover\_live} function to perform liveness analysis,
  9201. in reverse topological order, on all the basic blocks in the
  9202. program.
  9203. %
  9204. \fi}
  9205. % Check that the live-after sets that you generate for
  9206. % example X matches the following... -Jeremy
  9207. \end{exercise}
  9208. \subsection{Build the Interference Graph}
  9209. \label{sec:build-interference-Lif}
  9210. Many of the new instructions in \LangXIfVar{} can be handled in the
  9211. same way as the instructions in \LangXVar{}.
  9212. % Thus, if your code was
  9213. % already quite general, it will not need to be changed to handle the
  9214. % new instructions. If your code is not general enough, we recommend that
  9215. % you change your code to be more general. For example, you can factor
  9216. % out the computing of the the read and write sets for each kind of
  9217. % instruction into auxiliary functions.
  9218. %
  9219. Some instructions, such as the \key{movzbq} instruction, require special care,
  9220. similar to the \key{movq} instruction. Refer to rule number 1 in
  9221. section~\ref{sec:build-interference}.
  9222. \begin{exercise}\normalfont\normalsize
  9223. Update the \code{build\_interference} pass for \LangXIfVar{}.
  9224. {\if\edition\racketEd
  9225. Add the following entries to the list of \code{passes} in the
  9226. \code{run-tests.rkt} script:
  9227. \begin{lstlisting}
  9228. (list "build_interference" build_interference interp-pseudo-x86-1)
  9229. (list "allocate_registers" allocate_registers interp-pseudo-x86-1)
  9230. \end{lstlisting}
  9231. \fi}
  9232. % Check that the interference graph that you generate for
  9233. % example X matches the following graph G... -Jeremy
  9234. \end{exercise}
  9235. \section{Patch Instructions}
  9236. The new instructions \key{cmpq} and \key{movzbq} have some special
  9237. restrictions that need to be handled in the \code{patch\_instructions}
  9238. pass.
  9239. %
  9240. The second argument of the \key{cmpq} instruction must not be an
  9241. immediate value (such as an integer). So, if you are comparing two
  9242. immediates, we recommend inserting a \key{movq} instruction to put the
  9243. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  9244. one memory reference.
  9245. %
  9246. The second argument of the \key{movzbq} must be a register.
  9247. \begin{exercise}\normalfont\normalsize
  9248. %
  9249. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  9250. %
  9251. {\if\edition\racketEd
  9252. Add the following entry to the list of \code{passes} in
  9253. \code{run-tests.rkt}, and then run this script to test your compiler.
  9254. \begin{lstlisting}
  9255. (list "patch_instructions" patch_instructions interp-x86-1)
  9256. \end{lstlisting}
  9257. \fi}
  9258. \end{exercise}
  9259. {\if\edition\pythonEd\pythonColor
  9260. \section{Prelude and Conclusion}
  9261. \label{sec:prelude-conclusion-cond}
  9262. The generation of the \code{main} function with its prelude and
  9263. conclusion must change to accommodate how the program now consists of
  9264. one or more basic blocks. After the prelude in \code{main}, jump to
  9265. the \code{start} block. Place the conclusion in a basic block labeled
  9266. with \code{conclusion}.
  9267. \fi}
  9268. Figure~\ref{fig:if-example-x86} shows a simple example program in
  9269. \LangIf{} translated to x86, showing the results of
  9270. \code{explicate\_control}, \code{select\_instructions}, and the final
  9271. x86 assembly.
  9272. \begin{figure}[tbp]
  9273. \begin{tcolorbox}[colback=white]
  9274. {\if\edition\racketEd
  9275. \begin{tabular}{lll}
  9276. \begin{minipage}{0.4\textwidth}
  9277. % cond_test_20.rkt, eq_input.py
  9278. \begin{lstlisting}
  9279. (if (eq? (read) 1) 42 0)
  9280. \end{lstlisting}
  9281. $\Downarrow$
  9282. \begin{lstlisting}
  9283. start:
  9284. tmp7951 = (read);
  9285. if (eq? tmp7951 1)
  9286. goto block7952;
  9287. else
  9288. goto block7953;
  9289. block7952:
  9290. return 42;
  9291. block7953:
  9292. return 0;
  9293. \end{lstlisting}
  9294. $\Downarrow$
  9295. \begin{lstlisting}
  9296. start:
  9297. callq read_int
  9298. movq %rax, tmp7951
  9299. cmpq $1, tmp7951
  9300. je block7952
  9301. jmp block7953
  9302. block7953:
  9303. movq $0, %rax
  9304. jmp conclusion
  9305. block7952:
  9306. movq $42, %rax
  9307. jmp conclusion
  9308. \end{lstlisting}
  9309. \end{minipage}
  9310. &
  9311. $\Rightarrow\qquad$
  9312. \begin{minipage}{0.4\textwidth}
  9313. \begin{lstlisting}
  9314. start:
  9315. callq read_int
  9316. movq %rax, %rcx
  9317. cmpq $1, %rcx
  9318. je block7952
  9319. jmp block7953
  9320. block7953:
  9321. movq $0, %rax
  9322. jmp conclusion
  9323. block7952:
  9324. movq $42, %rax
  9325. jmp conclusion
  9326. .globl main
  9327. main:
  9328. pushq %rbp
  9329. movq %rsp, %rbp
  9330. pushq %r13
  9331. pushq %r12
  9332. pushq %rbx
  9333. pushq %r14
  9334. subq $0, %rsp
  9335. jmp start
  9336. conclusion:
  9337. addq $0, %rsp
  9338. popq %r14
  9339. popq %rbx
  9340. popq %r12
  9341. popq %r13
  9342. popq %rbp
  9343. retq
  9344. \end{lstlisting}
  9345. \end{minipage}
  9346. \end{tabular}
  9347. \fi}
  9348. {\if\edition\pythonEd\pythonColor
  9349. \begin{tabular}{lll}
  9350. \begin{minipage}{0.4\textwidth}
  9351. % cond_test_20.rkt, eq_input.py
  9352. \begin{lstlisting}
  9353. print(42 if input_int() == 1 else 0)
  9354. \end{lstlisting}
  9355. $\Downarrow$
  9356. \begin{lstlisting}
  9357. start:
  9358. tmp_0 = input_int()
  9359. if tmp_0 == 1:
  9360. goto block_3
  9361. else:
  9362. goto block_4
  9363. block_3:
  9364. tmp_1 = 42
  9365. goto block_2
  9366. block_4:
  9367. tmp_1 = 0
  9368. goto block_2
  9369. block_2:
  9370. print(tmp_1)
  9371. return 0
  9372. \end{lstlisting}
  9373. $\Downarrow$
  9374. \begin{lstlisting}
  9375. start:
  9376. callq read_int
  9377. movq %rax, tmp_0
  9378. cmpq 1, tmp_0
  9379. je block_3
  9380. jmp block_4
  9381. block_3:
  9382. movq 42, tmp_1
  9383. jmp block_2
  9384. block_4:
  9385. movq 0, tmp_1
  9386. jmp block_2
  9387. block_2:
  9388. movq tmp_1, %rdi
  9389. callq print_int
  9390. movq 0, %rax
  9391. jmp conclusion
  9392. \end{lstlisting}
  9393. \end{minipage}
  9394. &
  9395. $\Rightarrow\qquad$
  9396. \begin{minipage}{0.4\textwidth}
  9397. \begin{lstlisting}
  9398. .globl main
  9399. main:
  9400. pushq %rbp
  9401. movq %rsp, %rbp
  9402. subq $0, %rsp
  9403. jmp start
  9404. start:
  9405. callq read_int
  9406. movq %rax, %rcx
  9407. cmpq $1, %rcx
  9408. je block_3
  9409. jmp block_4
  9410. block_3:
  9411. movq $42, %rcx
  9412. jmp block_2
  9413. block_4:
  9414. movq $0, %rcx
  9415. jmp block_2
  9416. block_2:
  9417. movq %rcx, %rdi
  9418. callq print_int
  9419. movq $0, %rax
  9420. jmp conclusion
  9421. conclusion:
  9422. addq $0, %rsp
  9423. popq %rbp
  9424. retq
  9425. \end{lstlisting}
  9426. \end{minipage}
  9427. \end{tabular}
  9428. \fi}
  9429. \end{tcolorbox}
  9430. \caption{Example compilation of an \key{if} expression to x86, showing
  9431. the results of \code{explicate\_control},
  9432. \code{select\_instructions}, and the final x86 assembly code. }
  9433. \label{fig:if-example-x86}
  9434. \end{figure}
  9435. \begin{figure}[tbp]
  9436. \begin{tcolorbox}[colback=white]
  9437. {\if\edition\racketEd
  9438. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9439. \node (Lif-2) at (0,2) {\large \LangIf{}};
  9440. \node (Lif-3) at (3,2) {\large \LangIf{}};
  9441. \node (Lif-4) at (6,2) {\large \LangIf{}};
  9442. \node (Lif-5) at (10,2) {\large \LangIfANF{}};
  9443. \node (C1-1) at (0,0) {\large \LangCIf{}};
  9444. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  9445. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  9446. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  9447. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  9448. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  9449. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  9450. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  9451. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  9452. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-5);
  9453. \path[->,bend left=10] (Lif-5) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C1-1);
  9454. \path[->,bend right=15] (C1-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  9455. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9456. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  9457. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  9458. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  9459. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion } (x86-5);
  9460. \end{tikzpicture}
  9461. \fi}
  9462. {\if\edition\pythonEd\pythonColor
  9463. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  9464. \node (Lif-1) at (0,2) {\large \LangIf{}};
  9465. \node (Lif-2) at (4,2) {\large \LangIf{}};
  9466. \node (Lif-3) at (8,2) {\large \LangIfANF{}};
  9467. \node (C-1) at (0,0) {\large \LangCIf{}};
  9468. \node (x86-1) at (0,-2) {\large \LangXIfVar{}};
  9469. \node (x86-2) at (4,-2) {\large \LangXIfVar{}};
  9470. \node (x86-3) at (8,-2) {\large \LangXIf{}};
  9471. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  9472. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  9473. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lif-3);
  9474. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize \ \ explicate\_control} (C-1);
  9475. \path[->,bend right=15] (C-1) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-1);
  9476. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  9477. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-3);
  9478. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-4);
  9479. \end{tikzpicture}
  9480. \fi}
  9481. \end{tcolorbox}
  9482. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  9483. \label{fig:Lif-passes}
  9484. \end{figure}
  9485. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  9486. compilation of \LangIf{}.
  9487. \section{Challenge: Optimize Blocks and Remove Jumps}
  9488. \label{sec:opt-jumps}
  9489. We discuss two optional challenges that involve optimizing the
  9490. control-flow of the program.
  9491. \subsection{Optimize Blocks}
  9492. The algorithm for \code{explicate\_control} that we discussed in
  9493. section~\ref{sec:explicate-control-Lif} sometimes generates too many
  9494. blocks. It creates a basic block whenever a continuation \emph{might}
  9495. get used more than once (for example, whenever the \code{cont} parameter is
  9496. passed into two or more recursive calls). However, some continuation
  9497. arguments may not be used at all. For example, consider the case for
  9498. the constant \TRUE{} in \code{explicate\_pred}, in which we discard the
  9499. \code{els} continuation.
  9500. %
  9501. {\if\edition\racketEd
  9502. The following example program falls into this
  9503. case, and it creates two unused blocks.
  9504. \begin{center}
  9505. \begin{tabular}{lll}
  9506. \begin{minipage}{0.4\textwidth}
  9507. % cond_test_82.rkt
  9508. \begin{lstlisting}
  9509. (let ([y (if #t
  9510. (read)
  9511. (if (eq? (read) 0)
  9512. 777
  9513. (let ([x (read)])
  9514. (+ 1 x))))])
  9515. (+ y 2))
  9516. \end{lstlisting}
  9517. \end{minipage}
  9518. &
  9519. $\Rightarrow$
  9520. &
  9521. \begin{minipage}{0.55\textwidth}
  9522. \begin{lstlisting}
  9523. start:
  9524. y = (read);
  9525. goto block_5;
  9526. block_5:
  9527. return (+ y 2);
  9528. block_6:
  9529. y = 777;
  9530. goto block_5;
  9531. block_7:
  9532. x = (read);
  9533. y = (+ 1 x2);
  9534. goto block_5;
  9535. \end{lstlisting}
  9536. \end{minipage}
  9537. \end{tabular}
  9538. \end{center}
  9539. \fi}
  9540. The question is, how can we decide whether to create a basic block?
  9541. \emph{Lazy evaluation}\index{subject}{lazy
  9542. evaluation}~\citep{Friedman:1976aa} can solve this conundrum by
  9543. delaying the creation of a basic block until the point in time at which
  9544. we know that it will be used.
  9545. %
  9546. {\if\edition\racketEd
  9547. %
  9548. Racket provides support for
  9549. lazy evaluation with the
  9550. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  9551. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  9552. \index{subject}{delay} creates a
  9553. \emph{promise}\index{subject}{promise} in which the evaluation of the
  9554. expressions is postponed. When \key{(force}
  9555. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  9556. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  9557. result of $e_n$ is cached in the promise and returned. If \code{force}
  9558. is applied again to the same promise, then the cached result is
  9559. returned. If \code{force} is applied to an argument that is not a
  9560. promise, \code{force} simply returns the argument.
  9561. %
  9562. \fi}
  9563. %
  9564. {\if\edition\pythonEd\pythonColor
  9565. %
  9566. While Python does not provide direct support for lazy evaluation, it
  9567. is easy to mimic. We can \emph{delay} the evaluation of a computation
  9568. by wrapping it inside a function with no parameters. We can
  9569. \emph{force} its evaluation by calling the function. However, in some
  9570. cases of \code{explicate\_pred}, etc., we will return a list of
  9571. statements and in other cases we will return a function that computes
  9572. a list of statements. We use the term \emph{promise} to refer to a
  9573. value that may be delayed. To uniformly deal with
  9574. promises, we define the following \code{force} function that checks
  9575. whether its input is delayed (i.e., whether it is a function) and then
  9576. either 1) calls the function, or 2) returns the input.
  9577. \begin{lstlisting}
  9578. def force(promise):
  9579. if isinstance(promise, types.FunctionType):
  9580. return promise()
  9581. else:
  9582. return promise
  9583. \end{lstlisting}
  9584. %
  9585. \fi}
  9586. We use promises for the input and output of the functions
  9587. \code{explicate\_pred}, \code{explicate\_assign},
  9588. %
  9589. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  9590. %
  9591. So, instead of taking and returning \racket{$\Tail$
  9592. expressions}\python{lists of statements}, they take and return
  9593. promises. Furthermore, when we come to a situation in which a
  9594. continuation might be used more than once, as in the case for
  9595. \code{if} in \code{explicate\_pred}, we create a delayed computation
  9596. that creates a basic block for each continuation (if there is not
  9597. already one) and then returns a \code{goto} statement to that basic
  9598. block. When we come to a situation in which we have a promise but need an
  9599. actual piece of code, for example, to create a larger piece of code with a
  9600. constructor such as \code{Seq}, then insert a call to \code{force}.
  9601. %
  9602. {\if\edition\racketEd
  9603. %
  9604. Also, we must modify the \code{create\_block} function to begin with
  9605. \code{delay} to create a promise. When forced, this promise forces the
  9606. original promise. If that returns a \code{Goto} (because the block was
  9607. already added to \code{basic-blocks}), then we return the
  9608. \code{Goto}. Otherwise, we add the block to \code{basic-blocks} and
  9609. return a \code{Goto} to the new label.
  9610. \begin{center}
  9611. \begin{minipage}{\textwidth}
  9612. \begin{lstlisting}
  9613. (define (create_block tail)
  9614. (delay
  9615. (define t (force tail))
  9616. (match t
  9617. [(Goto label) (Goto label)]
  9618. [else
  9619. (let ([label (gensym 'block)])
  9620. (set! basic-blocks (cons (cons label t) basic-blocks))
  9621. (Goto label))])))
  9622. \end{lstlisting}
  9623. \end{minipage}
  9624. \end{center}
  9625. \fi}
  9626. {\if\edition\pythonEd\pythonColor
  9627. %
  9628. Here is the new version of the \code{create\_block} auxiliary function
  9629. that works on promises and that checks whether the block consists of a
  9630. solitary \code{goto} statement.\\
  9631. \begin{minipage}{\textwidth}
  9632. \begin{lstlisting}
  9633. def create_block(promise, basic_blocks):
  9634. def delay():
  9635. stmts = force(promise)
  9636. match stmts:
  9637. case [Goto(l)]:
  9638. return [Goto(l)]
  9639. case _:
  9640. label = label_name(generate_name('block'))
  9641. basic_blocks[label] = stmts
  9642. return [Goto(label)]
  9643. return delay
  9644. \end{lstlisting}
  9645. \end{minipage}
  9646. \fi}
  9647. Figure~\ref{fig:explicate-control-challenge} shows the output of
  9648. improved \code{explicate\_control} on this example. As you can
  9649. see, the number of basic blocks has been reduced from four blocks (see
  9650. figure~\ref{fig:explicate-control-s1-38}) to two blocks.
  9651. \begin{figure}[tbp]
  9652. \begin{tcolorbox}[colback=white]
  9653. {\if\edition\racketEd
  9654. \begin{tabular}{lll}
  9655. \begin{minipage}{0.4\textwidth}
  9656. % cond_test_82.rkt
  9657. \begin{lstlisting}
  9658. (let ([y (if #t
  9659. (read)
  9660. (if (eq? (read) 0)
  9661. 777
  9662. (let ([x (read)])
  9663. (+ 1 x))))])
  9664. (+ y 2))
  9665. \end{lstlisting}
  9666. \end{minipage}
  9667. &
  9668. $\Rightarrow$
  9669. &
  9670. \begin{minipage}{0.55\textwidth}
  9671. \begin{lstlisting}
  9672. start:
  9673. y = (read);
  9674. goto block_5;
  9675. block_5:
  9676. return (+ y 2);
  9677. \end{lstlisting}
  9678. \end{minipage}
  9679. \end{tabular}
  9680. \fi}
  9681. {\if\edition\pythonEd\pythonColor
  9682. \begin{tabular}{lll}
  9683. \begin{minipage}{0.4\textwidth}
  9684. % cond_test_41.rkt
  9685. \begin{lstlisting}
  9686. x = input_int()
  9687. y = input_int()
  9688. print(y + 2 \
  9689. if (x == 0 \
  9690. if x < 1 \
  9691. else x == 2) \
  9692. else y + 10)
  9693. \end{lstlisting}
  9694. \end{minipage}
  9695. &
  9696. $\Rightarrow$
  9697. &
  9698. \begin{minipage}{0.55\textwidth}
  9699. \begin{lstlisting}
  9700. start:
  9701. x = input_int()
  9702. y = input_int()
  9703. if x < 1:
  9704. goto block_4
  9705. else:
  9706. goto block_5
  9707. block_4:
  9708. if x == 0:
  9709. goto block_2
  9710. else:
  9711. goto block_3
  9712. block_5:
  9713. if x == 2:
  9714. goto block_2
  9715. else:
  9716. goto block_3
  9717. block_2:
  9718. tmp_0 = y + 2
  9719. goto block_1
  9720. block_3:
  9721. tmp_0 = y + 10
  9722. goto block_1
  9723. block_1:
  9724. print(tmp_0)
  9725. return 0
  9726. \end{lstlisting}
  9727. \end{minipage}
  9728. \end{tabular}
  9729. \fi}
  9730. \end{tcolorbox}
  9731. \caption{Translation from \LangIf{} to \LangCIf{}
  9732. via the improved \code{explicate\_control}.}
  9733. \label{fig:explicate-control-challenge}
  9734. \end{figure}
  9735. %% Recall that in the example output of \code{explicate\_control} in
  9736. %% figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  9737. %% \code{block60} are trivial blocks, they do nothing but jump to another
  9738. %% block. The first goal of this challenge assignment is to remove those
  9739. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  9740. %% \code{explicate\_control} on the left and shows the result of bypassing
  9741. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  9742. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  9743. %% \code{block55}. The optimized code on the right of
  9744. %% figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  9745. %% \code{then} branch jumping directly to \code{block55}. The story is
  9746. %% similar for the \code{else} branch, as well as for the two branches in
  9747. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  9748. %% have been optimized in this way, there are no longer any jumps to
  9749. %% blocks \code{block57} through \code{block60}, so they can be removed.
  9750. %% \begin{figure}[tbp]
  9751. %% \begin{tabular}{lll}
  9752. %% \begin{minipage}{0.4\textwidth}
  9753. %% \begin{lstlisting}
  9754. %% block62:
  9755. %% tmp54 = (read);
  9756. %% if (eq? tmp54 2) then
  9757. %% goto block59;
  9758. %% else
  9759. %% goto block60;
  9760. %% block61:
  9761. %% tmp53 = (read);
  9762. %% if (eq? tmp53 0) then
  9763. %% goto block57;
  9764. %% else
  9765. %% goto block58;
  9766. %% block60:
  9767. %% goto block56;
  9768. %% block59:
  9769. %% goto block55;
  9770. %% block58:
  9771. %% goto block56;
  9772. %% block57:
  9773. %% goto block55;
  9774. %% block56:
  9775. %% return (+ 700 77);
  9776. %% block55:
  9777. %% return (+ 10 32);
  9778. %% start:
  9779. %% tmp52 = (read);
  9780. %% if (eq? tmp52 1) then
  9781. %% goto block61;
  9782. %% else
  9783. %% goto block62;
  9784. %% \end{lstlisting}
  9785. %% \end{minipage}
  9786. %% &
  9787. %% $\Rightarrow$
  9788. %% &
  9789. %% \begin{minipage}{0.55\textwidth}
  9790. %% \begin{lstlisting}
  9791. %% block62:
  9792. %% tmp54 = (read);
  9793. %% if (eq? tmp54 2) then
  9794. %% goto block55;
  9795. %% else
  9796. %% goto block56;
  9797. %% block61:
  9798. %% tmp53 = (read);
  9799. %% if (eq? tmp53 0) then
  9800. %% goto block55;
  9801. %% else
  9802. %% goto block56;
  9803. %% block56:
  9804. %% return (+ 700 77);
  9805. %% block55:
  9806. %% return (+ 10 32);
  9807. %% start:
  9808. %% tmp52 = (read);
  9809. %% if (eq? tmp52 1) then
  9810. %% goto block61;
  9811. %% else
  9812. %% goto block62;
  9813. %% \end{lstlisting}
  9814. %% \end{minipage}
  9815. %% \end{tabular}
  9816. %% \caption{Optimize jumps by removing trivial blocks.}
  9817. %% \label{fig:optimize-jumps}
  9818. %% \end{figure}
  9819. %% The name of this pass is \code{optimize-jumps}. We recommend
  9820. %% implementing this pass in two phases. The first phrase builds a hash
  9821. %% table that maps labels to possibly improved labels. The second phase
  9822. %% changes the target of each \code{goto} to use the improved label. If
  9823. %% the label is for a trivial block, then the hash table should map the
  9824. %% label to the first non-trivial block that can be reached from this
  9825. %% label by jumping through trivial blocks. If the label is for a
  9826. %% non-trivial block, then the hash table should map the label to itself;
  9827. %% we do not want to change jumps to non-trivial blocks.
  9828. %% The first phase can be accomplished by constructing an empty hash
  9829. %% table, call it \code{short-cut}, and then iterating over the control
  9830. %% flow graph. Each time you encounter a block that is just a \code{goto},
  9831. %% then update the hash table, mapping the block's source to the target
  9832. %% of the \code{goto}. Also, the hash table may already have mapped some
  9833. %% labels to the block's source, to you must iterate through the hash
  9834. %% table and update all of those so that they instead map to the target
  9835. %% of the \code{goto}.
  9836. %% For the second phase, we recommend iterating through the $\Tail$ of
  9837. %% each block in the program, updating the target of every \code{goto}
  9838. %% according to the mapping in \code{short-cut}.
  9839. \begin{exercise}\normalfont\normalsize
  9840. Implement the improvements to the \code{explicate\_control} pass.
  9841. Check that it removes trivial blocks in a few example programs. Then
  9842. check that your compiler still passes all your tests.
  9843. \end{exercise}
  9844. \subsection{Remove Jumps}
  9845. There is an opportunity for removing jumps that is apparent in the
  9846. example of figure~\ref{fig:if-example-x86}. The \code{start} block
  9847. ends with a jump to \code{block\_5}, and there are no other jumps to
  9848. \code{block\_5} in the rest of the program. In this situation we can
  9849. avoid the runtime overhead of this jump by merging \code{block\_5}
  9850. into the preceding block, which in this case is the \code{start} block.
  9851. Figure~\ref{fig:remove-jumps} shows the output of
  9852. \code{allocate\_registers} on the left and the result of this
  9853. optimization on the right.
  9854. \begin{figure}[tbp]
  9855. \begin{tcolorbox}[colback=white]
  9856. {\if\edition\racketEd
  9857. \begin{tabular}{lll}
  9858. \begin{minipage}{0.5\textwidth}
  9859. % cond_test_82.rkt
  9860. \begin{lstlisting}
  9861. start:
  9862. callq read_int
  9863. movq %rax, %rcx
  9864. jmp block_5
  9865. block_5:
  9866. movq %rcx, %rax
  9867. addq $2, %rax
  9868. jmp conclusion
  9869. \end{lstlisting}
  9870. \end{minipage}
  9871. &
  9872. $\Rightarrow\qquad$
  9873. \begin{minipage}{0.4\textwidth}
  9874. \begin{lstlisting}
  9875. start:
  9876. callq read_int
  9877. movq %rax, %rcx
  9878. movq %rcx, %rax
  9879. addq $2, %rax
  9880. jmp conclusion
  9881. \end{lstlisting}
  9882. \end{minipage}
  9883. \end{tabular}
  9884. \fi}
  9885. {\if\edition\pythonEd\pythonColor
  9886. \begin{tabular}{lll}
  9887. \begin{minipage}{0.5\textwidth}
  9888. % cond_test_20.rkt
  9889. \begin{lstlisting}
  9890. start:
  9891. callq read_int
  9892. movq %rax, tmp_0
  9893. cmpq 1, tmp_0
  9894. je block_3
  9895. jmp block_4
  9896. block_3:
  9897. movq 42, tmp_1
  9898. jmp block_2
  9899. block_4:
  9900. movq 0, tmp_1
  9901. jmp block_2
  9902. block_2:
  9903. movq tmp_1, %rdi
  9904. callq print_int
  9905. movq 0, %rax
  9906. jmp conclusion
  9907. \end{lstlisting}
  9908. \end{minipage}
  9909. &
  9910. $\Rightarrow\qquad$
  9911. \begin{minipage}{0.4\textwidth}
  9912. \begin{lstlisting}
  9913. start:
  9914. callq read_int
  9915. movq %rax, tmp_0
  9916. cmpq 1, tmp_0
  9917. je block_3
  9918. movq 0, tmp_1
  9919. jmp block_2
  9920. block_3:
  9921. movq 42, tmp_1
  9922. jmp block_2
  9923. block_2:
  9924. movq tmp_1, %rdi
  9925. callq print_int
  9926. movq 0, %rax
  9927. jmp conclusion
  9928. \end{lstlisting}
  9929. \end{minipage}
  9930. \end{tabular}
  9931. \fi}
  9932. \end{tcolorbox}
  9933. \caption{Merging basic blocks by removing unnecessary jumps.}
  9934. \label{fig:remove-jumps}
  9935. \end{figure}
  9936. \begin{exercise}\normalfont\normalsize
  9937. %
  9938. Implement a pass named \code{remove\_jumps} that merges basic blocks
  9939. into their preceding basic block, when there is only one preceding
  9940. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  9941. %
  9942. {\if\edition\racketEd
  9943. In the \code{run-tests.rkt} script, add the following entry to the
  9944. list of \code{passes} between \code{allocate\_registers}
  9945. and \code{patch\_instructions}:
  9946. \begin{lstlisting}
  9947. (list "remove_jumps" remove_jumps interp-pseudo-x86-1)
  9948. \end{lstlisting}
  9949. \fi}
  9950. %
  9951. Run the script to test your compiler.
  9952. %
  9953. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  9954. blocks on several test programs.
  9955. \end{exercise}
  9956. \section{Further Reading}
  9957. \label{sec:cond-further-reading}
  9958. The algorithm for the \code{explicate\_control} pass is based on the
  9959. \code{expose-basic-blocks} pass in the course notes of
  9960. \citet{Dybvig:2010aa}.
  9961. %
  9962. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  9963. \citet{Appel:2003fk}, and is related to translations into continuation
  9964. passing
  9965. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  9966. %
  9967. The treatment of conditionals in the \code{explicate\_control} pass is
  9968. similar to short-cut Boolean
  9969. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  9970. and the case-of-case transformation~\citep{PeytonJones:1998}.
  9971. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9972. \chapter{Loops and Dataflow Analysis}
  9973. \label{ch:Lwhile}
  9974. \setcounter{footnote}{0}
  9975. % TODO: define R'_8
  9976. % TODO: multi-graph
  9977. {\if\edition\racketEd
  9978. %
  9979. In this chapter we study two features that are the hallmarks of
  9980. imperative programming languages: loops and assignments to local
  9981. variables. The following example demonstrates these new features by
  9982. computing the sum of the first five positive integers:
  9983. % similar to loop_test_1.rkt
  9984. \begin{lstlisting}
  9985. (let ([sum 0])
  9986. (let ([i 5])
  9987. (begin
  9988. (while (> i 0)
  9989. (begin
  9990. (set! sum (+ sum i))
  9991. (set! i (- i 1))))
  9992. sum)))
  9993. \end{lstlisting}
  9994. The \code{while} loop consists of a condition and a
  9995. body.\footnote{The \code{while} loop is not a built-in
  9996. feature of the Racket language, but Racket includes many looping
  9997. constructs and it is straightforward to define \code{while} as a
  9998. macro.} The body is evaluated repeatedly so long as the condition
  9999. remains true.
  10000. %
  10001. The \code{set!} consists of a variable and a right-hand side
  10002. expression. The \code{set!} updates value of the variable to the
  10003. value of the right-hand side.
  10004. %
  10005. The primary purpose of both the \code{while} loop and \code{set!} is
  10006. to cause side effects, so they do not give a meaningful result
  10007. value. Instead, their result is the \code{\#<void>} value. The
  10008. expression \code{(void)} is an explicit way to create the
  10009. \code{\#<void>} value, and it has type \code{Void}. The
  10010. \code{\#<void>} value can be passed around just like other values
  10011. inside an \LangLoop{} program, and it can be compared for equality with
  10012. another \code{\#<void>} value. However, there are no other operations
  10013. specific to the \code{\#<void>} value in \LangLoop{}. In contrast,
  10014. Racket defines the \code{void?} predicate that returns \code{\#t}
  10015. when applied to \code{\#<void>} and \code{\#f} otherwise.%
  10016. %
  10017. \footnote{Racket's \code{Void} type corresponds to what is often
  10018. called the \code{Unit} type. Racket's \code{Void} type is inhabited
  10019. by a single value \code{\#<void>}, which corresponds to \code{unit}
  10020. or \code{()} in the literature~\citep{Pierce:2002hj}.}
  10021. %
  10022. With the addition of side effect-producing features such as
  10023. \code{while} loop and \code{set!}, it is helpful to include a language
  10024. feature for sequencing side effects: the \code{begin} expression. It
  10025. consists of one or more subexpressions that are evaluated
  10026. left to right.
  10027. %
  10028. \fi}
  10029. {\if\edition\pythonEd\pythonColor
  10030. %
  10031. In this chapter we study loops, one of the hallmarks of imperative
  10032. programming languages. The following example demonstrates the
  10033. \code{while} loop by computing the sum of the first five positive
  10034. integers.
  10035. \begin{lstlisting}
  10036. sum = 0
  10037. i = 5
  10038. while i > 0:
  10039. sum = sum + i
  10040. i = i - 1
  10041. print(sum)
  10042. \end{lstlisting}
  10043. The \code{while} loop consists of a condition expression and a body (a
  10044. sequence of statements). The body is evaluated repeatedly so long as
  10045. the condition remains true.
  10046. %
  10047. \fi}
  10048. \section{The \LangLoop{} Language}
  10049. \newcommand{\LwhileGrammarRacket}{
  10050. \begin{array}{lcl}
  10051. \Type &::=& \key{Void}\\
  10052. \Exp &::=& \CSETBANG{\Var}{\Exp}
  10053. \MID \CBEGIN{\Exp^{*}}{\Exp}
  10054. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP
  10055. \end{array}
  10056. }
  10057. \newcommand{\LwhileASTRacket}{
  10058. \begin{array}{lcl}
  10059. \Type &::=& \key{Void}\\
  10060. \Exp &::=& \SETBANG{\Var}{\Exp}
  10061. \MID \BEGIN{\Exp^{*}}{\Exp}
  10062. \MID \WHILE{\Exp}{\Exp}
  10063. \MID \VOID{}
  10064. \end{array}
  10065. }
  10066. \newcommand{\LwhileGrammarPython}{
  10067. \begin{array}{rcl}
  10068. \Stmt &::=& \key{while}~ \Exp \key{:}~ \Stmt^{+}
  10069. \end{array}
  10070. }
  10071. \newcommand{\LwhileASTPython}{
  10072. \begin{array}{lcl}
  10073. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10074. \end{array}
  10075. }
  10076. \begin{figure}[tp]
  10077. \centering
  10078. \begin{tcolorbox}[colback=white]
  10079. \small
  10080. {\if\edition\racketEd
  10081. \[
  10082. \begin{array}{l}
  10083. \gray{\LintGrammarRacket{}} \\ \hline
  10084. \gray{\LvarGrammarRacket{}} \\ \hline
  10085. \gray{\LifGrammarRacket{}} \\ \hline
  10086. \LwhileGrammarRacket \\
  10087. \begin{array}{lcl}
  10088. \LangLoopM{} &::=& \Exp
  10089. \end{array}
  10090. \end{array}
  10091. \]
  10092. \fi}
  10093. {\if\edition\pythonEd\pythonColor
  10094. \[
  10095. \begin{array}{l}
  10096. \gray{\LintGrammarPython} \\ \hline
  10097. \gray{\LvarGrammarPython} \\ \hline
  10098. \gray{\LifGrammarPython} \\ \hline
  10099. \LwhileGrammarPython \\
  10100. \begin{array}{rcl}
  10101. \LangLoopM{} &::=& \Stmt^{*}
  10102. \end{array}
  10103. \end{array}
  10104. \]
  10105. \fi}
  10106. \end{tcolorbox}
  10107. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-concrete-syntax}).}
  10108. \label{fig:Lwhile-concrete-syntax}
  10109. \end{figure}
  10110. \begin{figure}[tp]
  10111. \centering
  10112. \begin{tcolorbox}[colback=white]
  10113. \small
  10114. {\if\edition\racketEd
  10115. \[
  10116. \begin{array}{l}
  10117. \gray{\LintOpAST} \\ \hline
  10118. \gray{\LvarASTRacket{}} \\ \hline
  10119. \gray{\LifASTRacket{}} \\ \hline
  10120. \LwhileASTRacket{} \\
  10121. \begin{array}{lcl}
  10122. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10123. \end{array}
  10124. \end{array}
  10125. \]
  10126. \fi}
  10127. {\if\edition\pythonEd\pythonColor
  10128. \[
  10129. \begin{array}{l}
  10130. \gray{\LintASTPython} \\ \hline
  10131. \gray{\LvarASTPython} \\ \hline
  10132. \gray{\LifASTPython} \\ \hline
  10133. \LwhileASTPython \\
  10134. \begin{array}{lcl}
  10135. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10136. \end{array}
  10137. \end{array}
  10138. \]
  10139. \fi}
  10140. \end{tcolorbox}
  10141. \python{
  10142. \index{subject}{While@\texttt{While}}
  10143. }
  10144. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (figure~\ref{fig:Lif-syntax}).}
  10145. \label{fig:Lwhile-syntax}
  10146. \end{figure}
  10147. Figure~\ref{fig:Lwhile-concrete-syntax} shows the definition of the
  10148. concrete syntax of \LangLoop{}, and figure~\ref{fig:Lwhile-syntax}
  10149. shows the definition of its abstract syntax.
  10150. %
  10151. The definitional interpreter for \LangLoop{} is shown in
  10152. figure~\ref{fig:interp-Lwhile}.
  10153. %
  10154. {\if\edition\racketEd
  10155. %
  10156. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  10157. and \code{Void}, and we make changes to the cases for \code{Var} and
  10158. \code{Let} regarding variables. To support assignment to variables and
  10159. to make their lifetimes indefinite (see the second example in
  10160. section~\ref{sec:assignment-scoping}), we box the value that is bound
  10161. to each variable (in \code{Let}). The case for \code{Var} unboxes the
  10162. value.
  10163. %
  10164. Now we discuss the new cases. For \code{SetBang}, we find the
  10165. variable in the environment to obtain a boxed value, and then we change
  10166. it using \code{set-box!} to the result of evaluating the right-hand
  10167. side. The result value of a \code{SetBang} is \code{\#<void>}.
  10168. %
  10169. For the \code{WhileLoop}, we repeatedly (1) evaluate the condition, and
  10170. if the result is true, (2) evaluate the body.
  10171. The result value of a \code{while} loop is also \code{\#<void>}.
  10172. %
  10173. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  10174. subexpressions \itm{es} for their effects and then evaluates
  10175. and returns the result from \itm{body}.
  10176. %
  10177. The $\VOID{}$ expression produces the \code{\#<void>} value.
  10178. %
  10179. \fi}
  10180. {\if\edition\pythonEd\pythonColor
  10181. %
  10182. We add a new case for \code{While} in the \code{interp\_stmts}
  10183. function, where we repeatedly interpret the \code{body} so long as the
  10184. \code{test} expression remains true.
  10185. %
  10186. \fi}
  10187. \begin{figure}[tbp]
  10188. \begin{tcolorbox}[colback=white]
  10189. {\if\edition\racketEd
  10190. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10191. (define interp-Lwhile-class
  10192. (class interp-Lif-class
  10193. (super-new)
  10194. (define/override ((interp-exp env) e)
  10195. (define recur (interp-exp env))
  10196. (match e
  10197. [(Let x e body)
  10198. (define new-env (dict-set env x (box (recur e))))
  10199. ((interp-exp new-env) body)]
  10200. [(Var x) (unbox (dict-ref env x))]
  10201. [(SetBang x rhs)
  10202. (set-box! (dict-ref env x) (recur rhs))]
  10203. [(WhileLoop cnd body)
  10204. (define (loop)
  10205. (cond [(recur cnd) (recur body) (loop)]
  10206. [else (void)]))
  10207. (loop)]
  10208. [(Begin es body)
  10209. (for ([e es]) (recur e))
  10210. (recur body)]
  10211. [(Void) (void)]
  10212. [else ((super interp-exp env) e)]))
  10213. ))
  10214. (define (interp-Lwhile p)
  10215. (send (new interp-Lwhile-class) interp-program p))
  10216. \end{lstlisting}
  10217. \fi}
  10218. {\if\edition\pythonEd\pythonColor
  10219. \begin{lstlisting}
  10220. class InterpLwhile(InterpLif):
  10221. def interp_stmt(self, s, env, cont):
  10222. match s:
  10223. case While(test, body, []):
  10224. if self.interp_exp(test, env):
  10225. self.interp_stmts(body + [s] + cont, env)
  10226. else:
  10227. return self.interp_stmts(cont, env)
  10228. case _:
  10229. return super().interp_stmt(s, env, cont)
  10230. \end{lstlisting}
  10231. \fi}
  10232. \end{tcolorbox}
  10233. \caption{Interpreter for \LangLoop{}.}
  10234. \label{fig:interp-Lwhile}
  10235. \end{figure}
  10236. The definition of the type checker for \LangLoop{} is shown in
  10237. figure~\ref{fig:type-check-Lwhile}.
  10238. %
  10239. {\if\edition\racketEd
  10240. %
  10241. The type checking of the \code{SetBang} expression requires the type
  10242. of the variable and the right-hand side to agree. The result type is
  10243. \code{Void}. For \code{while}, the condition must be a \BOOLTY{}
  10244. and the result type is \code{Void}. For \code{Begin}, the result type
  10245. is the type of its last subexpression.
  10246. %
  10247. \fi}
  10248. %
  10249. {\if\edition\pythonEd\pythonColor
  10250. %
  10251. A \code{while} loop is well typed if the type of the \code{test}
  10252. expression is \code{bool} and the statements in the \code{body} are
  10253. well typed.
  10254. %
  10255. \fi}
  10256. \begin{figure}[tbp]
  10257. \begin{tcolorbox}[colback=white]
  10258. {\if\edition\racketEd
  10259. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  10260. (define type-check-Lwhile-class
  10261. (class type-check-Lif-class
  10262. (super-new)
  10263. (inherit check-type-equal?)
  10264. (define/override (type-check-exp env)
  10265. (lambda (e)
  10266. (define recur (type-check-exp env))
  10267. (match e
  10268. [(SetBang x rhs)
  10269. (define-values (rhs^ rhsT) (recur rhs))
  10270. (define varT (dict-ref env x))
  10271. (check-type-equal? rhsT varT e)
  10272. (values (SetBang x rhs^) 'Void)]
  10273. [(WhileLoop cnd body)
  10274. (define-values (cnd^ Tc) (recur cnd))
  10275. (check-type-equal? Tc 'Boolean e)
  10276. (define-values (body^ Tbody) ((type-check-exp env) body))
  10277. (values (WhileLoop cnd^ body^) 'Void)]
  10278. [(Begin es body)
  10279. (define-values (es^ ts)
  10280. (for/lists (l1 l2) ([e es]) (recur e)))
  10281. (define-values (body^ Tbody) (recur body))
  10282. (values (Begin es^ body^) Tbody)]
  10283. [else ((super type-check-exp env) e)])))
  10284. ))
  10285. (define (type-check-Lwhile p)
  10286. (send (new type-check-Lwhile-class) type-check-program p))
  10287. \end{lstlisting}
  10288. \fi}
  10289. {\if\edition\pythonEd\pythonColor
  10290. \begin{lstlisting}
  10291. class TypeCheckLwhile(TypeCheckLif):
  10292. def type_check_stmts(self, ss, env):
  10293. if len(ss) == 0:
  10294. return
  10295. match ss[0]:
  10296. case While(test, body, []):
  10297. test_t = self.type_check_exp(test, env)
  10298. check_type_equal(bool, test_t, test)
  10299. body_t = self.type_check_stmts(body, env)
  10300. return self.type_check_stmts(ss[1:], env)
  10301. case _:
  10302. return super().type_check_stmts(ss, env)
  10303. \end{lstlisting}
  10304. \fi}
  10305. \end{tcolorbox}
  10306. \caption{Type checker for the \LangLoop{} language.}
  10307. \label{fig:type-check-Lwhile}
  10308. \end{figure}
  10309. {\if\edition\racketEd
  10310. %
  10311. At first glance, the translation of these language features to x86
  10312. seems straightforward because the \LangCIf{} intermediate language
  10313. already supports all the ingredients that we need: assignment,
  10314. \code{goto}, conditional branching, and sequencing. However, there are
  10315. complications that arise, which we discuss in the next section. After
  10316. that we introduce the changes necessary to the existing passes.
  10317. %
  10318. \fi}
  10319. {\if\edition\pythonEd\pythonColor
  10320. %
  10321. At first glance, the translation of \code{while} loops to x86 seems
  10322. straightforward because the \LangCIf{} intermediate language already
  10323. supports \code{goto} and conditional branching. However, there are
  10324. complications that arise which we discuss in the next section. After
  10325. that we introduce the changes necessary to the existing passes.
  10326. %
  10327. \fi}
  10328. \section{Cyclic Control Flow and Dataflow Analysis}
  10329. \label{sec:dataflow-analysis}
  10330. Up until this point, the programs generated in
  10331. \code{explicate\_control} were guaranteed to be acyclic. However, each
  10332. \code{while} loop introduces a cycle. Does that matter?
  10333. %
  10334. Indeed, it does. Recall that for register allocation, the compiler
  10335. performs liveness analysis to determine which variables can share the
  10336. same register. To accomplish this, we analyzed the control-flow graph
  10337. in reverse topological order
  10338. (section~\ref{sec:liveness-analysis-Lif}), but topological order is
  10339. well defined only for acyclic graphs.
  10340. Let us return to the example of computing the sum of the first five
  10341. positive integers. Here is the program after instruction
  10342. selection\index{subject}{instruction selection} but before register
  10343. allocation.
  10344. \begin{center}
  10345. {\if\edition\racketEd
  10346. \begin{minipage}{0.45\textwidth}
  10347. \begin{lstlisting}
  10348. (define (main) : Integer
  10349. mainstart:
  10350. movq $0, sum
  10351. movq $5, i
  10352. jmp block5
  10353. block5:
  10354. movq i, tmp3
  10355. cmpq tmp3, $0
  10356. jl block7
  10357. jmp block8
  10358. \end{lstlisting}
  10359. \end{minipage}
  10360. \begin{minipage}{0.45\textwidth}
  10361. \begin{lstlisting}
  10362. block7:
  10363. addq i, sum
  10364. movq $1, tmp4
  10365. negq tmp4
  10366. addq tmp4, i
  10367. jmp block5
  10368. block8:
  10369. movq $27, %rax
  10370. addq sum, %rax
  10371. jmp mainconclusion)
  10372. \end{lstlisting}
  10373. \end{minipage}
  10374. \fi}
  10375. {\if\edition\pythonEd\pythonColor
  10376. \begin{minipage}{0.45\textwidth}
  10377. \begin{lstlisting}
  10378. mainstart:
  10379. movq $0, sum
  10380. movq $5, i
  10381. jmp block5
  10382. block5:
  10383. cmpq $0, i
  10384. jg block7
  10385. jmp block8
  10386. \end{lstlisting}
  10387. \end{minipage}
  10388. \begin{minipage}{0.45\textwidth}
  10389. \begin{lstlisting}
  10390. block7:
  10391. addq i, sum
  10392. subq $1, i
  10393. jmp block5
  10394. block8:
  10395. movq sum, %rdi
  10396. callq print_int
  10397. movq $0, %rax
  10398. jmp mainconclusion
  10399. \end{lstlisting}
  10400. \end{minipage}
  10401. \fi}
  10402. \end{center}
  10403. Recall that liveness analysis works backward, starting at the end
  10404. of each function. For this example we could start with \code{block8}
  10405. because we know what is live at the beginning of the conclusion:
  10406. only \code{rax} and \code{rsp}. So the live-before set
  10407. for \code{block8} is \code{\{rsp,sum\}}.
  10408. %
  10409. Next we might try to analyze \code{block5} or \code{block7}, but
  10410. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  10411. we are stuck.
  10412. The way out of this impasse is to realize that we can compute an
  10413. underapproximation of each live-before set by starting with empty
  10414. live-after sets. By \emph{underapproximation}, we mean that the set
  10415. contains only variables that are live for some execution of the
  10416. program, but the set may be missing some variables that are live.
  10417. Next, the underapproximations for each block can be improved by (1)
  10418. updating the live-after set for each block using the approximate
  10419. live-before sets from the other blocks, and (2) performing liveness
  10420. analysis again on each block. In fact, by iterating this process, the
  10421. underapproximations eventually become the correct solutions!
  10422. %
  10423. This approach of iteratively analyzing a control-flow graph is
  10424. applicable to many static analysis problems and goes by the name
  10425. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  10426. \citet{Kildall:1973vn} in his PhD thesis at the University of
  10427. Washington.
  10428. Let us apply this approach to the previously presented example. We use
  10429. the empty set for the initial live-before set for each block. Let
  10430. $m_0$ be the following mapping from label names to sets of locations
  10431. (variables and registers):
  10432. \begin{center}
  10433. \begin{lstlisting}
  10434. mainstart: {}, block5: {}, block7: {}, block8: {}
  10435. \end{lstlisting}
  10436. \end{center}
  10437. Using the above live-before approximations, we determine the
  10438. live-after for each block and then apply liveness analysis to each
  10439. block. This produces our next approximation $m_1$ of the live-before
  10440. sets.
  10441. \begin{center}
  10442. \begin{lstlisting}
  10443. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  10444. \end{lstlisting}
  10445. \end{center}
  10446. For the second round, the live-after for \code{mainstart} is the
  10447. current live-before for \code{block5}, which is \code{\{i\}}. Therefore
  10448. the liveness analysis for \code{mainstart} computes the empty set. The
  10449. live-after for \code{block5} is the union of the live-before sets for
  10450. \code{block7} and \code{block8}, which is \code{\{i, rsp, sum\}}.
  10451. So the liveness analysis for \code{block5} computes \code{\{i, rsp,
  10452. sum\}}. The live-after for \code{block7} is the live-before for
  10453. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  10454. So the liveness analysis for \code{block7} remains \code{\{i, sum\}}.
  10455. Together these yield the following approximation $m_2$ of
  10456. the live-before sets:
  10457. \begin{center}
  10458. \begin{lstlisting}
  10459. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  10460. \end{lstlisting}
  10461. \end{center}
  10462. In the preceding iteration, only \code{block5} changed, so we can
  10463. limit our attention to \code{mainstart} and \code{block7}, the two
  10464. blocks that jump to \code{block5}. As a result, the live-before sets
  10465. for \code{mainstart} and \code{block7} are updated to include
  10466. \code{rsp}, yielding the following approximation $m_3$:
  10467. \begin{center}
  10468. \begin{lstlisting}
  10469. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  10470. \end{lstlisting}
  10471. \end{center}
  10472. Because \code{block7} changed, we analyze \code{block5} once more, but
  10473. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  10474. our approximations have converged, so $m_3$ is the solution.
  10475. This iteration process is guaranteed to converge to a solution by the
  10476. Kleene fixed-point theorem, a general theorem about functions on
  10477. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  10478. any collection that comes with a partial ordering\index{subject}{partialordering@partial ordering} $\sqsubseteq$ on its
  10479. elements, a least element $\bot$ (pronounced \emph{bottom}), and a
  10480. join operator
  10481. $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{join}\footnote{Technically speaking, we
  10482. will be working with join semilattices.} When two elements are
  10483. ordered $m_i \sqsubseteq m_j$, it means that $m_j$ contains at least
  10484. as much information as $m_i$, so we can think of $m_j$ as a
  10485. better-than-or-equal-to approximation in relation to $m_i$. The
  10486. bottom element $\bot$ represents the complete lack of information,
  10487. that is, the worst approximation. The join operator takes two lattice
  10488. elements and combines their information; that is, it produces the
  10489. least upper bound of the two.\index{subject}{least upper bound}
  10490. A dataflow analysis typically involves two lattices: one lattice to
  10491. represent abstract states and another lattice that aggregates the
  10492. abstract states of all the blocks in the control-flow graph. For
  10493. liveness analysis, an abstract state is a set of locations. We form
  10494. the lattice $L$ by taking its elements to be sets of locations, the
  10495. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  10496. set, and the join operator to be set union.
  10497. %
  10498. We form a second lattice $M$ by taking its elements to be mappings
  10499. from the block labels to sets of locations (elements of $L$). We
  10500. order the mappings point-wise, using the ordering of $L$. So, given any
  10501. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  10502. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  10503. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  10504. to the empty set; that is, $\bot_M(\ell) = \emptyset$.
  10505. We can think of one iteration of liveness analysis applied to the
  10506. whole program as being a function $f$ on the lattice $M$. It takes a
  10507. mapping as input and computes a new mapping.
  10508. \[
  10509. f(m_i) = m_{i+1}
  10510. \]
  10511. Next let us think for a moment about what a final solution $m_s$
  10512. should look like. If we perform liveness analysis using the solution
  10513. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  10514. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  10515. \[
  10516. f(m_s) = m_s
  10517. \]
  10518. Furthermore, the solution should include only locations that are
  10519. forced to be there by performing liveness analysis on the program, so
  10520. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  10521. The Kleene fixed-point theorem states that if a function $f$ is
  10522. monotone (better inputs produce better outputs), then the least fixed
  10523. point of $f$ is the least upper bound of the \emph{ascending Kleene
  10524. chain} obtained by starting at $\bot$ and iterating $f$, as
  10525. follows:\index{subject}{Kleene fixed-point theorem}
  10526. \[
  10527. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10528. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  10529. \]
  10530. When a lattice contains only finitely long ascending chains, then
  10531. every Kleene chain tops out at some fixed point after some number of
  10532. iterations of $f$.
  10533. \[
  10534. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  10535. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  10536. \]
  10537. The liveness analysis is indeed a monotone function and the lattice
  10538. $M$ has finitely long ascending chains because there are only a
  10539. finite number of variables and blocks in the program. Thus we are
  10540. guaranteed that iteratively applying liveness analysis to all blocks
  10541. in the program will eventually produce the least fixed point solution.
  10542. Next let us consider dataflow analysis in general and discuss the
  10543. generic work list algorithm (figure~\ref{fig:generic-dataflow}).
  10544. %
  10545. The algorithm has four parameters: the control-flow graph \code{G}, a
  10546. function \code{transfer} that applies the analysis to one block, and the
  10547. \code{bottom} and \code{join} operators for the lattice of abstract
  10548. states. The \code{analyze\_dataflow} function is formulated as a
  10549. \emph{forward} dataflow analysis; that is, the inputs to the transfer
  10550. function come from the predecessor nodes in the control-flow
  10551. graph. However, liveness analysis is a \emph{backward} dataflow
  10552. analysis, so in that case one must supply the \code{analyze\_dataflow}
  10553. function with the transpose of the control-flow graph.
  10554. The algorithm begins by creating the bottom mapping, represented by a
  10555. hash table. It then pushes all the nodes in the control-flow graph
  10556. onto the work list (a queue). The algorithm repeats the \code{while}
  10557. loop as long as there are items in the work list. In each iteration, a
  10558. node is popped from the work list and processed. The \code{input} for
  10559. the node is computed by taking the join of the abstract states of all
  10560. the predecessor nodes. The \code{transfer} function is then applied to
  10561. obtain the \code{output} abstract state. If the output differs from
  10562. the previous state for this block, the mapping for this block is
  10563. updated and its successor nodes are pushed onto the work list.
  10564. \begin{figure}[tb]
  10565. \begin{tcolorbox}[colback=white]
  10566. {\if\edition\racketEd
  10567. \begin{lstlisting}
  10568. (define (analyze_dataflow G transfer bottom join)
  10569. (define mapping (make-hash))
  10570. (for ([v (in-vertices G)])
  10571. (dict-set! mapping v bottom))
  10572. (define worklist (make-queue))
  10573. (for ([v (in-vertices G)])
  10574. (enqueue! worklist v))
  10575. (define trans-G (transpose G))
  10576. (while (not (queue-empty? worklist))
  10577. (define node (dequeue! worklist))
  10578. (define input (for/fold ([state bottom])
  10579. ([pred (in-neighbors trans-G node)])
  10580. (join state (dict-ref mapping pred))))
  10581. (define output (transfer node input))
  10582. (cond [(not (equal? output (dict-ref mapping node)))
  10583. (dict-set! mapping node output)
  10584. (for ([v (in-neighbors G node)])
  10585. (enqueue! worklist v))]))
  10586. mapping)
  10587. \end{lstlisting}
  10588. \fi}
  10589. {\if\edition\pythonEd\pythonColor
  10590. \begin{lstlisting}
  10591. def analyze_dataflow(G, transfer, bottom, join):
  10592. trans_G = transpose(G)
  10593. mapping = dict((v, bottom) for v in G.vertices())
  10594. worklist = deque(G.vertices)
  10595. while worklist:
  10596. node = worklist.pop()
  10597. inputs = [mapping[v] for v in trans_G.adjacent(node)]
  10598. input = reduce(join, inputs, bottom)
  10599. output = transfer(node, input)
  10600. if output != mapping[node]:
  10601. mapping[node] = output
  10602. worklist.extend(G.adjacent(node))
  10603. \end{lstlisting}
  10604. \fi}
  10605. \end{tcolorbox}
  10606. \caption{Generic work list algorithm for dataflow analysis.}
  10607. \label{fig:generic-dataflow}
  10608. \end{figure}
  10609. {\if\edition\racketEd
  10610. \section{Mutable Variables and Remove Complex Operands}
  10611. There is a subtle interaction between the
  10612. \code{remove\_complex\_operands} pass, the addition of \code{set!},
  10613. and the left-to-right order of evaluation of Racket. Consider the
  10614. following example:
  10615. \begin{lstlisting}
  10616. (let ([x 2])
  10617. (+ x (begin (set! x 40) x)))
  10618. \end{lstlisting}
  10619. The result of this program is \code{42} because the first read from
  10620. \code{x} produces \code{2} and the second produces \code{40}. However,
  10621. if we naively apply the \code{remove\_complex\_operands} pass to this
  10622. example we obtain the following program whose result is \code{80}!
  10623. \begin{lstlisting}
  10624. (let ([x 2])
  10625. (let ([tmp (begin (set! x 40) x)])
  10626. (+ x tmp)))
  10627. \end{lstlisting}
  10628. The problem is that with mutable variables, the ordering between
  10629. reads and writes is important, and the
  10630. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  10631. before the first read of \code{x}.
  10632. We recommend solving this problem by giving special treatment to reads
  10633. from mutable variables, that is, variables that occur on the left-hand
  10634. side of a \code{set!}. We mark each read from a mutable variable with
  10635. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  10636. that the read operation is effectful in that it can produce different
  10637. results at different points in time. Let's apply this idea to the
  10638. following variation that also involves a variable that is not mutated:
  10639. % loop_test_24.rkt
  10640. \begin{lstlisting}
  10641. (let ([x 2])
  10642. (let ([y 0])
  10643. (+ y (+ x (begin (set! x 40) x)))))
  10644. \end{lstlisting}
  10645. We first analyze this program to discover that variable \code{x}
  10646. is mutable but \code{y} is not. We then transform the program as
  10647. follows, replacing each occurrence of \code{x} with \code{(get! x)}:
  10648. \begin{lstlisting}
  10649. (let ([x 2])
  10650. (let ([y 0])
  10651. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  10652. \end{lstlisting}
  10653. Now that we have a clear distinction between reads from mutable and
  10654. immutable variables, we can apply the \code{remove\_complex\_operands}
  10655. pass, where reads from immutable variables are still classified as
  10656. atomic expressions but reads from mutable variables are classified as
  10657. complex. Thus, \code{remove\_complex\_operands} yields the following
  10658. program:\\
  10659. \begin{minipage}{\textwidth}
  10660. \begin{lstlisting}
  10661. (let ([x 2])
  10662. (let ([y 0])
  10663. (+ y (let ([t1 (get! x)])
  10664. (let ([t2 (begin (set! x 40) (get! x))])
  10665. (+ t1 t2))))))
  10666. \end{lstlisting}
  10667. \end{minipage}
  10668. The temporary variable \code{t1} gets the value of \code{x} before the
  10669. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  10670. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  10671. do not generate a temporary variable for the occurrence of \code{y}
  10672. because it's an immutable variable. We want to avoid such unnecessary
  10673. extra temporaries because they would needlessly increase the number of
  10674. variables, making it more likely for some of them to be spilled. The
  10675. result of this program is \code{42}, the same as the result prior to
  10676. \code{remove\_complex\_operands}.
  10677. The approach that we've sketched requires only a small
  10678. modification to \code{remove\_complex\_operands} to handle
  10679. \code{get!}. However, it requires a new pass, called
  10680. \code{uncover-get!}, that we discuss in
  10681. section~\ref{sec:uncover-get-bang}.
  10682. As an aside, this problematic interaction between \code{set!} and the
  10683. pass \code{remove\_complex\_operands} is particular to Racket and not
  10684. its predecessor, the Scheme language. The key difference is that
  10685. Scheme does not specify an order of evaluation for the arguments of an
  10686. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  10687. Scheme is free to choose any ordering: both \code{42} and \code{80}
  10688. would be correct results for the example program. Interestingly,
  10689. Racket is implemented on top of the Chez Scheme
  10690. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  10691. presented in this section (using extra \code{let} bindings to control
  10692. the order of evaluation) is used in the translation from Racket to
  10693. Scheme~\citep{Flatt:2019tb}.
  10694. \fi} % racket
  10695. Having discussed the complications that arise from adding support for
  10696. assignment and loops, we turn to discussing the individual compilation
  10697. passes.
  10698. {\if\edition\racketEd
  10699. \section{Uncover \texttt{get!}}
  10700. \label{sec:uncover-get-bang}
  10701. The goal of this pass is to mark uses of mutable variables so that
  10702. \code{remove\_complex\_operands} can treat them as complex expressions
  10703. and thereby preserve their ordering relative to the side effects in
  10704. other operands. So, the first step is to collect all the mutable
  10705. variables. We recommend creating an auxiliary function for this,
  10706. named \code{collect-set!}, that recursively traverses expressions,
  10707. returning the set of all variables that occur on the left-hand side of a
  10708. \code{set!}. Here's an excerpt of its implementation.
  10709. \begin{center}
  10710. \begin{minipage}{\textwidth}
  10711. \begin{lstlisting}
  10712. (define (collect-set! e)
  10713. (match e
  10714. [(Var x) (set)]
  10715. [(Int n) (set)]
  10716. [(Let x rhs body)
  10717. (set-union (collect-set! rhs) (collect-set! body))]
  10718. [(SetBang var rhs)
  10719. (set-union (set var) (collect-set! rhs))]
  10720. ...))
  10721. \end{lstlisting}
  10722. \end{minipage}
  10723. \end{center}
  10724. By placing this pass after \code{uniquify}, we need not worry about
  10725. variable shadowing, and our logic for \code{Let} can remain simple, as
  10726. in this excerpt.
  10727. The second step is to mark the occurrences of the mutable variables
  10728. with the new \code{GetBang} AST node (\code{get!} in concrete
  10729. syntax). The following is an excerpt of the \code{uncover-get!-exp}
  10730. function, which takes two parameters: the set of mutable variables
  10731. \code{set!-vars} and the expression \code{e} to be processed. The
  10732. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  10733. mutable variable or leaves it alone if not.
  10734. \begin{center}
  10735. \begin{minipage}{\textwidth}
  10736. \begin{lstlisting}
  10737. (define ((uncover-get!-exp set!-vars) e)
  10738. (match e
  10739. [(Var x)
  10740. (if (set-member? set!-vars x)
  10741. (GetBang x)
  10742. (Var x))]
  10743. ...))
  10744. \end{lstlisting}
  10745. \end{minipage}
  10746. \end{center}
  10747. To wrap things up, define the \code{uncover-get!} function for
  10748. processing a whole program, using \code{collect-set!} to obtain the
  10749. set of mutable variables and then \code{uncover-get!-exp} to replace
  10750. their occurrences with \code{GetBang}.
  10751. \fi}
  10752. \section{Remove Complex Operands}
  10753. \label{sec:rco-loop}
  10754. {\if\edition\racketEd
  10755. %
  10756. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  10757. \code{while} are all complex expressions. The subexpressions of
  10758. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  10759. %
  10760. \fi}
  10761. {\if\edition\pythonEd\pythonColor
  10762. %
  10763. The change needed for this pass is to add a case for the \code{while}
  10764. statement. The condition of a \code{while} loop is allowed to be a
  10765. complex expression, just like the condition of the \code{if}
  10766. statement.
  10767. %
  10768. \fi}
  10769. %
  10770. Figure~\ref{fig:Lwhile-anf-syntax} defines the output language
  10771. \LangLoopANF{} of this pass.
  10772. \newcommand{\LwhileMonadASTRacket}{
  10773. \begin{array}{rcl}
  10774. \Atm &::=& \VOID{} \\
  10775. \Exp &::=& \GETBANG{\Var}
  10776. \MID \SETBANG{\Var}{\Exp}
  10777. \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} \\
  10778. &\MID& \WHILE{\Exp}{\Exp}
  10779. \end{array}
  10780. }
  10781. \newcommand{\LwhileMonadASTPython}{
  10782. \begin{array}{rcl}
  10783. \Stmt{} &::=& \WHILESTMT{\Exp}{\Stmt^{+}}
  10784. \end{array}
  10785. }
  10786. \begin{figure}[tp]
  10787. \centering
  10788. \begin{tcolorbox}[colback=white]
  10789. \small
  10790. {\if\edition\racketEd
  10791. \[
  10792. \begin{array}{l}
  10793. \gray{\LvarMonadASTRacket} \\ \hline
  10794. \gray{\LifMonadASTRacket} \\ \hline
  10795. \LwhileMonadASTRacket \\
  10796. \begin{array}{rcl}
  10797. \LangLoopANF &::=& \PROGRAM{\code{'()}}{\Exp}
  10798. \end{array}
  10799. \end{array}
  10800. \]
  10801. \fi}
  10802. {\if\edition\pythonEd\pythonColor
  10803. \[
  10804. \begin{array}{l}
  10805. \gray{\LvarMonadASTPython} \\ \hline
  10806. \gray{\LifMonadASTPython} \\ \hline
  10807. \LwhileMonadASTPython \\
  10808. \begin{array}{rcl}
  10809. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  10810. \end{array}
  10811. \end{array}
  10812. %% \begin{array}{rcl}
  10813. %% \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  10814. %% \Exp &::=& \Atm \MID \READ{} \\
  10815. %% &\MID& \BINOP{\Atm}{\itm{binaryop}}{\Atm} \MID \UNIOP{\itm{unaryop}}{\Atm} \\
  10816. %% &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  10817. %% % &\MID& \LET{\Var}{\Exp}{\Exp}\\ % Why?
  10818. %% \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  10819. %% &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  10820. %% &\MID& \WHILESTMT{\Exp}{\Stmt^{+}} \\
  10821. %% \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  10822. %% \end{array}
  10823. \]
  10824. \fi}
  10825. \end{tcolorbox}
  10826. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  10827. \label{fig:Lwhile-anf-syntax}
  10828. \end{figure}
  10829. {\if\edition\racketEd
  10830. %
  10831. As usual, when a complex expression appears in a grammar position that
  10832. needs to be atomic, such as the argument of a primitive operator, we
  10833. must introduce a temporary variable and bind it to the complex
  10834. expression. This approach applies, unchanged, to handle the new
  10835. language forms. For example, in the following code there are two
  10836. \code{begin} expressions appearing as arguments to the \code{+}
  10837. operator. The output of \code{rco\_exp} is then shown, in which the
  10838. \code{begin} expressions have been bound to temporary
  10839. variables. Recall that \code{let} expressions in \LangLoopANF{} are
  10840. allowed to have arbitrary expressions in their right-hand side
  10841. expression, so it is fine to place \code{begin} there.
  10842. %
  10843. \begin{center}
  10844. \begin{tabular}{lcl}
  10845. \begin{minipage}{0.4\textwidth}
  10846. \begin{lstlisting}
  10847. (let ([x2 10])
  10848. (let ([y3 0])
  10849. (+ (+ (begin
  10850. (set! y3 (read))
  10851. (get! x2))
  10852. (begin
  10853. (set! x2 (read))
  10854. (get! y3)))
  10855. (get! x2))))
  10856. \end{lstlisting}
  10857. \end{minipage}
  10858. &
  10859. $\Rightarrow$
  10860. &
  10861. \begin{minipage}{0.4\textwidth}
  10862. \begin{lstlisting}
  10863. (let ([x2 10])
  10864. (let ([y3 0])
  10865. (let ([tmp4 (begin
  10866. (set! y3 (read))
  10867. x2)])
  10868. (let ([tmp5 (begin
  10869. (set! x2 (read))
  10870. y3)])
  10871. (let ([tmp6 (+ tmp4 tmp5)])
  10872. (let ([tmp7 x2])
  10873. (+ tmp6 tmp7)))))))
  10874. \end{lstlisting}
  10875. \end{minipage}
  10876. \end{tabular}
  10877. \end{center}
  10878. \fi}
  10879. \section{Explicate Control \racket{and \LangCLoop{}}}
  10880. \label{sec:explicate-loop}
  10881. \newcommand{\CloopASTRacket}{
  10882. \begin{array}{lcl}
  10883. \Atm &::=& \VOID \\
  10884. \Stmt &::=& \READ{}
  10885. \end{array}
  10886. }
  10887. {\if\edition\racketEd
  10888. Recall that in the \code{explicate\_control} pass we define one helper
  10889. function for each kind of position in the program. For the \LangVar{}
  10890. language of integers and variables, we needed assignment and tail
  10891. positions. The \code{if} expressions of \LangIf{} introduced predicate
  10892. positions. For \LangLoop{}, the \code{begin} expression introduces yet
  10893. another kind of position: effect position. Except for the last
  10894. subexpression, the subexpressions inside a \code{begin} are evaluated
  10895. only for their effect. Their result values are discarded. We can
  10896. generate better code by taking this fact into account.
  10897. The output language of \code{explicate\_control} is \LangCLoop{}
  10898. (figure~\ref{fig:c7-syntax}), which is nearly identical to
  10899. \LangCIf{}. The only syntactic differences are the addition of \VOID{}
  10900. and that \code{read} may appear as a statement. The most significant
  10901. difference between the programs generated by \code{explicate\_control}
  10902. in chapter~\ref{ch:Lif} versus \code{explicate\_control} in this
  10903. chapter is that the control-flow graphs of the latter may contain
  10904. cycles.
  10905. \begin{figure}[tp]
  10906. \begin{tcolorbox}[colback=white]
  10907. \small
  10908. \[
  10909. \begin{array}{l}
  10910. \gray{\CvarASTRacket} \\ \hline
  10911. \gray{\CifASTRacket} \\ \hline
  10912. \CloopASTRacket \\
  10913. \begin{array}{lcl}
  10914. \LangCLoopM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  10915. \end{array}
  10916. \end{array}
  10917. \]
  10918. \end{tcolorbox}
  10919. \caption{The abstract syntax of \LangCLoop{}, extending \LangCIf{} (figure~\ref{fig:c1-syntax}).}
  10920. \label{fig:c7-syntax}
  10921. \end{figure}
  10922. The new auxiliary function \code{explicate\_effect} takes an
  10923. expression (in an effect position) and the code for its
  10924. continuation. The function returns a $\Tail$ that includes the
  10925. generated code for the input expression followed by the
  10926. continuation. If the expression is obviously pure, that is, never
  10927. causes side effects, then the expression can be removed, so the result
  10928. is just the continuation.
  10929. %
  10930. The case for $\WHILE{\itm{cnd}}{\itm{body}}$ expressions is
  10931. interesting; the generated code is depicted in the following diagram:
  10932. \begin{center}
  10933. \begin{minipage}{0.3\textwidth}
  10934. \xymatrix{
  10935. *+[F=]{\txt{\code{goto} \itm{loop}}} \ar[r]
  10936. & *+[F]{\txt{\itm{loop}: \\ \itm{cnd'}}} \ar[r]^{else} \ar[d]^{then}
  10937. & *+[F]{\txt{\itm{cont}}} \\
  10938. & *+[F]{\txt{\itm{body'} \\ \code{goto} \itm{loop}}} \ar@/^50pt/[u]
  10939. }
  10940. \end{minipage}
  10941. \end{center}
  10942. We start by creating a fresh label $\itm{loop}$ for the top of the
  10943. loop. Next, recursively process the \itm{body} (in effect position)
  10944. with a \code{goto} to $\itm{loop}$ as the continuation, producing
  10945. \itm{body'}. Process the \itm{cnd} (in predicate position) with
  10946. \itm{body'} as the \emph{then} branch and the continuation block as the
  10947. \emph{else} branch. The result should be added to the dictionary of
  10948. \code{basic-blocks} with the label \itm{loop}. The result for the
  10949. whole \code{while} loop is a \code{goto} to the \itm{loop} label.
  10950. The auxiliary functions for tail, assignment, and predicate positions
  10951. need to be updated. The three new language forms, \code{while},
  10952. \code{set!}, and \code{begin}, can appear in assignment and tail
  10953. positions. Only \code{begin} may appear in predicate positions; the
  10954. other two have result type \code{Void}.
  10955. \fi}
  10956. %
  10957. {\if\edition\pythonEd\pythonColor
  10958. %
  10959. The output of this pass is the language \LangCIf{}. No new language
  10960. features are needed in the output because a \code{while} loop can be
  10961. expressed in terms of \code{goto} and \code{if} statements, which are
  10962. already in \LangCIf{}.
  10963. %
  10964. Add a case for the \code{while} statement to the
  10965. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  10966. the condition expression.
  10967. %
  10968. \fi}
  10969. {\if\edition\racketEd
  10970. \section{Select Instructions}
  10971. \label{sec:select-instructions-loop}
  10972. \index{subject}{select instructions}
  10973. Only two small additions are needed in the \code{select\_instructions}
  10974. pass to handle the changes to \LangCLoop{}. First, to handle the
  10975. addition of \VOID{} we simply translate it to \code{0}. Second,
  10976. \code{read} may appear as a stand-alone statement instead of
  10977. appearing only on the right-hand side of an assignment statement. The code
  10978. generation is nearly identical to the one for assignment; just leave
  10979. off the instruction for moving the result into the left-hand side.
  10980. \fi}
  10981. \section{Register Allocation}
  10982. \label{sec:register-allocation-loop}
  10983. As discussed in section~\ref{sec:dataflow-analysis}, the presence of
  10984. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  10985. which complicates the liveness analysis needed for register
  10986. allocation.
  10987. %
  10988. We recommend using the generic \code{analyze\_dataflow} function that
  10989. was presented at the end of section~\ref{sec:dataflow-analysis} to
  10990. perform liveness analysis, replacing the code in
  10991. \code{uncover\_live} that processed the basic blocks in topological
  10992. order (section~\ref{sec:liveness-analysis-Lif}).
  10993. The \code{analyze\_dataflow} function has the following four parameters.
  10994. \begin{enumerate}
  10995. \item The first parameter \code{G} should be passed the transpose
  10996. of the control-flow graph.
  10997. \item The second parameter \code{transfer} should be passed a function
  10998. that applies liveness analysis to a basic block. It takes two
  10999. parameters: the label for the block to analyze and the live-after
  11000. set for that block. The transfer function should return the
  11001. live-before set for the block.
  11002. %
  11003. \racket{Also, as a side effect, it should update the block's
  11004. $\itm{info}$ with the liveness information for each instruction.}
  11005. %
  11006. \python{Also, as a side-effect, it should update the live-before and
  11007. live-after sets for each instruction.}
  11008. %
  11009. To implement the \code{transfer} function, you should be able to
  11010. reuse the code you already have for analyzing basic blocks.
  11011. \item The third and fourth parameters of \code{analyze\_dataflow} are
  11012. \code{bottom} and \code{join} for the lattice of abstract states,
  11013. that is, sets of locations. For liveness analysis, the bottom of the
  11014. lattice is the empty set, and the join operator is set union.
  11015. \end{enumerate}
  11016. \begin{figure}[p]
  11017. \begin{tcolorbox}[colback=white]
  11018. {\if\edition\racketEd
  11019. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11020. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11021. \node (Lfun-2) at (3,2) {\large \LangLoop{}};
  11022. \node (F1-4) at (6,2) {\large \LangLoop{}};
  11023. \node (F1-5) at (9,2) {\large \LangLoop{}};
  11024. \node (F1-6) at (9,0) {\large \LangLoopANF{}};
  11025. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11026. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11027. \node (x86-2-1) at (0,-4) {\large \LangXIfVar{}};
  11028. \node (x86-2-2) at (4,-4) {\large \LangXIfVar{}};
  11029. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11030. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11031. \node (x86-5) at (8,-4) {\large \LangXIf{}};
  11032. \path[->,bend left=15] (Lfun) edge [above] node
  11033. {\ttfamily\footnotesize shrink} (Lfun-2);
  11034. \path[->,bend left=15] (Lfun-2) edge [above] node
  11035. {\ttfamily\footnotesize uniquify} (F1-4);
  11036. \path[->,bend left=15] (F1-4) edge [above] node
  11037. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  11038. \path[->,bend left=15] (F1-5) edge [left] node
  11039. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11040. \path[->,bend left=10] (F1-6) edge [above] node
  11041. {\ttfamily\footnotesize explicate\_control} (C3-2);
  11042. \path[->,bend left=15] (C3-2) edge [right] node
  11043. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11044. \path[->,bend right=15] (x86-2) edge [right] node
  11045. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11046. \path[->,bend right=15] (x86-2-1) edge [below] node
  11047. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  11048. \path[->,bend right=15] (x86-2-2) edge [right] node
  11049. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  11050. \path[->,bend left=15] (x86-3) edge [above] node
  11051. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11052. \path[->,bend left=15] (x86-4) edge [right] node
  11053. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11054. \end{tikzpicture}
  11055. \fi}
  11056. {\if\edition\pythonEd\pythonColor
  11057. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  11058. \node (Lfun) at (0,2) {\large \LangLoop{}};
  11059. \node (Lfun-2) at (4,2) {\large \LangLoop{}};
  11060. \node (F1-6) at (8,2) {\large \LangLoopANF{}};
  11061. \node (C3-2) at (0,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  11062. \node (x86-2) at (0,-2) {\large \LangXIfVar{}};
  11063. \node (x86-3) at (4,-2) {\large \LangXIfVar{}};
  11064. \node (x86-4) at (8,-2) {\large \LangXIf{}};
  11065. \node (x86-5) at (12,-2) {\large \LangXIf{}};
  11066. \path[->,bend left=15] (Lfun) edge [above] node
  11067. {\ttfamily\footnotesize shrink} (Lfun-2);
  11068. \path[->,bend left=15] (Lfun-2) edge [above] node
  11069. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  11070. \path[->,bend left=10] (F1-6) edge [right] node
  11071. {\ttfamily\footnotesize \ \ explicate\_control} (C3-2);
  11072. \path[->,bend right=15] (C3-2) edge [right] node
  11073. {\ttfamily\footnotesize select\_instructions} (x86-2);
  11074. \path[->,bend right=15] (x86-2) edge [below] node
  11075. {\ttfamily\footnotesize assign\_homes} (x86-3);
  11076. \path[->,bend left=15] (x86-3) edge [above] node
  11077. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  11078. \path[->,bend right=15] (x86-4) edge [below] node
  11079. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  11080. \end{tikzpicture}
  11081. \fi}
  11082. \end{tcolorbox}
  11083. \caption{Diagram of the passes for \LangLoop{}.}
  11084. \label{fig:Lwhile-passes}
  11085. \end{figure}
  11086. Figure~\ref{fig:Lwhile-passes} provides an overview of all the passes needed
  11087. for the compilation of \LangLoop{}.
  11088. % Further Reading: dataflow analysis
  11089. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11090. \chapter{Tuples and Garbage Collection}
  11091. \label{ch:Lvec}
  11092. \index{subject}{tuple}
  11093. \index{subject}{vector}
  11094. \setcounter{footnote}{0}
  11095. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  11096. %% all the IR grammars are spelled out! \\ --Jeremy}
  11097. %% \margincomment{\scriptsize Be more explicit about how to deal with
  11098. %% the root stack. \\ --Jeremy}
  11099. In this chapter we study the implementation of tuples\racket{, called
  11100. vectors in Racket}. A tuple is a fixed-length sequence of elements
  11101. in which each element may have a different type.
  11102. %
  11103. This language feature is the first to use the computer's
  11104. \emph{heap}\index{subject}{heap}, because the lifetime of a tuple is
  11105. indefinite; that is, a tuple lives forever from the programmer's
  11106. viewpoint. Of course, from an implementer's viewpoint, it is important
  11107. to reclaim the space associated with a tuple when it is no longer
  11108. needed, which is why we also study \emph{garbage collection}
  11109. \index{subject}{garbage collection} techniques in this chapter.
  11110. Section~\ref{sec:r3} introduces the \LangVec{} language, including its
  11111. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  11112. language (chapter~\ref{ch:Lwhile}) with tuples.
  11113. %
  11114. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  11115. copying live tuples back and forth between two halves of the heap. The
  11116. garbage collector requires coordination with the compiler so that it
  11117. can find all the live tuples.
  11118. %
  11119. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  11120. discuss the necessary changes and additions to the compiler passes,
  11121. including a new compiler pass named \code{expose\_allocation}.
  11122. \section{The \LangVec{} Language}
  11123. \label{sec:r3}
  11124. Figure~\ref{fig:Lvec-concrete-syntax} shows the definition of the
  11125. concrete syntax for \LangVec{}, and figure~\ref{fig:Lvec-syntax} shows
  11126. the definition of the abstract syntax.
  11127. %
  11128. \racket{The \LangVec{} language includes the forms \code{vector} for
  11129. creating a tuple, \code{vector-ref} for reading an element of a
  11130. tuple, \code{vector-set!} for writing to an element of a tuple, and
  11131. \code{vector-length} for obtaining the number of elements of a
  11132. tuple.}
  11133. %
  11134. \python{The \LangVec{} language adds 1) tuple creation via a
  11135. comma-separated list of expressions, 2) accessing an element of a
  11136. tuple with the square bracket notation, i.e., \code{t[n]} returns
  11137. the element at index \code{n} of tuple \code{t}, 3) the \code{is} comparison
  11138. operator, and 4) obtaining the number of elements (the length) of a
  11139. tuple. In this chapter, we restrict access indices to constant
  11140. integers.}
  11141. %
  11142. The following program shows an example use of tuples. It creates a tuple
  11143. \code{t} containing the elements \code{40},
  11144. \racket{\code{\#t}}\python{\code{True}}, and another tuple that
  11145. contains just \code{2}. The element at index $1$ of \code{t} is
  11146. \racket{\code{\#t}}\python{\code{True}}, so the \emph{then} branch of the
  11147. \key{if} is taken. The element at index $0$ of \code{t} is \code{40},
  11148. to which we add \code{2}, the element at index $0$ of the tuple.
  11149. The result of the program is \code{42}.
  11150. %
  11151. {\if\edition\racketEd
  11152. \begin{lstlisting}
  11153. (let ([t (vector 40 #t (vector 2))])
  11154. (if (vector-ref t 1)
  11155. (+ (vector-ref t 0)
  11156. (vector-ref (vector-ref t 2) 0))
  11157. 44))
  11158. \end{lstlisting}
  11159. \fi}
  11160. {\if\edition\pythonEd\pythonColor
  11161. \begin{lstlisting}
  11162. t = 40, True, (2,)
  11163. print( t[0] + t[2][0] if t[1] else 44 )
  11164. \end{lstlisting}
  11165. \fi}
  11166. \newcommand{\LtupGrammarRacket}{
  11167. \begin{array}{lcl}
  11168. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11169. \Exp &::=& \LP\key{vector}\;\Exp^{*}\RP
  11170. \MID \LP\key{vector-length}\;\Exp\RP \\
  11171. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  11172. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP
  11173. \end{array}
  11174. }
  11175. \newcommand{\LtupASTRacket}{
  11176. \begin{array}{lcl}
  11177. \Type &::=& \LP\key{Vector}\;\Type^{*}\RP \\
  11178. \itm{op} &::=& \code{vector} \MID \code{vector-length} \\
  11179. \Exp &::=& \VECREF{\Exp}{\INT{\Int}} \\
  11180. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp}
  11181. % &\MID& \LP\key{HasType}~\Exp~\Type \RP
  11182. \end{array}
  11183. }
  11184. \newcommand{\LtupGrammarPython}{
  11185. \begin{array}{rcl}
  11186. \itm{cmp} &::= & \key{is} \\
  11187. \Exp &::=& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Int} \MID \CLEN{\Exp}
  11188. \end{array}
  11189. }
  11190. \newcommand{\LtupASTPython}{
  11191. \begin{array}{lcl}
  11192. \itm{cmp} &::= & \code{Is()} \\
  11193. \Exp &::=& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\INT{\Int}} \\
  11194. &\MID& \LEN{\Exp}
  11195. \end{array}
  11196. }
  11197. \begin{figure}[tbp]
  11198. \centering
  11199. \begin{tcolorbox}[colback=white]
  11200. \small
  11201. {\if\edition\racketEd
  11202. \[
  11203. \begin{array}{l}
  11204. \gray{\LintGrammarRacket{}} \\ \hline
  11205. \gray{\LvarGrammarRacket{}} \\ \hline
  11206. \gray{\LifGrammarRacket{}} \\ \hline
  11207. \gray{\LwhileGrammarRacket} \\ \hline
  11208. \LtupGrammarRacket \\
  11209. \begin{array}{lcl}
  11210. \LangVecM{} &::=& \Exp
  11211. \end{array}
  11212. \end{array}
  11213. \]
  11214. \fi}
  11215. {\if\edition\pythonEd\pythonColor
  11216. \[
  11217. \begin{array}{l}
  11218. \gray{\LintGrammarPython{}} \\ \hline
  11219. \gray{\LvarGrammarPython{}} \\ \hline
  11220. \gray{\LifGrammarPython{}} \\ \hline
  11221. \gray{\LwhileGrammarPython} \\ \hline
  11222. \LtupGrammarPython \\
  11223. \begin{array}{rcl}
  11224. \LangVecM{} &::=& \Stmt^{*}
  11225. \end{array}
  11226. \end{array}
  11227. \]
  11228. \fi}
  11229. \end{tcolorbox}
  11230. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  11231. (figure~\ref{fig:Lwhile-concrete-syntax}).}
  11232. \label{fig:Lvec-concrete-syntax}
  11233. \end{figure}
  11234. \begin{figure}[tp]
  11235. \centering
  11236. \begin{tcolorbox}[colback=white]
  11237. \small
  11238. {\if\edition\racketEd
  11239. \[
  11240. \begin{array}{l}
  11241. \gray{\LintOpAST} \\ \hline
  11242. \gray{\LvarASTRacket{}} \\ \hline
  11243. \gray{\LifASTRacket{}} \\ \hline
  11244. \gray{\LwhileASTRacket{}} \\ \hline
  11245. \LtupASTRacket{} \\
  11246. \begin{array}{lcl}
  11247. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  11248. \end{array}
  11249. \end{array}
  11250. \]
  11251. \fi}
  11252. {\if\edition\pythonEd\pythonColor
  11253. \[
  11254. \begin{array}{l}
  11255. \gray{\LintASTPython} \\ \hline
  11256. \gray{\LvarASTPython} \\ \hline
  11257. \gray{\LifASTPython} \\ \hline
  11258. \gray{\LwhileASTPython} \\ \hline
  11259. \LtupASTPython \\
  11260. \begin{array}{lcl}
  11261. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  11262. \end{array}
  11263. \end{array}
  11264. \]
  11265. \fi}
  11266. \end{tcolorbox}
  11267. \caption{The abstract syntax of \LangVec{}.}
  11268. \label{fig:Lvec-syntax}
  11269. \end{figure}
  11270. Tuples raise several interesting new issues. First, variable binding
  11271. performs a shallow copy in dealing with tuples, which means that
  11272. different variables can refer to the same tuple; that is, two
  11273. variables can be \emph{aliases}\index{subject}{alias} for the same
  11274. entity. Consider the following example, in which \code{t1} and
  11275. \code{t2} refer to the same tuple value and \code{t3} refers to a
  11276. different tuple value with equal elements. The result of the
  11277. program is \code{42}.
  11278. \begin{center}
  11279. \begin{minipage}{0.96\textwidth}
  11280. {\if\edition\racketEd
  11281. \begin{lstlisting}
  11282. (let ([t1 (vector 3 7)])
  11283. (let ([t2 t1])
  11284. (let ([t3 (vector 3 7)])
  11285. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  11286. 42
  11287. 0))))
  11288. \end{lstlisting}
  11289. \fi}
  11290. {\if\edition\pythonEd\pythonColor
  11291. \begin{lstlisting}
  11292. t1 = 3, 7
  11293. t2 = t1
  11294. t3 = 3, 7
  11295. print( 42 if (t1 is t2) and not (t1 is t3) else 0 )
  11296. \end{lstlisting}
  11297. \fi}
  11298. \end{minipage}
  11299. \end{center}
  11300. {\if\edition\racketEd
  11301. Whether two variables are aliased or not affects what happens
  11302. when the underlying tuple is mutated\index{subject}{mutation}.
  11303. Consider the following example in which \code{t1} and \code{t2}
  11304. again refer to the same tuple value.
  11305. \begin{center}
  11306. \begin{minipage}{0.96\textwidth}
  11307. \begin{lstlisting}
  11308. (let ([t1 (vector 3 7)])
  11309. (let ([t2 t1])
  11310. (let ([_ (vector-set! t2 0 42)])
  11311. (vector-ref t1 0))))
  11312. \end{lstlisting}
  11313. \end{minipage}
  11314. \end{center}
  11315. The mutation through \code{t2} is visible in referencing the tuple
  11316. from \code{t1}, so the result of this program is \code{42}.
  11317. \fi}
  11318. The next issue concerns the lifetime of tuples. When does a tuple's
  11319. lifetime end? Notice that \LangVec{} does not include an operation
  11320. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  11321. to any notion of static scoping.
  11322. %
  11323. {\if\edition\racketEd
  11324. %
  11325. For example, the following program returns \code{42} even though the
  11326. variable \code{w} goes out of scope prior to the \code{vector-ref}
  11327. that reads from the vector to which it was bound.
  11328. \begin{center}
  11329. \begin{minipage}{0.96\textwidth}
  11330. \begin{lstlisting}
  11331. (let ([v (vector (vector 44))])
  11332. (let ([x (let ([w (vector 42)])
  11333. (let ([_ (vector-set! v 0 w)])
  11334. 0))])
  11335. (+ x (vector-ref (vector-ref v 0) 0))))
  11336. \end{lstlisting}
  11337. \end{minipage}
  11338. \end{center}
  11339. \fi}
  11340. %
  11341. {\if\edition\pythonEd\pythonColor
  11342. %
  11343. For example, the following program returns \code{42} even though the
  11344. variable \code{x} goes out of scope when the function returns, prior
  11345. to reading the tuple element at index zero. (We study the compilation
  11346. of functions in chapter~\ref{ch:Lfun}.)
  11347. %
  11348. \begin{center}
  11349. \begin{minipage}{0.96\textwidth}
  11350. \begin{lstlisting}
  11351. def f():
  11352. x = 42, 43
  11353. return x
  11354. t = f()
  11355. print( t[0] )
  11356. \end{lstlisting}
  11357. \end{minipage}
  11358. \end{center}
  11359. \fi}
  11360. %
  11361. From the perspective of programmer-observable behavior, tuples live
  11362. forever. However, if they really lived forever then many long-running
  11363. programs would run out of memory. To solve this problem, the
  11364. language's runtime system performs automatic garbage collection.
  11365. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  11366. \LangVec{} language.
  11367. %
  11368. \racket{We define the \code{vector}, \code{vector-ref},
  11369. \code{vector-set!}, and \code{vector-length} operations for
  11370. \LangVec{} in terms of the corresponding operations in Racket. One
  11371. subtle point is that the \code{vector-set!} operation returns the
  11372. \code{\#<void>} value.}
  11373. %
  11374. \python{We represent tuples with Python lists in the interpreter
  11375. because we need to write to them
  11376. (section~\ref{sec:expose-allocation}). (Python tuples are
  11377. immutable.) We define element access, the \code{is} operator, and
  11378. the \code{len} operator for \LangVec{} in terms of the corresponding
  11379. operations in Python.}
  11380. \begin{figure}[tbp]
  11381. \begin{tcolorbox}[colback=white]
  11382. {\if\edition\racketEd
  11383. \begin{lstlisting}
  11384. (define interp-Lvec-class
  11385. (class interp-Lwhile-class
  11386. (super-new)
  11387. (define/override (interp-op op)
  11388. (match op
  11389. ['eq? (lambda (v1 v2)
  11390. (cond [(or (and (fixnum? v1) (fixnum? v2))
  11391. (and (boolean? v1) (boolean? v2))
  11392. (and (vector? v1) (vector? v2))
  11393. (and (void? v1) (void? v2)))
  11394. (eq? v1 v2)]))]
  11395. ['vector vector]
  11396. ['vector-length vector-length]
  11397. ['vector-ref vector-ref]
  11398. ['vector-set! vector-set!]
  11399. [else (super interp-op op)]
  11400. ))
  11401. (define/override ((interp-exp env) e)
  11402. (match e
  11403. [(HasType e t) ((interp-exp env) e)]
  11404. [else ((super interp-exp env) e)]
  11405. ))
  11406. ))
  11407. (define (interp-Lvec p)
  11408. (send (new interp-Lvec-class) interp-program p))
  11409. \end{lstlisting}
  11410. \fi}
  11411. %
  11412. {\if\edition\pythonEd\pythonColor
  11413. \begin{lstlisting}
  11414. class InterpLtup(InterpLwhile):
  11415. def interp_cmp(self, cmp):
  11416. match cmp:
  11417. case Is():
  11418. return lambda x, y: x is y
  11419. case _:
  11420. return super().interp_cmp(cmp)
  11421. def interp_exp(self, e, env):
  11422. match e:
  11423. case Tuple(es, Load()):
  11424. return tuple([self.interp_exp(e, env) for e in es])
  11425. case Subscript(tup, index, Load()):
  11426. t = self.interp_exp(tup, env)
  11427. n = self.interp_exp(index, env)
  11428. return t[n]
  11429. case _:
  11430. return super().interp_exp(e, env)
  11431. \end{lstlisting}
  11432. \fi}
  11433. \end{tcolorbox}
  11434. \caption{Interpreter for the \LangVec{} language.}
  11435. \label{fig:interp-Lvec}
  11436. \end{figure}
  11437. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  11438. \LangVec{}.
  11439. %
  11440. The type of a tuple is a
  11441. \racket{\code{Vector}}\python{\code{TupleType}} type that contains a
  11442. type for each of its elements.
  11443. %
  11444. \racket{To create the s-expression for the \code{Vector} type, we use the
  11445. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  11446. operator} \code{,@} to insert the list \code{t*} without its usual
  11447. start and end parentheses. \index{subject}{unquote-splicing}}
  11448. %
  11449. The type of accessing the ith element of a tuple is the ith element
  11450. type of the tuple's type, if there is one. If not, an error is
  11451. signaled. Note that the index \code{i} is required to be a constant
  11452. integer (and not, for example, a call to
  11453. \racket{\code{read}}\python{input\_int}) so that the type checker
  11454. can determine the element's type given the tuple type.
  11455. %
  11456. \racket{
  11457. Regarding writing an element to a tuple, the element's type must
  11458. be equal to the ith element type of the tuple's type.
  11459. The result type is \code{Void}.}
  11460. %% When allocating a tuple,
  11461. %% we need to know which elements of the tuple are themselves tuples for
  11462. %% the purposes of garbage collection. We can obtain this information
  11463. %% during type checking. The type checker shown in
  11464. %% figure~\ref{fig:type-check-Lvec} not only computes the type of an
  11465. %% expression; it also
  11466. %% %
  11467. %% \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  11468. %% where $T$ is the tuple's type.
  11469. %
  11470. %records the type of each tuple expression in a new field named \code{has\_type}.
  11471. \begin{figure}[tp]
  11472. \begin{tcolorbox}[colback=white]
  11473. {\if\edition\racketEd
  11474. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11475. (define type-check-Lvec-class
  11476. (class type-check-Lif-class
  11477. (super-new)
  11478. (inherit check-type-equal?)
  11479. (define/override (type-check-exp env)
  11480. (lambda (e)
  11481. (define recur (type-check-exp env))
  11482. (match e
  11483. [(Prim 'vector es)
  11484. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  11485. (define t `(Vector ,@t*))
  11486. (values (Prim 'vector e*) t)]
  11487. [(Prim 'vector-ref (list e1 (Int i)))
  11488. (define-values (e1^ t) (recur e1))
  11489. (match t
  11490. [`(Vector ,ts ...)
  11491. (unless (and (0 . <= . i) (i . < . (length ts)))
  11492. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11493. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  11494. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11495. [(Prim 'vector-set! (list e1 (Int i) elt) )
  11496. (define-values (e-vec t-vec) (recur e1))
  11497. (define-values (e-elt^ t-elt) (recur elt))
  11498. (match t-vec
  11499. [`(Vector ,ts ...)
  11500. (unless (and (0 . <= . i) (i . < . (length ts)))
  11501. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  11502. (check-type-equal? (list-ref ts i) t-elt e)
  11503. (values (Prim 'vector-set! (list e-vec (Int i) e-elt^)) 'Void)]
  11504. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  11505. [(Prim 'vector-length (list e))
  11506. (define-values (e^ t) (recur e))
  11507. (match t
  11508. [`(Vector ,ts ...)
  11509. (values (Prim 'vector-length (list e^)) 'Integer)]
  11510. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  11511. [(Prim 'eq? (list arg1 arg2))
  11512. (define-values (e1 t1) (recur arg1))
  11513. (define-values (e2 t2) (recur arg2))
  11514. (match* (t1 t2)
  11515. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  11516. [(other wise) (check-type-equal? t1 t2 e)])
  11517. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  11518. [else ((super type-check-exp env) e)]
  11519. )))
  11520. ))
  11521. (define (type-check-Lvec p)
  11522. (send (new type-check-Lvec-class) type-check-program p))
  11523. \end{lstlisting}
  11524. \fi}
  11525. {\if\edition\pythonEd\pythonColor
  11526. \begin{lstlisting}
  11527. class TypeCheckLtup(TypeCheckLwhile):
  11528. def type_check_exp(self, e, env):
  11529. match e:
  11530. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  11531. l = self.type_check_exp(left, env)
  11532. r = self.type_check_exp(right, env)
  11533. check_type_equal(l, r, e)
  11534. return bool
  11535. case Tuple(es, Load()):
  11536. ts = [self.type_check_exp(e, env) for e in es]
  11537. e.has_type = TupleType(ts)
  11538. return e.has_type
  11539. case Subscript(tup, Constant(i), Load()):
  11540. tup_ty = self.type_check_exp(tup, env)
  11541. i_ty = self.type_check_exp(Constant(i), env)
  11542. check_type_equal(i_ty, int, i)
  11543. match tup_ty:
  11544. case TupleType(ts):
  11545. return ts[i]
  11546. case _:
  11547. raise Exception('error: expected a tuple, not ' + repr(tup_ty))
  11548. case _:
  11549. return super().type_check_exp(e, env)
  11550. \end{lstlisting}
  11551. \fi}
  11552. \end{tcolorbox}
  11553. \caption{Type checker for the \LangVec{} language.}
  11554. \label{fig:type-check-Lvec}
  11555. \end{figure}
  11556. \section{Garbage Collection}
  11557. \label{sec:GC}
  11558. Garbage collection is a runtime technique for reclaiming space on the
  11559. heap that will not be used in the future of the running program. We
  11560. use the term \emph{object}\index{subject}{object} to refer to any
  11561. value that is stored in the heap, which for now includes only
  11562. tuples.%
  11563. %
  11564. \footnote{The term \emph{object} as it is used in the context of
  11565. object-oriented programming has a more specific meaning than the
  11566. way in which we use the term here.}
  11567. %
  11568. Unfortunately, it is impossible to know precisely which objects will
  11569. be accessed in the future and which will not. Instead, garbage
  11570. collectors overapproximate the set of objects that will be accessed by
  11571. identifying which objects can possibly be accessed. The running
  11572. program can directly access objects that are in registers and on the
  11573. procedure call stack. It can also transitively access the elements of
  11574. tuples, starting with a tuple whose address is in a register or on the
  11575. procedure call stack. We define the \emph{root
  11576. set}\index{subject}{root set} to be all the tuple addresses that are
  11577. in registers or on the procedure call stack. We define the \emph{live
  11578. objects}\index{subject}{live objects} to be the objects that are
  11579. reachable from the root set. Garbage collectors reclaim the space that
  11580. is allocated to objects that are no longer live. \index{subject}{allocate}
  11581. That means that some objects may not get reclaimed as soon as they could be,
  11582. but at least
  11583. garbage collectors do not reclaim the space dedicated to objects that
  11584. will be accessed in the future! The programmer can influence which
  11585. objects get reclaimed by causing them to become unreachable.
  11586. So the goal of the garbage collector is twofold:
  11587. \begin{enumerate}
  11588. \item to preserve all the live objects, and
  11589. \item to reclaim the memory of everything else, that is, the \emph{garbage}.
  11590. \end{enumerate}
  11591. \subsection{Two-Space Copying Collector}
  11592. Here we study a relatively simple algorithm for garbage collection
  11593. that is the basis of many state-of-the-art garbage
  11594. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  11595. particular, we describe a two-space copying
  11596. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  11597. perform the copy~\citep{Cheney:1970aa}. \index{subject}{copying
  11598. collector} \index{subject}{two-space copying collector}
  11599. Figure~\ref{fig:copying-collector} gives a coarse-grained depiction of
  11600. what happens in a two-space collector, showing two time steps, prior
  11601. to garbage collection (on the top) and after garbage collection (on
  11602. the bottom). In a two-space collector, the heap is divided into two
  11603. parts named the FromSpace\index{subject}{FromSpace} and the
  11604. ToSpace\index{subject}{ToSpace}. Initially, all allocations go to the
  11605. FromSpace until there is not enough room for the next allocation
  11606. request. At that point, the garbage collector goes to work to make
  11607. room for the next allocation.
  11608. A copying collector makes more room by copying all the live objects
  11609. from the FromSpace into the ToSpace and then performs a sleight of
  11610. hand, treating the ToSpace as the new FromSpace and the old FromSpace
  11611. as the new ToSpace. In the example shown in
  11612. figure~\ref{fig:copying-collector}, the root set consists of three
  11613. pointers, one in a register and two on the stack. All the live
  11614. objects have been copied to the ToSpace (the right-hand side of
  11615. figure~\ref{fig:copying-collector}) in a way that preserves the
  11616. pointer relationships. For example, the pointer in the register still
  11617. points to a tuple that in turn points to two other tuples. There are
  11618. four tuples that are not reachable from the root set and therefore do
  11619. not get copied into the ToSpace.
  11620. The exact situation shown in figure~\ref{fig:copying-collector} cannot be
  11621. created by a well-typed program in \LangVec{} because it contains a
  11622. cycle. However, creating cycles will be possible once we get to
  11623. \LangDyn{} (chapter~\ref{ch:Ldyn}). We design the garbage collector
  11624. to deal with cycles to begin with, so we will not need to revisit this
  11625. issue.
  11626. \begin{figure}[tbp]
  11627. \centering
  11628. \begin{tcolorbox}[colback=white]
  11629. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-1}}
  11630. \python{\includegraphics[width=\textwidth]{figs/copy-collect-1-python}}
  11631. \\[5ex]
  11632. \racket{\includegraphics[width=\textwidth]{figs/copy-collect-2}}
  11633. \python{\includegraphics[width=\textwidth]{figs/copy-collect-2-python}}
  11634. \end{tcolorbox}
  11635. \caption{A copying collector in action.}
  11636. \label{fig:copying-collector}
  11637. \end{figure}
  11638. \subsection{Graph Copying via Cheney's Algorithm}
  11639. \label{sec:cheney}
  11640. \index{subject}{Cheney's algorithm}
  11641. Let us take a closer look at the copying of the live objects. The
  11642. allocated\index{subject}{allocate} objects and pointers can be viewed
  11643. as a graph, and we need to copy the part of the graph that is
  11644. reachable from the root set. To make sure that we copy all the
  11645. reachable vertices in the graph, we need an exhaustive graph traversal
  11646. algorithm, such as depth-first search or breadth-first
  11647. search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that such algorithms
  11648. take into account the possibility of cycles by marking which vertices
  11649. have already been visited, so to ensure termination of the
  11650. algorithm. These search algorithms also use a data structure such as a
  11651. stack or queue as a to-do list to keep track of the vertices that need
  11652. to be visited. We use breadth-first search and a trick due to
  11653. \citet{Cheney:1970aa} for simultaneously representing the queue and
  11654. copying tuples into the ToSpace.
  11655. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  11656. copy progresses. The queue is represented by a chunk of contiguous
  11657. memory at the beginning of the ToSpace, using two pointers to track
  11658. the front and the back of the queue, called the \emph{free pointer}
  11659. and the \emph{scan pointer}, respectively. The algorithm starts by
  11660. copying all tuples that are immediately reachable from the root set
  11661. into the ToSpace to form the initial queue. When we copy a tuple, we
  11662. mark the old tuple to indicate that it has been visited. We discuss
  11663. how this marking is accomplished in section~\ref{sec:data-rep-gc}. Note
  11664. that any pointers inside the copied tuples in the queue still point
  11665. back to the FromSpace. Once the initial queue has been created, the
  11666. algorithm enters a loop in which it repeatedly processes the tuple at
  11667. the front of the queue and pops it off the queue. To process a tuple,
  11668. the algorithm copies all the objects that are directly reachable from it
  11669. to the ToSpace, placing them at the back of the queue. The algorithm
  11670. then updates the pointers in the popped tuple so that they point to the
  11671. newly copied objects.
  11672. \begin{figure}[tbp]
  11673. \centering
  11674. \begin{tcolorbox}[colback=white]
  11675. \racket{\includegraphics[width=0.9\textwidth]{figs/cheney}}
  11676. \python{\includegraphics[width=0.9\textwidth]{figs/cheney-python}}
  11677. \end{tcolorbox}
  11678. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  11679. \label{fig:cheney}
  11680. \end{figure}
  11681. As shown in figure~\ref{fig:cheney}, in the first step we copy the
  11682. tuple whose second element is $42$ to the back of the queue. The other
  11683. pointer goes to a tuple that has already been copied, so we do not
  11684. need to copy it again, but we do need to update the pointer to the new
  11685. location. This can be accomplished by storing a \emph{forwarding
  11686. pointer}\index{subject}{forwarding pointer} to the new location in the
  11687. old tuple, when we initially copied the tuple into the
  11688. ToSpace. This completes one step of the algorithm. The algorithm
  11689. continues in this way until the queue is empty; that is, when the scan
  11690. pointer catches up with the free pointer.
  11691. \subsection{Data Representation}
  11692. \label{sec:data-rep-gc}
  11693. The garbage collector places some requirements on the data
  11694. representations used by our compiler. First, the garbage collector
  11695. needs to distinguish between pointers and other kinds of data such as
  11696. integers. The following are several ways to accomplish this:
  11697. \begin{enumerate}
  11698. \item Attach a tag to each object that identifies what type of
  11699. object it is~\citep{McCarthy:1960dz}.
  11700. \item Store different types of objects in different
  11701. regions~\citep{Steele:1977ab}.
  11702. \item Use type information from the program to either (a) generate
  11703. type-specific code for collecting, or (b) generate tables that
  11704. guide the collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  11705. \end{enumerate}
  11706. Dynamically typed languages, such as \racket{Racket}\python{Python},
  11707. need to tag objects in any case, so option 1 is a natural choice for those
  11708. languages. However, \LangVec{} is a statically typed language, so it
  11709. would be unfortunate to require tags on every object, especially small
  11710. and pervasive objects like integers and Booleans. Option 3 is the
  11711. best-performing choice for statically typed languages, but it comes with
  11712. a relatively high implementation complexity. To keep this chapter
  11713. within a reasonable scope of complexity, we recommend a combination of options
  11714. 1 and 2, using separate strategies for the stack and the heap.
  11715. Regarding the stack, we recommend using a separate stack for pointers,
  11716. which we call the \emph{root stack}\index{subject}{root stack}
  11717. (aka \emph{shadow stack})~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}.
  11718. That is, when a local variable needs to be spilled and is of type
  11719. \racket{\code{Vector}}\python{\code{TupleType}}, we put it on the
  11720. root stack instead of putting it on the procedure call
  11721. stack. Furthermore, we always spill tuple-typed variables if they are
  11722. live during a call to the collector, thereby ensuring that no pointers
  11723. are in registers during a collection. Figure~\ref{fig:shadow-stack}
  11724. reproduces the example shown in figure~\ref{fig:copying-collector} and
  11725. contrasts it with the data layout using a root stack. The root stack
  11726. contains the two pointers from the regular stack and also the pointer
  11727. in the second register.
  11728. \begin{figure}[tbp]
  11729. \centering
  11730. \begin{tcolorbox}[colback=white]
  11731. \racket{\includegraphics[width=0.60\textwidth]{figs/root-stack}}
  11732. \python{\includegraphics[width=0.60\textwidth]{figs/root-stack-python}}
  11733. \end{tcolorbox}
  11734. \caption{Maintaining a root stack to facilitate garbage collection.}
  11735. \label{fig:shadow-stack}
  11736. \end{figure}
  11737. The problem of distinguishing between pointers and other kinds of data
  11738. also arises inside each tuple on the heap. We solve this problem by
  11739. attaching a tag, an extra 64 bits, to each
  11740. tuple. Figure~\ref{fig:tuple-rep} shows a zoomed-in view of the tags for
  11741. two of the tuples in the example given in figure~\ref{fig:copying-collector}.
  11742. Note that we have drawn the bits in a big-endian way, from right to left,
  11743. with bit location 0 (the least significant bit) on the far right,
  11744. which corresponds to the direction of the x86 shifting instructions
  11745. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  11746. is dedicated to specifying which elements of the tuple are pointers,
  11747. the part labeled \emph{pointer mask}. Within the pointer mask, a 1 bit
  11748. indicates that there is a pointer, and a 0 bit indicates some other kind of
  11749. data. The pointer mask starts at bit location 7. We limit tuples to a
  11750. maximum size of fifty elements, so we need 50 bits for the pointer
  11751. mask.%
  11752. %
  11753. \footnote{A production-quality compiler would handle
  11754. arbitrarily sized tuples and use a more complex approach.}
  11755. %
  11756. The tag also contains two other pieces of information. The length of
  11757. the tuple (number of elements) is stored in bits at locations 1 through
  11758. 6. Finally, the bit at location 0 indicates whether the tuple has yet
  11759. to be copied to the ToSpace. If the bit has value 1, then this tuple
  11760. has not yet been copied. If the bit has value 0, then the entire tag
  11761. is a forwarding pointer. (The lower 3 bits of a pointer are always
  11762. zero in any case, because our tuples are 8-byte aligned.)
  11763. \begin{figure}[tbp]
  11764. \centering
  11765. \begin{tcolorbox}[colback=white]
  11766. \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  11767. \end{tcolorbox}
  11768. \caption{Representation of tuples in the heap.}
  11769. \label{fig:tuple-rep}
  11770. \end{figure}
  11771. \subsection{Implementation of the Garbage Collector}
  11772. \label{sec:organize-gz}
  11773. \index{subject}{prelude}
  11774. An implementation of the copying collector is provided in the
  11775. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  11776. interface to the garbage collector that is used by the compiler. The
  11777. \code{initialize} function creates the FromSpace, ToSpace, and root
  11778. stack and should be called in the prelude of the \code{main}
  11779. function. The arguments of \code{initialize} are the root stack size
  11780. and the heap size. Both need to be multiples of sixty-four, and $16,384$ is a
  11781. good choice for both. The \code{initialize} function puts the address
  11782. of the beginning of the FromSpace into the global variable
  11783. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  11784. the address that is one past the last element of the FromSpace. We use
  11785. half-open intervals to represent chunks of
  11786. memory~\citep{Dijkstra:1982aa}. The \code{rootstack\_begin} variable
  11787. points to the first element of the root stack.
  11788. As long as there is room left in the FromSpace, your generated code
  11789. can allocate\index{subject}{allocate} tuples simply by moving the
  11790. \code{free\_ptr} forward.
  11791. %
  11792. The amount of room left in the FromSpace is the difference between the
  11793. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  11794. function should be called when there is not enough room left in the
  11795. FromSpace for the next allocation. The \code{collect} function takes
  11796. a pointer to the current top of the root stack (one past the last item
  11797. that was pushed) and the number of bytes that need to be
  11798. allocated. The \code{collect} function performs the copying collection
  11799. and leaves the heap in a state such that there is enough room for the
  11800. next allocation.
  11801. \begin{figure}[tbp]
  11802. \begin{tcolorbox}[colback=white]
  11803. \begin{lstlisting}
  11804. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  11805. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  11806. int64_t* free_ptr;
  11807. int64_t* fromspace_begin;
  11808. int64_t* fromspace_end;
  11809. int64_t** rootstack_begin;
  11810. \end{lstlisting}
  11811. \end{tcolorbox}
  11812. \caption{The compiler's interface to the garbage collector.}
  11813. \label{fig:gc-header}
  11814. \end{figure}
  11815. %% \begin{exercise}
  11816. %% In the file \code{runtime.c} you will find the implementation of
  11817. %% \code{initialize} and a partial implementation of \code{collect}.
  11818. %% The \code{collect} function calls another function, \code{cheney},
  11819. %% to perform the actual copy, and that function is left to the reader
  11820. %% to implement. The following is the prototype for \code{cheney}.
  11821. %% \begin{lstlisting}
  11822. %% static void cheney(int64_t** rootstack_ptr);
  11823. %% \end{lstlisting}
  11824. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  11825. %% rootstack (which is an array of pointers). The \code{cheney} function
  11826. %% also communicates with \code{collect} through the global
  11827. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  11828. %% mentioned in figure~\ref{fig:gc-header} as well as the pointers for
  11829. %% the ToSpace:
  11830. %% \begin{lstlisting}
  11831. %% static int64_t* tospace_begin;
  11832. %% static int64_t* tospace_end;
  11833. %% \end{lstlisting}
  11834. %% The job of the \code{cheney} function is to copy all the live
  11835. %% objects (reachable from the root stack) into the ToSpace, update
  11836. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  11837. %% update the root stack so that it points to the objects in the
  11838. %% ToSpace, and finally to swap the global pointers for the FromSpace
  11839. %% and ToSpace.
  11840. %% \end{exercise}
  11841. The introduction of garbage collection has a nontrivial impact on our
  11842. compiler passes. We introduce a new compiler pass named
  11843. \code{expose\_allocation} that elaborates the code for allocating
  11844. tuples. We also make significant changes to
  11845. \code{select\_instructions}, \code{build\_interference},
  11846. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  11847. make minor changes in several more passes.
  11848. The following program serves as our running example. It creates
  11849. two tuples, one nested inside the other. Both tuples have length
  11850. one. The program accesses the element in the inner tuple.
  11851. % tests/vectors_test_17.rkt
  11852. {\if\edition\racketEd
  11853. \begin{lstlisting}
  11854. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  11855. \end{lstlisting}
  11856. \fi}
  11857. {\if\edition\pythonEd\pythonColor
  11858. \begin{lstlisting}
  11859. print( ((42,),)[0][0] )
  11860. \end{lstlisting}
  11861. \fi}
  11862. %% {\if\edition\racketEd
  11863. %% \section{Shrink}
  11864. %% \label{sec:shrink-Lvec}
  11865. %% Recall that the \code{shrink} pass translates the primitives operators
  11866. %% into a smaller set of primitives.
  11867. %% %
  11868. %% This pass comes after type checking, and the type checker adds a
  11869. %% \code{HasType} AST node around each \code{vector} AST node, so you'll
  11870. %% need to add a case for \code{HasType} to the \code{shrink} pass.
  11871. %% \fi}
  11872. \section{Expose Allocation}
  11873. \label{sec:expose-allocation}
  11874. The pass \code{expose\_allocation} lowers tuple creation into making a
  11875. conditional call to the collector followed by allocating the
  11876. appropriate amount of memory and initializing it. We choose to place
  11877. the \code{expose\_allocation} pass before
  11878. \code{remove\_complex\_operands} because it generates
  11879. code that contains complex operands.
  11880. The output of \code{expose\_allocation} is a language \LangAlloc{}
  11881. that replaces tuple creation with new lower-level forms that we use in the
  11882. translation of tuple creation.
  11883. %
  11884. {\if\edition\racketEd
  11885. \[
  11886. \begin{array}{lcl}
  11887. \Exp &::=& \cdots
  11888. \MID (\key{collect} \,\itm{int})
  11889. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  11890. \MID (\key{global-value} \,\itm{name})
  11891. \end{array}
  11892. \]
  11893. \fi}
  11894. {\if\edition\pythonEd\pythonColor
  11895. \[
  11896. \begin{array}{lcl}
  11897. \Exp &::=& \cdots\\
  11898. &\MID& \key{collect}(\itm{int})
  11899. \MID \key{allocate}(\itm{int},\itm{type})
  11900. \MID \key{global\_value}(\itm{name}) \\
  11901. &\MID& \key{begin:} ~ \Stmt^{*} ~ \Exp \\
  11902. \Stmt &::= & \CASSIGN{\CPUT{\Exp}{\itm{int}}}{\Exp}
  11903. \end{array}
  11904. \]
  11905. \fi}
  11906. %
  11907. The \CCOLLECT{$n$} form runs the garbage collector, requesting that it
  11908. make sure that there are $n$ bytes ready to be allocated. During
  11909. instruction selection\index{subject}{instruction selection},
  11910. the \CCOLLECT{$n$} form will become a call to
  11911. the \code{collect} function in \code{runtime.c}.
  11912. %
  11913. The \CALLOCATE{$n$}{$\itm{type}$} form obtains memory for $n$ elements (and
  11914. space at the front for the 64-bit tag), but the elements are not
  11915. initialized. \index{subject}{allocate} The $\itm{type}$ parameter is the type
  11916. of the tuple:
  11917. %
  11918. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  11919. %
  11920. where $\Type_i$ is the type of the $i$th element.
  11921. %
  11922. The \CGLOBALVALUE{\itm{name}} form reads the value of a global
  11923. variable, such as \code{free\_ptr}.
  11924. %
  11925. \python{The \code{begin} form is an expression that executes a
  11926. sequence of statements and then produces the value of the expression
  11927. at the end.}
  11928. \racket{
  11929. The type information that you need for \CALLOCATE{$n$}{$\itm{type}$}
  11930. can be obtained by running the
  11931. \code{type-check-Lvec-has-type} type checker immediately before the
  11932. \code{expose\_allocation} pass. This version of the type checker
  11933. places a special AST node of the form $(\key{HasType}~e~\itm{type})$
  11934. around each tuple creation. The concrete syntax
  11935. for \code{HasType} is \code{has-type}.}
  11936. The following shows the transformation of tuple creation into (1) a
  11937. sequence of temporary variable bindings for the initializing
  11938. expressions, (2) a conditional call to \code{collect}, (3) a call to
  11939. \code{allocate}, and (4) the initialization of the tuple. The
  11940. \itm{len} placeholder refers to the length of the tuple, and
  11941. \itm{bytes} is the total number of bytes that need to be allocated for
  11942. the tuple, which is 8 for the tag plus \itm{len} times 8.
  11943. %
  11944. \python{The \itm{type} needed for the second argument of the
  11945. \code{allocate} form can be obtained from the \code{has\_type} field
  11946. of the tuple AST node, which is stored there by running the type
  11947. checker for \LangVec{} immediately before this pass.}
  11948. %
  11949. \begin{center}
  11950. \begin{minipage}{\textwidth}
  11951. {\if\edition\racketEd
  11952. \begin{lstlisting}
  11953. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  11954. |$\Longrightarrow$|
  11955. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  11956. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  11957. (global-value fromspace_end))
  11958. (void)
  11959. (collect |\itm{bytes}|))])
  11960. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  11961. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  11962. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  11963. |$v$|) ... )))) ...)
  11964. \end{lstlisting}
  11965. \fi}
  11966. {\if\edition\pythonEd\pythonColor
  11967. \begin{lstlisting}
  11968. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  11969. |$\Longrightarrow$|
  11970. begin:
  11971. |$x_0$| = |$e_0$|
  11972. |$\vdots$|
  11973. |$x_{n-1}$| = |$e_{n-1}$|
  11974. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  11975. 0
  11976. else:
  11977. collect(|\itm{bytes}|)
  11978. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  11979. |$v$|[0] = |$x_0$|
  11980. |$\vdots$|
  11981. |$v$|[|$n-1$|] = |$x_{n-1}$|
  11982. |$v$|
  11983. \end{lstlisting}
  11984. \fi}
  11985. \end{minipage}
  11986. \end{center}
  11987. %
  11988. \noindent The sequencing of the initializing expressions
  11989. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important because
  11990. they may trigger garbage collection and we cannot have an allocated
  11991. but uninitialized tuple on the heap during a collection.
  11992. Figure~\ref{fig:expose-alloc-output} shows the output of the
  11993. \code{expose\_allocation} pass on our running example.
  11994. \begin{figure}[tbp]
  11995. \begin{tcolorbox}[colback=white]
  11996. % tests/s2_17.rkt
  11997. {\if\edition\racketEd
  11998. \begin{lstlisting}
  11999. (vector-ref
  12000. (vector-ref
  12001. (let ([vecinit6
  12002. (let ([_4 (if (< (+ (global-value free_ptr) 16)
  12003. (global-value fromspace_end))
  12004. (void)
  12005. (collect 16))])
  12006. (let ([alloc2 (allocate 1 (Vector Integer))])
  12007. (let ([_3 (vector-set! alloc2 0 42)])
  12008. alloc2)))])
  12009. (let ([_8 (if (< (+ (global-value free_ptr) 16)
  12010. (global-value fromspace_end))
  12011. (void)
  12012. (collect 16))])
  12013. (let ([alloc5 (allocate 1 (Vector (Vector Integer)))])
  12014. (let ([_7 (vector-set! alloc5 0 vecinit6)])
  12015. alloc5))))
  12016. 0)
  12017. 0)
  12018. \end{lstlisting}
  12019. \fi}
  12020. {\if\edition\pythonEd\pythonColor
  12021. \begin{lstlisting}
  12022. print( |$T_1$|[0][0] )
  12023. \end{lstlisting}
  12024. where $T_1$ is
  12025. \begin{lstlisting}
  12026. begin:
  12027. tmp.1 = |$T_2$|
  12028. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  12029. 0
  12030. else:
  12031. collect(16)
  12032. tmp.2 = allocate(1, TupleType(TupleType([int])))
  12033. tmp.2[0] = tmp.1
  12034. tmp.2
  12035. \end{lstlisting}
  12036. and $T_2$ is
  12037. \begin{lstlisting}
  12038. begin:
  12039. tmp.3 = 42
  12040. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  12041. 0
  12042. else:
  12043. collect(16)
  12044. tmp.4 = allocate(1, TupleType([int]))
  12045. tmp.4[0] = tmp.3
  12046. tmp.4
  12047. \end{lstlisting}
  12048. \fi}
  12049. \end{tcolorbox}
  12050. \caption{Output of the \code{expose\_allocation} pass.}
  12051. \label{fig:expose-alloc-output}
  12052. \end{figure}
  12053. \section{Remove Complex Operands}
  12054. \label{sec:remove-complex-opera-Lvec}
  12055. {\if\edition\racketEd
  12056. %
  12057. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  12058. should be treated as complex operands.
  12059. %
  12060. \fi}
  12061. %
  12062. {\if\edition\pythonEd\pythonColor
  12063. %
  12064. The expressions \code{allocate}, \code{global\_value}, \code{begin},
  12065. and tuple access should be treated as complex operands. The
  12066. sub-expressions of tuple access must be atomic.
  12067. %
  12068. \fi}
  12069. %% A new case for
  12070. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  12071. %% handled carefully to prevent the \code{Prim} node from being separated
  12072. %% from its enclosing \code{HasType}.
  12073. Figure~\ref{fig:Lvec-anf-syntax}
  12074. shows the grammar for the output language \LangAllocANF{} of this
  12075. pass, which is \LangAlloc{} in monadic normal form.
  12076. \newcommand{\LtupMonadASTRacket}{
  12077. \begin{array}{rcl}
  12078. \Exp &::=& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  12079. \MID \GLOBALVALUE{\Var}
  12080. \end{array}
  12081. }
  12082. \newcommand{\LtupMonadASTPython}{
  12083. \begin{array}{rcl}
  12084. \Exp &::=& \GET{\Atm}{\Atm} \\
  12085. &\MID& \LEN{\Atm}\\
  12086. &\MID& \ALLOCATE{\Int}{\Type}
  12087. \MID \GLOBALVALUE{\Var} \\
  12088. \Stmt{} &::=& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  12089. &\MID& \COLLECT{\Int}
  12090. \end{array}
  12091. }
  12092. \begin{figure}[tp]
  12093. \centering
  12094. \begin{tcolorbox}[colback=white]
  12095. \small
  12096. {\if\edition\racketEd
  12097. \[
  12098. \begin{array}{l}
  12099. \gray{\LvarMonadASTRacket} \\ \hline
  12100. \gray{\LifMonadASTRacket} \\ \hline
  12101. \gray{\LwhileMonadASTRacket} \\ \hline
  12102. \LtupMonadASTRacket \\
  12103. \begin{array}{rcl}
  12104. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  12105. \end{array}
  12106. \end{array}
  12107. \]
  12108. \fi}
  12109. {\if\edition\pythonEd\pythonColor
  12110. \[
  12111. \begin{array}{l}
  12112. \gray{\LvarMonadASTPython} \\ \hline
  12113. \gray{\LifMonadASTPython} \\ \hline
  12114. \gray{\LwhileMonadASTPython} \\ \hline
  12115. \LtupMonadASTPython \\
  12116. \begin{array}{rcl}
  12117. \LangAllocANFM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  12118. \end{array}
  12119. \end{array}
  12120. \]
  12121. \fi}
  12122. \end{tcolorbox}
  12123. \caption{\LangAllocANF{} is \LangAlloc{} in monadic normal form.}
  12124. \label{fig:Lvec-anf-syntax}
  12125. \end{figure}
  12126. \section{Explicate Control and the \LangCVec{} Language}
  12127. \label{sec:explicate-control-r3}
  12128. \newcommand{\CtupASTRacket}{
  12129. \begin{array}{lcl}
  12130. \Exp &::= & \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  12131. &\MID& \VECREF{\Atm}{\INT{\Int}} \\
  12132. &\MID& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12133. &\MID& \VECLEN{\Atm} \\
  12134. &\MID& \GLOBALVALUE{\Var} \\
  12135. \Stmt &::=& \VECSET{\Atm}{\INT{\Int}}{\Atm} \\
  12136. &\MID& \LP\key{Collect} \,\itm{int}\RP
  12137. \end{array}
  12138. }
  12139. \newcommand{\CtupASTPython}{
  12140. \begin{array}{lcl}
  12141. \Exp &::= & \GET{\Atm}{\Atm} \MID \ALLOCATE{\Int}{\Type} \\
  12142. &\MID& \GLOBALVALUE{\Var} \MID \LEN{\Atm} \\
  12143. \Stmt &::=& \COLLECT{\Int} \\
  12144. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm}
  12145. \end{array}
  12146. }
  12147. \begin{figure}[tp]
  12148. \begin{tcolorbox}[colback=white]
  12149. \small
  12150. {\if\edition\racketEd
  12151. \[
  12152. \begin{array}{l}
  12153. \gray{\CvarASTRacket} \\ \hline
  12154. \gray{\CifASTRacket} \\ \hline
  12155. \gray{\CloopASTRacket} \\ \hline
  12156. \CtupASTRacket \\
  12157. \begin{array}{lcl}
  12158. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  12159. \end{array}
  12160. \end{array}
  12161. \]
  12162. \fi}
  12163. {\if\edition\pythonEd\pythonColor
  12164. \[
  12165. \begin{array}{l}
  12166. \gray{\CifASTPython} \\ \hline
  12167. \CtupASTPython \\
  12168. \begin{array}{lcl}
  12169. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\key{:}\,\Stmt^{*}\;\Tail, \ldots \RC}
  12170. \end{array}
  12171. \end{array}
  12172. \]
  12173. \fi}
  12174. \end{tcolorbox}
  12175. \caption{The abstract syntax of \LangCVec{}, extending
  12176. \racket{\LangCLoop{} (figure~\ref{fig:c7-syntax})}\python{\LangCIf{}
  12177. (figure~\ref{fig:c1-syntax})}.}
  12178. \label{fig:c2-syntax}
  12179. \end{figure}
  12180. The output of \code{explicate\_control} is a program in the
  12181. intermediate language \LangCVec{}, for which figure~\ref{fig:c2-syntax}
  12182. shows the definition of the abstract syntax.
  12183. %
  12184. %% \racket{(The concrete syntax is defined in
  12185. %% figure~\ref{fig:c2-concrete-syntax} of the Appendix.)}
  12186. %
  12187. The new expressions of \LangCVec{} include \key{allocate},
  12188. %
  12189. \racket{\key{vector-ref}, and \key{vector-set!},}
  12190. %
  12191. \python{accessing tuple elements,}
  12192. %
  12193. and \key{global\_value}.
  12194. %
  12195. \python{\LangCVec{} also includes the \code{collect} statement and
  12196. assignment to a tuple element.}
  12197. %
  12198. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  12199. %
  12200. The \code{explicate\_control} pass can treat these new forms much like
  12201. the other forms that we've already encountered. The output of the
  12202. \code{explicate\_control} pass on the running example is shown on the
  12203. left side of figure~\ref{fig:select-instr-output-gc} in the next
  12204. section.
  12205. \section{Select Instructions and the \LangXGlobal{} Language}
  12206. \label{sec:select-instructions-gc}
  12207. \index{subject}{select instructions}
  12208. %% void (rep as zero)
  12209. %% allocate
  12210. %% collect (callq collect)
  12211. %% vector-ref
  12212. %% vector-set!
  12213. %% vector-length
  12214. %% global (postpone)
  12215. In this pass we generate x86 code for most of the new operations that
  12216. are needed to compile tuples, including \code{Allocate},
  12217. \code{Collect}, and accessing tuple elements.
  12218. %
  12219. We compile \code{GlobalValue} to \code{Global} because the latter has a
  12220. different concrete syntax (see figures~\ref{fig:x86-2-concrete} and
  12221. \ref{fig:x86-2}). \index{subject}{x86}
  12222. The tuple read and write forms translate into \code{movq}
  12223. instructions. (The $+1$ in the offset serves to move past the tag at the
  12224. beginning of the tuple representation.)
  12225. %
  12226. \begin{center}
  12227. \begin{minipage}{\textwidth}
  12228. {\if\edition\racketEd
  12229. \begin{lstlisting}
  12230. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  12231. |$\Longrightarrow$|
  12232. movq |$\itm{tup}'$|, %r11
  12233. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12234. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  12235. |$\Longrightarrow$|
  12236. movq |$\itm{tup}'$|, %r11
  12237. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12238. movq $0, |$\itm{lhs'}$|
  12239. \end{lstlisting}
  12240. \fi}
  12241. {\if\edition\pythonEd\pythonColor
  12242. \begin{lstlisting}
  12243. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  12244. |$\Longrightarrow$|
  12245. movq |$\itm{tup}'$|, %r11
  12246. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  12247. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  12248. |$\Longrightarrow$|
  12249. movq |$\itm{tup}'$|, %r11
  12250. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  12251. \end{lstlisting}
  12252. \fi}
  12253. \end{minipage}
  12254. \end{center}
  12255. \racket{The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$}
  12256. \python{The $\itm{tup}'$ and $\itm{rhs}'$}
  12257. are obtained by translating from \LangCVec{} to x86.
  12258. %
  12259. The move of $\itm{tup}'$ to
  12260. register \code{r11} ensures that the offset expression
  12261. \code{$8(n+1)$(\%r11)} contains a register operand. This requires
  12262. removing \code{r11} from consideration by the register allocating.
  12263. Why not use \code{rax} instead of \code{r11}? Suppose that we instead used
  12264. \code{rax}. Then the generated code for tuple assignment would be
  12265. \begin{lstlisting}
  12266. movq |$\itm{tup}'$|, %rax
  12267. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  12268. \end{lstlisting}
  12269. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  12270. \code{patch\_instructions} would insert a move through \code{rax}
  12271. as follows:
  12272. \begin{lstlisting}
  12273. movq |$\itm{tup}'$|, %rax
  12274. movq |$\itm{rhs}'$|, %rax
  12275. movq %rax, |$8(n+1)$|(%rax)
  12276. \end{lstlisting}
  12277. However, this sequence of instructions does not work because we're
  12278. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  12279. $\itm{rhs}'$) at the same time!
  12280. The \racket{\code{vector-length}}\python{\code{len}} operation should
  12281. be translated into a sequence of instructions that read the tag of the
  12282. tuple and extract the 6 bits that represent the tuple length, which
  12283. are the bits starting at index 1 and going up to and including bit 6.
  12284. The x86 instructions \code{andq} (for bitwise-and) and \code{sarq}
  12285. (shift right) can be used to accomplish this.
  12286. We compile the \code{allocate} form to operations on the
  12287. \code{free\_ptr}, as shown next. This approach is called
  12288. \emph{inline allocation} because it implements allocation without a
  12289. function call by simply incrementing the allocation pointer. It is much
  12290. more efficient than calling a function for each allocation. The
  12291. address in the \code{free\_ptr} is the next free address in the
  12292. FromSpace, so we copy it into \code{r11} and then move it forward by
  12293. enough space for the tuple being allocated, which is $8(\itm{len}+1)$
  12294. bytes because each element is 8 bytes (64 bits) and we use 8 bytes for
  12295. the tag. We then initialize the \itm{tag} and finally copy the
  12296. address in \code{r11} to the left-hand side. Refer to
  12297. figure~\ref{fig:tuple-rep} to see how the tag is organized.
  12298. %
  12299. \racket{We recommend using the Racket operations
  12300. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  12301. during compilation.}
  12302. %
  12303. \python{We recommend using the bitwise-or operator \code{|} and the
  12304. shift-left operator \code{<<} to compute the tag during
  12305. compilation.}
  12306. %
  12307. The type annotation in the \code{allocate} form is used to determine
  12308. the pointer mask region of the tag.
  12309. %
  12310. The addressing mode \verb!free_ptr(%rip)! essentially stands for the
  12311. address of the \code{free\_ptr} global variable using a special
  12312. instruction-pointer-relative addressing mode of the x86-64 processor.
  12313. In particular, the assembler computes the distance $d$ between the
  12314. address of \code{free\_ptr} and where the \code{rip} would be at that
  12315. moment and then changes the \code{free\_ptr(\%rip)} argument to
  12316. \code{$d$(\%rip)}, which at runtime will compute the address of
  12317. \code{free\_ptr}.
  12318. %
  12319. {\if\edition\racketEd
  12320. \begin{lstlisting}
  12321. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  12322. |$\Longrightarrow$|
  12323. movq free_ptr(%rip), %r11
  12324. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12325. movq $|$\itm{tag}$|, 0(%r11)
  12326. movq %r11, |$\itm{lhs}'$|
  12327. \end{lstlisting}
  12328. \fi}
  12329. {\if\edition\pythonEd\pythonColor
  12330. \begin{lstlisting}
  12331. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  12332. |$\Longrightarrow$|
  12333. movq free_ptr(%rip), %r11
  12334. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  12335. movq $|$\itm{tag}$|, 0(%r11)
  12336. movq %r11, |$\itm{lhs}'$|
  12337. \end{lstlisting}
  12338. \fi}
  12339. %
  12340. The \code{collect} form is compiled to a call to the \code{collect}
  12341. function in the runtime. The arguments to \code{collect} are (1) the
  12342. top of the root stack, and (2) the number of bytes that need to be
  12343. allocated. We use another dedicated register, \code{r15}, to store
  12344. the pointer to the top of the root stack. Therefore \code{r15} is not
  12345. available for use by the register allocator.
  12346. %
  12347. {\if\edition\racketEd
  12348. \begin{lstlisting}
  12349. (collect |$\itm{bytes}$|)
  12350. |$\Longrightarrow$|
  12351. movq %r15, %rdi
  12352. movq $|\itm{bytes}|, %rsi
  12353. callq collect
  12354. \end{lstlisting}
  12355. \fi}
  12356. {\if\edition\pythonEd\pythonColor
  12357. \begin{lstlisting}
  12358. collect(|$\itm{bytes}$|)
  12359. |$\Longrightarrow$|
  12360. movq %r15, %rdi
  12361. movq $|\itm{bytes}|, %rsi
  12362. callq collect
  12363. \end{lstlisting}
  12364. \fi}
  12365. \newcommand{\GrammarXGlobal}{
  12366. \begin{array}{lcl}
  12367. \Arg &::=& \itm{label} \key{(\%rip)}
  12368. \end{array}
  12369. }
  12370. \newcommand{\ASTXGlobalRacket}{
  12371. \begin{array}{lcl}
  12372. \Arg &::=& \GLOBAL{\itm{label}}
  12373. \end{array}
  12374. }
  12375. \begin{figure}[tp]
  12376. \begin{tcolorbox}[colback=white]
  12377. \[
  12378. \begin{array}{l}
  12379. \gray{\GrammarXInt} \\ \hline
  12380. \gray{\GrammarXIf} \\ \hline
  12381. \GrammarXGlobal \\
  12382. \begin{array}{lcl}
  12383. \LangXGlobalM{} &::= & \key{.globl main} \\
  12384. & & \key{main:} \; \Instr^{*}
  12385. \end{array}
  12386. \end{array}
  12387. \]
  12388. \end{tcolorbox}
  12389. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1-concrete}).}
  12390. \label{fig:x86-2-concrete}
  12391. \end{figure}
  12392. \begin{figure}[tp]
  12393. \begin{tcolorbox}[colback=white]
  12394. \small
  12395. \[
  12396. \begin{array}{l}
  12397. \gray{\ASTXIntRacket} \\ \hline
  12398. \gray{\ASTXIfRacket} \\ \hline
  12399. \ASTXGlobalRacket \\
  12400. \begin{array}{lcl}
  12401. \LangXGlobalM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  12402. \end{array}
  12403. \end{array}
  12404. \]
  12405. \end{tcolorbox}
  12406. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} shown in figure~\ref{fig:x86-1}).}
  12407. \label{fig:x86-2}
  12408. \end{figure}
  12409. The definitions of the concrete and abstract syntax of the
  12410. \LangXGlobal{} language are shown in figures~\ref{fig:x86-2-concrete}
  12411. and \ref{fig:x86-2}. It differs from \LangXIf{} only in the addition
  12412. of global variables.
  12413. %
  12414. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  12415. \code{select\_instructions} pass on the running example.
  12416. \begin{figure}[tbp]
  12417. \centering
  12418. \begin{tcolorbox}[colback=white]
  12419. % tests/s2_17.rkt
  12420. \begin{tabular}{lll}
  12421. \begin{minipage}{0.5\textwidth}
  12422. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12423. start:
  12424. tmp9 = (global-value free_ptr);
  12425. tmp0 = (+ tmp9 16);
  12426. tmp1 = (global-value fromspace_end);
  12427. if (< tmp0 tmp1)
  12428. goto block0;
  12429. else
  12430. goto block1;
  12431. block0:
  12432. _4 = (void);
  12433. goto block9;
  12434. block1:
  12435. (collect 16)
  12436. goto block9;
  12437. block9:
  12438. alloc2 = (allocate 1 (Vector Integer));
  12439. _3 = (vector-set! alloc2 0 42);
  12440. vecinit6 = alloc2;
  12441. tmp2 = (global-value free_ptr);
  12442. tmp3 = (+ tmp2 16);
  12443. tmp4 = (global-value fromspace_end);
  12444. if (< tmp3 tmp4)
  12445. goto block7;
  12446. else
  12447. goto block8;
  12448. block7:
  12449. _8 = (void);
  12450. goto block6;
  12451. block8:
  12452. (collect 16)
  12453. goto block6;
  12454. block6:
  12455. alloc5 = (allocate 1 (Vector (Vector Integer)));
  12456. _7 = (vector-set! alloc5 0 vecinit6);
  12457. tmp5 = (vector-ref alloc5 0);
  12458. return (vector-ref tmp5 0);
  12459. \end{lstlisting}
  12460. \end{minipage}
  12461. &$\Rightarrow$&
  12462. \begin{minipage}{0.4\textwidth}
  12463. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12464. start:
  12465. movq free_ptr(%rip), tmp9
  12466. movq tmp9, tmp0
  12467. addq $16, tmp0
  12468. movq fromspace_end(%rip), tmp1
  12469. cmpq tmp1, tmp0
  12470. jl block0
  12471. jmp block1
  12472. block0:
  12473. movq $0, _4
  12474. jmp block9
  12475. block1:
  12476. movq %r15, %rdi
  12477. movq $16, %rsi
  12478. callq collect
  12479. jmp block9
  12480. block9:
  12481. movq free_ptr(%rip), %r11
  12482. addq $16, free_ptr(%rip)
  12483. movq $3, 0(%r11)
  12484. movq %r11, alloc2
  12485. movq alloc2, %r11
  12486. movq $42, 8(%r11)
  12487. movq $0, _3
  12488. movq alloc2, vecinit6
  12489. movq free_ptr(%rip), tmp2
  12490. movq tmp2, tmp3
  12491. addq $16, tmp3
  12492. movq fromspace_end(%rip), tmp4
  12493. cmpq tmp4, tmp3
  12494. jl block7
  12495. jmp block8
  12496. block7:
  12497. movq $0, _8
  12498. jmp block6
  12499. block8:
  12500. movq %r15, %rdi
  12501. movq $16, %rsi
  12502. callq collect
  12503. jmp block6
  12504. block6:
  12505. movq free_ptr(%rip), %r11
  12506. addq $16, free_ptr(%rip)
  12507. movq $131, 0(%r11)
  12508. movq %r11, alloc5
  12509. movq alloc5, %r11
  12510. movq vecinit6, 8(%r11)
  12511. movq $0, _7
  12512. movq alloc5, %r11
  12513. movq 8(%r11), tmp5
  12514. movq tmp5, %r11
  12515. movq 8(%r11), %rax
  12516. jmp conclusion
  12517. \end{lstlisting}
  12518. \end{minipage}
  12519. \end{tabular}
  12520. \end{tcolorbox}
  12521. \caption{Output of the \code{explicate\_control} (\emph{left}) and
  12522. \code{select\_instructions} (\emph{right}) passes on the running
  12523. example.}
  12524. \label{fig:select-instr-output-gc}
  12525. \end{figure}
  12526. \clearpage
  12527. \section{Register Allocation}
  12528. \label{sec:reg-alloc-gc}
  12529. \index{subject}{register allocation}
  12530. As discussed previously in this chapter, the garbage collector needs to
  12531. access all the pointers in the root set, that is, all variables that
  12532. are tuples. It will be the responsibility of the register allocator
  12533. to make sure that
  12534. \begin{enumerate}
  12535. \item the root stack is used for spilling tuple-typed variables, and
  12536. \item if a tuple-typed variable is live during a call to the
  12537. collector, it must be spilled to ensure that it is visible to the
  12538. collector.
  12539. \end{enumerate}
  12540. The latter responsibility can be handled during construction of the
  12541. interference graph, by adding interference edges between the call-live
  12542. tuple-typed variables and all the callee-saved registers. (They
  12543. already interfere with the caller-saved registers.)
  12544. %
  12545. \racket{The type information for variables is in the \code{Program}
  12546. form, so we recommend adding another parameter to the
  12547. \code{build\_interference} function to communicate this alist.}
  12548. %
  12549. \python{The type information for variables is generated by the type
  12550. checker for \LangCVec{}, stored a field named \code{var\_types} in
  12551. the \code{CProgram} AST mode. You'll need to propagate that
  12552. information so that it is available in this pass.}
  12553. The spilling of tuple-typed variables to the root stack can be handled
  12554. after graph coloring, in choosing how to assign the colors
  12555. (integers) to registers and stack locations. The
  12556. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  12557. changes to also record the number of spills to the root stack.
  12558. % build-interference
  12559. %
  12560. % callq
  12561. % extra parameter for var->type assoc. list
  12562. % update 'program' and 'if'
  12563. % allocate-registers
  12564. % allocate spilled vectors to the rootstack
  12565. % don't change color-graph
  12566. % TODO:
  12567. %\section{Patch Instructions}
  12568. %[mention that global variables are memory references]
  12569. \section{Prelude and Conclusion}
  12570. \label{sec:print-x86-gc}
  12571. \label{sec:prelude-conclusion-x86-gc}
  12572. \index{subject}{prelude}\index{subject}{conclusion}
  12573. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  12574. \code{prelude\_and\_conclusion} pass on the running example. In the
  12575. prelude of the \code{main} function, we allocate space
  12576. on the root stack to make room for the spills of tuple-typed
  12577. variables. We do so by incrementing the root stack pointer (\code{r15}),
  12578. taking care that the root stack grows up instead of down. For the
  12579. running example, there was just one spill, so we increment \code{r15}
  12580. by 8 bytes. In the conclusion we subtract 8 bytes from \code{r15}.
  12581. One issue that deserves special care is that there may be a call to
  12582. \code{collect} prior to the initializing assignments for all the
  12583. variables in the root stack. We do not want the garbage collector to
  12584. mistakenly determine that some uninitialized variable is a pointer that
  12585. needs to be followed. Thus, we zero out all locations on the root
  12586. stack in the prelude of \code{main}. In
  12587. figure~\ref{fig:print-x86-output-gc}, the instruction
  12588. %
  12589. \lstinline{movq $0, 0(%r15)}
  12590. %
  12591. is sufficient to accomplish this task because there is only one spill.
  12592. In general, we have to clear as many words as there are spills of
  12593. tuple-typed variables. The garbage collector tests each root to see
  12594. if it is null prior to dereferencing it.
  12595. \begin{figure}[htbp]
  12596. % TODO: Python Version -Jeremy
  12597. \begin{tcolorbox}[colback=white]
  12598. \begin{minipage}[t]{0.5\textwidth}
  12599. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  12600. .globl main
  12601. main:
  12602. pushq %rbp
  12603. movq %rsp, %rbp
  12604. subq $0, %rsp
  12605. movq $65536, %rdi
  12606. movq $65536, %rsi
  12607. callq initialize
  12608. movq rootstack_begin(%rip), %r15
  12609. movq $0, 0(%r15)
  12610. addq $8, %r15
  12611. jmp start
  12612. conclusion:
  12613. subq $8, %r15
  12614. addq $0, %rsp
  12615. popq %rbp
  12616. retq
  12617. \end{lstlisting}
  12618. \end{minipage}
  12619. \end{tcolorbox}
  12620. \caption{The prelude and conclusion generated by the \code{prelude\_and\_conclusion} pass for the running example.}
  12621. \label{fig:print-x86-output-gc}
  12622. \end{figure}
  12623. \begin{figure}[tbp]
  12624. \begin{tcolorbox}[colback=white]
  12625. {\if\edition\racketEd
  12626. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  12627. \node (Lvec) at (0,2) {\large \LangVec{}};
  12628. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  12629. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  12630. \node (Lvec-4) at (10,2) {\large \LangAlloc{}};
  12631. \node (Lvec-5) at (10,0) {\large \LangAlloc{}};
  12632. \node (Lvec-6) at (5,0) {\large \LangAllocANF{}};
  12633. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12634. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12635. \node (x86-2-1) at (0,-4) {\large \LangXGlobalVar{}};
  12636. \node (x86-2-2) at (4,-4) {\large \LangXGlobalVar{}};
  12637. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12638. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12639. \node (x86-5) at (8,-4) {\large \LangXGlobal{}};
  12640. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12641. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  12642. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-4);
  12643. \path[->,bend left=15] (Lvec-4) edge [right] node
  12644. {\ttfamily\footnotesize uncover\_get!} (Lvec-5);
  12645. \path[->,bend left=10] (Lvec-5) edge [below] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12646. \path[->,bend right=10] (Lvec-6) edge [above] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  12647. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12648. \path[->,bend right=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  12649. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_interference} (x86-2-2);
  12650. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_registers} (x86-3);
  12651. \path[->,bend left=10] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12652. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12653. \end{tikzpicture}
  12654. \fi}
  12655. {\if\edition\pythonEd\pythonColor
  12656. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  12657. \node (Lvec) at (0,2) {\large \LangVec{}};
  12658. \node (Lvec-2) at (4,2) {\large \LangVec{}};
  12659. \node (Lvec-5) at (8,2) {\large \LangAlloc{}};
  12660. \node (Lvec-6) at (12,2) {\large \LangAllocANF{}};
  12661. \node (C2-4) at (0,0) {\large \LangCVec{}};
  12662. \node (x86-2) at (0,-2) {\large \LangXGlobalVar{}};
  12663. \node (x86-3) at (4,-2) {\large \LangXGlobalVar{}};
  12664. \node (x86-4) at (8,-2) {\large \LangXGlobal{}};
  12665. \node (x86-5) at (12,-2) {\large \LangXGlobal{}};
  12666. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  12667. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize expose\_allocation} (Lvec-5);
  12668. \path[->,bend left=15] (Lvec-5) edge [above] node {\ttfamily\footnotesize remove\_complex\_operands} (Lvec-6);
  12669. \path[->,bend left=10] (Lvec-6) edge [right] node {\ttfamily\footnotesize \ \ \ explicate\_control} (C2-4);
  12670. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  12671. \path[->,bend right=15] (x86-2) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  12672. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instructions} (x86-4);
  12673. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  12674. \end{tikzpicture}
  12675. \fi}
  12676. \end{tcolorbox}
  12677. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  12678. \label{fig:Lvec-passes}
  12679. \end{figure}
  12680. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  12681. for the compilation of \LangVec{}.
  12682. \clearpage
  12683. {\if\edition\racketEd
  12684. \section{Challenge: Simple Structures}
  12685. \label{sec:simple-structures}
  12686. \index{subject}{struct}
  12687. \index{subject}{structure}
  12688. The language \LangStruct{} extends \LangVec{} with support for simple
  12689. structures. The definition of its concrete syntax is shown in
  12690. figure~\ref{fig:Lstruct-concrete-syntax}, and the abstract syntax is
  12691. shown in figure~\ref{fig:Lstruct-syntax}. Recall that a \code{struct}
  12692. in Typed Racket is a user-defined data type that contains named fields
  12693. and that is heap allocated\index{subject}{heap allocated},
  12694. similarly to a vector. The following is an
  12695. example of a structure definition, in this case the definition of a
  12696. \code{point} type:
  12697. \begin{lstlisting}
  12698. (struct point ([x : Integer] [y : Integer]) #:mutable)
  12699. \end{lstlisting}
  12700. \newcommand{\LstructGrammarRacket}{
  12701. \begin{array}{lcl}
  12702. \Type &::=& \Var \\
  12703. \Exp &::=& (\Var\;\Exp \ldots)\\
  12704. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  12705. \end{array}
  12706. }
  12707. \newcommand{\LstructASTRacket}{
  12708. \begin{array}{lcl}
  12709. \Type &::=& \VAR{\Var} \\
  12710. \Exp &::=& \APPLY{\Var}{\Exp\ldots} \\
  12711. \Def &::=& \LP\key{StructDef}\; \Var \; \LP\LS\Var \,\key{:}\, \Type\RS \ldots\RP\RP
  12712. \end{array}
  12713. }
  12714. \begin{figure}[tbp]
  12715. \centering
  12716. \begin{tcolorbox}[colback=white]
  12717. \[
  12718. \begin{array}{l}
  12719. \gray{\LintGrammarRacket{}} \\ \hline
  12720. \gray{\LvarGrammarRacket{}} \\ \hline
  12721. \gray{\LifGrammarRacket{}} \\ \hline
  12722. \gray{\LwhileGrammarRacket} \\ \hline
  12723. \gray{\LtupGrammarRacket} \\ \hline
  12724. \LstructGrammarRacket \\
  12725. \begin{array}{lcl}
  12726. \LangStruct{} &::=& \Def \ldots \; \Exp
  12727. \end{array}
  12728. \end{array}
  12729. \]
  12730. \end{tcolorbox}
  12731. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  12732. (figure~\ref{fig:Lvec-concrete-syntax}).}
  12733. \label{fig:Lstruct-concrete-syntax}
  12734. \end{figure}
  12735. \begin{figure}[tbp]
  12736. \centering
  12737. \begin{tcolorbox}[colback=white]
  12738. \small
  12739. \[
  12740. \begin{array}{l}
  12741. \gray{\LintASTRacket{}} \\ \hline
  12742. \gray{\LvarASTRacket{}} \\ \hline
  12743. \gray{\LifASTRacket{}} \\ \hline
  12744. \gray{\LwhileASTRacket} \\ \hline
  12745. \gray{\LtupASTRacket} \\ \hline
  12746. \LstructASTRacket \\
  12747. \begin{array}{lcl}
  12748. \LangStruct{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  12749. \end{array}
  12750. \end{array}
  12751. \]
  12752. \end{tcolorbox}
  12753. \caption{The abstract syntax of \LangStruct{}, extending \LangVec{}
  12754. (figure~\ref{fig:Lvec-syntax}).}
  12755. \label{fig:Lstruct-syntax}
  12756. \end{figure}
  12757. An instance of a structure is created using function-call syntax, with
  12758. the name of the structure in the function position, as follows:
  12759. \begin{lstlisting}
  12760. (point 7 12)
  12761. \end{lstlisting}
  12762. Function-call syntax is also used to read a field of a structure. The
  12763. function name is formed by the structure name, a dash, and the field
  12764. name. The following example uses \code{point-x} and \code{point-y} to
  12765. access the \code{x} and \code{y} fields of two point instances:
  12766. \begin{center}
  12767. \begin{lstlisting}
  12768. (let ([pt1 (point 7 12)])
  12769. (let ([pt2 (point 4 3)])
  12770. (+ (- (point-x pt1) (point-x pt2))
  12771. (- (point-y pt1) (point-y pt2)))))
  12772. \end{lstlisting}
  12773. \end{center}
  12774. Similarly, to write to a field of a structure, use its set function,
  12775. whose name starts with \code{set-}, followed by the structure name,
  12776. then a dash, then the field name, and finally with an exclamation
  12777. mark. The following example uses \code{set-point-x!} to change the
  12778. \code{x} field from \code{7} to \code{42}:
  12779. \begin{center}
  12780. \begin{lstlisting}
  12781. (let ([pt (point 7 12)])
  12782. (let ([_ (set-point-x! pt 42)])
  12783. (point-x pt)))
  12784. \end{lstlisting}
  12785. \end{center}
  12786. \begin{exercise}\normalfont\normalsize
  12787. Create a type checker for \LangStruct{} by extending the type
  12788. checker for \LangVec{}. Extend your compiler with support for simple
  12789. structures, compiling \LangStruct{} to x86 assembly code. Create
  12790. five new test cases that use structures, and test your compiler.
  12791. \end{exercise}
  12792. % TODO: create an interpreter for L_struct
  12793. \clearpage
  12794. \fi}
  12795. \section{Challenge: Arrays}
  12796. \label{sec:arrays}
  12797. % TODO mention trapped-error
  12798. In this chapter we have studied tuples, that is, heterogeneous
  12799. sequences of elements whose length is determined at compile time. This
  12800. challenge is also about sequences, but this time the length is
  12801. determined at runtime and all the elements have the same type (they
  12802. are homogeneous). We use the term \emph{array} for this latter kind of
  12803. sequence.
  12804. %
  12805. \racket{
  12806. The Racket language does not distinguish between tuples and arrays;
  12807. they are both represented by vectors. However, Typed Racket
  12808. distinguishes between tuples and arrays: the \code{Vector} type is for
  12809. tuples, and the \code{Vectorof} type is for arrays.}%
  12810. \python{Arrays correspond to the \code{list} type in Python language.}
  12811. Figure~\ref{fig:Lvecof-concrete-syntax} presents the definition of the
  12812. concrete syntax for \LangArray{}, and figure~\ref{fig:Lvecof-syntax}
  12813. presents the definition of the abstract syntax, extending \LangVec{}
  12814. with the \racket{\code{Vectorof}}\python{\code{list}} type and the
  12815. %
  12816. \racket{\code{make-vector} primitive operator for creating an array,
  12817. whose arguments are the length of the array and an initial value for
  12818. all the elements in the array.}
  12819. \python{bracket notation for creating an array literal.}
  12820. \racket{The \code{vector-length},
  12821. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  12822. for tuples become overloaded for use with arrays.}
  12823. \python{
  12824. The subscript operator becomes overloaded for use with arrays and tuples
  12825. and now may appear on the left-hand side of an assignment.
  12826. Note that the index of the subscript, when applied to an array, may be an
  12827. arbitrary expression and not just a constant integer.
  12828. The \code{len} function is also applicable to arrays.
  12829. }
  12830. %
  12831. We include integer multiplication in \LangArray{} because it is
  12832. useful in many examples involving arrays such as computing the
  12833. inner product of two arrays (figure~\ref{fig:inner_product}).
  12834. \newcommand{\LarrayGrammarRacket}{
  12835. \begin{array}{lcl}
  12836. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  12837. \Exp &::=& \CMUL{\Exp}{\Exp}
  12838. \MID \CMAKEVEC{\Exp}{\Exp}
  12839. \end{array}
  12840. }
  12841. \newcommand{\LarrayASTRacket}{
  12842. \begin{array}{lcl}
  12843. \Type &::=& \LP \key{Vectorof}~\Type \RP \\
  12844. \Exp &::=& \MUL{\Exp}{\Exp}
  12845. \MID \MAKEVEC{\Exp}{\Exp}
  12846. \end{array}
  12847. }
  12848. \newcommand{\LarrayGrammarPython}{
  12849. \begin{array}{lcl}
  12850. \Type &::=& \key{list}\LS\Type\RS \\
  12851. \Exp &::=& \CMUL{\Exp}{\Exp}
  12852. \MID \CGET{\Exp}{\Exp}
  12853. \MID \LS \Exp \code{,} \ldots \RS \\
  12854. \Stmt &::= & \CGET{\Exp}{\Exp} \mathop{\key{=}}\Exp
  12855. \end{array}
  12856. }
  12857. \newcommand{\LarrayASTPython}{
  12858. \begin{array}{lcl}
  12859. \Type &::=& \key{ListType}\LP\Type\RP \\
  12860. \Exp &::=& \MUL{\Exp}{\Exp}
  12861. \MID \GET{\Exp}{\Exp} \\
  12862. &\MID& \key{List}\LP \Exp \code{,} \ldots \code{, } \code{Load()} \RP \\
  12863. \Stmt &::= & \ASSIGN{ \PUT{\Exp}{\Exp} }{\Exp}
  12864. \end{array}
  12865. }
  12866. \begin{figure}[tp]
  12867. \centering
  12868. \begin{tcolorbox}[colback=white]
  12869. \small
  12870. {\if\edition\racketEd
  12871. \[
  12872. \begin{array}{l}
  12873. \gray{\LintGrammarRacket{}} \\ \hline
  12874. \gray{\LvarGrammarRacket{}} \\ \hline
  12875. \gray{\LifGrammarRacket{}} \\ \hline
  12876. \gray{\LwhileGrammarRacket} \\ \hline
  12877. \gray{\LtupGrammarRacket} \\ \hline
  12878. \LarrayGrammarRacket \\
  12879. \begin{array}{lcl}
  12880. \LangArray{} &::=& \Exp
  12881. \end{array}
  12882. \end{array}
  12883. \]
  12884. \fi}
  12885. {\if\edition\pythonEd\pythonColor
  12886. \[
  12887. \begin{array}{l}
  12888. \gray{\LintGrammarPython{}} \\ \hline
  12889. \gray{\LvarGrammarPython{}} \\ \hline
  12890. \gray{\LifGrammarPython{}} \\ \hline
  12891. \gray{\LwhileGrammarPython} \\ \hline
  12892. \gray{\LtupGrammarPython} \\ \hline
  12893. \LarrayGrammarPython \\
  12894. \begin{array}{rcl}
  12895. \LangArrayM{} &::=& \Stmt^{*}
  12896. \end{array}
  12897. \end{array}
  12898. \]
  12899. \fi}
  12900. \end{tcolorbox}
  12901. \caption{The concrete syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  12902. \label{fig:Lvecof-concrete-syntax}
  12903. \end{figure}
  12904. \begin{figure}[tp]
  12905. \centering
  12906. \begin{tcolorbox}[colback=white]
  12907. \small
  12908. {\if\edition\racketEd
  12909. \[
  12910. \begin{array}{l}
  12911. \gray{\LintASTRacket{}} \\ \hline
  12912. \gray{\LvarASTRacket{}} \\ \hline
  12913. \gray{\LifASTRacket{}} \\ \hline
  12914. \gray{\LwhileASTRacket} \\ \hline
  12915. \gray{\LtupASTRacket} \\ \hline
  12916. \LarrayASTRacket \\
  12917. \begin{array}{lcl}
  12918. \LangArray{} &::=& \Exp
  12919. \end{array}
  12920. \end{array}
  12921. \]
  12922. \fi}
  12923. {\if\edition\pythonEd\pythonColor
  12924. \[
  12925. \begin{array}{l}
  12926. \gray{\LintASTPython{}} \\ \hline
  12927. \gray{\LvarASTPython{}} \\ \hline
  12928. \gray{\LifASTPython{}} \\ \hline
  12929. \gray{\LwhileASTPython} \\ \hline
  12930. \gray{\LtupASTPython} \\ \hline
  12931. \LarrayASTPython \\
  12932. \begin{array}{rcl}
  12933. \LangArrayM{} &::=& \Stmt^{*}
  12934. \end{array}
  12935. \end{array}
  12936. \]
  12937. \fi}
  12938. \end{tcolorbox}
  12939. \caption{The abstract syntax of \LangArray{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  12940. \label{fig:Lvecof-syntax}
  12941. \end{figure}
  12942. \begin{figure}[tp]
  12943. \begin{tcolorbox}[colback=white]
  12944. {\if\edition\racketEd
  12945. % TODO: remove the function from the following example, like the python version -Jeremy
  12946. \begin{lstlisting}
  12947. (let ([A (make-vector 2 2)])
  12948. (let ([B (make-vector 2 3)])
  12949. (let ([i 0])
  12950. (let ([prod 0])
  12951. (begin
  12952. (while (< i n)
  12953. (begin
  12954. (set! prod (+ prod (* (vector-ref A i)
  12955. (vector-ref B i))))
  12956. (set! i (+ i 1))))
  12957. prod)))))
  12958. \end{lstlisting}
  12959. \fi}
  12960. {\if\edition\pythonEd\pythonColor
  12961. \begin{lstlisting}
  12962. A = [2, 2]
  12963. B = [3, 3]
  12964. i = 0
  12965. prod = 0
  12966. while i != len(A):
  12967. prod = prod + A[i] * B[i]
  12968. i = i + 1
  12969. print( prod )
  12970. \end{lstlisting}
  12971. \fi}
  12972. \end{tcolorbox}
  12973. \caption{Example program that computes the inner product.}
  12974. \label{fig:inner_product}
  12975. \end{figure}
  12976. {\if\edition\racketEd
  12977. %
  12978. Figure~\ref{fig:type-check-Lvecof} shows the definition of the type
  12979. checker for \LangArray{}. The result type of
  12980. \code{make-vector} is \code{(Vectorof T)}, where \code{T} is the type
  12981. of the initializing expression. The length expression is required to
  12982. have type \code{Integer}. The type checking of the operators
  12983. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  12984. updated to handle the situation in which the vector has type
  12985. \code{Vectorof}. In these cases we translate the operators to their
  12986. \code{vectorof} form so that later passes can easily distinguish
  12987. between operations on tuples versus arrays. We override the
  12988. \code{operator-types} method to provide the type signature for
  12989. multiplication: it takes two integers and returns an integer. \fi}
  12990. {\if\edition\pythonEd\pythonColor
  12991. %
  12992. The type checker for \LangArray{} is defined in
  12993. figure~\ref{fig:type-check-Lvecof}. The result type of a list literal
  12994. is \code{list[T]} where \code{T} is the type of the initializing
  12995. expressions. The type checking of the \code{len} function and the
  12996. subscript operator is updated to handle lists. The type checker now
  12997. also handles a subscript on the left-hand side of an assignment.
  12998. Regarding multiplication, it takes two integers and returns an
  12999. integer.
  13000. %
  13001. \fi}
  13002. \begin{figure}[tbp]
  13003. \begin{tcolorbox}[colback=white]
  13004. {\if\edition\racketEd
  13005. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13006. (define type-check-Lvecof-class
  13007. (class type-check-Lvec-class
  13008. (super-new)
  13009. (inherit check-type-equal?)
  13010. (define/override (operator-types)
  13011. (append '((* . ((Integer Integer) . Integer)))
  13012. (super operator-types)))
  13013. (define/override (type-check-exp env)
  13014. (lambda (e)
  13015. (define recur (type-check-exp env))
  13016. (match e
  13017. [(Prim 'make-vector (list e1 e2))
  13018. (define-values (e1^ t1) (recur e1))
  13019. (define-values (e2^ elt-type) (recur e2))
  13020. (define vec-type `(Vectorof ,elt-type))
  13021. (values (Prim 'make-vector (list e1^ e2^)) vec-type)]
  13022. [(Prim 'vector-ref (list e1 e2))
  13023. (define-values (e1^ t1) (recur e1))
  13024. (define-values (e2^ t2) (recur e2))
  13025. (match* (t1 t2)
  13026. [(`(Vectorof ,elt-type) 'Integer)
  13027. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  13028. [(other wise) ((super type-check-exp env) e)])]
  13029. [(Prim 'vector-set! (list e1 e2 e3) )
  13030. (define-values (e-vec t-vec) (recur e1))
  13031. (define-values (e2^ t2) (recur e2))
  13032. (define-values (e-arg^ t-arg) (recur e3))
  13033. (match t-vec
  13034. [`(Vectorof ,elt-type)
  13035. (check-type-equal? elt-type t-arg e)
  13036. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  13037. [else ((super type-check-exp env) e)])]
  13038. [(Prim 'vector-length (list e1))
  13039. (define-values (e1^ t1) (recur e1))
  13040. (match t1
  13041. [`(Vectorof ,t)
  13042. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  13043. [else ((super type-check-exp env) e)])]
  13044. [else ((super type-check-exp env) e)])))
  13045. ))
  13046. (define (type-check-Lvecof p)
  13047. (send (new type-check-Lvecof-class) type-check-program p))
  13048. \end{lstlisting}
  13049. \fi}
  13050. {\if\edition\pythonEd\pythonColor
  13051. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13052. class TypeCheckLarray(TypeCheckLtup):
  13053. def type_check_exp(self, e, env):
  13054. match e:
  13055. case ast.List(es, Load()):
  13056. ts = [self.type_check_exp(e, env) for e in es]
  13057. elt_ty = ts[0]
  13058. for (ty, elt) in zip(ts, es):
  13059. self.check_type_equal(elt_ty, ty, elt)
  13060. e.has_type = ListType(elt_ty)
  13061. return e.has_type
  13062. case Call(Name('len'), [tup]):
  13063. tup_t = self.type_check_exp(tup, env)
  13064. tup.has_type = tup_t
  13065. match tup_t:
  13066. case TupleType(ts):
  13067. return IntType()
  13068. case ListType(ty):
  13069. return IntType()
  13070. case _:
  13071. raise Exception('len expected a tuple, not ' + repr(tup_t))
  13072. case Subscript(tup, index, Load()):
  13073. tup_ty = self.type_check_exp(tup, env)
  13074. index_ty = self.type_check_exp(index, env)
  13075. self.check_type_equal(index_ty, IntType(), index)
  13076. match tup_ty:
  13077. case TupleType(ts):
  13078. match index:
  13079. case Constant(i):
  13080. return ts[i]
  13081. case _:
  13082. raise Exception('subscript required constant integer index')
  13083. case ListType(ty):
  13084. return ty
  13085. case _:
  13086. raise Exception('subscript expected a tuple, not ' + repr(tup_ty))
  13087. case BinOp(left, Mult(), right):
  13088. l = self.type_check_exp(left, env)
  13089. self.check_type_equal(l, IntType(), left)
  13090. r = self.type_check_exp(right, env)
  13091. self.check_type_equal(r, IntType(), right)
  13092. return IntType()
  13093. case _:
  13094. return super().type_check_exp(e, env)
  13095. def type_check_stmts(self, ss, env):
  13096. if len(ss) == 0:
  13097. return VoidType()
  13098. match ss[0]:
  13099. case Assign([Subscript(tup, index, Store())], value):
  13100. tup_t = self.type_check_exp(tup, env)
  13101. value_t = self.type_check_exp(value, env)
  13102. index_ty = self.type_check_exp(index, env)
  13103. self.check_type_equal(index_ty, IntType(), index)
  13104. match tup_t:
  13105. case ListType(ty):
  13106. self.check_type_equal(ty, value_t, ss[0])
  13107. case TupleType(ts):
  13108. return self.type_check_stmts(ss, env)
  13109. case _:
  13110. raise Exception('type_check_stmts: '
  13111. 'expected tuple or list, not ' + repr(tup_t))
  13112. return self.type_check_stmts(ss[1:], env)
  13113. case _:
  13114. return super().type_check_stmts(ss, env)
  13115. \end{lstlisting}
  13116. \fi}
  13117. \end{tcolorbox}
  13118. \caption{Type checker for the \LangArray{} language.}
  13119. \label{fig:type-check-Lvecof}
  13120. \end{figure}
  13121. The definition of the interpreter for \LangArray{} is shown in
  13122. figure~\ref{fig:interp-Lvecof}.
  13123. \racket{The \code{make-vector} operator is
  13124. interpreted using Racket's \code{make-vector} function,
  13125. and multiplication is interpreted using \code{fx*},
  13126. which is multiplication for \code{fixnum} integers.
  13127. In the \code{resolve} pass (section~\ref{sec:array-resolution})
  13128. we translate array access operations
  13129. into \code{vectorof-ref} and \code{vectorof-set!} operations,
  13130. which we interpret using \code{vector} operations with additional
  13131. bounds checks that signal a \code{trapped-error}.
  13132. }
  13133. %
  13134. \python{We implement list creation with a Python list comprehension
  13135. and multiplication is implemented with Python multiplication. We
  13136. add a case to handle a subscript on the left-hand side of
  13137. assignment. Other uses of subscript can be handled by the existing
  13138. code for tuples.}
  13139. \begin{figure}[tbp]
  13140. \begin{tcolorbox}[colback=white]
  13141. {\if\edition\racketEd
  13142. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13143. (define interp-Lvecof-class
  13144. (class interp-Lvec-class
  13145. (super-new)
  13146. (define/override (interp-op op)
  13147. (match op
  13148. ['make-vector make-vector]
  13149. ['vectorof-length vector-length]
  13150. ['vectorof-ref
  13151. (lambda (v i)
  13152. (if (< i (vector-length v))
  13153. (vector-ref v i)
  13154. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13155. ['vectorof-set!
  13156. (lambda (v i e)
  13157. (if (< i (vector-length v))
  13158. (vector-set! v i e)
  13159. (error 'trapped-error "index ~a out of bounds\nin ~v" i v)))]
  13160. [else (super interp-op op)]))
  13161. ))
  13162. (define (interp-Lvecof p)
  13163. (send (new interp-Lvecof-class) interp-program p))
  13164. \end{lstlisting}
  13165. \fi}
  13166. {\if\edition\pythonEd\pythonColor
  13167. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13168. class InterpLarray(InterpLtup):
  13169. def interp_exp(self, e, env):
  13170. match e:
  13171. case ast.List(es, Load()):
  13172. return [self.interp_exp(e, env) for e in es]
  13173. case BinOp(left, Mult(), right):
  13174. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  13175. return l * r
  13176. case Subscript(tup, index, Load()):
  13177. t = self.interp_exp(tup, env)
  13178. n = self.interp_exp(index, env)
  13179. if n < len(t):
  13180. return t[n]
  13181. else:
  13182. raise TrappedError('array index out of bounds')
  13183. case _:
  13184. return super().interp_exp(e, env)
  13185. def interp_stmt(self, s, env, cont):
  13186. match s:
  13187. case Assign([Subscript(tup, index)], value):
  13188. t = self.interp_exp(tup, env)
  13189. n = self.interp_exp(index, env)
  13190. if n < len(t):
  13191. t[n] = self.interp_exp(value, env)
  13192. else:
  13193. raise TrappedError('array index out of bounds')
  13194. return self.interp_stmts(cont, env)
  13195. case _:
  13196. return super().interp_stmt(s, env, cont)
  13197. \end{lstlisting}
  13198. \fi}
  13199. \end{tcolorbox}
  13200. \caption{Interpreter for \LangArray{}.}
  13201. \label{fig:interp-Lvecof}
  13202. \end{figure}
  13203. \subsection{Data Representation}
  13204. \label{sec:array-rep}
  13205. Just as with tuples, we store arrays on the heap, which means that the
  13206. garbage collector will need to inspect arrays. An immediate thought is
  13207. to use the same representation for arrays that we use for tuples.
  13208. However, we limit tuples to a length of fifty so that their length and
  13209. pointer mask can fit into the 64-bit tag at the beginning of each
  13210. tuple (section~\ref{sec:data-rep-gc}). We intend arrays to allow
  13211. millions of elements, so we need more bits to store the length.
  13212. However, because arrays are homogeneous, we need only 1 bit for the
  13213. pointer mask instead of 1 bit per array element. Finally, the
  13214. garbage collector must be able to distinguish between tuples
  13215. and arrays, so we need to reserve one bit for that purpose. We
  13216. arrive at the following layout for the 64-bit tag at the beginning of
  13217. an array:
  13218. \begin{itemize}
  13219. \item The right-most bit is the forwarding bit, just as in a tuple.
  13220. A $0$ indicates that it is a forwarding pointer, and a $1$ indicates
  13221. that it is not.
  13222. \item The next bit to the left is the pointer mask. A $0$ indicates
  13223. that none of the elements are pointers to the heap, and a $1$
  13224. indicates that all the elements are pointers.
  13225. \item The next $60$ bits store the length of the array.
  13226. \item The bit at position $62$ distinguishes between a tuple ($0$)
  13227. and an array ($1$).
  13228. \item The left-most bit is reserved as explained in
  13229. chapter~\ref{ch:Lgrad}.
  13230. \end{itemize}
  13231. %% Recall that in chapter~\ref{ch:Ldyn}, we use a $3$-bit tag to
  13232. %% differentiate the kinds of values that have been injected into the
  13233. %% \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  13234. %% to indicate that the value is an array.
  13235. In the following subsections we provide hints regarding how to update
  13236. the passes to handle arrays.
  13237. \subsection{Overload Resolution}
  13238. \label{sec:array-resolution}
  13239. As noted previously, with the addition of arrays, several operators
  13240. have become \emph{overloaded}; that is, they can be applied to values
  13241. of more than one type. In this case, the element access and length
  13242. operators can be applied to both tuples and arrays. This kind of
  13243. overloading is quite common in programming languages, so many
  13244. compilers perform \emph{overload resolution}\index{subject}{overload
  13245. resolution} to handle it. The idea is to translate each overloaded
  13246. operator into different operators for the different types.
  13247. Implement a new pass named \code{resolve}.
  13248. Translate the reading of an array element
  13249. into a call to
  13250. \racket{\code{vectorof-ref}}\python{\code{array\_load}}
  13251. and the writing of an array element to
  13252. \racket{\code{vectorof-set!}}\python{\code{array\_store}}
  13253. Translate calls to \racket{\code{vector-length}}\python{\code{len}}
  13254. into \racket{\code{vectorof-length}}\python{\code{array\_len}}.
  13255. When these operators are applied to tuples, leave them as is.
  13256. %
  13257. \python{The type checker for \LangArray{} adds a \code{has\_type}
  13258. field which can be inspected to determine whether the operator
  13259. is applied to a tuple or an array.}
  13260. \subsection{Bounds Checking}
  13261. Recall that the interpreter for \LangArray{} signals a
  13262. \code{trapped-error} when there is an array access that is out of
  13263. bounds. Therefore your compiler is obliged to also catch these errors
  13264. during execution and halt, signaling an error. We recommend inserting
  13265. a new pass named \code{check\_bounds} that inserts code around each
  13266. \racket{\code{vectorof-ref} and \code{vectorof-set!}}
  13267. \python{subscript} operation to ensure that the index is greater than
  13268. or equal to zero and less than the array's length. If not, the program
  13269. should halt, for which we recommend using a new primitive operation
  13270. named \code{exit}.
  13271. %% \subsection{Reveal Casts}
  13272. %% The array-access operators \code{vectorof-ref} and
  13273. %% \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  13274. %% \code{any-vector-set!} operators of chapter~\ref{ch:Ldyn} in
  13275. %% that the type checker cannot tell whether the index will be in bounds,
  13276. %% so the bounds check must be performed at run time. Recall that the
  13277. %% \code{reveal-casts} pass (section~\ref{sec:reveal-casts-Rany}) wraps
  13278. %% an \code{If} around a vector reference for update to check whether
  13279. %% the index is less than the length. You should do the same for
  13280. %% \code{vectorof-ref} and \code{vectorof-set!} .
  13281. %% In addition, the handling of the \code{any-vector} operators in
  13282. %% \code{reveal-casts} needs to be updated to account for arrays that are
  13283. %% injected to \code{Any}. For the \code{any-vector-length} operator, the
  13284. %% generated code should test whether the tag is for tuples (\code{010})
  13285. %% or arrays (\code{110}) and then dispatch to either
  13286. %% \code{any-vector-length} or \code{any-vectorof-length}. For the later
  13287. %% we add a case in \code{select\_instructions} to generate the
  13288. %% appropriate instructions for accessing the array length from the
  13289. %% header of an array.
  13290. %% For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  13291. %% the generated code needs to check that the index is less than the
  13292. %% vector length, so like the code for \code{any-vector-length}, check
  13293. %% the tag to determine whether to use \code{any-vector-length} or
  13294. %% \code{any-vectorof-length} for this purpose. Once the bounds checking
  13295. %% is complete, the generated code can use \code{any-vector-ref} and
  13296. %% \code{any-vector-set!} for both tuples and arrays because the
  13297. %% instructions used for those operators do not look at the tag at the
  13298. %% front of the tuple or array.
  13299. \subsection{Expose Allocation}
  13300. This pass should translate array creation into lower-level
  13301. operations. In particular, the new AST node \ALLOCARRAY{\Exp}{\Type}
  13302. is analogous to the \code{Allocate} AST node for tuples. The $\Type$
  13303. argument must be \ARRAYTY{T}, where $T$ is the element type for the
  13304. array. The \code{AllocateArray} AST node allocates an array of the
  13305. length specified by the $\Exp$ (of type \INTTY), but does not
  13306. initialize the elements of the array. Generate code in this pass to
  13307. initialize the elements analogous to the case for tuples.
  13308. {\if\edition\racketEd
  13309. \section{Uncover \texttt{get!}}
  13310. \label{sec:uncover-get-bang-vecof}
  13311. Add cases for \code{AllocateArray} to \code{collect-set!} and
  13312. \code{uncover-get!-exp}.
  13313. \fi}
  13314. \subsection{Remove Complex Operands}
  13315. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  13316. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  13317. complex, and its subexpression must be atomic.
  13318. \subsection{Explicate Control}
  13319. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  13320. \code{explicate\_assign}.
  13321. \subsection{Select Instructions}
  13322. \index{subject}{select instructions}
  13323. Generate instructions for \code{AllocateArray} similar to those for
  13324. \code{Allocate} given in section~\ref{sec:select-instructions-gc}
  13325. except that the tag at the front of the array should instead use the
  13326. representation discussed in section~\ref{sec:array-rep}.
  13327. Regarding \racket{\code{vectorof-length}}\python{\code{array\_len}},
  13328. extract the length from the tag.
  13329. The instructions generated for accessing an element of an array differ
  13330. from those for a tuple (section~\ref{sec:select-instructions-gc}) in
  13331. that the index is not a constant so you need to generate instructions
  13332. that compute the offset at runtime.
  13333. Compile the \code{exit} primitive into a call to the \code{exit}
  13334. function of the C standard library, with an argument of $255$.
  13335. %% Also, note that assignment to an array element may appear in
  13336. %% as a stand-alone statement, so make sure to handle that situation in
  13337. %% this pass.
  13338. %% Finally, the instructions for \code{any-vectorof-length} should be
  13339. %% similar to those for \code{vectorof-length}, except that one must
  13340. %% first project the array by writing zeroes into the $3$-bit tag
  13341. \begin{exercise}\normalfont\normalsize
  13342. Implement a compiler for the \LangArray{} language by extending your
  13343. compiler for \LangLoop{}. Test your compiler on a half dozen new
  13344. programs, including the one shown in figure~\ref{fig:inner_product}
  13345. and also a program that multiplies two matrices. Note that although
  13346. matrices are two-dimensional arrays, they can be encoded into
  13347. one-dimensional arrays by laying out each row in the array, one after
  13348. the next.
  13349. \end{exercise}
  13350. {\if\edition\racketEd
  13351. \section{Challenge: Generational Collection}
  13352. The copying collector described in section~\ref{sec:GC} can incur
  13353. significant runtime overhead because the call to \code{collect} takes
  13354. time proportional to all the live data. One way to reduce this
  13355. overhead is to reduce how much data is inspected in each call to
  13356. \code{collect}. In particular, researchers have observed that recently
  13357. allocated data is more likely to become garbage then data that has
  13358. survived one or more previous calls to \code{collect}. This insight
  13359. motivated the creation of \emph{generational garbage collectors}
  13360. \index{subject}{generational garbage collector} that
  13361. (1) segregate data according to its age into two or more generations;
  13362. (2) allocate less space for younger generations, so collecting them is
  13363. faster, and more space for the older generations; and (3) perform
  13364. collection on the younger generations more frequently than on older
  13365. generations~\citep{Wilson:1992fk}.
  13366. For this challenge assignment, the goal is to adapt the copying
  13367. collector implemented in \code{runtime.c} to use two generations, one
  13368. for young data and one for old data. Each generation consists of a
  13369. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  13370. \code{collect} function to use the two generations:
  13371. \begin{enumerate}
  13372. \item Copy the young generation's FromSpace to its ToSpace and then
  13373. switch the role of the ToSpace and FromSpace.
  13374. \item If there is enough space for the requested number of bytes in
  13375. the young FromSpace, then return from \code{collect}.
  13376. \item If there is not enough space in the young FromSpace for the
  13377. requested bytes, then move the data from the young generation to the
  13378. old one with the following steps:
  13379. \begin{enumerate}
  13380. \item[a.] If there is enough room in the old FromSpace, copy the young
  13381. FromSpace to the old FromSpace and then return.
  13382. \item[b.] If there is not enough room in the old FromSpace, then collect
  13383. the old generation by copying the old FromSpace to the old ToSpace
  13384. and swap the roles of the old FromSpace and ToSpace.
  13385. \item[c.] If there is enough room now, copy the young FromSpace to the
  13386. old FromSpace and return. Otherwise, allocate a larger FromSpace
  13387. and ToSpace for the old generation. Copy the young FromSpace and
  13388. the old FromSpace into the larger FromSpace for the old
  13389. generation and then return.
  13390. \end{enumerate}
  13391. \end{enumerate}
  13392. We recommend that you generalize the \code{cheney} function so that it
  13393. can be used for all the copies mentioned: between the young FromSpace
  13394. and ToSpace, between the old FromSpace and ToSpace, and between the
  13395. young FromSpace and old FromSpace. This can be accomplished by adding
  13396. parameters to \code{cheney} that replace its use of the global
  13397. variables \code{fromspace\_begin}, \code{fromspace\_end},
  13398. \code{tospace\_begin}, and \code{tospace\_end}.
  13399. Note that the collection of the young generation does not traverse the
  13400. old generation. This introduces a potential problem: there may be
  13401. young data that is reachable only through pointers in the old
  13402. generation. If these pointers are not taken into account, the
  13403. collector could throw away young data that is live! One solution,
  13404. called \emph{pointer recording}, is to maintain a set of all the
  13405. pointers from the old generation into the new generation and consider
  13406. this set as part of the root set. To maintain this set, the compiler
  13407. must insert extra instructions around every \code{vector-set!}. If the
  13408. vector being modified is in the old generation, and if the value being
  13409. written is a pointer into the new generation, then that pointer must
  13410. be added to the set. Also, if the value being overwritten was a
  13411. pointer into the new generation, then that pointer should be removed
  13412. from the set.
  13413. \begin{exercise}\normalfont\normalsize
  13414. Adapt the \code{collect} function in \code{runtime.c} to implement
  13415. generational garbage collection, as outlined in this section.
  13416. Update the code generation for \code{vector-set!} to implement
  13417. pointer recording. Make sure that your new compiler and runtime
  13418. execute without error on your test suite.
  13419. \end{exercise}
  13420. \fi}
  13421. \section{Further Reading}
  13422. \citet{Appel90} describes many data representation approaches
  13423. including the ones used in the compilation of Standard ML.
  13424. There are many alternatives to copying collectors (and their bigger
  13425. siblings, the generational collectors) with regard to garbage
  13426. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  13427. reference counting~\citep{Collins:1960aa}. The strengths of copying
  13428. collectors are that allocation is fast (just a comparison and pointer
  13429. increment), there is no fragmentation, cyclic garbage is collected,
  13430. and the time complexity of collection depends only on the amount of
  13431. live data and not on the amount of garbage~\citep{Wilson:1992fk}. The
  13432. main disadvantages of a two-space copying collector is that it uses a
  13433. lot of extra space and takes a long time to perform the copy, though
  13434. these problems are ameliorated in generational collectors.
  13435. \racket{Racket}\python{Object-oriented} programs tend to allocate many
  13436. small objects and generate a lot of garbage, so copying and
  13437. generational collectors are a good fit\python{~\citep{Dieckmann99}}.
  13438. Garbage collection is an active research topic, especially concurrent
  13439. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  13440. developing new techniques and revisiting old
  13441. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  13442. meet every year at the International Symposium on Memory Management to
  13443. present these findings.
  13444. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13445. \chapter{Functions}
  13446. \label{ch:Lfun}
  13447. \index{subject}{function}
  13448. \setcounter{footnote}{0}
  13449. This chapter studies the compilation of a subset of \racket{Typed
  13450. Racket}\python{Python} in which only top-level function definitions
  13451. are allowed. This kind of function appears in the C programming
  13452. language, and it serves as an important stepping-stone to implementing
  13453. lexically scoped functions in the form of \key{lambda}\index{subject}{lambda}
  13454. abstractions, which is the topic of chapter~\ref{ch:Llambda}.
  13455. \section{The \LangFun{} Language}
  13456. The concrete syntax and abstract syntax for function definitions and
  13457. function application are shown in
  13458. figures~\ref{fig:Lfun-concrete-syntax} and \ref{fig:Lfun-syntax}, with
  13459. which we define the \LangFun{} language. Programs in \LangFun{} begin
  13460. with zero or more function definitions. The function names from these
  13461. definitions are in scope for the entire program, including all the
  13462. function definitions, and therefore the ordering of function
  13463. definitions does not matter.
  13464. %
  13465. \python{The abstract syntax for function parameters in
  13466. figure~\ref{fig:Lfun-syntax} is a list of pairs, where each pair
  13467. consists of a parameter name and its type. This design differs from
  13468. Python's \code{ast} module, which has a more complex structure for
  13469. function parameters to handle keyword parameters,
  13470. defaults, and so on. The type checker in \code{type\_check\_Lfun} converts the
  13471. complex Python abstract syntax into the simpler syntax of
  13472. figure~\ref{fig:Lfun-syntax}. The fourth and sixth parameters of the
  13473. \code{FunctionDef} constructor are for decorators and a type
  13474. comment, neither of which are used by our compiler. We recommend
  13475. replacing them with \code{None} in the \code{shrink} pass.
  13476. }
  13477. %
  13478. The concrete syntax for function application
  13479. \index{subject}{function application}
  13480. is \python{$\CAPPLY{\Exp}{\Exp\code{,} \ldots}$}\racket{$\CAPPLY{\Exp}{\Exp \ldots}$},
  13481. where the first expression
  13482. must evaluate to a function and the remaining expressions are the arguments. The
  13483. abstract syntax for function application is
  13484. $\APPLY{\Exp}{\Exp^*}$.
  13485. %% The syntax for function application does not include an explicit
  13486. %% keyword, which is error prone when using \code{match}. To alleviate
  13487. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  13488. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  13489. Functions are first-class in the sense that a function pointer
  13490. \index{subject}{function pointer} is data and can be stored in memory or passed
  13491. as a parameter to another function. Thus, there is a function
  13492. type, written
  13493. {\if\edition\racketEd
  13494. \begin{lstlisting}
  13495. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  13496. \end{lstlisting}
  13497. \fi}
  13498. {\if\edition\pythonEd\pythonColor
  13499. \begin{lstlisting}
  13500. Callable[[|$\Type_1$|,|$\cdots$|,|$\Type_n$|], |$\Type_R$|]
  13501. \end{lstlisting}
  13502. \fi}
  13503. %
  13504. \noindent for a function whose $n$ parameters have the types $\Type_1$
  13505. through $\Type_n$ and whose return type is $\Type_R$. The main
  13506. limitation of these functions (with respect to
  13507. \racket{Racket}\python{Python} functions) is that they are not
  13508. lexically scoped. That is, the only external entities that can be
  13509. referenced from inside a function body are other globally defined
  13510. functions. The syntax of \LangFun{} prevents function definitions from
  13511. being nested inside each other.
  13512. \newcommand{\LfunGrammarRacket}{
  13513. \begin{array}{lcl}
  13514. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13515. \Exp &::=& \LP\Exp \; \Exp \ldots\RP \\
  13516. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  13517. \end{array}
  13518. }
  13519. \newcommand{\LfunASTRacket}{
  13520. \begin{array}{lcl}
  13521. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  13522. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}\\
  13523. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  13524. \end{array}
  13525. }
  13526. \newcommand{\LfunGrammarPython}{
  13527. \begin{array}{lcl}
  13528. \Type &::=& \key{int}
  13529. \MID \key{bool} \MID \key{void}
  13530. \MID \key{tuple}\LS \Type^+ \RS
  13531. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  13532. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots} \\
  13533. \Stmt &::=& \CRETURN{\Exp} \\
  13534. \Def &::=& \CDEF{\Var}{\Var \key{:} \Type\key{,} \ldots}{\Type}{\Stmt^{+}}
  13535. \end{array}
  13536. }
  13537. \newcommand{\LfunASTPython}{
  13538. \begin{array}{lcl}
  13539. \Type &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  13540. \MID \key{TupleType}\LS\Type^+\RS\\
  13541. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  13542. \Exp &::=& \CALL{\Exp}{\Exp^{*}}\\
  13543. \Stmt &::=& \RETURN{\Exp} \\
  13544. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  13545. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  13546. \end{array}
  13547. }
  13548. \begin{figure}[tp]
  13549. \centering
  13550. \begin{tcolorbox}[colback=white]
  13551. \small
  13552. {\if\edition\racketEd
  13553. \[
  13554. \begin{array}{l}
  13555. \gray{\LintGrammarRacket{}} \\ \hline
  13556. \gray{\LvarGrammarRacket{}} \\ \hline
  13557. \gray{\LifGrammarRacket{}} \\ \hline
  13558. \gray{\LwhileGrammarRacket} \\ \hline
  13559. \gray{\LtupGrammarRacket} \\ \hline
  13560. \LfunGrammarRacket \\
  13561. \begin{array}{lcl}
  13562. \LangFunM{} &::=& \Def \ldots \; \Exp
  13563. \end{array}
  13564. \end{array}
  13565. \]
  13566. \fi}
  13567. {\if\edition\pythonEd\pythonColor
  13568. \[
  13569. \begin{array}{l}
  13570. \gray{\LintGrammarPython{}} \\ \hline
  13571. \gray{\LvarGrammarPython{}} \\ \hline
  13572. \gray{\LifGrammarPython{}} \\ \hline
  13573. \gray{\LwhileGrammarPython} \\ \hline
  13574. \gray{\LtupGrammarPython} \\ \hline
  13575. \LfunGrammarPython \\
  13576. \begin{array}{rcl}
  13577. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  13578. \end{array}
  13579. \end{array}
  13580. \]
  13581. \fi}
  13582. \end{tcolorbox}
  13583. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  13584. \label{fig:Lfun-concrete-syntax}
  13585. \end{figure}
  13586. \begin{figure}[tp]
  13587. \centering
  13588. \begin{tcolorbox}[colback=white]
  13589. \small
  13590. {\if\edition\racketEd
  13591. \[
  13592. \begin{array}{l}
  13593. \gray{\LintOpAST} \\ \hline
  13594. \gray{\LvarASTRacket{}} \\ \hline
  13595. \gray{\LifASTRacket{}} \\ \hline
  13596. \gray{\LwhileASTRacket{}} \\ \hline
  13597. \gray{\LtupASTRacket{}} \\ \hline
  13598. \LfunASTRacket \\
  13599. \begin{array}{lcl}
  13600. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  13601. \end{array}
  13602. \end{array}
  13603. \]
  13604. \fi}
  13605. {\if\edition\pythonEd\pythonColor
  13606. \[
  13607. \begin{array}{l}
  13608. \gray{\LintASTPython{}} \\ \hline
  13609. \gray{\LvarASTPython{}} \\ \hline
  13610. \gray{\LifASTPython{}} \\ \hline
  13611. \gray{\LwhileASTPython} \\ \hline
  13612. \gray{\LtupASTPython} \\ \hline
  13613. \LfunASTPython \\
  13614. \begin{array}{rcl}
  13615. \LangFunM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  13616. \end{array}
  13617. \end{array}
  13618. \]
  13619. \fi}
  13620. \end{tcolorbox}
  13621. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  13622. \label{fig:Lfun-syntax}
  13623. \end{figure}
  13624. The program shown in figure~\ref{fig:Lfun-function-example} is a
  13625. representative example of defining and using functions in \LangFun{}.
  13626. We define a function \code{map} that applies some other function
  13627. \code{f} to both elements of a tuple and returns a new tuple
  13628. containing the results. We also define a function \code{inc}. The
  13629. program applies \code{map} to \code{inc} and
  13630. %
  13631. \racket{\code{(vector 0 41)}}\python{\code{(0, 41)}}.
  13632. %
  13633. The result is \racket{\code{(vector 1 42)}}\python{\code{(1, 42)}},
  13634. %
  13635. from which we return \code{42}.
  13636. \begin{figure}[tbp]
  13637. \begin{tcolorbox}[colback=white]
  13638. {\if\edition\racketEd
  13639. \begin{lstlisting}
  13640. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  13641. : (Vector Integer Integer)
  13642. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  13643. (define (inc [x : Integer]) : Integer
  13644. (+ x 1))
  13645. (vector-ref (map inc (vector 0 41)) 1)
  13646. \end{lstlisting}
  13647. \fi}
  13648. {\if\edition\pythonEd\pythonColor
  13649. \begin{lstlisting}
  13650. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  13651. return f(v[0]), f(v[1])
  13652. def inc(x : int) -> int:
  13653. return x + 1
  13654. print( map(inc, (0, 41))[1] )
  13655. \end{lstlisting}
  13656. \fi}
  13657. \end{tcolorbox}
  13658. \caption{Example of using functions in \LangFun{}.}
  13659. \label{fig:Lfun-function-example}
  13660. \end{figure}
  13661. The definitional interpreter for \LangFun{} is shown in
  13662. figure~\ref{fig:interp-Lfun}. The case for the
  13663. %
  13664. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  13665. %
  13666. AST is responsible for setting up the mutual recursion between the
  13667. top-level function definitions.
  13668. %
  13669. \racket{We use the classic back-patching
  13670. \index{subject}{back-patching} approach that uses mutable variables
  13671. and makes two passes over the function
  13672. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  13673. top-level environment using a mutable cons cell for each function
  13674. definition. Note that the \code{lambda}\index{subject}{lambda} value
  13675. for each function is incomplete; it does not yet include the environment.
  13676. Once the top-level environment has been constructed, we iterate over it and
  13677. update the \code{lambda} values to use the top-level environment.}
  13678. %
  13679. \python{We create a dictionary named \code{env} and fill it in
  13680. by mapping each function name to a new \code{Function} value,
  13681. each of which stores a reference to the \code{env}.
  13682. (We define the class \code{Function} for this purpose.)}
  13683. %
  13684. To interpret a function \racket{application}\python{call}, we match
  13685. the result of the function expression to obtain a function value. We
  13686. then extend the function's environment with the mapping of parameters to
  13687. argument values. Finally, we interpret the body of the function in
  13688. this extended environment.
  13689. \begin{figure}[tp]
  13690. \begin{tcolorbox}[colback=white]
  13691. {\if\edition\racketEd
  13692. \begin{lstlisting}
  13693. (define interp-Lfun-class
  13694. (class interp-Lvec-class
  13695. (super-new)
  13696. (define/override ((interp-exp env) e)
  13697. (define recur (interp-exp env))
  13698. (match e
  13699. [(Apply fun args)
  13700. (define fun-val (recur fun))
  13701. (define arg-vals (for/list ([e args]) (recur e)))
  13702. (match fun-val
  13703. [`(function (,xs ...) ,body ,fun-env)
  13704. (define params-args (for/list ([x xs] [arg arg-vals])
  13705. (cons x (box arg))))
  13706. (define new-env (append params-args fun-env))
  13707. ((interp-exp new-env) body)]
  13708. [else
  13709. (error 'interp-exp "expected function, not ~a" fun-val)])]
  13710. [else ((super interp-exp env) e)]
  13711. ))
  13712. (define/public (interp-def d)
  13713. (match d
  13714. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  13715. (cons f (box `(function ,xs ,body ())))]))
  13716. (define/override (interp-program p)
  13717. (match p
  13718. [(ProgramDefsExp info ds body)
  13719. (let ([top-level (for/list ([d ds]) (interp-def d))])
  13720. (for/list ([f (in-dict-values top-level)])
  13721. (set-box! f (match (unbox f)
  13722. [`(function ,xs ,body ())
  13723. `(function ,xs ,body ,top-level)])))
  13724. ((interp-exp top-level) body))]))
  13725. ))
  13726. (define (interp-Lfun p)
  13727. (send (new interp-Lfun-class) interp-program p))
  13728. \end{lstlisting}
  13729. \fi}
  13730. {\if\edition\pythonEd\pythonColor
  13731. \begin{lstlisting}
  13732. class InterpLfun(InterpLtup):
  13733. def apply_fun(self, fun, args, e):
  13734. match fun:
  13735. case Function(name, xs, body, env):
  13736. new_env = env.copy().update(zip(xs, args))
  13737. return self.interp_stmts(body, new_env)
  13738. case _:
  13739. raise Exception('apply_fun: unexpected: ' + repr(fun))
  13740. def interp_exp(self, e, env):
  13741. match e:
  13742. case Call(Name('input_int'), []):
  13743. return super().interp_exp(e, env)
  13744. case Call(func, args):
  13745. f = self.interp_exp(func, env)
  13746. vs = [self.interp_exp(arg, env) for arg in args]
  13747. return self.apply_fun(f, vs, e)
  13748. case _:
  13749. return super().interp_exp(e, env)
  13750. def interp_stmt(self, s, env, cont):
  13751. match s:
  13752. case Return(value):
  13753. return self.interp_exp(value, env)
  13754. case FunctionDef(name, params, bod, dl, returns, comment):
  13755. if isinstance(params, ast.arguments):
  13756. ps = [p.arg for p in params.args]
  13757. else:
  13758. ps = [x for (x,t) in params]
  13759. env[name] = Function(name, ps, bod, env)
  13760. return self.interp_stmts(cont, env)
  13761. case _:
  13762. return super().interp_stmt(s, env, cont)
  13763. def interp(self, p):
  13764. match p:
  13765. case Module(ss):
  13766. env = {}
  13767. self.interp_stmts(ss, env)
  13768. if 'main' in env.keys():
  13769. self.apply_fun(env['main'], [], None)
  13770. case _:
  13771. raise Exception('interp: unexpected ' + repr(p))
  13772. \end{lstlisting}
  13773. \fi}
  13774. \end{tcolorbox}
  13775. \caption{Interpreter for the \LangFun{} language.}
  13776. \label{fig:interp-Lfun}
  13777. \end{figure}
  13778. %\margincomment{TODO: explain type checker}
  13779. The type checker for \LangFun{} is shown in
  13780. figure~\ref{fig:type-check-Lfun}.
  13781. %
  13782. \python{(We omit the code that parses function parameters into the
  13783. simpler abstract syntax.)}
  13784. %
  13785. Similarly to the interpreter, the case for the
  13786. \racket{\code{ProgramDefsExp}}\python{\code{Module}}
  13787. %
  13788. AST is responsible for setting up the mutual recursion between the
  13789. top-level function definitions. We begin by create a mapping
  13790. \code{env} from every function name to its type. We then type check
  13791. the program using this mapping.
  13792. %
  13793. In the case for function \racket{application}\python{call}, we match
  13794. the type of the function expression to a function type and check that
  13795. the types of the argument expressions are equal to the function's
  13796. parameter types. The type of the \racket{application}\python{call} as
  13797. a whole is the return type from the function type.
  13798. \begin{figure}[tp]
  13799. \begin{tcolorbox}[colback=white]
  13800. {\if\edition\racketEd
  13801. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13802. (define type-check-Lfun-class
  13803. (class type-check-Lvec-class
  13804. (super-new)
  13805. (inherit check-type-equal?)
  13806. (define/public (type-check-apply env e es)
  13807. (define-values (e^ ty) ((type-check-exp env) e))
  13808. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  13809. ((type-check-exp env) e)))
  13810. (match ty
  13811. [`(,ty^* ... -> ,rt)
  13812. (for ([arg-ty ty*] [param-ty ty^*])
  13813. (check-type-equal? arg-ty param-ty (Apply e es)))
  13814. (values e^ e* rt)]))
  13815. (define/override (type-check-exp env)
  13816. (lambda (e)
  13817. (match e
  13818. [(FunRef f n)
  13819. (values (FunRef f n) (dict-ref env f))]
  13820. [(Apply e es)
  13821. (define-values (e^ es^ rt) (type-check-apply env e es))
  13822. (values (Apply e^ es^) rt)]
  13823. [(Call e es)
  13824. (define-values (e^ es^ rt) (type-check-apply env e es))
  13825. (values (Call e^ es^) rt)]
  13826. [else ((super type-check-exp env) e)])))
  13827. (define/public (type-check-def env)
  13828. (lambda (e)
  13829. (match e
  13830. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  13831. (define new-env (append (map cons xs ps) env))
  13832. (define-values (body^ ty^) ((type-check-exp new-env) body))
  13833. (check-type-equal? ty^ rt body)
  13834. (Def f p:t* rt info body^)])))
  13835. (define/public (fun-def-type d)
  13836. (match d
  13837. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  13838. (define/override (type-check-program e)
  13839. (match e
  13840. [(ProgramDefsExp info ds body)
  13841. (define env (for/list ([d ds])
  13842. (cons (Def-name d) (fun-def-type d))))
  13843. (define ds^ (for/list ([d ds]) ((type-check-def env) d)))
  13844. (define-values (body^ ty) ((type-check-exp env) body))
  13845. (check-type-equal? ty 'Integer body)
  13846. (ProgramDefsExp info ds^ body^)]))))
  13847. (define (type-check-Lfun p)
  13848. (send (new type-check-Lfun-class) type-check-program p))
  13849. \end{lstlisting}
  13850. \fi}
  13851. {\if\edition\pythonEd\pythonColor
  13852. \begin{lstlisting}
  13853. class TypeCheckLfun(TypeCheckLtup):
  13854. def type_check_exp(self, e, env):
  13855. match e:
  13856. case Call(Name('input_int'), []):
  13857. return super().type_check_exp(e, env)
  13858. case Call(func, args):
  13859. func_t = self.type_check_exp(func, env)
  13860. args_t = [self.type_check_exp(arg, env) for arg in args]
  13861. match func_t:
  13862. case FunctionType(params_t, return_t):
  13863. for (arg_t, param_t) in zip(args_t, params_t):
  13864. check_type_equal(param_t, arg_t, e)
  13865. return return_t
  13866. case _:
  13867. raise Exception('type_check_exp: in call, unexpected ' +
  13868. repr(func_t))
  13869. case _:
  13870. return super().type_check_exp(e, env)
  13871. def type_check_stmts(self, ss, env):
  13872. if len(ss) == 0:
  13873. return
  13874. match ss[0]:
  13875. case FunctionDef(name, params, body, dl, returns, comment):
  13876. new_env = env.copy().update(params)
  13877. rt = self.type_check_stmts(body, new_env)
  13878. check_type_equal(returns, rt, ss[0])
  13879. return self.type_check_stmts(ss[1:], env)
  13880. case Return(value):
  13881. return self.type_check_exp(value, env)
  13882. case _:
  13883. return super().type_check_stmts(ss, env)
  13884. def type_check(self, p):
  13885. match p:
  13886. case Module(body):
  13887. env = {}
  13888. for s in body:
  13889. match s:
  13890. case FunctionDef(name, params, bod, dl, returns, comment):
  13891. if name in env:
  13892. raise Exception('type_check: function ' +
  13893. repr(name) + ' defined twice')
  13894. params_t = [t for (x,t) in params]
  13895. env[name] = FunctionType(params_t, returns)
  13896. self.type_check_stmts(body, env)
  13897. case _:
  13898. raise Exception('type_check: unexpected ' + repr(p))
  13899. \end{lstlisting}
  13900. \fi}
  13901. \end{tcolorbox}
  13902. \caption{Type checker for the \LangFun{} language.}
  13903. \label{fig:type-check-Lfun}
  13904. \end{figure}
  13905. \clearpage
  13906. \section{Functions in x86}
  13907. \label{sec:fun-x86}
  13908. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  13909. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  13910. %% \margincomment{\tiny Talk about the return address on the
  13911. %% stack and what callq and retq does.\\ --Jeremy }
  13912. The x86 architecture provides a few features to support the
  13913. implementation of functions. We have already seen that there are
  13914. labels in x86 so that one can refer to the location of an instruction,
  13915. as is needed for jump instructions. Labels can also be used to mark
  13916. the beginning of the instructions for a function. Going further, we
  13917. can obtain the address of a label by using the \key{leaq}
  13918. instruction. For example, the following puts the address of the
  13919. \code{inc} label into the \code{rbx} register:
  13920. \begin{lstlisting}
  13921. leaq inc(%rip), %rbx
  13922. \end{lstlisting}
  13923. Recall from section~\ref{sec:select-instructions-gc} that
  13924. \verb!inc(%rip)! is an example of instruction-pointer-relative
  13925. addressing.
  13926. In section~\ref{sec:x86} we used the \code{callq} instruction to jump
  13927. to functions whose locations were given by a label, such as
  13928. \code{read\_int}. To support function calls in this chapter we instead
  13929. jump to functions whose location are given by an address in
  13930. a register; that is, we use \emph{indirect function calls}. The
  13931. x86 syntax for this is a \code{callq} instruction that requires an asterisk
  13932. before the register name.\index{subject}{indirect function call}
  13933. \begin{lstlisting}
  13934. callq *%rbx
  13935. \end{lstlisting}
  13936. \subsection{Calling Conventions}
  13937. \label{sec:calling-conventions-fun}
  13938. \index{subject}{calling conventions}
  13939. The \code{callq} instruction provides partial support for implementing
  13940. functions: it pushes the return address on the stack and it jumps to
  13941. the target. However, \code{callq} does not handle
  13942. \begin{enumerate}
  13943. \item parameter passing,
  13944. \item pushing frames on the procedure call stack and popping them off,
  13945. or
  13946. \item determining how registers are shared by different functions.
  13947. \end{enumerate}
  13948. Regarding parameter passing, recall that the x86-64 calling
  13949. convention for Unix-based systems uses the following six registers to
  13950. pass arguments to a function, in the given order:
  13951. \begin{lstlisting}
  13952. rdi rsi rdx rcx r8 r9
  13953. \end{lstlisting}
  13954. If there are more than six arguments, then the calling convention
  13955. mandates using space on the frame of the caller for the rest of the
  13956. arguments. However, to ease the implementation of efficient tail calls
  13957. (section~\ref{sec:tail-call}), we arrange never to need more than six
  13958. arguments.
  13959. %
  13960. The return value of the function is stored in register \code{rax}.
  13961. Regarding frames \index{subject}{frame} and the procedure call stack,
  13962. \index{subject}{procedure call stack} recall from
  13963. section~\ref{sec:x86} that the stack grows down and each function call
  13964. uses a chunk of space on the stack called a frame. The caller sets the
  13965. stack pointer, register \code{rsp}, to the last data item in its
  13966. frame. The callee must not change anything in the caller's frame, that
  13967. is, anything that is at or above the stack pointer. The callee is free
  13968. to use locations that are below the stack pointer.
  13969. Recall that we store variables of tuple type on the root stack. So,
  13970. the prelude\index{subject}{prelude} of a function needs to move the
  13971. root stack pointer \code{r15} up according to the number of variables
  13972. of tuple type and the conclusion\index{subject}{conclusion} needs to
  13973. move the root stack pointer back down. Also, the prelude must
  13974. initialize to \code{0} this frame's slots in the root stack to signal
  13975. to the garbage collector that those slots do not yet contain a valid
  13976. pointer. Otherwise the garbage collector will interpret the garbage
  13977. bits in those slots as memory addresses and try to traverse them,
  13978. causing serious mayhem!
  13979. Regarding the sharing of registers between different functions, recall
  13980. from section~\ref{sec:calling-conventions} that the registers are
  13981. divided into two groups, the caller-saved registers and the
  13982. callee-saved registers. The caller should assume that all the
  13983. caller-saved registers are overwritten with arbitrary values by the
  13984. callee. For that reason we recommend in
  13985. section~\ref{sec:calling-conventions} that variables that are live
  13986. during a function call should not be assigned to caller-saved
  13987. registers.
  13988. On the flip side, if the callee wants to use a callee-saved register,
  13989. the callee must save the contents of those registers on their stack
  13990. frame and then put them back prior to returning to the caller. For
  13991. that reason we recommend in section~\ref{sec:calling-conventions} that if
  13992. the register allocator assigns a variable to a callee-saved register,
  13993. then the prelude of the \code{main} function must save that register
  13994. to the stack and the conclusion of \code{main} must restore it. This
  13995. recommendation now generalizes to all functions.
  13996. Recall that the base pointer, register \code{rbp}, is used as a
  13997. point of reference within a frame, so that each local variable can be
  13998. accessed at a fixed offset from the base pointer
  13999. (section~\ref{sec:x86}).
  14000. %
  14001. Figure~\ref{fig:call-frames} shows the general layout of the caller
  14002. and callee frames.
  14003. \begin{figure}[tbp]
  14004. \centering
  14005. \begin{tcolorbox}[colback=white]
  14006. \begin{tabular}{r|r|l|l} \hline
  14007. Caller View & Callee View & Contents & Frame \\ \hline
  14008. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  14009. 0(\key{\%rbp}) & & old \key{rbp} \\
  14010. -8(\key{\%rbp}) & & callee-saved $1$ \\
  14011. \ldots & & \ldots \\
  14012. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  14013. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  14014. \ldots & & \ldots \\
  14015. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  14016. %% & & \\
  14017. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  14018. %% & \ldots & \ldots \\
  14019. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  14020. \hline
  14021. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  14022. & 0(\key{\%rbp}) & old \key{rbp} \\
  14023. & -8(\key{\%rbp}) & callee-saved $1$ \\
  14024. & \ldots & \ldots \\
  14025. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  14026. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  14027. & \ldots & \ldots \\
  14028. & $-8(n+m)$(\key{\%rbp}) & local variable $m$\\ \hline
  14029. \end{tabular}
  14030. \end{tcolorbox}
  14031. \caption{Memory layout of caller and callee frames.}
  14032. \label{fig:call-frames}
  14033. \end{figure}
  14034. %% Recall from section~\ref{sec:x86} that the stack is also used for
  14035. %% local variables and for storing the values of callee-saved registers
  14036. %% (we shall refer to all of these collectively as ``locals''), and that
  14037. %% at the beginning of a function we move the stack pointer \code{rsp}
  14038. %% down to make room for them.
  14039. %% We recommend storing the local variables
  14040. %% first and then the callee-saved registers, so that the local variables
  14041. %% can be accessed using \code{rbp} the same as before the addition of
  14042. %% functions.
  14043. %% To make additional room for passing arguments, we shall
  14044. %% move the stack pointer even further down. We count how many stack
  14045. %% arguments are needed for each function call that occurs inside the
  14046. %% body of the function and find their maximum. Adding this number to the
  14047. %% number of locals gives us how much the \code{rsp} should be moved at
  14048. %% the beginning of the function. In preparation for a function call, we
  14049. %% offset from \code{rsp} to set up the stack arguments. We put the first
  14050. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  14051. %% so on.
  14052. %% Upon calling the function, the stack arguments are retrieved by the
  14053. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  14054. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  14055. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  14056. %% the layout of the caller and callee frames. Notice how important it is
  14057. %% that we correctly compute the maximum number of arguments needed for
  14058. %% function calls; if that number is too small then the arguments and
  14059. %% local variables will smash into each other!
  14060. \subsection{Efficient Tail Calls}
  14061. \label{sec:tail-call}
  14062. In general, the amount of stack space used by a program is determined
  14063. by the longest chain of nested function calls. That is, if function
  14064. $f_1$ calls $f_2$, $f_2$ calls $f_3$, and so on to $f_n$, then the
  14065. amount of stack space is linear in $n$. The depth $n$ can grow quite
  14066. large if functions are recursive. However, in some cases we can
  14067. arrange to use only a constant amount of space for a long chain of
  14068. nested function calls.
  14069. A \emph{tail call}\index{subject}{tail call} is a function call that
  14070. happens as the last action in a function body. For example, in the
  14071. following program, the recursive call to \code{tail\_sum} is a tail
  14072. call:
  14073. \begin{center}
  14074. {\if\edition\racketEd
  14075. \begin{lstlisting}
  14076. (define (tail_sum [n : Integer] [r : Integer]) : Integer
  14077. (if (eq? n 0)
  14078. r
  14079. (tail_sum (- n 1) (+ n r))))
  14080. (+ (tail_sum 3 0) 36)
  14081. \end{lstlisting}
  14082. \fi}
  14083. {\if\edition\pythonEd\pythonColor
  14084. \begin{lstlisting}
  14085. def tail_sum(n : int, r : int) -> int:
  14086. if n == 0:
  14087. return r
  14088. else:
  14089. return tail_sum(n - 1, n + r)
  14090. print( tail_sum(3, 0) + 36)
  14091. \end{lstlisting}
  14092. \fi}
  14093. \end{center}
  14094. At a tail call, the frame of the caller is no longer needed, so we can
  14095. pop the caller's frame before making the tail call. With this
  14096. approach, a recursive function that makes only tail calls ends up
  14097. using a constant amount of stack space. Functional languages like
  14098. Racket rely heavily on recursive functions, so the definition of
  14099. Racket \emph{requires} that all tail calls be optimized in this way.
  14100. \index{subject}{frame}
  14101. Some care is needed with regard to argument passing in tail calls. As
  14102. mentioned, for arguments beyond the sixth, the convention is to use
  14103. space in the caller's frame for passing arguments. However, for a
  14104. tail call we pop the caller's frame and can no longer use it. An
  14105. alternative is to use space in the callee's frame for passing
  14106. arguments. However, this option is also problematic because the caller
  14107. and callee's frames overlap in memory. As we begin to copy the
  14108. arguments from their sources in the caller's frame, the target
  14109. locations in the callee's frame might collide with the sources for
  14110. later arguments! We solve this problem by using the heap instead of
  14111. the stack for passing more than six arguments
  14112. (section~\ref{sec:limit-functions-r4}).
  14113. As mentioned, for a tail call we pop the caller's frame prior to
  14114. making the tail call. The instructions for popping a frame are the
  14115. instructions that we usually place in the conclusion of a
  14116. function. Thus, we also need to place such code immediately before
  14117. each tail call. These instructions include restoring the callee-saved
  14118. registers, so it is fortunate that the argument passing registers are
  14119. all caller-saved registers.
  14120. One note remains regarding which instruction to use to make the tail
  14121. call. When the callee is finished, it should not return to the current
  14122. function but instead return to the function that called the current
  14123. one. Thus, the return address that is already on the stack is the
  14124. right one, and we should not use \key{callq} to make the tail call
  14125. because that would overwrite the return address. Instead we simply use
  14126. the \key{jmp} instruction. As with the indirect function call, we write
  14127. an \emph{indirect jump}\index{subject}{indirect jump} with a register
  14128. prefixed with an asterisk. We recommend using \code{rax} to hold the
  14129. jump target because the conclusion can overwrite just about everything
  14130. else.
  14131. \begin{lstlisting}
  14132. jmp *%rax
  14133. \end{lstlisting}
  14134. \section{Shrink \LangFun{}}
  14135. \label{sec:shrink-r4}
  14136. The \code{shrink} pass performs a minor modification to ease the
  14137. later passes. This pass introduces an explicit \code{main} function
  14138. that gobbles up all the top-level statements of the module.
  14139. %
  14140. \racket{It also changes the top \code{ProgramDefsExp} form to
  14141. \code{ProgramDefs}.}
  14142. {\if\edition\racketEd
  14143. \begin{lstlisting}
  14144. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  14145. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  14146. \end{lstlisting}
  14147. where $\itm{mainDef}$ is
  14148. \begin{lstlisting}
  14149. (Def 'main '() 'Integer '() |$\Exp'$|)
  14150. \end{lstlisting}
  14151. \fi}
  14152. {\if\edition\pythonEd\pythonColor
  14153. \begin{lstlisting}
  14154. Module(|$\Def\ldots\Stmt\ldots$|)
  14155. |$\Rightarrow$| Module(|$\Def\ldots\itm{mainDef}$|)
  14156. \end{lstlisting}
  14157. where $\itm{mainDef}$ is
  14158. \begin{lstlisting}
  14159. FunctionDef('main', [], int, None, |$\Stmt\ldots$|Return(Constant(0)), None)
  14160. \end{lstlisting}
  14161. \fi}
  14162. \section{Reveal Functions and the \LangFunRef{} Language}
  14163. \label{sec:reveal-functions-r4}
  14164. The syntax of \LangFun{} is inconvenient for purposes of compilation
  14165. in that it conflates the use of function names and local
  14166. variables. This is a problem because we need to compile the use of a
  14167. function name differently from the use of a local variable. In
  14168. particular, we use \code{leaq} to convert the function name (a label
  14169. in x86) to an address in a register. Thus, we create a new pass that
  14170. changes function references from $\VAR{f}$ to $\FUNREF{f}{n}$ where
  14171. $n$ is the arity of the function.\python{\footnote{The arity is not
  14172. needed in this chapter but is used in chapter~\ref{ch:Ldyn}.}}
  14173. This pass is named \code{reveal\_functions} and the output language
  14174. is \LangFunRef{}.
  14175. %is defined in figure~\ref{fig:f1-syntax}.
  14176. %% The concrete syntax for a
  14177. %% function reference is $\CFUNREF{f}$.
  14178. %% \begin{figure}[tp]
  14179. %% \centering
  14180. %% \fbox{
  14181. %% \begin{minipage}{0.96\textwidth}
  14182. %% {\if\edition\racketEd
  14183. %% \[
  14184. %% \begin{array}{lcl}
  14185. %% \Exp &::=& \ldots \MID \FUNREF{\Var}{\Int}\\
  14186. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14187. %% \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  14188. %% \end{array}
  14189. %% \]
  14190. %% \fi}
  14191. %% {\if\edition\pythonEd\pythonColor
  14192. %% \[
  14193. %% \begin{array}{lcl}
  14194. %% \Exp &::=& \FUNREF{\Var}{\Int}\\
  14195. %% \LangFunRefM{} &::=& \PROGRAM{}{\LS \Def \code{,} \ldots \RS}
  14196. %% \end{array}
  14197. %% \]
  14198. %% \fi}
  14199. %% \end{minipage}
  14200. %% }
  14201. %% \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  14202. %% (figure~\ref{fig:Lfun-syntax}).}
  14203. %% \label{fig:f1-syntax}
  14204. %% \end{figure}
  14205. %% Distinguishing between calls in tail position and non-tail position
  14206. %% requires the pass to have some notion of context. We recommend using
  14207. %% two mutually recursive functions, one for processing expressions in
  14208. %% tail position and another for the rest.
  14209. \racket{Placing this pass after \code{uniquify} will make sure that
  14210. there are no local variables and functions that share the same
  14211. name.}
  14212. %
  14213. The \code{reveal\_functions} pass should come before the
  14214. \code{remove\_complex\_operands} pass because function references
  14215. should be categorized as complex expressions.
  14216. \section{Limit Functions}
  14217. \label{sec:limit-functions-r4}
  14218. Recall that we wish to limit the number of function parameters to six
  14219. so that we do not need to use the stack for argument passing, which
  14220. makes it easier to implement efficient tail calls. However, because
  14221. the input language \LangFun{} supports arbitrary numbers of function
  14222. arguments, we have some work to do! The \code{limit\_functions} pass
  14223. transforms functions and function calls that involve more than six
  14224. arguments to pass the first five arguments as usual, but it packs the
  14225. rest of the arguments into a tuple and passes it as the sixth
  14226. argument.\footnote{The implementation this pass can be postponed to
  14227. last because you can test the rest of the passes on functions with
  14228. six or fewer parameters.}
  14229. Each function definition with seven or more parameters is transformed as
  14230. follows:
  14231. {\if\edition\racketEd
  14232. \begin{lstlisting}
  14233. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  14234. |$\Rightarrow$|
  14235. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [tup : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  14236. \end{lstlisting}
  14237. \fi}
  14238. {\if\edition\pythonEd\pythonColor
  14239. \begin{lstlisting}
  14240. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_n$|,|$T_n$|)], |$T_r$|, None, |$\itm{body}$|, None)
  14241. |$\Rightarrow$|
  14242. FunctionDef(|$f$|, [(|$x_1$|,|$T_1$|),|$\ldots$|,(|$x_5$|,|$T_5$|),(tup,TupleType([|$T_6, \ldots, T_n$|]))],
  14243. |$T_r$|, None, |$\itm{body}'$|, None)
  14244. \end{lstlisting}
  14245. \fi}
  14246. %
  14247. \noindent where the $\itm{body}$ is transformed into $\itm{body}'$ by
  14248. replacing the occurrences of each parameter $x_i$ where $i > 5$ with
  14249. the $k$th element of the tuple, where $k = i - 6$.
  14250. %
  14251. {\if\edition\racketEd
  14252. \begin{lstlisting}
  14253. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list tup (Int |$k$|)))
  14254. \end{lstlisting}
  14255. \fi}
  14256. {\if\edition\pythonEd\pythonColor
  14257. \begin{lstlisting}
  14258. Name(|$x_i$|) |$\Rightarrow$| Subscript(tup, Constant(|$k$|), Load())
  14259. \end{lstlisting}
  14260. \fi}
  14261. For function calls with too many arguments, the \code{limit\_functions}
  14262. pass transforms them in the following way:
  14263. \begin{tabular}{lll}
  14264. \begin{minipage}{0.3\textwidth}
  14265. {\if\edition\racketEd
  14266. \begin{lstlisting}
  14267. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  14268. \end{lstlisting}
  14269. \fi}
  14270. {\if\edition\pythonEd\pythonColor
  14271. \begin{lstlisting}
  14272. Call(|$e_0$|, [|$e_1,\ldots,e_n$|])
  14273. \end{lstlisting}
  14274. \fi}
  14275. \end{minipage}
  14276. &
  14277. $\Rightarrow$
  14278. &
  14279. \begin{minipage}{0.5\textwidth}
  14280. {\if\edition\racketEd
  14281. \begin{lstlisting}
  14282. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  14283. \end{lstlisting}
  14284. \fi}
  14285. {\if\edition\pythonEd\pythonColor
  14286. \begin{lstlisting}
  14287. Call(|$e_0$|, [|$e_1,\ldots,e_5$|,Tuple([|$e_6,\ldots,e_n$|])])
  14288. \end{lstlisting}
  14289. \fi}
  14290. \end{minipage}
  14291. \end{tabular}
  14292. \section{Remove Complex Operands}
  14293. \label{sec:rco-r4}
  14294. The primary decisions to make for this pass are whether to classify
  14295. \code{FunRef} and \racket{\code{Apply}}\python{\code{Call}} as either
  14296. atomic or complex expressions. Recall that an atomic expression
  14297. ends up as an immediate argument of an x86 instruction. Function
  14298. application translates to a sequence of instructions, so
  14299. \racket{\code{Apply}}\python{\code{Call}} must be classified as
  14300. a complex expression. On the other hand, the arguments of
  14301. \racket{\code{Apply}}\python{\code{Call}} should be atomic
  14302. expressions.
  14303. %
  14304. Regarding \code{FunRef}, as discussed previously, the function label
  14305. needs to be converted to an address using the \code{leaq}
  14306. instruction. Thus, even though \code{FunRef} seems rather simple, it
  14307. needs to be classified as a complex expression so that we generate an
  14308. assignment statement with a left-hand side that can serve as the
  14309. target of the \code{leaq}.
  14310. The output of this pass, \LangFunANF{} (figure~\ref{fig:Lfun-anf-syntax}),
  14311. extends \LangAllocANF{} (figure~\ref{fig:Lvec-anf-syntax}) with \code{FunRef}
  14312. and \racket{\code{Apply}}\python{\code{Call}} in the grammar for expressions
  14313. and augments programs to include a list of function definitions.
  14314. %
  14315. \python{Also, \LangFunANF{} adds \code{Return} to the grammar for statements.}
  14316. \newcommand{\LfunMonadASTRacket}{
  14317. \begin{array}{lcl}
  14318. \Type &::=& (\Type \ldots \; \key{->}\; \Type) \\
  14319. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14320. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}
  14321. \end{array}
  14322. }
  14323. \newcommand{\LfunMonadASTPython}{
  14324. \begin{array}{lcl}
  14325. \Type &::=& \key{IntType()} \MID \key{BoolType()} \key{VoidType()}
  14326. \MID \key{TupleType}\LS\Type^+\RS\\
  14327. &\MID& \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  14328. \Exp &::=& \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}}\\
  14329. \Stmt &::=& \RETURN{\Exp} \\
  14330. \Params &::=& \LP\Var\key{,}\Type\RP^* \\
  14331. \Def &::=& \FUNDEF{\Var}{\Params}{\Type}{}{\Stmt^{+}}
  14332. \end{array}
  14333. }
  14334. \begin{figure}[tp]
  14335. \centering
  14336. \begin{tcolorbox}[colback=white]
  14337. \small
  14338. {\if\edition\racketEd
  14339. \[
  14340. \begin{array}{l}
  14341. \gray{\LvarMonadASTRacket} \\ \hline
  14342. \gray{\LifMonadASTRacket} \\ \hline
  14343. \gray{\LwhileMonadASTRacket} \\ \hline
  14344. \gray{\LtupMonadASTRacket} \\ \hline
  14345. \LfunMonadASTRacket \\
  14346. \begin{array}{rcl}
  14347. \LangFunANFM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  14348. \end{array}
  14349. \end{array}
  14350. \]
  14351. \fi}
  14352. {\if\edition\pythonEd\pythonColor
  14353. \[
  14354. \begin{array}{l}
  14355. \gray{\LvarMonadASTPython} \\ \hline
  14356. \gray{\LifMonadASTPython} \\ \hline
  14357. \gray{\LwhileMonadASTPython} \\ \hline
  14358. \gray{\LtupMonadASTPython} \\ \hline
  14359. \LfunMonadASTPython \\
  14360. \begin{array}{rcl}
  14361. \LangFunANFM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  14362. \end{array}
  14363. \end{array}
  14364. \]
  14365. \fi}
  14366. \end{tcolorbox}
  14367. \caption{\LangFunANF{} is \LangFunRef{} in monadic normal form.}
  14368. \label{fig:Lfun-anf-syntax}
  14369. \end{figure}
  14370. %% Figure~\ref{fig:Lfun-anf-syntax} defines the output language
  14371. %% \LangFunANF{} of this pass.
  14372. %% \begin{figure}[tp]
  14373. %% \centering
  14374. %% \fbox{
  14375. %% \begin{minipage}{0.96\textwidth}
  14376. %% \small
  14377. %% \[
  14378. %% \begin{array}{rcl}
  14379. %% \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  14380. %% \MID \VOID{} } \\
  14381. %% \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  14382. %% &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  14383. %% &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  14384. %% &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  14385. %% &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  14386. %% &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  14387. %% \MID \LP\key{GlobalValue}~\Var\RP }\\
  14388. %% &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  14389. %% \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  14390. %% R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  14391. %% \end{array}
  14392. %% \]
  14393. %% \end{minipage}
  14394. %% }
  14395. %% \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  14396. %% \label{fig:Lfun-anf-syntax}
  14397. %% \end{figure}
  14398. \section{Explicate Control and the \LangCFun{} Language}
  14399. \label{sec:explicate-control-r4}
  14400. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  14401. output of \code{explicate\_control}.
  14402. %
  14403. %% \racket{(The concrete syntax is given in
  14404. %% figure~\ref{fig:c3-concrete-syntax} of the Appendix.)}
  14405. %
  14406. The auxiliary functions for assignment\racket{ and tail contexts} should
  14407. be updated with cases for
  14408. \racket{\code{Apply}}\python{\code{Call}} and \code{FunRef} and the
  14409. function for predicate context should be updated for
  14410. \racket{\code{Apply}}\python{\code{Call}} but not \code{FunRef}. (A
  14411. \code{FunRef} cannot be a Boolean.) In assignment and predicate
  14412. contexts, \code{Apply} becomes \code{Call}\racket{, whereas in tail position
  14413. \code{Apply} becomes \code{TailCall}}. We recommend defining a new
  14414. auxiliary function for processing function definitions. This code is
  14415. similar to the case for \code{Program} in \LangVec{}. The top-level
  14416. \code{explicate\_control} function that handles the \code{ProgramDefs}
  14417. form of \LangFun{} can then apply this new function to all the
  14418. function definitions.
  14419. {\if\edition\pythonEd\pythonColor
  14420. The translation of \code{Return} statements requires a new auxiliary
  14421. function to handle expressions in tail context, called
  14422. \code{explicate\_tail}. The function should take an expression and the
  14423. dictionary of basic blocks and produce a list of statements in the
  14424. \LangCFun{} language. The \code{explicate\_tail} function should
  14425. include cases for \code{Begin}, \code{IfExp}, \code{Let}, \code{Call},
  14426. and a default case for other kinds of expressions. The default case
  14427. should produce a \code{Return} statement. The case for \code{Call}
  14428. should change it into \code{TailCall}. The other cases should
  14429. recursively process their subexpressions and statements, choosing the
  14430. appropriate explicate functions for the various contexts.
  14431. \fi}
  14432. \newcommand{\CfunASTRacket}{
  14433. \begin{array}{lcl}
  14434. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  14435. \Tail &::= & \TAILCALL{\Atm}{\Atm\ldots} \\
  14436. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  14437. \end{array}
  14438. }
  14439. \newcommand{\CfunASTPython}{
  14440. \begin{array}{lcl}
  14441. \Exp &::= & \FUNREF{\itm{label}}{\Int} \MID \CALL{\Atm}{\Atm^{*}} \\
  14442. \Tail &::= & \TAILCALL{\Atm}{\Atm^{*}} \\
  14443. \Params &::=& \LS\LP\Var\key{,}\Type\RP\code{,}\ldots\RS \\
  14444. \Block &::=& \itm{label}\key{:} \Stmt^{*}\;\Tail \\
  14445. \Blocks &::=& \LC\Block\code{,}\ldots\RC \\
  14446. \Def &::=& \DEF{\itm{label}}{\Params}{\Blocks}{\key{None}}{\Type}{\key{None}}
  14447. \end{array}
  14448. }
  14449. \begin{figure}[tp]
  14450. \begin{tcolorbox}[colback=white]
  14451. \small
  14452. {\if\edition\racketEd
  14453. \[
  14454. \begin{array}{l}
  14455. \gray{\CvarASTRacket} \\ \hline
  14456. \gray{\CifASTRacket} \\ \hline
  14457. \gray{\CloopASTRacket} \\ \hline
  14458. \gray{\CtupASTRacket} \\ \hline
  14459. \CfunASTRacket \\
  14460. \begin{array}{lcl}
  14461. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14462. \end{array}
  14463. \end{array}
  14464. \]
  14465. \fi}
  14466. {\if\edition\pythonEd\pythonColor
  14467. \[
  14468. \begin{array}{l}
  14469. \gray{\CifASTPython} \\ \hline
  14470. \gray{\CtupASTPython} \\ \hline
  14471. \CfunASTPython \\
  14472. \begin{array}{lcl}
  14473. \LangCFunM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14474. \end{array}
  14475. \end{array}
  14476. \]
  14477. \fi}
  14478. \end{tcolorbox}
  14479. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  14480. \label{fig:c3-syntax}
  14481. \end{figure}
  14482. \clearpage
  14483. \section{Select Instructions and the \LangXIndCall{} Language}
  14484. \label{sec:select-r4}
  14485. \index{subject}{select instructions}
  14486. The output of select instructions is a program in the \LangXIndCall{}
  14487. language; the definition of its concrete syntax is shown in
  14488. figure~\ref{fig:x86-3-concrete}, and the definition of its abstract
  14489. syntax is shown in figure~\ref{fig:x86-3}. We use the \code{align}
  14490. directive on the labels of function definitions to make sure the
  14491. bottom three bits are zero, which we put to use in
  14492. chapter~\ref{ch:Ldyn}. We discuss the new instructions as needed in
  14493. this section. \index{subject}{x86}
  14494. \newcommand{\GrammarXIndCall}{
  14495. \begin{array}{lcl}
  14496. \Instr &::=& \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  14497. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  14498. \Block &::= & \Instr^{+} \\
  14499. \Def &::= & \code{.globl}\,\code{.align 8}\,\itm{label}\; (\itm{label}\key{:}\, \Block)^{*}
  14500. \end{array}
  14501. }
  14502. \newcommand{\ASTXIndCallRacket}{
  14503. \begin{array}{lcl}
  14504. \Instr &::=& \INDCALLQ{\Arg}{\itm{int}}
  14505. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14506. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  14507. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  14508. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP}
  14509. \end{array}
  14510. }
  14511. \begin{figure}[tp]
  14512. \begin{tcolorbox}[colback=white]
  14513. \small
  14514. \[
  14515. \begin{array}{l}
  14516. \gray{\GrammarXInt} \\ \hline
  14517. \gray{\GrammarXIf} \\ \hline
  14518. \gray{\GrammarXGlobal} \\ \hline
  14519. \GrammarXIndCall \\
  14520. \begin{array}{lcl}
  14521. \LangXIndCallM{} &::= & \Def^{*}
  14522. \end{array}
  14523. \end{array}
  14524. \]
  14525. \end{tcolorbox}
  14526. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of figure~\ref{fig:x86-2-concrete}).}
  14527. \label{fig:x86-3-concrete}
  14528. \end{figure}
  14529. \begin{figure}[tp]
  14530. \begin{tcolorbox}[colback=white]
  14531. \small
  14532. {\if\edition\racketEd
  14533. \[\arraycolsep=3pt
  14534. \begin{array}{l}
  14535. \gray{\ASTXIntRacket} \\ \hline
  14536. \gray{\ASTXIfRacket} \\ \hline
  14537. \gray{\ASTXGlobalRacket} \\ \hline
  14538. \ASTXIndCallRacket \\
  14539. \begin{array}{lcl}
  14540. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  14541. \end{array}
  14542. \end{array}
  14543. \]
  14544. \fi}
  14545. {\if\edition\pythonEd\pythonColor
  14546. \[
  14547. \begin{array}{lcl}
  14548. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  14549. \MID \BYTEREG{\Reg} } \\
  14550. &\MID& \gray{ \GLOBAL{\itm{label}} } \MID \FUNREF{\itm{label}}{\Int} \\
  14551. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  14552. \MID \TAILJMP{\Arg}{\itm{int}}\\
  14553. &\MID& \BININSTR{\scode{leaq}}{\Arg}{\REG{\Reg}}\\
  14554. \Block &::=&\itm{label}\key{:}\,\Instr^{*} \\
  14555. \Blocks &::= & \LC\Block\code{,}\ldots\RC\\
  14556. \Def &::= & \DEF{\itm{label}}{\LS\RS}{\Blocks}{\_}{\Type}{\_} \\
  14557. \LangXIndCallM{} &::= & \XPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  14558. \end{array}
  14559. \]
  14560. \fi}
  14561. \end{tcolorbox}
  14562. \caption{The abstract syntax of \LangXIndCall{} (extends
  14563. \LangXGlobal{} of figure~\ref{fig:x86-2}).}
  14564. \label{fig:x86-3}
  14565. \end{figure}
  14566. An assignment of a function reference to a variable becomes a
  14567. load-effective-address instruction as follows, where $\itm{lhs}'$ is
  14568. the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{} to \Arg{} in
  14569. \LangXIndCallVar{}. The \code{FunRef} becomes a \code{Global} AST
  14570. node, whose concrete syntax is instruction-pointer-relative
  14571. addressing.
  14572. \begin{center}
  14573. \begin{tabular}{lcl}
  14574. \begin{minipage}{0.35\textwidth}
  14575. {\if\edition\racketEd
  14576. \begin{lstlisting}
  14577. |$\itm{lhs}$| = (fun-ref |$f$| |$n$|);
  14578. \end{lstlisting}
  14579. \fi}
  14580. {\if\edition\pythonEd\pythonColor
  14581. \begin{lstlisting}
  14582. |$\itm{lhs}$| = FunRef(|$f$| |$n$|);
  14583. \end{lstlisting}
  14584. \fi}
  14585. \end{minipage}
  14586. &
  14587. $\Rightarrow$\qquad\qquad
  14588. &
  14589. \begin{minipage}{0.3\textwidth}
  14590. \begin{lstlisting}
  14591. leaq |$f$|(%rip), |$\itm{lhs}'$|
  14592. \end{lstlisting}
  14593. \end{minipage}
  14594. \end{tabular}
  14595. \end{center}
  14596. Regarding function definitions, we need to remove the parameters and
  14597. instead perform parameter passing using the conventions discussed in
  14598. section~\ref{sec:fun-x86}. That is, the arguments are passed in
  14599. registers. We recommend turning the parameters into local variables
  14600. and generating instructions at the beginning of the function to move
  14601. from the argument-passing registers
  14602. (section~\ref{sec:calling-conventions-fun}) to these local variables.
  14603. {\if\edition\racketEd
  14604. \begin{lstlisting}
  14605. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$B$|)
  14606. |$\Rightarrow$|
  14607. (Def |$f$| '() 'Integer |$\itm{info}'$| |$B'$|)
  14608. \end{lstlisting}
  14609. \fi}
  14610. {\if\edition\pythonEd\pythonColor
  14611. \begin{lstlisting}
  14612. FunctionDef(|$f$|, [|$(x_1,T_1),\ldots$|], |$B$|, _, |$T_r$|, _)
  14613. |$\Rightarrow$|
  14614. FunctionDef(|$f$|, [], |$B'$|, _, int, _)
  14615. \end{lstlisting}
  14616. \fi}
  14617. The basic blocks $B'$ are the same as $B$ except that the
  14618. \code{start} block is modified to add the instructions for moving from
  14619. the argument registers to the parameter variables. So the \code{start}
  14620. block of $B$ shown on the left of the following is changed to the code
  14621. on the right:
  14622. \begin{center}
  14623. \begin{minipage}{0.3\textwidth}
  14624. \begin{lstlisting}
  14625. start:
  14626. |$\itm{instr}_1$|
  14627. |$\cdots$|
  14628. |$\itm{instr}_n$|
  14629. \end{lstlisting}
  14630. \end{minipage}
  14631. $\Rightarrow$
  14632. \begin{minipage}{0.3\textwidth}
  14633. \begin{lstlisting}
  14634. |$f$|start:
  14635. movq %rdi, |$x_1$|
  14636. movq %rsi, |$x_2$|
  14637. |$\cdots$|
  14638. |$\itm{instr}_1$|
  14639. |$\cdots$|
  14640. |$\itm{instr}_n$|
  14641. \end{lstlisting}
  14642. \end{minipage}
  14643. \end{center}
  14644. Recall that we use the label \code{start} for the initial block of a
  14645. program, and in section~\ref{sec:select-Lvar} we recommend labeling
  14646. the conclusion of the program with \code{conclusion}, so that
  14647. $\RETURN{Arg}$ can be compiled to an assignment to \code{rax} followed
  14648. by a jump to \code{conclusion}. With the addition of function
  14649. definitions, there is a start block and conclusion for each function,
  14650. but their labels need to be unique. We recommend prepending the
  14651. function's name to \code{start} and \code{conclusion}, respectively,
  14652. to obtain unique labels.
  14653. \racket{The interpreter for \LangXIndCall{} needs to be given the
  14654. number of parameters the function expects, but the parameters are no
  14655. longer in the syntax of function definitions. Instead, add an entry
  14656. to $\itm{info}$ that maps \code{num-params} to the number of
  14657. parameters to construct $\itm{info}'$.}
  14658. By changing the parameters to local variables, we are giving the
  14659. register allocator control over which registers or stack locations to
  14660. use for them. If you implement the move-biasing challenge
  14661. (section~\ref{sec:move-biasing}), the register allocator will try to
  14662. assign the parameter variables to the corresponding argument register,
  14663. in which case the \code{patch\_instructions} pass will remove the
  14664. \code{movq} instruction. This happens in the example translation given
  14665. in figure~\ref{fig:add-fun} in section~\ref{sec:functions-example}, in
  14666. the \code{add} function.
  14667. %
  14668. Also, note that the register allocator will perform liveness analysis
  14669. on this sequence of move instructions and build the interference
  14670. graph. So, for example, $x_1$ will be marked as interfering with
  14671. \code{rsi}, and that will prevent the mapping of $x_1$ to \code{rsi},
  14672. which is good because otherwise the first \code{movq} would overwrite
  14673. the argument in \code{rsi} that is needed for $x_2$.
  14674. Next, consider the compilation of function calls. In the mirror image
  14675. of the handling of parameters in function definitions, the arguments
  14676. are moved to the argument-passing registers. Note that the function
  14677. is not given as a label, but its address is produced by the argument
  14678. $\itm{arg}_0$. So, we translate the call into an indirect function
  14679. call. The return value from the function is stored in \code{rax}, so
  14680. it needs to be moved into the \itm{lhs}.
  14681. \begin{lstlisting}
  14682. |\itm{lhs}| = |$\CALL{\itm{arg}_0}{\itm{arg}_1~\itm{arg}_2 \ldots}$|
  14683. |$\Rightarrow$|
  14684. movq |$\itm{arg}_1$|, %rdi
  14685. movq |$\itm{arg}_2$|, %rsi
  14686. |$\vdots$|
  14687. callq *|$\itm{arg}_0$|
  14688. movq %rax, |$\itm{lhs}$|
  14689. \end{lstlisting}
  14690. The \code{IndirectCallq} AST node includes an integer for the arity of
  14691. the function, that is, the number of parameters. That information is
  14692. useful in the \code{uncover\_live} pass for determining which
  14693. argument-passing registers are potentially read during the call.
  14694. For tail calls, the parameter passing is the same as non-tail calls:
  14695. generate instructions to move the arguments into the argument-passing
  14696. registers. After that we need to pop the frame from the procedure
  14697. call stack. However, we do not yet know how big the frame is; that
  14698. gets determined during register allocation. So, instead of generating
  14699. those instructions here, we invent a new instruction that means ``pop
  14700. the frame and then do an indirect jump,'' which we name
  14701. \code{TailJmp}. The abstract syntax for this instruction includes an
  14702. argument that specifies where to jump and an integer that represents
  14703. the arity of the function being called.
  14704. \section{Register Allocation}
  14705. \label{sec:register-allocation-r4}
  14706. The addition of functions requires some changes to all three aspects
  14707. of register allocation, which we discuss in the following subsections.
  14708. \subsection{Liveness Analysis}
  14709. \label{sec:liveness-analysis-r4}
  14710. \index{subject}{liveness analysis}
  14711. %% The rest of the passes need only minor modifications to handle the new
  14712. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  14713. %% \code{leaq}.
  14714. The \code{IndirectCallq} instruction should be treated like
  14715. \code{Callq} regarding its written locations $W$, in that they should
  14716. include all the caller-saved registers. Recall that the reason for
  14717. that is to force variables that are live across a function call to be assigned to callee-saved
  14718. registers or to be spilled to the stack.
  14719. Regarding the set of read locations $R$, the arity fields of
  14720. \code{TailJmp} and \code{IndirectCallq} determine how many of the
  14721. argument-passing registers should be considered as read by those
  14722. instructions. Also, the target field of \code{TailJmp} and
  14723. \code{IndirectCallq} should be included in the set of read locations
  14724. $R$.
  14725. \subsection{Build Interference Graph}
  14726. \label{sec:build-interference-r4}
  14727. With the addition of function definitions, we compute a separate interference
  14728. graph for each function (not just one for the whole program).
  14729. Recall that in section~\ref{sec:reg-alloc-gc} we discussed the need to
  14730. spill tuple-typed variables that are live during a call to
  14731. \code{collect}, the garbage collector. With the addition of functions
  14732. to our language, we need to revisit this issue. Functions that perform
  14733. allocation contain calls to the collector. Thus, we should not only
  14734. spill a tuple-typed variable when it is live during a call to
  14735. \code{collect}, but we should spill the variable if it is live during
  14736. a call to any user-defined function. Thus, in the
  14737. \code{build\_interference} pass, we recommend adding interference
  14738. edges between call-live tuple-typed variables and the callee-saved
  14739. registers (in addition to creating edges between
  14740. call-live variables and the caller-saved registers).
  14741. \subsection{Allocate Registers}
  14742. The primary change to the \code{allocate\_registers} pass is adding an
  14743. auxiliary function for handling definitions (the \Def{} nonterminal
  14744. shown in figure~\ref{fig:x86-3}) with one case for function
  14745. definitions. The logic is the same as described in
  14746. chapter~\ref{ch:register-allocation-Lvar} except that now register
  14747. allocation is performed many times, once for each function definition,
  14748. instead of just once for the whole program.
  14749. \section{Patch Instructions}
  14750. In \code{patch\_instructions}, you should deal with the x86
  14751. idiosyncrasy that the destination argument of \code{leaq} must be a
  14752. register. Additionally, you should ensure that the argument of
  14753. \code{TailJmp} is \itm{rax}, our reserved register---because we
  14754. trample many other registers before the tail call, as explained in the
  14755. next section.
  14756. \section{Prelude and Conclusion}
  14757. Now that register allocation is complete, we can translate the
  14758. \code{TailJmp} into a sequence of instructions. A naive translation of
  14759. \code{TailJmp} would simply be \code{jmp *$\itm{arg}$}. However,
  14760. before the jump we need to pop the current frame to achieve efficient
  14761. tail calls. This sequence of instructions is the same as the code for
  14762. the conclusion of a function, except that the \code{retq} is replaced with
  14763. \code{jmp *$\itm{arg}$}.
  14764. Regarding function definitions, we generate a prelude and conclusion
  14765. for each one. This code is similar to the prelude and conclusion
  14766. generated for the \code{main} function presented in
  14767. chapter~\ref{ch:Lvec}. To review, the prelude of every function should
  14768. carry out the following steps:
  14769. % TODO: .align the functions!
  14770. \begin{enumerate}
  14771. %% \item Start with \code{.global} and \code{.align} directives followed
  14772. %% by the label for the function. (See figure~\ref{fig:add-fun} for an
  14773. %% example.)
  14774. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  14775. pointer.
  14776. \item Push to the stack all the callee-saved registers that were
  14777. used for register allocation.
  14778. \item Move the stack pointer \code{rsp} down to make room for the
  14779. regular spills (aligned to 16 bytes).
  14780. \item Move the root stack pointer \code{r15} up by the size of the
  14781. root-stack frame for this function, which depends on the number of
  14782. spilled tuple-typed variables. \label{root-stack-init}
  14783. \item Initialize to zero all new entries in the root-stack frame.
  14784. \item Jump to the start block.
  14785. \end{enumerate}
  14786. The prelude of the \code{main} function has an additional task: call
  14787. the \code{initialize} function to set up the garbage collector, and
  14788. then move the value of the global \code{rootstack\_begin} in
  14789. \code{r15}. This initialization should happen before step
  14790. \ref{root-stack-init}, which depends on \code{r15}.
  14791. The conclusion of every function should do the following:
  14792. \begin{enumerate}
  14793. \item Move the stack pointer back up past the regular spills.
  14794. \item Restore the callee-saved registers by popping them from the
  14795. stack.
  14796. \item Move the root stack pointer back down by the size of the
  14797. root-stack frame for this function.
  14798. \item Restore \code{rbp} by popping it from the stack.
  14799. \item Return to the caller with the \code{retq} instruction.
  14800. \end{enumerate}
  14801. The output of this pass is \LangXIndCallFlat{}, which differs from
  14802. \LangXIndCall{} in that there is no longer an AST node for function
  14803. definitions. Instead, a program is just an association list of basic
  14804. blocks, as in \LangXGlobal{}. So we have the following grammar rule:
  14805. \[
  14806. \LangXIndCallFlatM{} ::= \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  14807. \]
  14808. Figure~\ref{fig:Lfun-passes} gives an overview of the passes for
  14809. compiling \LangFun{} to x86.
  14810. \begin{exercise}\normalfont\normalsize
  14811. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  14812. Create eight new programs that use functions including examples that
  14813. pass functions and return functions from other functions, recursive
  14814. functions, functions that create vectors, and functions that make tail
  14815. calls. Test your compiler on these new programs and all your
  14816. previously created test programs.
  14817. \end{exercise}
  14818. \begin{figure}[tbp]
  14819. \begin{tcolorbox}[colback=white]
  14820. {\if\edition\racketEd
  14821. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.90]
  14822. \node (Lfun) at (0,2) {\large \LangFun{}};
  14823. \node (Lfun-1) at (4,2) {\large \LangFun{}};
  14824. \node (Lfun-2) at (7,2) {\large \LangFun{}};
  14825. \node (F1-1) at (11,2) {\large \LangFunRef{}};
  14826. \node (F1-2) at (11,0) {\large \LangFunRef{}};
  14827. \node (F1-3) at (7,0) {\large \LangFunRefAlloc{}};
  14828. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  14829. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  14830. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  14831. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  14832. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  14833. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  14834. \node (x86-5) at (8,-6) {\large \LangXIndCallFlat{}};
  14835. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  14836. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  14837. \path[->,bend left=15] (Lfun) edge [above] node
  14838. {\ttfamily\footnotesize shrink} (Lfun-1);
  14839. \path[->,bend left=15] (Lfun-1) edge [above] node
  14840. {\ttfamily\footnotesize uniquify} (Lfun-2);
  14841. \path[->,bend left=15] (Lfun-2) edge [above] node
  14842. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  14843. \path[->,bend left=15] (F1-1) edge [left] node
  14844. {\ttfamily\footnotesize limit\_functions} (F1-2);
  14845. \path[->,bend left=15] (F1-2) edge [below] node
  14846. {\ttfamily\footnotesize expose\_allocation} (F1-3);
  14847. \path[->,bend left=15] (F1-3) edge [below] node
  14848. {\ttfamily\footnotesize uncover\_get!} (F1-4);
  14849. \path[->,bend right=15] (F1-4) edge [above] node
  14850. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  14851. \path[->,bend right=15] (F1-5) edge [right] node
  14852. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14853. \path[->,bend right=15] (C3-2) edge [right] node
  14854. {\ttfamily\footnotesize select\_instructions} (x86-2);
  14855. \path[->,bend left=15] (x86-2) edge [right] node
  14856. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  14857. \path[->,bend right=15] (x86-2-1) edge [below] node
  14858. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  14859. \path[->,bend right=15] (x86-2-2) edge [right] node
  14860. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  14861. \path[->,bend left=15] (x86-3) edge [above] node
  14862. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  14863. \path[->,bend right=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  14864. \end{tikzpicture}
  14865. \fi}
  14866. {\if\edition\pythonEd\pythonColor
  14867. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  14868. \node (Lfun) at (0,2) {\large \LangFun{}};
  14869. \node (Lfun-2) at (4,2) {\large \LangFun{}};
  14870. \node (F1-1) at (8,2) {\large \LangFunRef{}};
  14871. \node (F1-2) at (12,2) {\large \LangFunRef{}};
  14872. \node (F1-4) at (4,0) {\large \LangFunRefAlloc{}};
  14873. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  14874. \node (C3-2) at (0,-2) {\large \LangCFun{}};
  14875. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  14876. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  14877. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  14878. \node (x86-5) at (12,-4) {\large \LangXIndCallFlat{}};
  14879. \path[->,bend left=15] (Lfun) edge [above] node
  14880. {\ttfamily\footnotesize shrink} (Lfun-2);
  14881. \path[->,bend left=15] (Lfun-2) edge [above] node
  14882. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  14883. \path[->,bend left=15] (F1-1) edge [above] node
  14884. {\ttfamily\footnotesize limit\_functions} (F1-2);
  14885. \path[->,bend left=15] (F1-2) edge [right] node
  14886. {\ttfamily\footnotesize \ \ expose\_allocation} (F1-4);
  14887. \path[->,bend right=15] (F1-4) edge [above] node
  14888. {\ttfamily\footnotesize remove\_complex\_operands} (F1-5);
  14889. \path[->,bend right=15] (F1-5) edge [right] node
  14890. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14891. \path[->,bend left=15] (C3-2) edge [right] node
  14892. {\ttfamily\footnotesize select\_instructions} (x86-2);
  14893. \path[->,bend right=15] (x86-2) edge [below] node
  14894. {\ttfamily\footnotesize assign\_homes} (x86-3);
  14895. \path[->,bend left=15] (x86-3) edge [above] node
  14896. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  14897. \path[->,bend right=15] (x86-4) edge [below] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  14898. \end{tikzpicture}
  14899. \fi}
  14900. \end{tcolorbox}
  14901. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  14902. \label{fig:Lfun-passes}
  14903. \end{figure}
  14904. \section{An Example Translation}
  14905. \label{sec:functions-example}
  14906. Figure~\ref{fig:add-fun} shows an example translation of a simple
  14907. function in \LangFun{} to x86. The figure also includes the results of the
  14908. \code{explicate\_control} and \code{select\_instructions} passes.
  14909. \begin{figure}[htbp]
  14910. \begin{tcolorbox}[colback=white]
  14911. \begin{tabular}{ll}
  14912. \begin{minipage}{0.4\textwidth}
  14913. % s3_2.rkt
  14914. {\if\edition\racketEd
  14915. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14916. (define (add [x : Integer]
  14917. [y : Integer])
  14918. : Integer
  14919. (+ x y))
  14920. (add 40 2)
  14921. \end{lstlisting}
  14922. \fi}
  14923. {\if\edition\pythonEd\pythonColor
  14924. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14925. def add(x:int, y:int) -> int:
  14926. return x + y
  14927. print(add(40, 2))
  14928. \end{lstlisting}
  14929. \fi}
  14930. $\Downarrow$
  14931. {\if\edition\racketEd
  14932. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14933. (define (add86 [x87 : Integer]
  14934. [y88 : Integer])
  14935. : Integer
  14936. add86start:
  14937. return (+ x87 y88);
  14938. )
  14939. (define (main) : Integer ()
  14940. mainstart:
  14941. tmp89 = (fun-ref add86 2);
  14942. (tail-call tmp89 40 2)
  14943. )
  14944. \end{lstlisting}
  14945. \fi}
  14946. {\if\edition\pythonEd\pythonColor
  14947. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14948. def add(x:int, y:int) -> int:
  14949. addstart:
  14950. return x + y
  14951. def main() -> int:
  14952. mainstart:
  14953. fun.0 = add
  14954. tmp.1 = fun.0(40, 2)
  14955. print(tmp.1)
  14956. return 0
  14957. \end{lstlisting}
  14958. \fi}
  14959. \end{minipage}
  14960. &
  14961. $\Rightarrow$
  14962. \begin{minipage}{0.5\textwidth}
  14963. {\if\edition\racketEd
  14964. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14965. (define (add86) : Integer
  14966. add86start:
  14967. movq %rdi, x87
  14968. movq %rsi, y88
  14969. movq x87, %rax
  14970. addq y88, %rax
  14971. jmp inc1389conclusion
  14972. )
  14973. (define (main) : Integer
  14974. mainstart:
  14975. leaq (fun-ref add86 2), tmp89
  14976. movq $40, %rdi
  14977. movq $2, %rsi
  14978. tail-jmp tmp89
  14979. )
  14980. \end{lstlisting}
  14981. \fi}
  14982. {\if\edition\pythonEd\pythonColor
  14983. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14984. def add() -> int:
  14985. addstart:
  14986. movq %rdi, x
  14987. movq %rsi, y
  14988. movq x, %rax
  14989. addq y, %rax
  14990. jmp addconclusion
  14991. def main() -> int:
  14992. mainstart:
  14993. leaq add, fun.0
  14994. movq $40, %rdi
  14995. movq $2, %rsi
  14996. callq *fun.0
  14997. movq %rax, tmp.1
  14998. movq tmp.1, %rdi
  14999. callq print_int
  15000. movq $0, %rax
  15001. jmp mainconclusion
  15002. \end{lstlisting}
  15003. \fi}
  15004. $\Downarrow$
  15005. \end{minipage}
  15006. \end{tabular}
  15007. \begin{tabular}{ll}
  15008. \begin{minipage}{0.3\textwidth}
  15009. {\if\edition\racketEd
  15010. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15011. .globl add86
  15012. .align 8
  15013. add86:
  15014. pushq %rbp
  15015. movq %rsp, %rbp
  15016. jmp add86start
  15017. add86start:
  15018. movq %rdi, %rax
  15019. addq %rsi, %rax
  15020. jmp add86conclusion
  15021. add86conclusion:
  15022. popq %rbp
  15023. retq
  15024. \end{lstlisting}
  15025. \fi}
  15026. {\if\edition\pythonEd\pythonColor
  15027. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15028. .align 8
  15029. add:
  15030. pushq %rbp
  15031. movq %rsp, %rbp
  15032. subq $0, %rsp
  15033. jmp addstart
  15034. addstart:
  15035. movq %rdi, %rdx
  15036. movq %rsi, %rcx
  15037. movq %rdx, %rax
  15038. addq %rcx, %rax
  15039. jmp addconclusion
  15040. addconclusion:
  15041. subq $0, %r15
  15042. addq $0, %rsp
  15043. popq %rbp
  15044. retq
  15045. \end{lstlisting}
  15046. \fi}
  15047. \end{minipage}
  15048. &
  15049. \begin{minipage}{0.5\textwidth}
  15050. {\if\edition\racketEd
  15051. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15052. .globl main
  15053. .align 8
  15054. main:
  15055. pushq %rbp
  15056. movq %rsp, %rbp
  15057. movq $16384, %rdi
  15058. movq $16384, %rsi
  15059. callq initialize
  15060. movq rootstack_begin(%rip), %r15
  15061. jmp mainstart
  15062. mainstart:
  15063. leaq add86(%rip), %rcx
  15064. movq $40, %rdi
  15065. movq $2, %rsi
  15066. movq %rcx, %rax
  15067. popq %rbp
  15068. jmp *%rax
  15069. mainconclusion:
  15070. popq %rbp
  15071. retq
  15072. \end{lstlisting}
  15073. \fi}
  15074. {\if\edition\pythonEd\pythonColor
  15075. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15076. .globl main
  15077. .align 8
  15078. main:
  15079. pushq %rbp
  15080. movq %rsp, %rbp
  15081. subq $0, %rsp
  15082. movq $65536, %rdi
  15083. movq $65536, %rsi
  15084. callq initialize
  15085. movq rootstack_begin(%rip), %r15
  15086. jmp mainstart
  15087. mainstart:
  15088. leaq add(%rip), %rcx
  15089. movq $40, %rdi
  15090. movq $2, %rsi
  15091. callq *%rcx
  15092. movq %rax, %rcx
  15093. movq %rcx, %rdi
  15094. callq print_int
  15095. movq $0, %rax
  15096. jmp mainconclusion
  15097. mainconclusion:
  15098. subq $0, %r15
  15099. addq $0, %rsp
  15100. popq %rbp
  15101. retq
  15102. \end{lstlisting}
  15103. \fi}
  15104. \end{minipage}
  15105. \end{tabular}
  15106. \end{tcolorbox}
  15107. \caption{Example compilation of a simple function to x86.}
  15108. \label{fig:add-fun}
  15109. \end{figure}
  15110. % Challenge idea: inlining! (simple version)
  15111. % Further Reading
  15112. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15113. \chapter{Lexically Scoped Functions}
  15114. \label{ch:Llambda}
  15115. \setcounter{footnote}{0}
  15116. This chapter studies lexically scoped functions. Lexical
  15117. scoping\index{subject}{lexical scoping} means that a function's body
  15118. may refer to variables whose binding site is outside of the function,
  15119. in an enclosing scope.
  15120. %
  15121. Consider the example shown in figure~\ref{fig:lexical-scoping} written
  15122. in \LangLam{}, which extends \LangFun{} with the
  15123. \key{lambda}\index{subject}{lambda} form for creating lexically scoped
  15124. functions. The body of the \key{lambda} refers to three variables:
  15125. \code{x}, \code{y}, and \code{z}. The binding sites for \code{x} and
  15126. \code{y} are outside of the \key{lambda}. Variable \code{y} is
  15127. \racket{bound by the enclosing \key{let}}\python{a local variable of
  15128. function \code{f}}, and \code{x} is a parameter of function
  15129. \code{f}. Note that function \code{f} returns the \key{lambda} as its
  15130. result value. The main expression of the program includes two calls to
  15131. \code{f} with different arguments for \code{x}: first \code{5} and
  15132. then \code{3}. The functions returned from \code{f} are bound to
  15133. variables \code{g} and \code{h}. Even though these two functions were
  15134. created by the same \code{lambda}, they are really different functions
  15135. because they use different values for \code{x}. Applying \code{g} to
  15136. \code{11} produces \code{20} whereas applying \code{h} to \code{15}
  15137. produces \code{22}, so the result of the program is \code{42}.
  15138. \begin{figure}[btp]
  15139. \begin{tcolorbox}[colback=white]
  15140. {\if\edition\racketEd
  15141. % lambda_test_21.rkt
  15142. \begin{lstlisting}
  15143. (define (f [x : Integer]) : (Integer -> Integer)
  15144. (let ([y 4])
  15145. (lambda: ([z : Integer]) : Integer
  15146. (+ x (+ y z)))))
  15147. (let ([g (f 5)])
  15148. (let ([h (f 3)])
  15149. (+ (g 11) (h 15))))
  15150. \end{lstlisting}
  15151. \fi}
  15152. {\if\edition\pythonEd\pythonColor
  15153. \begin{lstlisting}
  15154. def f(x : int) -> Callable[[int], int]:
  15155. y = 4
  15156. return lambda z: x + y + z
  15157. g = f(5)
  15158. h = f(3)
  15159. print( g(11) + h(15) )
  15160. \end{lstlisting}
  15161. \fi}
  15162. \end{tcolorbox}
  15163. \caption{Example of a lexically scoped function.}
  15164. \label{fig:lexical-scoping}
  15165. \end{figure}
  15166. The approach that we take for implementing lexically scoped functions
  15167. is to compile them into top-level function definitions, translating
  15168. from \LangLam{} into \LangFun{}. However, the compiler must give
  15169. special treatment to variable occurrences such as \code{x} and
  15170. \code{y} in the body of the \code{lambda} shown in
  15171. figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function
  15172. may not refer to variables defined outside of it. To identify such
  15173. variable occurrences, we review the standard notion of free variable.
  15174. \begin{definition}\normalfont
  15175. A variable is \emph{free in expression} $e$ if the variable occurs
  15176. inside $e$ but does not have an enclosing definition that is also in
  15177. $e$.\index{subject}{free variable}
  15178. \end{definition}
  15179. For example, in the expression
  15180. \racket{\code{(+ x (+ y z))}}\python{\code{x + y + z}}
  15181. the variables \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  15182. only \code{x} and \code{y} are free in the following expression,
  15183. because \code{z} is defined by the \code{lambda}
  15184. {\if\edition\racketEd
  15185. \begin{lstlisting}
  15186. (lambda: ([z : Integer]) : Integer
  15187. (+ x (+ y z)))
  15188. \end{lstlisting}
  15189. \fi}
  15190. {\if\edition\pythonEd\pythonColor
  15191. \begin{lstlisting}
  15192. lambda z: x + y + z
  15193. \end{lstlisting}
  15194. \fi}
  15195. %
  15196. \noindent Thus the free variables of a \code{lambda} are the ones that
  15197. need special treatment. We need to transport at runtime the values
  15198. of those variables from the point where the \code{lambda} was created
  15199. to the point where the \code{lambda} is applied. An efficient solution
  15200. to the problem, due to \citet{Cardelli:1983aa}, is to bundle the
  15201. values of the free variables together with a function pointer into a
  15202. tuple, an arrangement called a \emph{flat closure} (which we shorten
  15203. to just \emph{closure}).\index{subject}{closure}\index{subject}{flat
  15204. closure}
  15205. %
  15206. By design, we have all the ingredients to make closures:
  15207. chapter~\ref{ch:Lvec} gave us tuples, and chapter~\ref{ch:Lfun} gave us
  15208. function pointers. The function pointer resides at index $0$, and the
  15209. values for the free variables fill in the rest of the tuple.
  15210. Let us revisit the example shown in figure~\ref{fig:lexical-scoping}
  15211. to see how closures work. It is a three-step dance. The program calls
  15212. function \code{f}, which creates a closure for the \code{lambda}. The
  15213. closure is a tuple whose first element is a pointer to the top-level
  15214. function that we will generate for the \code{lambda}; the second
  15215. element is the value of \code{x}, which is \code{5}; and the third
  15216. element is \code{4}, the value of \code{y}. The closure does not
  15217. contain an element for \code{z} because \code{z} is not a free
  15218. variable of the \code{lambda}. Creating the closure is step 1 of the
  15219. dance. The closure is returned from \code{f} and bound to \code{g}, as
  15220. shown in figure~\ref{fig:closures}.
  15221. %
  15222. The second call to \code{f} creates another closure, this time with
  15223. \code{3} in the second slot (for \code{x}). This closure is also
  15224. returned from \code{f} but bound to \code{h}, which is also shown in
  15225. figure~\ref{fig:closures}.
  15226. \begin{figure}[tbp]
  15227. \centering
  15228. \begin{minipage}{0.65\textwidth}
  15229. \begin{tcolorbox}[colback=white]
  15230. \includegraphics[width=\textwidth]{figs/closures}
  15231. \end{tcolorbox}
  15232. \end{minipage}
  15233. \caption{Flat closure representations for the two functions
  15234. produced by the \key{lambda} in figure~\ref{fig:lexical-scoping}.}
  15235. \label{fig:closures}
  15236. \end{figure}
  15237. Continuing with the example, consider the application of \code{g} to
  15238. \code{11} shown in figure~\ref{fig:lexical-scoping}. To apply a
  15239. closure, we obtain the function pointer from the first element of the
  15240. closure and call it, passing in the closure itself and then the
  15241. regular arguments, in this case \code{11}. This technique for applying
  15242. a closure is step 2 of the dance.
  15243. %
  15244. But doesn't this \code{lambda} take only one argument, for parameter
  15245. \code{z}? The third and final step of the dance is generating a
  15246. top-level function for a \code{lambda}. We add an additional
  15247. parameter for the closure and insert an initialization at the beginning
  15248. of the function for each free variable, to bind those variables to the
  15249. appropriate elements from the closure parameter.
  15250. %
  15251. This three-step dance is known as \emph{closure
  15252. conversion}\index{subject}{closure conversion}. We discuss the
  15253. details of closure conversion in section~\ref{sec:closure-conversion}
  15254. and show the code generated from the example in
  15255. section~\ref{sec:example-lambda}. First, we define the syntax and
  15256. semantics of \LangLam{} in section~\ref{sec:r5}.
  15257. \section{The \LangLam{} Language}
  15258. \label{sec:r5}
  15259. The definitions of the concrete syntax and abstract syntax for
  15260. \LangLam{}, a language with anonymous functions and lexical scoping,
  15261. are shown in figures~\ref{fig:Llam-concrete-syntax} and
  15262. \ref{fig:Llam-syntax}. They add the \key{lambda} form to the grammar
  15263. for \LangFun{}, which already has syntax for function application.
  15264. %
  15265. \python{The syntax also includes an assignment statement that includes
  15266. a type annotation for the variable on the left-hand side, which
  15267. facilitates the type checking of \code{lambda} expressions that we
  15268. discuss later in this section.}
  15269. %
  15270. \racket{The \code{procedure-arity} operation returns the number of parameters
  15271. of a given function, an operation that we need for the translation
  15272. of dynamic typing in chapter~\ref{ch:Ldyn}.}
  15273. %
  15274. \python{The \code{arity} operation returns the number of parameters of
  15275. a given function, an operation that we need for the translation
  15276. of dynamic typing in chapter~\ref{ch:Ldyn}.
  15277. The \code{arity} operation is not in Python, but the same functionality
  15278. is available in a more complex form. We include \code{arity} in the
  15279. \LangLam{} source language to enable testing.}
  15280. \newcommand{\LlambdaGrammarRacket}{
  15281. \begin{array}{lcl}
  15282. \Exp &::=& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  15283. &\MID& \LP \key{procedure-arity}~\Exp\RP
  15284. \end{array}
  15285. }
  15286. \newcommand{\LlambdaASTRacket}{
  15287. \begin{array}{lcl}
  15288. \Exp &::=& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  15289. \itm{op} &::=& \code{procedure-arity}
  15290. \end{array}
  15291. }
  15292. \newcommand{\LlambdaGrammarPython}{
  15293. \begin{array}{lcl}
  15294. \Exp &::=& \CLAMBDA{\Var\code{, }\ldots}{\Exp} \MID \CARITY{\Exp} \\
  15295. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp}
  15296. \end{array}
  15297. }
  15298. \newcommand{\LlambdaASTPython}{
  15299. \begin{array}{lcl}
  15300. \Exp &::=& \LAMBDA{\Var^{*}}{\Exp} \MID \ARITY{\Exp} \\
  15301. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  15302. \end{array}
  15303. }
  15304. % include AnnAssign in ASTPython
  15305. \begin{figure}[tp]
  15306. \centering
  15307. \begin{tcolorbox}[colback=white]
  15308. \small
  15309. {\if\edition\racketEd
  15310. \[
  15311. \begin{array}{l}
  15312. \gray{\LintGrammarRacket{}} \\ \hline
  15313. \gray{\LvarGrammarRacket{}} \\ \hline
  15314. \gray{\LifGrammarRacket{}} \\ \hline
  15315. \gray{\LwhileGrammarRacket} \\ \hline
  15316. \gray{\LtupGrammarRacket} \\ \hline
  15317. \gray{\LfunGrammarRacket} \\ \hline
  15318. \LlambdaGrammarRacket \\
  15319. \begin{array}{lcl}
  15320. \LangLamM{} &::=& \Def\ldots \; \Exp
  15321. \end{array}
  15322. \end{array}
  15323. \]
  15324. \fi}
  15325. {\if\edition\pythonEd\pythonColor
  15326. \[
  15327. \begin{array}{l}
  15328. \gray{\LintGrammarPython{}} \\ \hline
  15329. \gray{\LvarGrammarPython{}} \\ \hline
  15330. \gray{\LifGrammarPython{}} \\ \hline
  15331. \gray{\LwhileGrammarPython} \\ \hline
  15332. \gray{\LtupGrammarPython} \\ \hline
  15333. \gray{\LfunGrammarPython} \\ \hline
  15334. \LlambdaGrammarPython \\
  15335. \begin{array}{lcl}
  15336. \LangFunM{} &::=& \Def\ldots \Stmt\ldots
  15337. \end{array}
  15338. \end{array}
  15339. \]
  15340. \fi}
  15341. \end{tcolorbox}
  15342. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-concrete-syntax})
  15343. with \key{lambda}.}
  15344. \label{fig:Llam-concrete-syntax}
  15345. \end{figure}
  15346. \begin{figure}[tp]
  15347. \centering
  15348. \begin{tcolorbox}[colback=white]
  15349. \small
  15350. {\if\edition\racketEd
  15351. \[\arraycolsep=3pt
  15352. \begin{array}{l}
  15353. \gray{\LintOpAST} \\ \hline
  15354. \gray{\LvarASTRacket{}} \\ \hline
  15355. \gray{\LifASTRacket{}} \\ \hline
  15356. \gray{\LwhileASTRacket{}} \\ \hline
  15357. \gray{\LtupASTRacket{}} \\ \hline
  15358. \gray{\LfunASTRacket} \\ \hline
  15359. \LlambdaASTRacket \\
  15360. \begin{array}{lcl}
  15361. \LangLamM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  15362. \end{array}
  15363. \end{array}
  15364. \]
  15365. \fi}
  15366. {\if\edition\pythonEd\pythonColor
  15367. \[
  15368. \begin{array}{l}
  15369. \gray{\LintASTPython} \\ \hline
  15370. \gray{\LvarASTPython{}} \\ \hline
  15371. \gray{\LifASTPython{}} \\ \hline
  15372. \gray{\LwhileASTPython{}} \\ \hline
  15373. \gray{\LtupASTPython{}} \\ \hline
  15374. \gray{\LfunASTPython} \\ \hline
  15375. \LlambdaASTPython \\
  15376. \begin{array}{lcl}
  15377. \LangLamM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  15378. \end{array}
  15379. \end{array}
  15380. \]
  15381. \fi}
  15382. \end{tcolorbox}
  15383. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (figure~\ref{fig:Lfun-syntax}).}
  15384. \label{fig:Llam-syntax}
  15385. \end{figure}
  15386. Figure~\ref{fig:interp-Llambda} shows the definitional
  15387. interpreter\index{subject}{interpreter} for \LangLam{}. The case for
  15388. \key{Lambda} saves the current environment inside the returned
  15389. function value. Recall that during function application, the
  15390. environment stored in the function value, extended with the mapping of
  15391. parameters to argument values, is used to interpret the body of the
  15392. function.
  15393. \begin{figure}[tbp]
  15394. \begin{tcolorbox}[colback=white]
  15395. {\if\edition\racketEd
  15396. \begin{lstlisting}
  15397. (define interp-Llambda-class
  15398. (class interp-Lfun-class
  15399. (super-new)
  15400. (define/override (interp-op op)
  15401. (match op
  15402. ['procedure-arity
  15403. (lambda (v)
  15404. (match v
  15405. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  15406. [else (error 'interp-op "expected a function, not ~a" v)]))]
  15407. [else (super interp-op op)]))
  15408. (define/override ((interp-exp env) e)
  15409. (define recur (interp-exp env))
  15410. (match e
  15411. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  15412. `(function ,xs ,body ,env)]
  15413. [else ((super interp-exp env) e)]))
  15414. ))
  15415. (define (interp-Llambda p)
  15416. (send (new interp-Llambda-class) interp-program p))
  15417. \end{lstlisting}
  15418. \fi}
  15419. {\if\edition\pythonEd\pythonColor
  15420. \begin{lstlisting}
  15421. class InterpLlambda(InterpLfun):
  15422. def arity(self, v):
  15423. match v:
  15424. case Function(name, params, body, env):
  15425. return len(params)
  15426. case _:
  15427. raise Exception('Llambda arity unexpected ' + repr(v))
  15428. def interp_exp(self, e, env):
  15429. match e:
  15430. case Call(Name('arity'), [fun]):
  15431. f = self.interp_exp(fun, env)
  15432. return self.arity(f)
  15433. case Lambda(params, body):
  15434. return Function('lambda', params, [Return(body)], env)
  15435. case _:
  15436. return super().interp_exp(e, env)
  15437. def interp_stmt(self, s, env, cont):
  15438. match s:
  15439. case AnnAssign(lhs, typ, value, simple):
  15440. env[lhs.id] = self.interp_exp(value, env)
  15441. return self.interp_stmts(cont, env)
  15442. case Pass():
  15443. return self.interp_stmts(cont, env)
  15444. case _:
  15445. return super().interp_stmt(s, env, cont)
  15446. \end{lstlisting}
  15447. \fi}
  15448. \end{tcolorbox}
  15449. \caption{Interpreter for \LangLam{}.}
  15450. \label{fig:interp-Llambda}
  15451. \end{figure}
  15452. {\if\edition\racketEd
  15453. %
  15454. Figure~\ref{fig:type-check-Llambda} shows how to type check the new
  15455. \key{lambda} form. The body of the \key{lambda} is checked in an
  15456. environment that includes the current environment (because it is
  15457. lexically scoped) and also includes the \key{lambda}'s parameters. We
  15458. require the body's type to match the declared return type.
  15459. %
  15460. \fi}
  15461. {\if\edition\pythonEd\pythonColor
  15462. %
  15463. Figures~\ref{fig:type-check-Llambda} and
  15464. \ref{fig:type-check-Llambda-part2} define the type checker for
  15465. \LangLam{}, which is more complex than one might expect. The reason
  15466. for the added complexity is that the syntax of \key{lambda} does not
  15467. include type annotations for the parameters or return type. Instead
  15468. they must be inferred. There are many approaches of type inference to
  15469. choose from of varying degrees of complexity. We choose one of the
  15470. simpler approaches, bidirectional type inference~\citep{Dunfield:2021}
  15471. (aka. local type inference~\citep{Pierce:2000}), because the focus of
  15472. this book is compilation, not type inference.
  15473. The main idea of bidirectional type inference is to add an auxiliary
  15474. function, here named \code{check\_exp}, that takes an expected type
  15475. and checks whether the given expression is of that type. Thus, in
  15476. \code{check\_exp}, type information flows in a top-down manner with
  15477. respect to the AST, in contrast to the regular \code{type\_check\_exp}
  15478. function, where type information flows in a primarily bottom-up
  15479. manner.
  15480. %
  15481. The idea then is to use \code{check\_exp} in all the places where we
  15482. already know what the type of an expression should be, such as in the
  15483. \code{return} statement of a top-level function definition, or on the
  15484. right-hand side of an annotated assignment statement.
  15485. Getting back to \code{lambda}, it is straightforward to check a
  15486. \code{lambda} inside \code{check\_exp} because the expected type
  15487. provides the parameter types and the return type. On the other hand,
  15488. inside \code{type\_check\_exp} we disallow \code{lambda}, which means
  15489. that we do not allow \code{lambda} in contexts where we don't already
  15490. know its type. This restriction does not incur a loss of
  15491. expressiveness for \LangLam{} because it is straightforward to modify
  15492. a program to sidestep the restriction, for example, by using an
  15493. annotated assignment statement to assign the \code{lambda} to a
  15494. temporary variable.
  15495. Note that for the \code{Name} and \code{Lambda} AST nodes, the type
  15496. checker records their type in a \code{has\_type} field. This type
  15497. information is used later in this chapter.
  15498. %
  15499. \fi}
  15500. \begin{figure}[tbp]
  15501. \begin{tcolorbox}[colback=white]
  15502. {\if\edition\racketEd
  15503. \begin{lstlisting}
  15504. (define (type-check-Llambda env)
  15505. (lambda (e)
  15506. (match e
  15507. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  15508. (define-values (new-body bodyT)
  15509. ((type-check-exp (append (map cons xs Ts) env)) body))
  15510. (define ty `(,@Ts -> ,rT))
  15511. (cond
  15512. [(equal? rT bodyT)
  15513. (values (HasType (Lambda params rT new-body) ty) ty)]
  15514. [else
  15515. (error "mismatch in return type" bodyT rT)])]
  15516. ...
  15517. )))
  15518. \end{lstlisting}
  15519. \fi}
  15520. {\if\edition\pythonEd\pythonColor
  15521. \begin{lstlisting}
  15522. class TypeCheckLlambda(TypeCheckLfun):
  15523. def type_check_exp(self, e, env):
  15524. match e:
  15525. case Name(id):
  15526. e.has_type = env[id]
  15527. return env[id]
  15528. case Lambda(params, body):
  15529. raise Exception('cannot synthesize a type for a lambda')
  15530. case Call(Name('arity'), [func]):
  15531. func_t = self.type_check_exp(func, env)
  15532. match func_t:
  15533. case FunctionType(params_t, return_t):
  15534. return IntType()
  15535. case _:
  15536. raise Exception('in arity, unexpected ' + repr(func_t))
  15537. case _:
  15538. return super().type_check_exp(e, env)
  15539. def check_exp(self, e, ty, env):
  15540. match e:
  15541. case Lambda(params, body):
  15542. e.has_type = ty
  15543. match ty:
  15544. case FunctionType(params_t, return_t):
  15545. new_env = env.copy().update(zip(params, params_t))
  15546. self.check_exp(body, return_t, new_env)
  15547. case _:
  15548. raise Exception('lambda does not have type ' + str(ty))
  15549. case Call(func, args):
  15550. func_t = self.type_check_exp(func, env)
  15551. match func_t:
  15552. case FunctionType(params_t, return_t):
  15553. for (arg, param_t) in zip(args, params_t):
  15554. self.check_exp(arg, param_t, env)
  15555. self.check_type_equal(return_t, ty, e)
  15556. case _:
  15557. raise Exception('type_check_exp: in call, unexpected ' + \
  15558. repr(func_t))
  15559. case _:
  15560. t = self.type_check_exp(e, env)
  15561. self.check_type_equal(t, ty, e)
  15562. \end{lstlisting}
  15563. \fi}
  15564. \end{tcolorbox}
  15565. \caption{Type checking \LangLam{}\python{, part 1}.}
  15566. \label{fig:type-check-Llambda}
  15567. \end{figure}
  15568. {\if\edition\pythonEd\pythonColor
  15569. \begin{figure}[tbp]
  15570. \begin{tcolorbox}[colback=white]
  15571. \begin{lstlisting}
  15572. def check_stmts(self, ss, return_ty, env):
  15573. if len(ss) == 0:
  15574. return
  15575. match ss[0]:
  15576. case FunctionDef(name, params, body, dl, returns, comment):
  15577. new_env = env.copy().update(params)
  15578. rt = self.check_stmts(body, returns, new_env)
  15579. self.check_stmts(ss[1:], return_ty, env)
  15580. case Return(value):
  15581. self.check_exp(value, return_ty, env)
  15582. case Assign([Name(id)], value):
  15583. if id in env:
  15584. self.check_exp(value, env[id], env)
  15585. else:
  15586. env[id] = self.type_check_exp(value, env)
  15587. self.check_stmts(ss[1:], return_ty, env)
  15588. case Assign([Subscript(tup, Constant(index), Store())], value):
  15589. tup_t = self.type_check_exp(tup, env)
  15590. match tup_t:
  15591. case TupleType(ts):
  15592. self.check_exp(value, ts[index], env)
  15593. case _:
  15594. raise Exception('expected a tuple, not ' + repr(tup_t))
  15595. self.check_stmts(ss[1:], return_ty, env)
  15596. case AnnAssign(Name(id), ty_annot, value, simple):
  15597. ss[0].annotation = ty_annot
  15598. if id in env:
  15599. self.check_type_equal(env[id], ty_annot)
  15600. else:
  15601. env[id] = ty_annot
  15602. self.check_exp(value, ty_annot, env)
  15603. self.check_stmts(ss[1:], return_ty, env)
  15604. case _:
  15605. self.type_check_stmts(ss, env)
  15606. def type_check(self, p):
  15607. match p:
  15608. case Module(body):
  15609. env = {}
  15610. for s in body:
  15611. match s:
  15612. case FunctionDef(name, params, bod, dl, returns, comment):
  15613. params_t = [t for (x,t) in params]
  15614. env[name] = FunctionType(params_t, returns)
  15615. self.check_stmts(body, int, env)
  15616. \end{lstlisting}
  15617. \end{tcolorbox}
  15618. \caption{Type checking the \key{lambda}'s in \LangLam{}, part 2.}
  15619. \label{fig:type-check-Llambda-part2}
  15620. \end{figure}
  15621. \fi}
  15622. \clearpage
  15623. \section{Assignment and Lexically Scoped Functions}
  15624. \label{sec:assignment-scoping}
  15625. The combination of lexically scoped functions and assignment to
  15626. variables raises a challenge with the flat-closure approach to
  15627. implementing lexically scoped functions. Consider the following
  15628. example in which function \code{f} has a free variable \code{x} that
  15629. is changed after \code{f} is created but before the call to \code{f}.
  15630. % loop_test_11.rkt
  15631. {\if\edition\racketEd
  15632. \begin{lstlisting}
  15633. (let ([x 0])
  15634. (let ([y 0])
  15635. (let ([z 20])
  15636. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  15637. (begin
  15638. (set! x 10)
  15639. (set! y 12)
  15640. (f y))))))
  15641. \end{lstlisting}
  15642. \fi}
  15643. {\if\edition\pythonEd\pythonColor
  15644. % box_free_assign.py
  15645. \begin{lstlisting}
  15646. def g(z : int) -> int:
  15647. x = 0
  15648. y = 0
  15649. f : Callable[[int],int] = lambda a: a + x + z
  15650. x = 10
  15651. y = 12
  15652. return f(y)
  15653. print( g(20) )
  15654. \end{lstlisting}
  15655. \fi} The correct output for this example is \code{42} because the call
  15656. to \code{f} is required to use the current value of \code{x} (which is
  15657. \code{10}). Unfortunately, the closure conversion pass
  15658. (section~\ref{sec:closure-conversion}) generates code for the
  15659. \code{lambda} that copies the old value of \code{x} into a
  15660. closure. Thus, if we naively applied closure conversion, the output of
  15661. this program would be \code{32}.
  15662. A first attempt at solving this problem would be to save a pointer to
  15663. \code{x} in the closure and change the occurrences of \code{x} inside
  15664. the lambda to dereference the pointer. Of course, this would require
  15665. assigning \code{x} to the stack and not to a register. However, the
  15666. problem goes a bit deeper.
  15667. Consider the following example that returns a function that refers to
  15668. a local variable of the enclosing function:
  15669. \begin{center}
  15670. \begin{minipage}{\textwidth}
  15671. {\if\edition\racketEd
  15672. \begin{lstlisting}
  15673. (define (f) : ( -> Integer)
  15674. (let ([x 0])
  15675. (let ([g (lambda: () : Integer x)])
  15676. (begin
  15677. (set! x 42)
  15678. g))))
  15679. ((f))
  15680. \end{lstlisting}
  15681. \fi}
  15682. {\if\edition\pythonEd\pythonColor
  15683. % counter.py
  15684. \begin{lstlisting}
  15685. def f():
  15686. x = 0
  15687. g = lambda: x
  15688. x = 42
  15689. return g
  15690. print( f()() )
  15691. \end{lstlisting}
  15692. \fi}
  15693. \end{minipage}
  15694. \end{center}
  15695. In this example, the lifetime of \code{x} extends beyond the lifetime
  15696. of the call to \code{f}. Thus, if we were to store \code{x} on the
  15697. stack frame for the call to \code{f}, it would be gone by the time we
  15698. called \code{g}, leaving us with dangling pointers for
  15699. \code{x}. This example demonstrates that when a variable occurs free
  15700. inside a function, its lifetime becomes indefinite. Thus, the value of
  15701. the variable needs to live on the heap. The verb
  15702. \emph{box}\index{subject}{box} is often used for allocating a single
  15703. value on the heap, producing a pointer, and
  15704. \emph{unbox}\index{subject}{unbox} for dereferencing the pointer.
  15705. %
  15706. We introduce a new pass named \code{convert\_assignments} to address
  15707. this challenge.
  15708. %
  15709. \python{But before diving into that, we have one more
  15710. problem to discuss.}
  15711. {\if\edition\pythonEd\pythonColor
  15712. \section{Uniquify Variables}
  15713. \label{sec:uniquify-lambda}
  15714. With the addition of \code{lambda} we have a complication to deal
  15715. with: name shadowing. Consider the following program with a function
  15716. \code{f} that has a parameter \code{x}. Inside \code{f} there are two
  15717. \code{lambda} expressions. The first \code{lambda} has a parameter
  15718. that is also named \code{x}.
  15719. \begin{lstlisting}
  15720. def f(x:int, y:int) -> Callable[[int], int]:
  15721. g : Callable[[int],int] = (lambda x: x + y)
  15722. h : Callable[[int],int] = (lambda y: x + y)
  15723. x = input_int()
  15724. return g
  15725. print(f(0, 10)(32))
  15726. \end{lstlisting}
  15727. Many of our compiler passes rely on being able to connect variable
  15728. uses with their definitions using just the name of the variable,
  15729. including new passes in this chapter. However, in the above example
  15730. the name of the variable does not uniquely determine its
  15731. definition. To solve this problem we recommend implementing a pass
  15732. named \code{uniquify} that renames every variable in the program to
  15733. make sure they are all unique.
  15734. The following shows the result of \code{uniquify} for the above
  15735. example. The \code{x} parameter of \code{f} is renamed to \code{x\_0}
  15736. and the \code{x} parameter of the \code{lambda} is renamed to
  15737. \code{x\_4}.
  15738. \begin{lstlisting}
  15739. def f(x_0:int, y_1:int) -> Callable[[int], int] :
  15740. g_2 : Callable[[int], int] = (lambda x_4: x_4 + y_1)
  15741. h_3 : Callable[[int], int] = (lambda y_5: x_0 + y_5)
  15742. x_0 = input_int()
  15743. return g_2
  15744. def main() -> int :
  15745. print(f(0, 10)(32))
  15746. return 0
  15747. \end{lstlisting}
  15748. \fi} % pythonEd
  15749. %% \section{Reveal Functions}
  15750. %% \label{sec:reveal-functions-r5}
  15751. %% \racket{To support the \code{procedure-arity} operator we need to
  15752. %% communicate the arity of a function to the point of closure
  15753. %% creation.}
  15754. %% %
  15755. %% \python{In chapter~\ref{ch:Ldyn} we need to access the arity of a
  15756. %% function at runtime. Thus, we need to communicate the arity of a
  15757. %% function to the point of closure creation.}
  15758. %% %
  15759. %% We can accomplish this by replacing the $\FUNREF{\Var}{\Int}$ AST node with
  15760. %% one that has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$.
  15761. %% \[
  15762. %% \begin{array}{lcl}
  15763. %% \Exp &::=& \FUNREFARITY{\Var}{\Int}
  15764. %% \end{array}
  15765. %% \]
  15766. \section{Assignment Conversion}
  15767. \label{sec:convert-assignments}
  15768. The purpose of the \code{convert\_assignments} pass is to address the
  15769. challenge regarding the interaction between variable assignments and
  15770. closure conversion. First we identify which variables need to be
  15771. boxed, and then we transform the program to box those variables. In
  15772. general, boxing introduces runtime overhead that we would like to
  15773. avoid, so we should box as few variables as possible. We recommend
  15774. boxing the variables in the intersection of the following two sets of
  15775. variables:
  15776. \begin{enumerate}
  15777. \item The variables that are free in a \code{lambda}.
  15778. \item The variables that appear on the left-hand side of an
  15779. assignment.
  15780. \end{enumerate}
  15781. The first condition is a must but the second condition is
  15782. conservative. It is possible to develop a more liberal condition using
  15783. static program analysis.
  15784. Consider again the first example from
  15785. section~\ref{sec:assignment-scoping}:
  15786. %
  15787. {\if\edition\racketEd
  15788. \begin{lstlisting}
  15789. (let ([x 0])
  15790. (let ([y 0])
  15791. (let ([z 20])
  15792. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  15793. (begin
  15794. (set! x 10)
  15795. (set! y 12)
  15796. (f y))))))
  15797. \end{lstlisting}
  15798. \fi}
  15799. {\if\edition\pythonEd\pythonColor
  15800. \begin{lstlisting}
  15801. def g(z : int) -> int:
  15802. x = 0
  15803. y = 0
  15804. f : Callable[[int],int] = lambda a: a + x + z
  15805. x = 10
  15806. y = 12
  15807. return f(y)
  15808. print( g(20) )
  15809. \end{lstlisting}
  15810. \fi}
  15811. %
  15812. \noindent The variables \code{x} and \code{y} appear on the left-hand
  15813. side of assignments. The variables \code{x} and \code{z} occur free
  15814. inside the \code{lambda}. Thus, variable \code{x} needs to be boxed
  15815. but not \code{y} or \code{z}. The boxing of \code{x} consists of
  15816. three transformations: initialize \code{x} with a tuple whose elements
  15817. are uninitialized, replace reads from \code{x} with tuple reads, and
  15818. replace each assignment to \code{x} with a tuple write. The output of
  15819. \code{convert\_assignments} for this example is as follows:
  15820. %
  15821. {\if\edition\racketEd
  15822. \begin{lstlisting}
  15823. (define (main) : Integer
  15824. (let ([x0 (vector 0)])
  15825. (let ([y1 0])
  15826. (let ([z2 20])
  15827. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  15828. (+ a3 (+ (vector-ref x0 0) z2)))])
  15829. (begin
  15830. (vector-set! x0 0 10)
  15831. (set! y1 12)
  15832. (f4 y1)))))))
  15833. \end{lstlisting}
  15834. \fi}
  15835. %
  15836. {\if\edition\pythonEd\pythonColor
  15837. \begin{lstlisting}
  15838. def g(z : int)-> int:
  15839. x = (uninitialized(int),)
  15840. x[0] = 0
  15841. y = 0
  15842. f : Callable[[int], int] = (lambda a: a + x[0] + z)
  15843. x[0] = 10
  15844. y = 12
  15845. return f(y)
  15846. def main() -> int:
  15847. print(g(20))
  15848. return 0
  15849. \end{lstlisting}
  15850. \fi}
  15851. To compute the free variables of all the \code{lambda} expressions, we
  15852. recommend defining the following two auxiliary functions:
  15853. \begin{enumerate}
  15854. \item \code{free\_variables} computes the free variables of an expression, and
  15855. \item \code{free\_in\_lambda} collects all the variables that are
  15856. free in any of the \code{lambda} expressions, using
  15857. \code{free\_variables} in the case for each \code{lambda}.
  15858. \end{enumerate}
  15859. {\if\edition\racketEd
  15860. %
  15861. To compute the variables that are assigned to, we recommend updating
  15862. the \code{collect-set!} function that we introduced in
  15863. section~\ref{sec:uncover-get-bang} to include the new AST forms such
  15864. as \code{Lambda}.
  15865. %
  15866. \fi}
  15867. {\if\edition\pythonEd\pythonColor
  15868. %
  15869. To compute the variables that are assigned to, we recommend defining
  15870. an auxiliary function named \code{assigned\_vars\_stmt} that returns
  15871. the set of variables that occur in the left-hand side of an assignment
  15872. statement, and otherwise returns the empty set.
  15873. %
  15874. \fi}
  15875. Let $\mathit{AF}$ be the intersection of the set of variables that are
  15876. free in a \code{lambda} and that are assigned to in the enclosing
  15877. function definition.
  15878. Next we discuss the \code{convert\_assignments} pass. In the case for
  15879. $\VAR{x}$, if $x$ is in $\mathit{AF}$, then unbox it by translating
  15880. $\VAR{x}$ to a tuple read.
  15881. %
  15882. {\if\edition\racketEd
  15883. \begin{lstlisting}
  15884. (Var |$x$|)
  15885. |$\Rightarrow$|
  15886. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  15887. \end{lstlisting}
  15888. \fi}
  15889. %
  15890. {\if\edition\pythonEd\pythonColor
  15891. \begin{lstlisting}
  15892. Name(|$x$|)
  15893. |$\Rightarrow$|
  15894. Subscript(Name(|$x$|), Constant(0), Load())
  15895. \end{lstlisting}
  15896. \fi}
  15897. %
  15898. \noindent In the case for assignment, recursively process the
  15899. right-hand side \itm{rhs} to obtain \itm{rhs'}. If the left-hand side
  15900. $x$ is in $\mathit{AF}$, translate the assignment into a tuple write
  15901. as follows:
  15902. %
  15903. {\if\edition\racketEd
  15904. \begin{lstlisting}
  15905. (SetBang |$x$| |$\itm{rhs}$|)
  15906. |$\Rightarrow$|
  15907. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  15908. \end{lstlisting}
  15909. \fi}
  15910. {\if\edition\pythonEd\pythonColor
  15911. \begin{lstlisting}
  15912. Assign([Name(|$x$|)],|$\itm{rhs}$|)
  15913. |$\Rightarrow$|
  15914. Assign([Subscript(Name(|$x$|), Constant(0), Store())], |$\itm{rhs'}$|)
  15915. \end{lstlisting}
  15916. \fi}
  15917. %
  15918. {\if\edition\racketEd
  15919. The case for \code{Lambda} is nontrivial, but it is similar to the
  15920. case for function definitions, which we discuss next.
  15921. \fi}
  15922. %
  15923. To translate a function definition, we first compute $\mathit{AF}$,
  15924. the intersection of the variables that are free in a \code{lambda} and
  15925. that are assigned to. We then apply assignment conversion to the body
  15926. of the function definition. Finally, we box the parameters of this
  15927. function definition that are in $\mathit{AF}$. For example,
  15928. the parameter \code{x} of the following function \code{g}
  15929. needs to be boxed:
  15930. {\if\edition\racketEd
  15931. \begin{lstlisting}
  15932. (define (g [x : Integer]) : Integer
  15933. (let ([f (lambda: ([a : Integer]) : Integer (+ a x))])
  15934. (begin
  15935. (set! x 10)
  15936. (f 32))))
  15937. \end{lstlisting}
  15938. \fi}
  15939. %
  15940. {\if\edition\pythonEd\pythonColor
  15941. \begin{lstlisting}
  15942. def g(x : int) -> int:
  15943. f : Callable[[int],int] = lambda a: a + x
  15944. x = 10
  15945. return f(32)
  15946. \end{lstlisting}
  15947. \fi}
  15948. %
  15949. \noindent We box parameter \code{x} by creating a local variable named
  15950. \code{x} that is initialized to a tuple whose contents is the value of
  15951. the parameter, which has been renamed to \code{x\_0}.
  15952. %
  15953. {\if\edition\racketEd
  15954. \begin{lstlisting}
  15955. (define (g [x_0 : Integer]) : Integer
  15956. (let ([x (vector x_0)])
  15957. (let ([f (lambda: ([a : Integer]) : Integer
  15958. (+ a (vector-ref x 0)))])
  15959. (begin
  15960. (vector-set! x 0 10)
  15961. (f 32)))))
  15962. \end{lstlisting}
  15963. \fi}
  15964. %
  15965. {\if\edition\pythonEd\pythonColor
  15966. \begin{lstlisting}
  15967. def g(x_0 : int)-> int:
  15968. x = (x_0,)
  15969. f : Callable[[int], int] = (lambda a: a + x[0])
  15970. x[0] = 10
  15971. return f(32)
  15972. \end{lstlisting}
  15973. \fi}
  15974. \section{Closure Conversion}
  15975. \label{sec:closure-conversion}
  15976. \index{subject}{closure conversion}
  15977. The compiling of lexically scoped functions into top-level function
  15978. definitions and flat closures is accomplished in the pass
  15979. \code{convert\_to\_closures} that comes after \code{reveal\_functions}
  15980. and before \code{limit\_functions}.
  15981. As usual, we implement the pass as a recursive function over the
  15982. AST. The interesting cases are for \key{lambda} and function
  15983. application. We transform a \key{lambda} expression into an expression
  15984. that creates a closure, that is, a tuple for which the first element
  15985. is a function pointer and the rest of the elements are the values of
  15986. the free variables of the \key{lambda}.
  15987. %
  15988. However, we use the \code{Closure} AST node instead of using a tuple
  15989. so that we can record the arity.
  15990. %
  15991. In the generated code that follows, \itm{fvs} is the free variables of
  15992. the lambda and \itm{name} is a unique symbol generated to identify the
  15993. lambda.
  15994. %
  15995. \racket{The \itm{arity} is the number of parameters (the length of
  15996. \itm{ps}).}
  15997. %
  15998. {\if\edition\racketEd
  15999. \begin{lstlisting}
  16000. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  16001. |$\Rightarrow$|
  16002. (Closure |\itm{arity}| (cons (FunRef |\itm{name}| |\itm{arity}|) |\itm{fvs}|))
  16003. \end{lstlisting}
  16004. \fi}
  16005. %
  16006. {\if\edition\pythonEd\pythonColor
  16007. \begin{lstlisting}
  16008. Lambda([|$x_1,\ldots,x_n$|], |\itm{body}|)
  16009. |$\Rightarrow$|
  16010. Closure(|$n$|, [FunRef(|\itm{name}|, |$n$|), |\itm{fvs}, \ldots|])
  16011. \end{lstlisting}
  16012. \fi}
  16013. %
  16014. In addition to transforming each \key{Lambda} AST node into a
  16015. tuple, we create a top-level function definition for each
  16016. \key{Lambda}, as shown next.\\
  16017. \begin{minipage}{0.8\textwidth}
  16018. {\if\edition\racketEd
  16019. \begin{lstlisting}
  16020. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  16021. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  16022. ...
  16023. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  16024. |\itm{body'}|)...))
  16025. \end{lstlisting}
  16026. \fi}
  16027. {\if\edition\pythonEd\pythonColor
  16028. \begin{lstlisting}
  16029. def |\itm{name}|(clos : |\itm{closTy}|, |\itm{ps'}, \ldots|) -> |\itm{rt'}|:
  16030. |$\itm{fvs}_1$| = clos[1]
  16031. |$\ldots$|
  16032. |$\itm{fvs}_n$| = clos[|$n$|]
  16033. |\itm{body'}|
  16034. \end{lstlisting}
  16035. \fi}
  16036. \end{minipage}\\
  16037. The \code{clos} parameter refers to the closure. Translate the type
  16038. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  16039. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The type
  16040. \itm{closTy} is a tuple type for which the first element type is
  16041. \python{\code{Bottom()}}\racket{\code{\_} (the dummy type)} and the rest of
  16042. the element types are the types of the free variables in the
  16043. lambda. We use \python{\code{Bottom()}}\racket{\code{\_}} because it
  16044. is nontrivial to give a type to the function in the closure's type.%
  16045. %
  16046. \footnote{To give an accurate type to a closure, we would need to add
  16047. existential types to the type checker~\citep{Minamide:1996ys}.}
  16048. %
  16049. %% The dummy type is considered to be equal to any other type during type
  16050. %% checking.
  16051. The free variables become local variables that are initialized with
  16052. their values in the closure.
  16053. Closure conversion turns every function into a tuple, so the type
  16054. annotations in the program must also be translated. We recommend
  16055. defining an auxiliary recursive function for this purpose. Function
  16056. types should be translated as follows:
  16057. %
  16058. {\if\edition\racketEd
  16059. \begin{lstlisting}
  16060. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  16061. |$\Rightarrow$|
  16062. (Vector ((Vector) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  16063. \end{lstlisting}
  16064. \fi}
  16065. {\if\edition\pythonEd\pythonColor
  16066. \begin{lstlisting}
  16067. FunctionType([|$T_1, \ldots, T_n$|], |$T_r$|)
  16068. |$\Rightarrow$|
  16069. TupleType([FunctionType([TupleType([]), |$T'_1, \ldots, T'_n$|], |$T'_r$|)])
  16070. \end{lstlisting}
  16071. \fi}
  16072. %
  16073. This type indicates that the first thing in the tuple is a
  16074. function. The first parameter of the function is a tuple (a closure)
  16075. and the rest of the parameters are the ones from the original
  16076. function, with types $T'_1, \ldots, T'_n$. The type for the closure
  16077. omits the types of the free variables because (1) those types are not
  16078. available in this context, and (2) we do not need them in the code that
  16079. is generated for function application. So this type describes only the
  16080. first component of the closure tuple. At runtime the tuple may have
  16081. more components, but we ignore them at this point.
  16082. We transform function application into code that retrieves the
  16083. function from the closure and then calls the function, passing the
  16084. closure as the first argument. We place $e'$ in a temporary variable
  16085. to avoid code duplication.
  16086. \begin{center}
  16087. \begin{minipage}{\textwidth}
  16088. {\if\edition\racketEd
  16089. \begin{lstlisting}
  16090. (Apply |$e$| |$\itm{es}$|)
  16091. |$\Rightarrow$|
  16092. (Let |$\itm{tmp}$| |$e'$|
  16093. (Apply (Prim 'vector-ref (list (Var |$\itm{tmp}$|) (Int 0))) (cons (Var |$\itm{tmp}$|) |$\itm{es'}$|)))
  16094. \end{lstlisting}
  16095. \fi}
  16096. %
  16097. {\if\edition\pythonEd\pythonColor
  16098. \begin{lstlisting}
  16099. Call(|$e$|, [|$e_1, \ldots, e_n$|])
  16100. |$\Rightarrow$|
  16101. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  16102. Call(Subscript(Name(|$\itm{tmp}$|), Constant(0)),
  16103. [|$\itm{tmp}$|, |$e'_1, \ldots, e'_n$|]))
  16104. \end{lstlisting}
  16105. \fi}
  16106. \end{minipage}
  16107. \end{center}
  16108. There is also the question of what to do with references to top-level
  16109. function definitions. To maintain a uniform translation of function
  16110. application, we turn function references into closures.
  16111. \begin{tabular}{lll}
  16112. \begin{minipage}{0.2\textwidth}
  16113. {\if\edition\racketEd
  16114. \begin{lstlisting}
  16115. (FunRef |$f$| |$n$|)
  16116. \end{lstlisting}
  16117. \fi}
  16118. {\if\edition\pythonEd\pythonColor
  16119. \begin{lstlisting}
  16120. FunRef(|$f$|, |$n$|)
  16121. \end{lstlisting}
  16122. \fi}
  16123. \end{minipage}
  16124. &
  16125. $\Rightarrow\qquad$
  16126. &
  16127. \begin{minipage}{0.5\textwidth}
  16128. {\if\edition\racketEd
  16129. \begin{lstlisting}
  16130. (Closure |$n$| (FunRef |$f$| |$n$|) '())
  16131. \end{lstlisting}
  16132. \fi}
  16133. {\if\edition\pythonEd\pythonColor
  16134. \begin{lstlisting}
  16135. Closure(|$n$|, [FunRef(|$f$| |$n$|)])
  16136. \end{lstlisting}
  16137. \fi}
  16138. \end{minipage}
  16139. \end{tabular} \\
  16140. We no longer need the annotated assignment statement \code{AnnAssign}
  16141. to support the type checking of \code{lambda} expressions, so we
  16142. translate it to a regular \code{Assign} statement.
  16143. The top-level function definitions need to be updated to take an extra
  16144. closure parameter, but that parameter is ignored in the body of those
  16145. functions.
  16146. \section{An Example Translation}
  16147. \label{sec:example-lambda}
  16148. Figure~\ref{fig:lexical-functions-example} shows the result of
  16149. \code{reveal\_functions} and \code{convert\_to\_closures} for the example
  16150. program demonstrating lexical scoping that we discussed at the
  16151. beginning of this chapter.
  16152. \begin{figure}[tbp]
  16153. \begin{tcolorbox}[colback=white]
  16154. \begin{minipage}{0.8\textwidth}
  16155. {\if\edition\racketEd
  16156. % tests/lambda_test_6.rkt
  16157. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16158. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  16159. (let ([y8 4])
  16160. (lambda: ([z9 : Integer]) : Integer
  16161. (+ x7 (+ y8 z9)))))
  16162. (define (main) : Integer
  16163. (let ([g0 ((fun-ref f6 1) 5)])
  16164. (let ([h1 ((fun-ref f6 1) 3)])
  16165. (+ (g0 11) (h1 15)))))
  16166. \end{lstlisting}
  16167. $\Rightarrow$
  16168. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16169. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  16170. (let ([y8 4])
  16171. (closure 1 (list (fun-ref lambda2 1) x7 y8))))
  16172. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  16173. (let ([x7 (vector-ref fvs3 1)])
  16174. (let ([y8 (vector-ref fvs3 2)])
  16175. (+ x7 (+ y8 z9)))))
  16176. (define (main) : Integer
  16177. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6 1)))])
  16178. ((vector-ref clos5 0) clos5 5))])
  16179. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6 1)))])
  16180. ((vector-ref clos6 0) clos6 3))])
  16181. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  16182. \end{lstlisting}
  16183. \fi}
  16184. %
  16185. {\if\edition\pythonEd\pythonColor
  16186. % free_var.py
  16187. \begin{lstlisting}
  16188. def f(x : int) -> Callable[[int], int]:
  16189. y = 4
  16190. return lambda z: x + y + z
  16191. g = f(5)
  16192. h = f(3)
  16193. print( g(11) + h(15) )
  16194. \end{lstlisting}
  16195. $\Rightarrow$
  16196. \begin{lstlisting}
  16197. def lambda_0(fvs_1:tuple[bot,int,tuple[int]],z:int) -> int:
  16198. x = fvs_1[1]
  16199. y = fvs_1[2]
  16200. return x + y[0] + z
  16201. def f(fvs_2:bot, x:int) -> tuple[Callable[[tuple[],int], int]]
  16202. y = (777,)
  16203. y[0] = 4
  16204. return (lambda_0, x, y)
  16205. def main() -> int:
  16206. g = (let clos_3 = (f,) in clos_3[0](clos_3, 5))
  16207. h = (let clos_4 = (f,) in clos_4[0](clos_4, 3))
  16208. print((let clos_5 = g in clos_5[0](clos_5, 11))
  16209. + (let clos_6 = h in clos_6[0](clos_6, 15)))
  16210. return 0
  16211. \end{lstlisting}
  16212. \fi}
  16213. \end{minipage}
  16214. \end{tcolorbox}
  16215. \caption{Example of closure conversion.}
  16216. \label{fig:lexical-functions-example}
  16217. \end{figure}
  16218. \begin{exercise}\normalfont\normalsize
  16219. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  16220. Create five new programs that use \key{lambda} functions and make use of
  16221. lexical scoping. Test your compiler on these new programs and all
  16222. your previously created test programs.
  16223. \end{exercise}
  16224. \section{Expose Allocation}
  16225. \label{sec:expose-allocation-r5}
  16226. Compile the $\CLOSURE{\itm{arity}}{\Exp^{*}}$ form into code
  16227. that allocates and initializes a tuple, similar to the translation of
  16228. the tuple creation in section~\ref{sec:expose-allocation}.
  16229. The only difference is replacing the use of
  16230. \ALLOC{\itm{len}}{\itm{type}} with
  16231. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  16232. \section{Explicate Control and \LangCLam{}}
  16233. \label{sec:explicate-r5}
  16234. The output language of \code{explicate\_control} is \LangCLam{}; the
  16235. definition of its abstract syntax is shown in
  16236. figure~\ref{fig:Clam-syntax}.
  16237. %
  16238. \racket{The only differences with respect to \LangCFun{} are the
  16239. addition of the \code{AllocateClosure} form to the grammar for
  16240. $\Exp$ and the \code{procedure-arity} operator. The handling of
  16241. \code{AllocateClosure} in the \code{explicate\_control} pass is
  16242. similar to the handling of other expressions such as primitive
  16243. operators.}
  16244. %
  16245. \python{The differences with respect to \LangCFun{} are the
  16246. additions of \code{Uninitialized}, \code{AllocateClosure},
  16247. and \code{arity} to the grammar for $\Exp$. The handling of them in the
  16248. \code{explicate\_control} pass is similar to the handling of other
  16249. expressions such as primitive operators.}
  16250. \newcommand{\ClambdaASTRacket}{
  16251. \begin{array}{lcl}
  16252. \Exp &::= & \ALLOCCLOS{\Int}{\Type}{\Int} \\
  16253. \itm{op} &::= & \code{procedure-arity}
  16254. \end{array}
  16255. }
  16256. \newcommand{\ClambdaASTPython}{
  16257. \begin{array}{lcl}
  16258. \Exp &::=& \key{Uninitialized}\LP \Type \RP
  16259. \MID \key{AllocateClosure}\LP\itm{len},\Type, \itm{arity}\RP \\
  16260. &\MID& \ARITY{\Atm}
  16261. \end{array}
  16262. }
  16263. \begin{figure}[tp]
  16264. \begin{tcolorbox}[colback=white]
  16265. \small
  16266. {\if\edition\racketEd
  16267. \[
  16268. \begin{array}{l}
  16269. \gray{\CvarASTRacket} \\ \hline
  16270. \gray{\CifASTRacket} \\ \hline
  16271. \gray{\CloopASTRacket} \\ \hline
  16272. \gray{\CtupASTRacket} \\ \hline
  16273. \gray{\CfunASTRacket} \\ \hline
  16274. \ClambdaASTRacket \\
  16275. \begin{array}{lcl}
  16276. \LangCLamM{} & ::= & \PROGRAMDEFS{\itm{info}}{\Def^{*}}
  16277. \end{array}
  16278. \end{array}
  16279. \]
  16280. \fi}
  16281. {\if\edition\pythonEd\pythonColor
  16282. \[
  16283. \begin{array}{l}
  16284. \gray{\CifASTPython} \\ \hline
  16285. \gray{\CtupASTPython} \\ \hline
  16286. \gray{\CfunASTPython} \\ \hline
  16287. \ClambdaASTPython \\
  16288. \begin{array}{lcl}
  16289. \LangCLamM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  16290. \end{array}
  16291. \end{array}
  16292. \]
  16293. \fi}
  16294. \end{tcolorbox}
  16295. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (figure~\ref{fig:c3-syntax}).}
  16296. \label{fig:Clam-syntax}
  16297. \end{figure}
  16298. \section{Select Instructions}
  16299. \label{sec:select-instructions-Llambda}
  16300. \index{subject}{select instructions}
  16301. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  16302. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  16303. (section~\ref{sec:select-instructions-gc}). The only difference is
  16304. that you should place the \itm{arity} in the tag that is stored at
  16305. position $0$ of the vector. Recall that in
  16306. section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  16307. was not used. We store the arity in the $5$ bits starting at position
  16308. $58$.
  16309. \racket{Compile the \code{procedure-arity} operator into a sequence of
  16310. instructions that access the tag from position $0$ of the vector and
  16311. extract the $5$ bits starting at position $58$ from the tag.}
  16312. %
  16313. \python{Compile a call to the \code{arity} operator to a sequence of
  16314. instructions that access the tag from position $0$ of the tuple
  16315. (representing a closure) and extract the $5$-bits starting at position
  16316. $58$ from the tag.}
  16317. \begin{figure}[p]
  16318. \begin{tcolorbox}[colback=white]
  16319. {\if\edition\racketEd
  16320. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16321. \node (Lfun) at (0,2) {\large \LangLam{}};
  16322. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16323. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16324. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16325. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16326. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16327. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16328. \node (F1-4) at (0,0) {\large \LangFunRefAlloc{}};
  16329. \node (F1-5) at (0,-2) {\large \LangFunRefAlloc{}};
  16330. \node (F1-6) at (4,-2) {\large \LangFunANF{}};
  16331. \node (C3-2) at (8,-2) {\large \LangCFun{}};
  16332. \node (x86-2) at (0,-5) {\large \LangXIndCallVar{}};
  16333. \node (x86-2-1) at (0,-7) {\large \LangXIndCallVar{}};
  16334. \node (x86-2-2) at (4,-7) {\large \LangXIndCallVar{}};
  16335. \node (x86-3) at (4,-5) {\large \LangXIndCallVar{}};
  16336. \node (x86-4) at (8,-5) {\large \LangXIndCall{}};
  16337. \node (x86-5) at (8,-7) {\large \LangXIndCall{}};
  16338. \path[->,bend left=15] (Lfun) edge [above] node
  16339. {\ttfamily\footnotesize shrink} (Lfun-2);
  16340. \path[->,bend left=15] (Lfun-2) edge [above] node
  16341. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16342. \path[->,bend left=15] (Lfun-3) edge [above] node
  16343. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16344. \path[->,bend left=15] (F1-0) edge [left] node
  16345. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16346. \path[->,bend left=15] (F1-1) edge [below] node
  16347. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16348. \path[->,bend right=15] (F1-2) edge [above] node
  16349. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16350. \path[->,bend right=15] (F1-3) edge [above] node
  16351. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  16352. \path[->,bend left=15] (F1-4) edge [right] node
  16353. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  16354. \path[->,bend right=15] (F1-5) edge [below] node
  16355. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16356. \path[->,bend left=15] (F1-6) edge [above] node
  16357. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16358. \path[->] (C3-2) edge [right] node
  16359. {\ttfamily\footnotesize \ \ select\_instructions} (x86-2);
  16360. \path[->,bend right=15] (x86-2) edge [right] node
  16361. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16362. \path[->,bend right=15] (x86-2-1) edge [below] node
  16363. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  16364. \path[->,bend right=15] (x86-2-2) edge [right] node
  16365. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  16366. \path[->,bend left=15] (x86-3) edge [above] node
  16367. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16368. \path[->,bend left=15] (x86-4) edge [right] node
  16369. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16370. \end{tikzpicture}
  16371. \fi}
  16372. {\if\edition\pythonEd\pythonColor
  16373. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  16374. \node (Lfun) at (0,2) {\large \LangLam{}};
  16375. \node (Lfun-2) at (4,2) {\large \LangLam{}};
  16376. \node (Lfun-3) at (8,2) {\large \LangLam{}};
  16377. \node (F1-0) at (12,2) {\large \LangLamFunRef{}};
  16378. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  16379. \node (F1-2) at (8,0) {\large \LangFunRef{}};
  16380. \node (F1-3) at (4,0) {\large \LangFunRef{}};
  16381. \node (F1-5) at (0,0) {\large \LangFunRefAlloc{}};
  16382. \node (F1-6) at (0,-2) {\large \LangFunANF{}};
  16383. \node (C3-2) at (0,-4) {\large \LangCFun{}};
  16384. \node (x86-2) at (0,-6) {\large \LangXIndCallVar{}};
  16385. \node (x86-3) at (4,-6) {\large \LangXIndCallVar{}};
  16386. \node (x86-4) at (8,-6) {\large \LangXIndCall{}};
  16387. \node (x86-5) at (12,-6) {\large \LangXIndCall{}};
  16388. \path[->,bend left=15] (Lfun) edge [above] node
  16389. {\ttfamily\footnotesize shrink} (Lfun-2);
  16390. \path[->,bend left=15] (Lfun-2) edge [above] node
  16391. {\ttfamily\footnotesize uniquify} (Lfun-3);
  16392. \path[->,bend left=15] (Lfun-3) edge [above] node
  16393. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  16394. \path[->,bend left=15] (F1-0) edge [left] node
  16395. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16396. \path[->,bend left=15] (F1-1) edge [below] node
  16397. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  16398. \path[->,bend left=15] (F1-2) edge [below] node
  16399. {\ttfamily\footnotesize limit\_functions} (F1-3);
  16400. \path[->,bend right=15] (F1-3) edge [above] node
  16401. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  16402. \path[->,bend right=15] (F1-5) edge [right] node
  16403. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  16404. \path[->,bend left=15] (F1-6) edge [right] node
  16405. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16406. \path[->,bend right=15] (C3-2) edge [right] node
  16407. {\ttfamily\footnotesize select\_instructions} (x86-2);
  16408. \path[->,bend right=15] (x86-2) edge [below] node
  16409. {\ttfamily\footnotesize assign\_homes} (x86-3);
  16410. \path[->,bend right=15] (x86-3) edge [below] node
  16411. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  16412. \path[->,bend left=15] (x86-4) edge [above] node
  16413. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  16414. \end{tikzpicture}
  16415. \fi}
  16416. \end{tcolorbox}
  16417. \caption{Diagram of the passes for \LangLam{}, a language with lexically scoped
  16418. functions.}
  16419. \label{fig:Llambda-passes}
  16420. \end{figure}
  16421. Figure~\ref{fig:Llambda-passes} provides an overview of the passes
  16422. needed for the compilation of \LangLam{}.
  16423. \clearpage
  16424. \section{Challenge: Optimize Closures}
  16425. \label{sec:optimize-closures}
  16426. In this chapter we compile lexically scoped functions into a
  16427. relatively efficient representation: flat closures. However, even this
  16428. representation comes with some overhead. For example, consider the
  16429. following program with a function \code{tail\_sum} that does not have
  16430. any free variables and where all the uses of \code{tail\_sum} are in
  16431. applications in which we know that only \code{tail\_sum} is being applied
  16432. (and not any other functions):
  16433. \begin{center}
  16434. \begin{minipage}{0.95\textwidth}
  16435. {\if\edition\racketEd
  16436. \begin{lstlisting}
  16437. (define (tail_sum [n : Integer] [s : Integer]) : Integer
  16438. (if (eq? n 0)
  16439. s
  16440. (tail_sum (- n 1) (+ n s))))
  16441. (+ (tail_sum 3 0) 36)
  16442. \end{lstlisting}
  16443. \fi}
  16444. {\if\edition\pythonEd\pythonColor
  16445. \begin{lstlisting}
  16446. def tail_sum(n : int, s : int) -> int:
  16447. if n == 0:
  16448. return s
  16449. else:
  16450. return tail_sum(n - 1, n + s)
  16451. print( tail_sum(3, 0) + 36)
  16452. \end{lstlisting}
  16453. \fi}
  16454. \end{minipage}
  16455. \end{center}
  16456. As described in this chapter, we uniformly apply closure conversion to
  16457. all functions, obtaining the following output for this program:
  16458. \begin{center}
  16459. \begin{minipage}{0.95\textwidth}
  16460. {\if\edition\racketEd
  16461. \begin{lstlisting}
  16462. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [s3 : Integer]) : Integer
  16463. (if (eq? n2 0)
  16464. s3
  16465. (let ([clos4 (closure (list (fun-ref tail_sum1 2)))])
  16466. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 s3)))))
  16467. (define (main) : Integer
  16468. (+ (let ([clos6 (closure (list (fun-ref tail_sum1 2)))])
  16469. ((vector-ref clos6 0) clos6 3 0)) 27))
  16470. \end{lstlisting}
  16471. \fi}
  16472. {\if\edition\pythonEd\pythonColor
  16473. \begin{lstlisting}
  16474. def tail_sum(fvs_3:bot,n_0:int,s_1:int) -> int :
  16475. if n_0 == 0:
  16476. return s_1
  16477. else:
  16478. return (let clos_2 = (tail_sum,)
  16479. in clos_2[0](clos_2, n_0 - 1, n_0 + s_1))
  16480. def main() -> int :
  16481. print((let clos_4 = (tail_sum,)
  16482. in clos_4[0](clos_4, 3, 0)) + 36)
  16483. return 0
  16484. \end{lstlisting}
  16485. \fi}
  16486. \end{minipage}
  16487. \end{center}
  16488. If this program were compiled according to the previous chapter, there
  16489. would be no allocation and the calls to \code{tail\_sum} would be
  16490. direct calls. In contrast, the program presented here allocates memory
  16491. for each closure and the calls to \code{tail\_sum} are indirect. These
  16492. two differences incur considerable overhead in a program such as this,
  16493. in which the allocations and indirect calls occur inside a tight loop.
  16494. One might think that this problem is trivial to solve: can't we just
  16495. recognize calls of the form \APPLY{\FUNREF{$f$}{$n$}}{$\mathit{args}$}
  16496. and compile them to direct calls instead of treating it like a call to
  16497. a closure? We would also drop the new \code{fvs} parameter of
  16498. \code{tail\_sum}.
  16499. %
  16500. However, this problem is not so trivial, because a global function may
  16501. \emph{escape} and become involved in applications that also involve
  16502. closures. Consider the following example in which the application
  16503. \CAPPLY{\code{f}}{\code{41}} needs to be compiled into a closure
  16504. application because the \code{lambda} may flow into \code{f}, but the
  16505. \code{inc} function might also flow into \code{f}:
  16506. \begin{center}
  16507. \begin{minipage}{\textwidth}
  16508. % lambda_test_30.rkt
  16509. {\if\edition\racketEd
  16510. \begin{lstlisting}
  16511. (define (inc [x : Integer]) : Integer
  16512. (+ x 1))
  16513. (let ([y (read)])
  16514. (let ([f (if (eq? (read) 0)
  16515. inc
  16516. (lambda: ([x : Integer]) : Integer (- x y)))])
  16517. (f 41)))
  16518. \end{lstlisting}
  16519. \fi}
  16520. {\if\edition\pythonEd\pythonColor
  16521. \begin{lstlisting}
  16522. def add1(x : int) -> int:
  16523. return x + 1
  16524. y = input_int()
  16525. g : Callable[[int], int] = lambda x: x - y
  16526. f = add1 if input_int() == 0 else g
  16527. print( f(41) )
  16528. \end{lstlisting}
  16529. \fi}
  16530. \end{minipage}
  16531. \end{center}
  16532. If a global function name is used in any way other than as the
  16533. operator in a direct call, then we say that the function
  16534. \emph{escapes}. If a global function does not escape, then we do not
  16535. need to perform closure conversion on the function.
  16536. \begin{exercise}\normalfont\normalsize
  16537. Implement an auxiliary function for detecting which global
  16538. functions escape. Using that function, implement an improved version
  16539. of closure conversion that does not apply closure conversion to
  16540. global functions that do not escape but instead compiles them as
  16541. regular functions. Create several new test cases that check whether
  16542. your compiler properly detects whether global functions escape or not.
  16543. \end{exercise}
  16544. So far we have reduced the overhead of calling global functions, but
  16545. it would also be nice to reduce the overhead of calling a
  16546. \code{lambda} when we can determine at compile time which
  16547. \code{lambda} will be called. We refer to such calls as \emph{known
  16548. calls}. Consider the following example in which a \code{lambda} is
  16549. bound to \code{f} and then applied.
  16550. {\if\edition\racketEd
  16551. % lambda_test_9.rkt
  16552. \begin{lstlisting}
  16553. (let ([y (read)])
  16554. (let ([f (lambda: ([x : Integer]) : Integer
  16555. (+ x y))])
  16556. (f 21)))
  16557. \end{lstlisting}
  16558. \fi}
  16559. {\if\edition\pythonEd\pythonColor
  16560. \begin{lstlisting}
  16561. y = input_int()
  16562. f : Callable[[int],int] = lambda x: x + y
  16563. print( f(21) )
  16564. \end{lstlisting}
  16565. \fi}
  16566. %
  16567. \noindent Closure conversion compiles the application
  16568. \CAPPLY{\code{f}}{\code{21}} into an indirect call, as follows:
  16569. %
  16570. {\if\edition\racketEd
  16571. \begin{lstlisting}
  16572. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  16573. (let ([y2 (vector-ref fvs6 1)])
  16574. (+ x3 y2)))
  16575. (define (main) : Integer
  16576. (let ([y2 (read)])
  16577. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16578. ((vector-ref f4 0) f4 21))))
  16579. \end{lstlisting}
  16580. \fi}
  16581. {\if\edition\pythonEd\pythonColor
  16582. \begin{lstlisting}
  16583. def lambda_3(fvs_4:tuple[bot,tuple[int]], x_2:int) -> int:
  16584. y_1 = fvs_4[1]
  16585. return x_2 + y_1[0]
  16586. def main() -> int:
  16587. y_1 = (777,)
  16588. y_1[0] = input_int()
  16589. f_0 = (lambda_3, y_1)
  16590. print((let clos_5 = f_0 in clos_5[0](clos_5, 21)))
  16591. return 0
  16592. \end{lstlisting}
  16593. \fi}
  16594. %
  16595. \noindent However, we can instead compile the application
  16596. \CAPPLY{\code{f}}{\code{21}} into a direct call, as follows:
  16597. %
  16598. {\if\edition\racketEd
  16599. \begin{lstlisting}
  16600. (define (main) : Integer
  16601. (let ([y2 (read)])
  16602. (let ([f4 (Closure 1 (list (fun-ref lambda5 1) y2))])
  16603. ((fun-ref lambda5 1) f4 21))))
  16604. \end{lstlisting}
  16605. \fi}
  16606. {\if\edition\pythonEd\pythonColor
  16607. \begin{lstlisting}
  16608. def main() -> int:
  16609. y_1 = (777,)
  16610. y_1[0] = input_int()
  16611. f_0 = (lambda_3, y_1)
  16612. print(lambda_3(f_0, 21))
  16613. return 0
  16614. \end{lstlisting}
  16615. \fi}
  16616. The problem of determining which \code{lambda} will be called from a
  16617. particular application is quite challenging in general and the topic
  16618. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  16619. following exercise we recommend that you compile an application to a
  16620. direct call when the operator is a variable and \racket{the variable
  16621. is \code{let}-bound to a closure}\python{the previous assignment to
  16622. the variable is a closure}. This can be accomplished by maintaining
  16623. an environment that maps variables to function names. Extend the
  16624. environment whenever you encounter a closure on the right-hand side of
  16625. a \racket{\code{let}}\python{assignment}, mapping the variable to the
  16626. name of the global function for the closure. This pass should come
  16627. after closure conversion.
  16628. \begin{exercise}\normalfont\normalsize
  16629. Implement a compiler pass, named \code{optimize\_known\_calls}, that
  16630. compiles known calls into direct calls. Verify that your compiler is
  16631. successful in this regard on several example programs.
  16632. \end{exercise}
  16633. These exercises only scratch the surface of closure optimization. A
  16634. good next step for the interested reader is to look at the work of
  16635. \citet{Keep:2012ab}.
  16636. \section{Further Reading}
  16637. The notion of lexically scoped functions predates modern computers by
  16638. about a decade. They were invented by \citet{Church:1932aa}, who
  16639. proposed the lambda calculus as a foundation for logic. Anonymous
  16640. functions were included in the LISP~\citep{McCarthy:1960dz}
  16641. programming language but were initially dynamically scoped. The Scheme
  16642. dialect of LISP adopted lexical scoping, and
  16643. \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently compile
  16644. Scheme programs. However, environments were represented as linked
  16645. lists, so variable look-up was linear in the size of the
  16646. environment. \citet{Appel91} gives a detailed description of several
  16647. closure representations. In this chapter we represent environments
  16648. using flat closures, which were invented by
  16649. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purpose of compiling
  16650. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  16651. closures, variable look-up is constant time but the time to create a
  16652. closure is proportional to the number of its free variables. Flat
  16653. closures were reinvented by \citet{Dybvig:1987ab} in his PhD thesis
  16654. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  16655. % todo: related work on assignment conversion (e.g. orbit and rabbit
  16656. % compilers)
  16657. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16658. \chapter{Dynamic Typing}
  16659. \label{ch:Ldyn}
  16660. \index{subject}{dynamic typing}
  16661. \setcounter{footnote}{0}
  16662. In this chapter we learn how to compile \LangDyn{}, a dynamically
  16663. typed language that is a subset of \racket{Racket}\python{Python}. The
  16664. focus on dynamic typing is in contrast to the previous chapters, which
  16665. have studied the compilation of statically typed languages. In
  16666. dynamically typed languages such as \LangDyn{}, a particular
  16667. expression may produce a value of a different type each time it is
  16668. executed. Consider the following example with a conditional \code{if}
  16669. expression that may return a Boolean or an integer depending on the
  16670. input to the program:
  16671. % part of dynamic_test_25.rkt
  16672. {\if\edition\racketEd
  16673. \begin{lstlisting}
  16674. (not (if (eq? (read) 1) #f 0))
  16675. \end{lstlisting}
  16676. \fi}
  16677. {\if\edition\pythonEd\pythonColor
  16678. \begin{lstlisting}
  16679. not (False if input_int() == 1 else 0)
  16680. \end{lstlisting}
  16681. \fi}
  16682. Languages that allow expressions to produce different kinds of values
  16683. are called \emph{polymorphic}, a word composed of the Greek roots
  16684. \emph{poly}, meaning \emph{many}, and \emph{morph}, meaning \emph{form}.
  16685. There are several kinds of polymorphism in programming languages, such as
  16686. subtype polymorphism\index{subject}{subtype polymorphism} and
  16687. parametric polymorphism\index{subject}{parametric polymorphism}
  16688. (aka generics)~\citep{Cardelli:1985kx}. The kind of polymorphism that we
  16689. study in this chapter does not have a special name; it is the kind
  16690. that arises in dynamically typed languages.
  16691. Another characteristic of dynamically typed languages is that
  16692. their primitive operations, such as \code{not}, are often defined to operate
  16693. on many different types of values. In fact, in
  16694. \racket{Racket}\python{Python}, the \code{not} operator produces a
  16695. result for any kind of value: given \FALSE{} it returns \TRUE{}, and
  16696. given anything else it returns \FALSE{}.
  16697. Furthermore, even when primitive operations restrict their inputs to
  16698. values of a certain type, this restriction is enforced at runtime
  16699. instead of during compilation. For example, the tuple read
  16700. operation \racket{\code{(vector-ref \#t 0)}}\python{\code{True[0]}}
  16701. results in a runtime error because the first argument must
  16702. be a tuple, not a Boolean.
  16703. \section{The \LangDyn{} Language}
  16704. \newcommand{\LdynGrammarRacket}{
  16705. \begin{array}{rcl}
  16706. \Exp &::=& \LP\Exp \; \Exp\ldots\RP
  16707. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  16708. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  16709. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  16710. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP
  16711. \end{array}
  16712. }
  16713. \newcommand{\LdynASTRacket}{
  16714. \begin{array}{lcl}
  16715. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  16716. \MID \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  16717. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp}
  16718. \end{array}
  16719. }
  16720. \begin{figure}[tp]
  16721. \centering
  16722. \begin{tcolorbox}[colback=white]
  16723. \small
  16724. {\if\edition\racketEd
  16725. \[
  16726. \begin{array}{l}
  16727. \gray{\LintGrammarRacket{}} \\ \hline
  16728. \gray{\LvarGrammarRacket{}} \\ \hline
  16729. \gray{\LifGrammarRacket{}} \\ \hline
  16730. \gray{\LwhileGrammarRacket} \\ \hline
  16731. \gray{\LtupGrammarRacket} \\ \hline
  16732. \LdynGrammarRacket \\
  16733. \begin{array}{rcl}
  16734. \LangDynM{} &::=& \Def\ldots\; \Exp
  16735. \end{array}
  16736. \end{array}
  16737. \]
  16738. \fi}
  16739. {\if\edition\pythonEd\pythonColor
  16740. \[
  16741. \begin{array}{rcl}
  16742. \itm{cmp} &::= & \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \MID \key{is} \\
  16743. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \Exp \; \key{-} \; \Exp \MID \LP\Exp\RP \\
  16744. &\MID& \Var{} \MID \TRUE \MID \FALSE \MID \CAND{\Exp}{\Exp}
  16745. \MID \COR{\Exp}{\Exp} \MID \key{not}~\Exp \\
  16746. &\MID& \CCMP{\itm{cmp}}{\Exp}{\Exp}
  16747. \MID \CIF{\Exp}{\Exp}{\Exp} \\
  16748. &\MID& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp}
  16749. \MID \CLEN{\Exp} \\
  16750. &\MID& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  16751. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}\\
  16752. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp
  16753. \MID \Var\mathop{\key{=}}\Exp \\
  16754. &\MID& \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}
  16755. \MID \key{while}~ \Exp \key{:}~ \Stmt^{+} \\
  16756. &\MID& \CRETURN{\Exp} \\
  16757. \Def &::=& \CDEFU{\Var}{\Var{,} \ldots}{\Stmt^{+}} \\
  16758. \LangDynM{} &::=& \Def\ldots \Stmt\ldots
  16759. \end{array}
  16760. \]
  16761. \fi}
  16762. \end{tcolorbox}
  16763. \caption{Syntax of \LangDyn{}, an untyped language (a subset of \racket{Racket}\python{Python}).}
  16764. \label{fig:r7-concrete-syntax}
  16765. \end{figure}
  16766. \begin{figure}[tp]
  16767. \centering
  16768. \begin{tcolorbox}[colback=white]
  16769. \small
  16770. {\if\edition\racketEd
  16771. \[
  16772. \begin{array}{l}
  16773. \gray{\LintASTRacket{}} \\ \hline
  16774. \gray{\LvarASTRacket{}} \\ \hline
  16775. \gray{\LifASTRacket{}} \\ \hline
  16776. \gray{\LwhileASTRacket} \\ \hline
  16777. \gray{\LtupASTRacket} \\ \hline
  16778. \LdynASTRacket \\
  16779. \begin{array}{lcl}
  16780. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  16781. \end{array}
  16782. \end{array}
  16783. \]
  16784. \fi}
  16785. {\if\edition\pythonEd\pythonColor
  16786. \[
  16787. \begin{array}{rcl}
  16788. \itm{binaryop} &::= & \code{Add()} \MID \code{Sub()} \\
  16789. \itm{unaryop} &::= & \code{USub()} \MID \code{Not()} \\
  16790. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  16791. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()}
  16792. \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  16793. &\MID & \code{Is()} \\
  16794. \itm{bool} &::=& \code{True} \MID \code{False} \\
  16795. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  16796. &\MID& \UNIOP{\itm{unaryop}}{\Exp}
  16797. \MID \BINOP{\Exp}{\itm{binaryop}}{\Exp}
  16798. \MID \VAR{\Var{}} \\
  16799. &\MID& \BOOL{\itm{bool}}
  16800. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  16801. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp} \MID \IF{\Exp}{\Exp}{\Exp} \\
  16802. &\MID& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  16803. &\MID& \LEN{\Exp} \\
  16804. &\MID& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp} \\
  16805. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  16806. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  16807. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}
  16808. \MID \WHILESTMT{\Exp}{\Stmt^{+}}\\
  16809. &\MID& \RETURN{\Exp} \\
  16810. \Params &::=& \LP\Var\key{,}\code{AnyType()}\RP^* \\
  16811. \Def &::=& \FUNDEF{\Var}{\Params}{\code{AnyType()}}{}{\Stmt^{+}} \\
  16812. \LangDynM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  16813. \end{array}
  16814. \]
  16815. \fi}
  16816. \end{tcolorbox}
  16817. \caption{The abstract syntax of \LangDyn{}.}
  16818. \label{fig:r7-syntax}
  16819. \end{figure}
  16820. The definitions of the concrete and abstract syntax of \LangDyn{} are
  16821. shown in figures~\ref{fig:r7-concrete-syntax} and \ref{fig:r7-syntax}.
  16822. %
  16823. There is no type checker for \LangDyn{} because it checks types only
  16824. at runtime.
  16825. The definitional interpreter for \LangDyn{} is presented in
  16826. \racket{figure~\ref{fig:interp-Ldyn}}\python{figures~\ref{fig:interp-Ldyn} and \ref{fig:interp-Ldyn-2}}, and definitions of its auxiliary functions
  16827. are shown in figure~\ref{fig:interp-Ldyn-aux}. Consider the match case for
  16828. \INT{n}. Instead of simply returning the integer \code{n} (as
  16829. in the interpreter for \LangVar{} in figure~\ref{fig:interp-Lvar}), the
  16830. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  16831. value} that combines an underlying value with a tag that identifies
  16832. what kind of value it is. We define the following \racket{struct}\python{class}
  16833. to represent tagged values:
  16834. %
  16835. {\if\edition\racketEd
  16836. \begin{lstlisting}
  16837. (struct Tagged (value tag) #:transparent)
  16838. \end{lstlisting}
  16839. \fi}
  16840. {\if\edition\pythonEd\pythonColor
  16841. \begin{minipage}{\textwidth}
  16842. \begin{lstlisting}
  16843. @dataclass(eq=True)
  16844. class Tagged(Value):
  16845. value : Value
  16846. tag : str
  16847. def __str__(self):
  16848. return str(self.value)
  16849. \end{lstlisting}
  16850. \end{minipage}
  16851. \fi}
  16852. %
  16853. \racket{The tags are \code{Integer}, \BOOLTY{}, \code{Void},
  16854. \code{Vector}, and \code{Procedure}.}
  16855. %
  16856. \python{The tags are \code{'int'}, \code{'bool'}, \code{'none'},
  16857. \code{'tuple'}, and \code{'function'}.}
  16858. %
  16859. Tags are closely related to types but do not always capture all the
  16860. information that a type does.
  16861. %
  16862. \racket{For example, a vector of type \code{(Vector Any Any)} is
  16863. tagged with \code{Vector}, and a procedure of type \code{(Any Any ->
  16864. Any)} is tagged with \code{Procedure}.}
  16865. %
  16866. \python{For example, a tuple of type \code{TupleType([AnyType(),AnyType()])}
  16867. is tagged with \code{'tuple'} and a function of type
  16868. \code{FunctionType([AnyType(), AnyType()], AnyType())}
  16869. is tagged with \code{'function'}.}
  16870. Next consider the match case for accessing the element of a tuple.
  16871. The \racket{\code{check-tag}}\python{\code{untag}} auxiliary function
  16872. (figure~\ref{fig:interp-Ldyn-aux}) is used to ensure that the first
  16873. argument is a tuple and the second is an integer.
  16874. \racket{
  16875. If they are not, a \code{trapped-error} is raised. Recall from
  16876. section~\ref{sec:interp_Lint} that when a definition interpreter
  16877. raises a \code{trapped-error} error, the compiled code must also
  16878. signal an error by exiting with return code \code{255}. A
  16879. \code{trapped-error} is also raised if the index is not less than the
  16880. length of the vector.
  16881. }
  16882. %
  16883. \python{If they are not, an exception is raised. The compiled code
  16884. must also signal an error by exiting with return code \code{255}. A
  16885. exception is also raised if the index is not less than the length of the
  16886. tuple or if it is negative.}
  16887. \begin{figure}[tbp]
  16888. \begin{tcolorbox}[colback=white]
  16889. {\if\edition\racketEd
  16890. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16891. (define ((interp-Ldyn-exp env) ast)
  16892. (define recur (interp-Ldyn-exp env))
  16893. (match ast
  16894. [(Var x) (dict-ref env x)]
  16895. [(Int n) (Tagged n 'Integer)]
  16896. [(Bool b) (Tagged b 'Boolean)]
  16897. [(Lambda xs rt body)
  16898. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  16899. [(Prim 'vector es)
  16900. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  16901. [(Prim 'vector-ref (list e1 e2))
  16902. (define vec (recur e1)) (define i (recur e2))
  16903. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  16904. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  16905. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  16906. (vector-ref (Tagged-value vec) (Tagged-value i))]
  16907. [(Prim 'vector-set! (list e1 e2 e3))
  16908. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  16909. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  16910. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  16911. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  16912. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  16913. (Tagged (void) 'Void)]
  16914. [(Let x e body) ((interp-Ldyn-exp (cons (cons x (recur e)) env)) body)]
  16915. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  16916. [(Prim 'or (list e1 e2))
  16917. (define v1 (recur e1))
  16918. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  16919. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  16920. [(Prim op (list e1))
  16921. #:when (set-member? type-predicates op)
  16922. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  16923. [(Prim op es)
  16924. (define args (map recur es))
  16925. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  16926. (unless (for/or ([expected-tags (op-tags op)])
  16927. (equal? expected-tags tags))
  16928. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  16929. (tag-value
  16930. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  16931. [(If q t f)
  16932. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  16933. [(Apply f es)
  16934. (define new-f (recur f)) (define args (map recur es))
  16935. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  16936. (match f-val
  16937. [`(function ,xs ,body ,lam-env)
  16938. (unless (eq? (length xs) (length args))
  16939. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  16940. (define new-env (append (map cons xs args) lam-env))
  16941. ((interp-Ldyn-exp new-env) body)]
  16942. [else (error "interp-Ldyn-exp, expected function, not" f-val)])]))
  16943. \end{lstlisting}
  16944. \fi}
  16945. {\if\edition\pythonEd\pythonColor
  16946. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  16947. class InterpLdyn(InterpLlambda):
  16948. def interp_exp(self, e, env):
  16949. match e:
  16950. case Constant(n):
  16951. return self.tag(super().interp_exp(e, env))
  16952. case Tuple(es, Load()):
  16953. return self.tag(super().interp_exp(e, env))
  16954. case Lambda(params, body):
  16955. return self.tag(super().interp_exp(e, env))
  16956. case Call(Name('input_int'), []):
  16957. return self.tag(super().interp_exp(e, env))
  16958. case BinOp(left, Add(), right):
  16959. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  16960. return self.tag(self.untag(l, 'int', e) + self.untag(r, 'int', e))
  16961. case BinOp(left, Sub(), right):
  16962. l = self.interp_exp(left, env); r = self.interp_exp(right, env)
  16963. return self.tag(self.untag(l, 'int', e) - self.untag(r, 'int', e))
  16964. case UnaryOp(USub(), e1):
  16965. v = self.interp_exp(e1, env)
  16966. return self.tag(- self.untag(v, 'int', e))
  16967. case IfExp(test, body, orelse):
  16968. v = self.interp_exp(test, env)
  16969. if self.untag(v, 'bool', e):
  16970. return self.interp_exp(body, env)
  16971. else:
  16972. return self.interp_exp(orelse, env)
  16973. case UnaryOp(Not(), e1):
  16974. v = self.interp_exp(e1, env)
  16975. return self.tag(not self.untag(v, 'bool', e))
  16976. case BoolOp(And(), values):
  16977. left = values[0]; right = values[1]
  16978. l = self.interp_exp(left, env)
  16979. if self.untag(l, 'bool', e):
  16980. return self.interp_exp(right, env)
  16981. else:
  16982. return self.tag(False)
  16983. case BoolOp(Or(), values):
  16984. left = values[0]; right = values[1]
  16985. l = self.interp_exp(left, env)
  16986. if self.untag(l, 'bool', e):
  16987. return self.tag(True)
  16988. else:
  16989. return self.interp_exp(right, env)
  16990. case Compare(left, [cmp], [right]):
  16991. l = self.interp_exp(left, env)
  16992. r = self.interp_exp(right, env)
  16993. if l.tag == r.tag:
  16994. return self.tag(self.interp_cmp(cmp)(l.value, r.value))
  16995. else:
  16996. raise Exception('interp Compare unexpected '
  16997. + repr(l) + ' ' + repr(r))
  16998. case Subscript(tup, index, Load()):
  16999. t = self.interp_exp(tup, env)
  17000. n = self.interp_exp(index, env)
  17001. return self.untag(t, 'tuple', e)[self.untag(n, 'int', e)]
  17002. case Call(Name('len'), [tup]):
  17003. t = self.interp_exp(tup, env)
  17004. return self.tag(len(self.untag(t, 'tuple', e)))
  17005. case _:
  17006. return self.tag(super().interp_exp(e, env))
  17007. \end{lstlisting}
  17008. \fi}
  17009. \end{tcolorbox}
  17010. \caption{Interpreter for the \LangDyn{} language\python{, part 1}.}
  17011. \label{fig:interp-Ldyn}
  17012. \end{figure}
  17013. {\if\edition\pythonEd\pythonColor
  17014. \begin{figure}[tbp]
  17015. \begin{tcolorbox}[colback=white]
  17016. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17017. class InterpLdyn(InterpLlambda):
  17018. def interp_stmt(self, s, env, cont):
  17019. match s:
  17020. case If(test, body, orelse):
  17021. v = self.interp_exp(test, env)
  17022. match self.untag(v, 'bool', s):
  17023. case True:
  17024. return self.interp_stmts(body + cont, env)
  17025. case False:
  17026. return self.interp_stmts(orelse + cont, env)
  17027. case While(test, body, []):
  17028. v = self.interp_exp(test, env)
  17029. if self.untag(v, 'bool', test):
  17030. self.interp_stmts(body + [s] + cont, env)
  17031. else:
  17032. return self.interp_stmts(cont, env)
  17033. case Assign([Subscript(tup, index)], value):
  17034. tup = self.interp_exp(tup, env)
  17035. index = self.interp_exp(index, env)
  17036. tup_v = self.untag(tup, 'tuple', s)
  17037. index_v = self.untag(index, 'int', s)
  17038. tup_v[index_v] = self.interp_exp(value, env)
  17039. return self.interp_stmts(cont, env)
  17040. case FunctionDef(name, params, bod, dl, returns, comment):
  17041. if isinstance(params, ast.arguments):
  17042. ps = [p.arg for p in params.args]
  17043. else:
  17044. ps = [x for (x,t) in params]
  17045. env[name] = self.tag(Function(name, ps, bod, env))
  17046. return self.interp_stmts(cont, env)
  17047. case _:
  17048. return super().interp_stmt(s, env, cont)
  17049. \end{lstlisting}
  17050. \end{tcolorbox}
  17051. \caption{Interpreter for the \LangDyn{} language\python{, part 2}.}
  17052. \label{fig:interp-Ldyn-2}
  17053. \end{figure}
  17054. \fi}
  17055. \begin{figure}[tbp]
  17056. \begin{tcolorbox}[colback=white]
  17057. {\if\edition\racketEd
  17058. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17059. (define (interp-op op)
  17060. (match op
  17061. ['+ fx+]
  17062. ['- fx-]
  17063. ['read read-fixnum]
  17064. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  17065. ['< (lambda (v1 v2)
  17066. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  17067. ['<= (lambda (v1 v2)
  17068. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  17069. ['> (lambda (v1 v2)
  17070. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  17071. ['>= (lambda (v1 v2)
  17072. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  17073. ['boolean? boolean?]
  17074. ['integer? fixnum?]
  17075. ['void? void?]
  17076. ['vector? vector?]
  17077. ['vector-length vector-length]
  17078. ['procedure? (match-lambda
  17079. [`(functions ,xs ,body ,env) #t] [else #f])]
  17080. [else (error 'interp-op "unknown operator" op)]))
  17081. (define (op-tags op)
  17082. (match op
  17083. ['+ '((Integer Integer))]
  17084. ['- '((Integer Integer) (Integer))]
  17085. ['read '(())]
  17086. ['not '((Boolean))]
  17087. ['< '((Integer Integer))]
  17088. ['<= '((Integer Integer))]
  17089. ['> '((Integer Integer))]
  17090. ['>= '((Integer Integer))]
  17091. ['vector-length '((Vector))]))
  17092. (define type-predicates
  17093. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17094. (define (tag-value v)
  17095. (cond [(boolean? v) (Tagged v 'Boolean)]
  17096. [(fixnum? v) (Tagged v 'Integer)]
  17097. [(procedure? v) (Tagged v 'Procedure)]
  17098. [(vector? v) (Tagged v 'Vector)]
  17099. [(void? v) (Tagged v 'Void)]
  17100. [else (error 'tag-value "unidentified value ~a" v)]))
  17101. (define (check-tag val expected ast)
  17102. (define tag (Tagged-tag val))
  17103. (unless (eq? tag expected)
  17104. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  17105. \end{lstlisting}
  17106. \fi}
  17107. {\if\edition\pythonEd\pythonColor
  17108. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17109. class InterpLdyn(InterpLlambda):
  17110. def tag(self, v):
  17111. if v is True or v is False:
  17112. return Tagged(v, 'bool')
  17113. elif isinstance(v, int):
  17114. return Tagged(v, 'int')
  17115. elif isinstance(v, Function):
  17116. return Tagged(v, 'function')
  17117. elif isinstance(v, tuple):
  17118. return Tagged(v, 'tuple')
  17119. elif isinstance(v, type(None)):
  17120. return Tagged(v, 'none')
  17121. else:
  17122. raise Exception('tag: unexpected ' + repr(v))
  17123. def untag(self, v, expected_tag, ast):
  17124. match v:
  17125. case Tagged(val, tag) if tag == expected_tag:
  17126. return val
  17127. case _:
  17128. raise TrappedError('expected Tagged value with '
  17129. + expected_tag + ', not ' + ' ' + repr(v))
  17130. def apply_fun(self, fun, args, e):
  17131. f = self.untag(fun, 'function', e)
  17132. return super().apply_fun(f, args, e)
  17133. \end{lstlisting}
  17134. \fi}
  17135. \end{tcolorbox}
  17136. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  17137. \label{fig:interp-Ldyn-aux}
  17138. \end{figure}
  17139. \clearpage
  17140. \section{Representation of Tagged Values}
  17141. The interpreter for \LangDyn{} introduced a new kind of value: the
  17142. tagged value. To compile \LangDyn{} to x86 we must decide how to
  17143. represent tagged values at the bit level. Because almost every
  17144. operation in \LangDyn{} involves manipulating tagged values, the
  17145. representation must be efficient. Recall that all our values are 64
  17146. bits. We shall steal the right-most $3$ bits to encode the tag. We use
  17147. $001$ to identify integers, $100$ for Booleans, $010$ for tuples,
  17148. $011$ for procedures, and $101$ for the void value\python{,
  17149. \key{None}}. We define the following auxiliary function for mapping
  17150. types to tag codes:
  17151. %
  17152. {\if\edition\racketEd
  17153. \begin{align*}
  17154. \itm{tagof}(\key{Integer}) &= 001 \\
  17155. \itm{tagof}(\key{Boolean}) &= 100 \\
  17156. \itm{tagof}(\LP\key{Vector} \ldots\RP) &= 010 \\
  17157. \itm{tagof}(\LP\ldots \key{->} \ldots\RP) &= 011 \\
  17158. \itm{tagof}(\key{Void}) &= 101
  17159. \end{align*}
  17160. \fi}
  17161. {\if\edition\pythonEd\pythonColor
  17162. \begin{align*}
  17163. \itm{tagof}(\key{IntType()}) &= 001 \\
  17164. \itm{tagof}(\key{BoolType()}) &= 100 \\
  17165. \itm{tagof}(\key{TupleType(ts)}) &= 010 \\
  17166. \itm{tagof}(\key{FunctionType(ps, rt)}) &= 011 \\
  17167. \itm{tagof}(\key{type(None)}) &= 101
  17168. \end{align*}
  17169. \fi}
  17170. %
  17171. This stealing of 3 bits comes at some price: integers are now restricted
  17172. to the range $-2^{60}$ to $2^{60}-1$. The stealing does not adversely
  17173. affect tuples and procedures because those values are addresses, and
  17174. our addresses are 8-byte aligned so the rightmost 3 bits are unused;
  17175. they are always $000$. Thus, we do not lose information by overwriting
  17176. the rightmost 3 bits with the tag, and we can simply zero out the tag
  17177. to recover the original address.
  17178. To make tagged values into first-class entities, we can give them a
  17179. type called \racket{\code{Any}}\python{\code{AnyType()}} and define
  17180. operations such as \code{Inject} and \code{Project} for creating and
  17181. using them, yielding the statically typed \LangAny{} intermediate
  17182. language. We describe how to compile \LangDyn{} to \LangAny{} in
  17183. section~\ref{sec:compile-r7}; in the next section we describe the
  17184. \LangAny{} language in greater detail.
  17185. \section{The \LangAny{} Language}
  17186. \label{sec:Rany-lang}
  17187. \newcommand{\LanyASTRacket}{
  17188. \begin{array}{lcl}
  17189. \Type &::= & \ANYTY \\
  17190. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  17191. \MID \LP\key{Vector}\; \ANYTY\ldots\RP
  17192. \MID \LP\ANYTY\ldots \; \key{->}\; \ANYTY\RP\\
  17193. \itm{op} &::= & \code{any-vector-length}
  17194. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  17195. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  17196. \MID \code{procedure?} \MID \code{void?} \\
  17197. \Exp &::=& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType}
  17198. \end{array}
  17199. }
  17200. \newcommand{\LanyASTPython}{
  17201. \begin{array}{lcl}
  17202. \Type &::= & \key{AnyType()} \\
  17203. \FType &::=& \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}
  17204. \MID \key{TupleType}\LS\key{AnyType()}^+\RS \\
  17205. &\MID& \key{FunctionType}\LP \key{AnyType()}^{*}\key{, }\key{AnyType()}\RP \\
  17206. \Exp & ::= & \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  17207. &\MID& \CALL{\VAR{\key{'any\_tuple\_load'}}}{\LS\Exp\key{, }\Exp\RS}\\
  17208. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS\Exp\RS} \\
  17209. &\MID& \CALL{\VAR{\key{'arity'}}}{\LS\Exp\RS} \\
  17210. &\MID& \CALL{\VAR{\key{'make\_any'}}}{\LS\Exp\key{, }\INT{\Int}\RS}
  17211. %% &\MID& \CALL{\VAR{\key{'is\_int'}}}{\Exp}
  17212. %% \MID \CALL{\VAR{\key{'is\_bool'}}}{\Exp} \\
  17213. %% &\MID& \CALL{\VAR{\key{'is\_none'}}}{\Exp}
  17214. %% \MID \CALL{\VAR{\key{'is\_tuple'}}}{\Exp} \\
  17215. %% &\MID& \CALL{\VAR{\key{'is\_function'}}}{\Exp}
  17216. \end{array}
  17217. }
  17218. \begin{figure}[tp]
  17219. \centering
  17220. \begin{tcolorbox}[colback=white]
  17221. \small
  17222. {\if\edition\racketEd
  17223. \[
  17224. \begin{array}{l}
  17225. \gray{\LintOpAST} \\ \hline
  17226. \gray{\LvarASTRacket{}} \\ \hline
  17227. \gray{\LifASTRacket{}} \\ \hline
  17228. \gray{\LwhileASTRacket{}} \\ \hline
  17229. \gray{\LtupASTRacket{}} \\ \hline
  17230. \gray{\LfunASTRacket} \\ \hline
  17231. \gray{\LlambdaASTRacket} \\ \hline
  17232. \LanyASTRacket \\
  17233. \begin{array}{lcl}
  17234. \LangAnyM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  17235. \end{array}
  17236. \end{array}
  17237. \]
  17238. \fi}
  17239. {\if\edition\pythonEd\pythonColor
  17240. \[
  17241. \begin{array}{l}
  17242. \gray{\LintASTPython} \\ \hline
  17243. \gray{\LvarASTPython{}} \\ \hline
  17244. \gray{\LifASTPython{}} \\ \hline
  17245. \gray{\LwhileASTPython{}} \\ \hline
  17246. \gray{\LtupASTPython{}} \\ \hline
  17247. \gray{\LfunASTPython} \\ \hline
  17248. \gray{\LlambdaASTPython} \\ \hline
  17249. \LanyASTPython \\
  17250. \begin{array}{lcl}
  17251. \LangAnyM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  17252. \end{array}
  17253. \end{array}
  17254. \]
  17255. \fi}
  17256. \end{tcolorbox}
  17257. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (figure~\ref{fig:Llam-syntax}).}
  17258. \label{fig:Lany-syntax}
  17259. \end{figure}
  17260. The definition of the abstract syntax of \LangAny{} is given in
  17261. figure~\ref{fig:Lany-syntax}.
  17262. %% \racket{(The concrete syntax of \LangAny{} is in the Appendix,
  17263. %% figure~\ref{fig:Lany-concrete-syntax}.)}
  17264. The $\INJECT{e}{T}$ form converts the value produced by expression $e$
  17265. of type $T$ into a tagged value. The $\PROJECT{e}{T}$ form either
  17266. converts the tagged value produced by expression $e$ into a value of
  17267. type $T$ or halts the program if the type tag does not match $T$.
  17268. %
  17269. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  17270. restricted to be a flat type (the nonterminal $\FType$) which
  17271. simplifies the implementation and complies with the needs for
  17272. compiling \LangDyn{}.
  17273. The \racket{\code{any-vector}} operators
  17274. \python{\code{any\_tuple\_load} and \code{any\_len}} adapt the tuple
  17275. operations so that they can be applied to a value of type
  17276. \racket{\code{Any}}\python{\code{AnyType}}. They also generalize the
  17277. tuple operations in that the index is not restricted to a literal
  17278. integer in the grammar but is allowed to be any expression.
  17279. \racket{The type predicates such as
  17280. \racket{\key{boolean?}}\python{\key{is\_bool}} expect their argument
  17281. to produce a tagged value; they return {\TRUE} if the tag corresponds to
  17282. the predicate and return {\FALSE} otherwise.}
  17283. The type checker for \LangAny{} is shown in
  17284. figure~\ref{fig:type-check-Lany}
  17285. %
  17286. \racket{ and uses the auxiliary functions presented in
  17287. figure~\ref{fig:type-check-Lany-aux}}.
  17288. %
  17289. The interpreter for \LangAny{} is shown in figure~\ref{fig:interp-Lany} and
  17290. its auxiliary functions are shown in figure~\ref{fig:interp-Lany-aux}.
  17291. \begin{figure}[btp]
  17292. \begin{tcolorbox}[colback=white]
  17293. {\if\edition\racketEd
  17294. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17295. (define type-check-Lany-class
  17296. (class type-check-Llambda-class
  17297. (super-new)
  17298. (inherit check-type-equal?)
  17299. (define/override (type-check-exp env)
  17300. (lambda (e)
  17301. (define recur (type-check-exp env))
  17302. (match e
  17303. [(Inject e1 ty)
  17304. (unless (flat-ty? ty)
  17305. (error 'type-check "may only inject from flat type, not ~a" ty))
  17306. (define-values (new-e1 e-ty) (recur e1))
  17307. (check-type-equal? e-ty ty e)
  17308. (values (Inject new-e1 ty) 'Any)]
  17309. [(Project e1 ty)
  17310. (unless (flat-ty? ty)
  17311. (error 'type-check "may only project to flat type, not ~a" ty))
  17312. (define-values (new-e1 e-ty) (recur e1))
  17313. (check-type-equal? e-ty 'Any e)
  17314. (values (Project new-e1 ty) ty)]
  17315. [(Prim 'any-vector-length (list e1))
  17316. (define-values (e1^ t1) (recur e1))
  17317. (check-type-equal? t1 'Any e)
  17318. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  17319. [(Prim 'any-vector-ref (list e1 e2))
  17320. (define-values (e1^ t1) (recur e1))
  17321. (define-values (e2^ t2) (recur e2))
  17322. (check-type-equal? t1 'Any e)
  17323. (check-type-equal? t2 'Integer e)
  17324. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  17325. [(Prim 'any-vector-set! (list e1 e2 e3))
  17326. (define-values (e1^ t1) (recur e1))
  17327. (define-values (e2^ t2) (recur e2))
  17328. (define-values (e3^ t3) (recur e3))
  17329. (check-type-equal? t1 'Any e)
  17330. (check-type-equal? t2 'Integer e)
  17331. (check-type-equal? t3 'Any e)
  17332. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  17333. [(Prim pred (list e1))
  17334. #:when (set-member? (type-predicates) pred)
  17335. (define-values (new-e1 e-ty) (recur e1))
  17336. (check-type-equal? e-ty 'Any e)
  17337. (values (Prim pred (list new-e1)) 'Boolean)]
  17338. [(Prim 'eq? (list arg1 arg2))
  17339. (define-values (e1 t1) (recur arg1))
  17340. (define-values (e2 t2) (recur arg2))
  17341. (match* (t1 t2)
  17342. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  17343. [(other wise) (check-type-equal? t1 t2 e)])
  17344. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  17345. [else ((super type-check-exp env) e)])))
  17346. ))
  17347. \end{lstlisting}
  17348. \fi}
  17349. {\if\edition\pythonEd\pythonColor
  17350. \begin{lstlisting}
  17351. class TypeCheckLany(TypeCheckLlambda):
  17352. def type_check_exp(self, e, env):
  17353. match e:
  17354. case Inject(value, typ):
  17355. self.check_exp(value, typ, env)
  17356. return AnyType()
  17357. case Project(value, typ):
  17358. self.check_exp(value, AnyType(), env)
  17359. return typ
  17360. case Call(Name('any_tuple_load'), [tup, index]):
  17361. self.check_exp(tup, AnyType(), env)
  17362. self.check_exp(index, IntType(), env)
  17363. return AnyType()
  17364. case Call(Name('any_len'), [tup]):
  17365. self.check_exp(tup, AnyType(), env)
  17366. return IntType()
  17367. case Call(Name('arity'), [fun]):
  17368. ty = self.type_check_exp(fun, env)
  17369. match ty:
  17370. case FunctionType(ps, rt):
  17371. return IntType()
  17372. case TupleType([FunctionType(ps,rs)]):
  17373. return IntType()
  17374. case _:
  17375. raise Exception('type_check_exp arity unexpected ' + repr(ty))
  17376. case Call(Name('make_any'), [value, tag]):
  17377. self.type_check_exp(value, env)
  17378. self.check_exp(tag, IntType(), env)
  17379. return AnyType()
  17380. case AnnLambda(params, returns, body):
  17381. new_env = {x:t for (x,t) in env.items()}
  17382. for (x,t) in params:
  17383. new_env[x] = t
  17384. return_t = self.type_check_exp(body, new_env)
  17385. self.check_type_equal(returns, return_t, e)
  17386. return FunctionType([t for (x,t) in params], return_t)
  17387. case _:
  17388. return super().type_check_exp(e, env)
  17389. \end{lstlisting}
  17390. \fi}
  17391. \end{tcolorbox}
  17392. \caption{Type checker for the \LangAny{} language.}
  17393. \label{fig:type-check-Lany}
  17394. \end{figure}
  17395. {\if\edition\racketEd
  17396. \begin{figure}[tbp]
  17397. \begin{tcolorbox}[colback=white]
  17398. \begin{lstlisting}
  17399. (define/override (operator-types)
  17400. (append
  17401. '((integer? . ((Any) . Boolean))
  17402. (vector? . ((Any) . Boolean))
  17403. (procedure? . ((Any) . Boolean))
  17404. (void? . ((Any) . Boolean)))
  17405. (super operator-types)))
  17406. (define/public (type-predicates)
  17407. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  17408. (define/public (flat-ty? ty)
  17409. (match ty
  17410. [(or `Integer `Boolean `Void) #t]
  17411. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  17412. [`(,ts ... -> ,rt)
  17413. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  17414. [else #f]))
  17415. \end{lstlisting}
  17416. \end{tcolorbox}
  17417. \caption{Auxiliary methods for type checking \LangAny{}.}
  17418. \label{fig:type-check-Lany-aux}
  17419. \end{figure}
  17420. \fi}
  17421. \begin{figure}[btp]
  17422. \begin{tcolorbox}[colback=white]
  17423. {\if\edition\racketEd
  17424. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17425. (define interp-Lany-class
  17426. (class interp-Llambda-class
  17427. (super-new)
  17428. (define/override (interp-op op)
  17429. (match op
  17430. ['boolean? (match-lambda
  17431. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  17432. [else #f])]
  17433. ['integer? (match-lambda
  17434. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  17435. [else #f])]
  17436. ['vector? (match-lambda
  17437. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  17438. [else #f])]
  17439. ['procedure? (match-lambda
  17440. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  17441. [else #f])]
  17442. ['eq? (match-lambda*
  17443. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  17444. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  17445. [ls (apply (super interp-op op) ls)])]
  17446. ['any-vector-ref (lambda (v i)
  17447. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  17448. ['any-vector-set! (lambda (v i a)
  17449. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  17450. ['any-vector-length (lambda (v)
  17451. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  17452. [else (super interp-op op)]))
  17453. (define/override ((interp-exp env) e)
  17454. (define recur (interp-exp env))
  17455. (match e
  17456. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  17457. [(Project e ty2) (apply-project (recur e) ty2)]
  17458. [else ((super interp-exp env) e)]))
  17459. ))
  17460. (define (interp-Lany p)
  17461. (send (new interp-Lany-class) interp-program p))
  17462. \end{lstlisting}
  17463. \fi}
  17464. {\if\edition\pythonEd\pythonColor
  17465. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17466. class InterpLany(InterpLlambda):
  17467. def interp_exp(self, e, env):
  17468. match e:
  17469. case Inject(value, typ):
  17470. v = self.interp_exp(value, env)
  17471. return Tagged(v, self.type_to_tag(typ))
  17472. case Project(value, typ):
  17473. v = self.interp_exp(value, env)
  17474. match v:
  17475. case Tagged(val, tag) if self.type_to_tag(typ) == tag:
  17476. return val
  17477. case _:
  17478. raise Exception('interp project to ' + repr(typ)
  17479. + ' unexpected ' + repr(v))
  17480. case Call(Name('any_tuple_load'), [tup, index]):
  17481. tv = self.interp_exp(tup, env)
  17482. n = self.interp_exp(index, env)
  17483. match tv:
  17484. case Tagged(v, tag):
  17485. return v[n]
  17486. case _:
  17487. raise Exception('interp any_tuple_load unexpected ' + repr(tv))
  17488. case Call(Name('any_len'), [value]):
  17489. v = self.interp_exp(value, env)
  17490. match v:
  17491. case Tagged(value, tag):
  17492. return len(value)
  17493. case _:
  17494. raise Exception('interp any_len unexpected ' + repr(v))
  17495. case Call(Name('arity'), [fun]):
  17496. f = self.interp_exp(fun, env)
  17497. return self.arity(f)
  17498. case _:
  17499. return super().interp_exp(e, env)
  17500. \end{lstlisting}
  17501. \fi}
  17502. \end{tcolorbox}
  17503. \caption{Interpreter for \LangAny{}.}
  17504. \label{fig:interp-Lany}
  17505. \end{figure}
  17506. \begin{figure}[tbp]
  17507. \begin{tcolorbox}[colback=white]
  17508. {\if\edition\racketEd
  17509. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  17510. (define/public (apply-inject v tg) (Tagged v tg))
  17511. (define/public (apply-project v ty2)
  17512. (define tag2 (any-tag ty2))
  17513. (match v
  17514. [(Tagged v1 tag1)
  17515. (cond
  17516. [(eq? tag1 tag2)
  17517. (match ty2
  17518. [`(Vector ,ts ...)
  17519. (define l1 ((interp-op 'vector-length) v1))
  17520. (cond
  17521. [(eq? l1 (length ts)) v1]
  17522. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  17523. l1 (length ts))])]
  17524. [`(,ts ... -> ,rt)
  17525. (match v1
  17526. [`(function ,xs ,body ,env)
  17527. (cond [(eq? (length xs) (length ts)) v1]
  17528. [else
  17529. (error 'apply-project "arity mismatch ~a != ~a"
  17530. (length xs) (length ts))])]
  17531. [else (error 'apply-project "expected function not ~a" v1)])]
  17532. [else v1])]
  17533. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  17534. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  17535. \end{lstlisting}
  17536. \fi}
  17537. {\if\edition\pythonEd\pythonColor
  17538. \begin{lstlisting}
  17539. class InterpLany(InterpLlambda):
  17540. def type_to_tag(self, typ):
  17541. match typ:
  17542. case FunctionType(params, rt):
  17543. return 'function'
  17544. case TupleType(fields):
  17545. return 'tuple'
  17546. case t if t == int:
  17547. return 'int'
  17548. case t if t == bool:
  17549. return 'bool'
  17550. case IntType():
  17551. return 'int'
  17552. case BoolType():
  17553. return 'int'
  17554. case _:
  17555. raise Exception('type_to_tag unexpected ' + repr(typ))
  17556. def arity(self, v):
  17557. match v:
  17558. case Function(name, params, body, env):
  17559. return len(params)
  17560. case ClosureTuple(args, arity):
  17561. return arity
  17562. case _:
  17563. raise Exception('Lany arity unexpected ' + repr(v))
  17564. \end{lstlisting}
  17565. \fi}
  17566. \end{tcolorbox}
  17567. \caption{Auxiliary functions for interpreting \LangAny{}.}
  17568. \label{fig:interp-Lany-aux}
  17569. \end{figure}
  17570. \clearpage
  17571. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  17572. \label{sec:compile-r7}
  17573. The \code{cast\_insert} pass compiles from \LangDyn{} to \LangAny{}.
  17574. Figure~\ref{fig:compile-r7-Lany} shows the compilation of many of the
  17575. \LangDyn{} forms into \LangAny{}. An important invariant of this pass
  17576. is that given any subexpression $e$ in the \LangDyn{} program, the
  17577. pass will produce an expression $e'$ in \LangAny{} that has type
  17578. \ANYTY{}. For example, the first row in
  17579. figure~\ref{fig:compile-r7-Lany} shows the compilation of the Boolean
  17580. \TRUE{}, which must be injected to produce an expression of type
  17581. \ANYTY{}.
  17582. %
  17583. The compilation of addition is shown in the second row of
  17584. figure~\ref{fig:compile-r7-Lany}. The compilation of addition is
  17585. representative of many primitive operations: the arguments have type
  17586. \ANYTY{} and must be projected to \INTTYPE{} before the addition can
  17587. be performed.
  17588. The compilation of \key{lambda} (third row of
  17589. figure~\ref{fig:compile-r7-Lany}) shows what happens when we need to
  17590. produce type annotations: we simply use \ANYTY{}.
  17591. %
  17592. % TODO:update the following for python, and the tests and interpreter. -Jeremy
  17593. \racket{The compilation of \code{if} and \code{eq?} demonstrate how
  17594. this pass has to account for some differences in behavior between
  17595. \LangDyn{} and \LangAny{}. The \LangDyn{} language is more
  17596. permissive than \LangAny{} regarding what kind of values can be used
  17597. in various places. For example, the condition of an \key{if} does
  17598. not have to be a Boolean. For \key{eq?}, the arguments need not be
  17599. of the same type (in that case the result is \code{\#f}).}
  17600. \begin{figure}[btp]
  17601. \centering
  17602. \begin{tcolorbox}[colback=white]
  17603. {\if\edition\racketEd
  17604. \begin{tabular}{lll}
  17605. \begin{minipage}{0.27\textwidth}
  17606. \begin{lstlisting}
  17607. #t
  17608. \end{lstlisting}
  17609. \end{minipage}
  17610. &
  17611. $\Rightarrow$
  17612. &
  17613. \begin{minipage}{0.65\textwidth}
  17614. \begin{lstlisting}
  17615. (inject #t Boolean)
  17616. \end{lstlisting}
  17617. \end{minipage}
  17618. \\[2ex]\hline
  17619. \begin{minipage}{0.27\textwidth}
  17620. \begin{lstlisting}
  17621. (+ |$e_1$| |$e_2$|)
  17622. \end{lstlisting}
  17623. \end{minipage}
  17624. &
  17625. $\Rightarrow$
  17626. &
  17627. \begin{minipage}{0.65\textwidth}
  17628. \begin{lstlisting}
  17629. (inject
  17630. (+ (project |$e'_1$| Integer)
  17631. (project |$e'_2$| Integer))
  17632. Integer)
  17633. \end{lstlisting}
  17634. \end{minipage}
  17635. \\[2ex]\hline
  17636. \begin{minipage}{0.27\textwidth}
  17637. \begin{lstlisting}
  17638. (lambda (|$x_1 \ldots$|) |$e$|)
  17639. \end{lstlisting}
  17640. \end{minipage}
  17641. &
  17642. $\Rightarrow$
  17643. &
  17644. \begin{minipage}{0.65\textwidth}
  17645. \begin{lstlisting}
  17646. (inject
  17647. (lambda: ([|$x_1$|:Any]|$\ldots$|):Any |$e'$|)
  17648. (Any|$\ldots$|Any -> Any))
  17649. \end{lstlisting}
  17650. \end{minipage}
  17651. \\[2ex]\hline
  17652. \begin{minipage}{0.27\textwidth}
  17653. \begin{lstlisting}
  17654. (|$e_0$| |$e_1 \ldots e_n$|)
  17655. \end{lstlisting}
  17656. \end{minipage}
  17657. &
  17658. $\Rightarrow$
  17659. &
  17660. \begin{minipage}{0.65\textwidth}
  17661. \begin{lstlisting}
  17662. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  17663. \end{lstlisting}
  17664. \end{minipage}
  17665. \\[2ex]\hline
  17666. \begin{minipage}{0.27\textwidth}
  17667. \begin{lstlisting}
  17668. (vector-ref |$e_1$| |$e_2$|)
  17669. \end{lstlisting}
  17670. \end{minipage}
  17671. &
  17672. $\Rightarrow$
  17673. &
  17674. \begin{minipage}{0.65\textwidth}
  17675. \begin{lstlisting}
  17676. (any-vector-ref |$e_1'$| (project |$e'_2$| Integer))
  17677. \end{lstlisting}
  17678. \end{minipage}
  17679. \\[2ex]\hline
  17680. \begin{minipage}{0.27\textwidth}
  17681. \begin{lstlisting}
  17682. (if |$e_1$| |$e_2$| |$e_3$|)
  17683. \end{lstlisting}
  17684. \end{minipage}
  17685. &
  17686. $\Rightarrow$
  17687. &
  17688. \begin{minipage}{0.65\textwidth}
  17689. \begin{lstlisting}
  17690. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  17691. \end{lstlisting}
  17692. \end{minipage}
  17693. \\[2ex]\hline
  17694. \begin{minipage}{0.27\textwidth}
  17695. \begin{lstlisting}
  17696. (eq? |$e_1$| |$e_2$|)
  17697. \end{lstlisting}
  17698. \end{minipage}
  17699. &
  17700. $\Rightarrow$
  17701. &
  17702. \begin{minipage}{0.65\textwidth}
  17703. \begin{lstlisting}
  17704. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  17705. \end{lstlisting}
  17706. \end{minipage}
  17707. \\[2ex]\hline
  17708. \begin{minipage}{0.27\textwidth}
  17709. \begin{lstlisting}
  17710. (not |$e_1$|)
  17711. \end{lstlisting}
  17712. \end{minipage}
  17713. &
  17714. $\Rightarrow$
  17715. &
  17716. \begin{minipage}{0.65\textwidth}
  17717. \begin{lstlisting}
  17718. (if (eq? |$e'_1$| (inject #f Boolean))
  17719. (inject #t Boolean) (inject #f Boolean))
  17720. \end{lstlisting}
  17721. \end{minipage}
  17722. \end{tabular}
  17723. \fi}
  17724. {\if\edition\pythonEd\pythonColor
  17725. \hspace{-0.8em}\begin{tabular}{|lll|} \hline
  17726. \begin{minipage}{0.23\textwidth}
  17727. \begin{lstlisting}
  17728. True
  17729. \end{lstlisting}
  17730. \end{minipage}
  17731. &
  17732. $\Rightarrow$
  17733. &
  17734. \begin{minipage}{0.7\textwidth}
  17735. \begin{lstlisting}
  17736. Inject(True, BoolType())
  17737. \end{lstlisting}
  17738. \end{minipage}
  17739. \\[2ex]\hline
  17740. \begin{minipage}{0.23\textwidth}
  17741. \begin{lstlisting}
  17742. |$e_1$| + |$e_2$|
  17743. \end{lstlisting}
  17744. \end{minipage}
  17745. &
  17746. $\Rightarrow$
  17747. &
  17748. \begin{minipage}{0.7\textwidth}
  17749. \begin{lstlisting}
  17750. Inject(Project(|$e'_1$|, IntType())
  17751. + Project(|$e'_2$|, IntType()),
  17752. IntType())
  17753. \end{lstlisting}
  17754. \end{minipage}
  17755. \\[2ex]\hline
  17756. \begin{minipage}{0.23\textwidth}
  17757. \begin{lstlisting}
  17758. lambda |$x_1 \ldots$|: |$e$|
  17759. \end{lstlisting}
  17760. \end{minipage}
  17761. &
  17762. $\Rightarrow$
  17763. &
  17764. \begin{minipage}{0.7\textwidth}
  17765. \begin{lstlisting}
  17766. Inject(Lambda([(|$x_1$|,AnyType),|$\ldots$|], |$e'$|)
  17767. FunctionType([AnyType(),|$\ldots$|], AnyType()))
  17768. \end{lstlisting}
  17769. \end{minipage}
  17770. \\[2ex]\hline
  17771. \begin{minipage}{0.23\textwidth}
  17772. \begin{lstlisting}
  17773. |$e_0$|(|$e_1 \ldots e_n$|)
  17774. \end{lstlisting}
  17775. \end{minipage}
  17776. &
  17777. $\Rightarrow$
  17778. &
  17779. \begin{minipage}{0.7\textwidth}
  17780. \begin{lstlisting}
  17781. Call(Project(|$e'_0$|, FunctionType([AnyType(),|$\ldots$|],
  17782. AnyType())), |$e'_1, \ldots, e'_n$|)
  17783. \end{lstlisting}
  17784. \end{minipage}
  17785. \\[2ex]\hline
  17786. \begin{minipage}{0.23\textwidth}
  17787. \begin{lstlisting}
  17788. |$e_1$|[|$e_2$|]
  17789. \end{lstlisting}
  17790. \end{minipage}
  17791. &
  17792. $\Rightarrow$
  17793. &
  17794. \begin{minipage}{0.7\textwidth}
  17795. \begin{lstlisting}
  17796. Call(Name('any_tuple_load'),
  17797. [|$e_1'$|, Project(|$e_2'$|, IntType())])
  17798. \end{lstlisting}
  17799. \end{minipage}
  17800. %% \begin{minipage}{0.23\textwidth}
  17801. %% \begin{lstlisting}
  17802. %% |$e_2$| if |$e_1$| else |$e_3$|
  17803. %% \end{lstlisting}
  17804. %% \end{minipage}
  17805. %% &
  17806. %% $\Rightarrow$
  17807. %% &
  17808. %% \begin{minipage}{0.7\textwidth}
  17809. %% \begin{lstlisting}
  17810. %% (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  17811. %% \end{lstlisting}
  17812. %% \end{minipage}
  17813. %% \\[2ex]\hline
  17814. %% \begin{minipage}{0.23\textwidth}
  17815. %% \begin{lstlisting}
  17816. %% (eq? |$e_1$| |$e_2$|)
  17817. %% \end{lstlisting}
  17818. %% \end{minipage}
  17819. %% &
  17820. %% $\Rightarrow$
  17821. %% &
  17822. %% \begin{minipage}{0.7\textwidth}
  17823. %% \begin{lstlisting}
  17824. %% (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  17825. %% \end{lstlisting}
  17826. %% \end{minipage}
  17827. %% \\[2ex]\hline
  17828. %% \begin{minipage}{0.23\textwidth}
  17829. %% \begin{lstlisting}
  17830. %% (not |$e_1$|)
  17831. %% \end{lstlisting}
  17832. %% \end{minipage}
  17833. %% &
  17834. %% $\Rightarrow$
  17835. %% &
  17836. %% \begin{minipage}{0.7\textwidth}
  17837. %% \begin{lstlisting}
  17838. %% (if (eq? |$e'_1$| (inject #f Boolean))
  17839. %% (inject #t Boolean) (inject #f Boolean))
  17840. %% \end{lstlisting}
  17841. %% \end{minipage}
  17842. %% \\[2ex]\hline
  17843. \\\hline
  17844. \end{tabular}
  17845. \fi}
  17846. \end{tcolorbox}
  17847. \caption{Cast insertion.}
  17848. \label{fig:compile-r7-Lany}
  17849. \end{figure}
  17850. \section{Reveal Casts}
  17851. \label{sec:reveal-casts-Lany}
  17852. % TODO: define R'_6
  17853. In the \code{reveal\_casts} pass, we recommend compiling
  17854. \code{Project} into a conditional expression that checks whether the
  17855. value's tag matches the target type; if it does, the value is
  17856. converted to a value of the target type by removing the tag; if it
  17857. does not, the program exits.
  17858. %
  17859. {\if\edition\racketEd
  17860. %
  17861. To perform these actions we need a new primitive operation,
  17862. \code{tag-of-any}, and a new form, \code{ValueOf}.
  17863. The \code{tag-of-any} operation retrieves the type tag from a tagged
  17864. value of type \code{Any}. The \code{ValueOf} form retrieves the
  17865. underlying value from a tagged value. The \code{ValueOf} form
  17866. includes the type for the underlying value that is used by the type
  17867. checker.
  17868. %
  17869. \fi}
  17870. %
  17871. {\if\edition\pythonEd\pythonColor
  17872. %
  17873. To perform these actions we need two new AST classes: \code{TagOf} and
  17874. \code{ValueOf}. The \code{TagOf} operation retrieves the type tag from a
  17875. tagged value of type \ANYTY{}. The \code{ValueOf} operation retrieves
  17876. the underlying value from a tagged value. The \code{ValueOf}
  17877. operation includes the type for the underlying value which is used by
  17878. the type checker.
  17879. %
  17880. \fi}
  17881. If the target type of the projection is \BOOLTY{} or \INTTY{}, then
  17882. \code{Project} can be translated as follows:
  17883. \begin{center}
  17884. \begin{minipage}{1.0\textwidth}
  17885. {\if\edition\racketEd
  17886. \begin{lstlisting}
  17887. (Project |$e$| |$\FType$|)
  17888. |$\Rightarrow$|
  17889. (Let |$\itm{tmp}$| |$e'$|
  17890. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  17891. (Int |$\itm{tagof}(\FType)$|)))
  17892. (ValueOf |$\itm{tmp}$| |$\FType$|)
  17893. (Exit)))
  17894. \end{lstlisting}
  17895. \fi}
  17896. {\if\edition\pythonEd\pythonColor
  17897. \begin{lstlisting}
  17898. Project(|$e$|, |$\FType$|)
  17899. |$\Rightarrow$|
  17900. Begin([Assign([|$\itm{tmp}$|], |$e'$|)],
  17901. IfExp(Compare(TagOf(|$\itm{tmp}$|),[Eq()],
  17902. [Constant(|$\itm{tagof}(\FType)$|)]),
  17903. ValueOf(|$\itm{tmp}$|, |$\FType$|)
  17904. Call(Name('exit'), [])))
  17905. \end{lstlisting}
  17906. \fi}
  17907. \end{minipage}
  17908. \end{center}
  17909. If the target type of the projection is a tuple or function type, then
  17910. there is a bit more work to do. For tuples, check that the length of
  17911. the tuple type matches the length of the tuple. For functions, check
  17912. that the number of parameters in the function type matches the
  17913. function's arity.
  17914. Regarding \code{Inject}, we recommend compiling it to a slightly
  17915. lower-level primitive operation named \racket{\code{make-any}}\python{\code{make\_any}}. This operation
  17916. takes a tag instead of a type.
  17917. \begin{center}
  17918. \begin{minipage}{1.0\textwidth}
  17919. {\if\edition\racketEd
  17920. \begin{lstlisting}
  17921. (Inject |$e$| |$\FType$|)
  17922. |$\Rightarrow$|
  17923. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  17924. \end{lstlisting}
  17925. \fi}
  17926. {\if\edition\pythonEd\pythonColor
  17927. \begin{lstlisting}
  17928. Inject(|$e$|, |$\FType$|)
  17929. |$\Rightarrow$|
  17930. Call(Name('make_any'), [|$e'$|, Constant(|$\itm{tagof}(\FType)$|)])
  17931. \end{lstlisting}
  17932. \fi}
  17933. \end{minipage}
  17934. \end{center}
  17935. {\if\edition\pythonEd\pythonColor
  17936. %
  17937. The introduction of \code{make\_any} makes it difficult to use
  17938. bidirectional type checking because we no longer have an expected type
  17939. to use for type checking the expression $e'$. Thus, we run into
  17940. difficulty if $e'$ is a \code{Lambda} expression. We recommend
  17941. translating \code{Lambda} to a new AST class \code{AnnLambda} (for
  17942. annotated lambda) whose parameters have type annotations and that
  17943. records the return type.
  17944. %
  17945. \fi}
  17946. \racket{The type predicates (\code{boolean?}, etc.) can be translated into
  17947. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  17948. translation of \code{Project}.}
  17949. {\if\edition\racketEd
  17950. The \code{any-vector-ref} and \code{any-vector-set!} operations
  17951. combine the projection action with the vector operation. Also, the
  17952. read and write operations allow arbitrary expressions for the index, so
  17953. the type checker for \LangAny{} (figure~\ref{fig:type-check-Lany})
  17954. cannot guarantee that the index is within bounds. Thus, we insert code
  17955. to perform bounds checking at runtime. The translation for
  17956. \code{any-vector-ref} is as follows, and the other two operations are
  17957. translated in a similar way:
  17958. \begin{center}
  17959. \begin{minipage}{0.95\textwidth}
  17960. \begin{lstlisting}
  17961. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  17962. |$\Rightarrow$|
  17963. (Let |$v$| |$e'_1$|
  17964. (Let |$i$| |$e'_2$|
  17965. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  17966. (If (Prim '< (list (Var |$i$|) (Prim 'any-vector-length (list (Var |$v$|)))))
  17967. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  17968. (Exit))
  17969. (Exit))))
  17970. \end{lstlisting}
  17971. \end{minipage}
  17972. \end{center}
  17973. \fi}
  17974. %
  17975. {\if\edition\pythonEd\pythonColor
  17976. %
  17977. The \code{any\_tuple\_load} operation combines the projection action
  17978. with the load operation. Also, the load operation allows arbitrary
  17979. expressions for the index so the type checker for \LangAny{}
  17980. (figure~\ref{fig:type-check-Lany}) cannot guarantee that the index is
  17981. within bounds. Thus, we insert code to perform bounds checking at
  17982. runtime. The translation for \code{any\_tuple\_load} is as follows.
  17983. \begin{lstlisting}
  17984. Call(Name('any_tuple_load'), [|$e_1$|,|$e_2$|])
  17985. |$\Rightarrow$|
  17986. Block([Assign([|$t$|], |$e'_1$|), Assign([|$i$|], |$e'_2$|)],
  17987. IfExp(Compare(TagOf(|$t$|), [Eq()], [Constant(2)]),
  17988. IfExp(Compare(|$i$|, [Lt()], [Call(Name('any_len'), [|$t$|])]),
  17989. Call(Name('any_tuple_load_unsafe'), [|$t$|, |$i$|]),
  17990. Call(Name('exit'), [])),
  17991. Call(Name('exit'), [])))
  17992. \end{lstlisting}
  17993. \fi}
  17994. {\if\edition\pythonEd\pythonColor
  17995. \section{Assignment Conversion}
  17996. \label{sec:convert-assignments-Lany}
  17997. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  17998. \code{AnnLambda} AST classes.
  17999. \section{Closure Conversion}
  18000. \label{sec:closure-conversion-Lany}
  18001. Update this pass to handle the \code{TagOf}, \code{ValueOf}, and
  18002. \code{AnnLambda} AST classes.
  18003. \fi}
  18004. \section{Remove Complex Operands}
  18005. \label{sec:rco-Lany}
  18006. \racket{The \code{ValueOf} and \code{Exit} forms are both complex
  18007. expressions. The subexpression of \code{ValueOf} must be atomic.}
  18008. %
  18009. \python{The \code{ValueOf} and \code{TagOf} operations are both
  18010. complex expressions. Their subexpressions must be atomic.}
  18011. \section{Explicate Control and \LangCAny{}}
  18012. \label{sec:explicate-Lany}
  18013. The output of \code{explicate\_control} is the \LangCAny{} language,
  18014. whose syntax definition is shown in figure~\ref{fig:c5-syntax}.
  18015. %
  18016. \racket{The \code{ValueOf} form that we added to \LangAny{} remains an
  18017. expression and the \code{Exit} expression becomes a $\Tail$. Also,
  18018. note that the index argument of \code{vector-ref} and
  18019. \code{vector-set!} is an $\Atm$, instead of an integer as it was in
  18020. \LangCVec{} (figure~\ref{fig:c2-syntax}).}
  18021. %
  18022. \python{
  18023. Update the auxiliary functions \code{explicate\_tail}, \code{explicate\_effect},
  18024. and \code{explicate\_pred} as appropriately to handle the new expressions
  18025. in \LangCAny{}.
  18026. }
  18027. \newcommand{\CanyASTPython}{
  18028. \begin{array}{lcl}
  18029. \Exp &::=& \CALL{\VAR{\key{'make\_any'}}}{\LS \Atm,\Atm \RS}\\
  18030. &\MID& \key{TagOf}\LP \Atm \RP
  18031. \MID \key{ValueOf}\LP \Atm , \FType \RP \\
  18032. &\MID& \CALL{\VAR{\key{'any\_tuple\_load\_unsafe'}}}{\LS \Atm,\Atm \RS}\\
  18033. &\MID& \CALL{\VAR{\key{'any\_len'}}}{\LS \Atm \RS} \\
  18034. &\MID& \CALL{\VAR{\key{'exit'}}}{\LS\RS}
  18035. \end{array}
  18036. }
  18037. \newcommand{\CanyASTRacket}{
  18038. \begin{array}{lcl}
  18039. \Exp &::= & \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  18040. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  18041. &\MID& \VALUEOF{\Atm}{\FType} \\
  18042. \Tail &::= & \LP\key{Exit}\RP
  18043. \end{array}
  18044. }
  18045. \begin{figure}[tp]
  18046. \begin{tcolorbox}[colback=white]
  18047. \small
  18048. {\if\edition\racketEd
  18049. \[
  18050. \begin{array}{l}
  18051. \gray{\CvarASTRacket} \\ \hline
  18052. \gray{\CifASTRacket} \\ \hline
  18053. \gray{\CloopASTRacket} \\ \hline
  18054. \gray{\CtupASTRacket} \\ \hline
  18055. \gray{\CfunASTRacket} \\ \hline
  18056. \gray{\ClambdaASTRacket} \\ \hline
  18057. \CanyASTRacket \\
  18058. \begin{array}{lcl}
  18059. \LangCAnyM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  18060. \end{array}
  18061. \end{array}
  18062. \]
  18063. \fi}
  18064. {\if\edition\pythonEd\pythonColor
  18065. \[
  18066. \begin{array}{l}
  18067. \gray{\CifASTPython} \\ \hline
  18068. \gray{\CtupASTPython} \\ \hline
  18069. \gray{\CfunASTPython} \\ \hline
  18070. \gray{\ClambdaASTPython} \\ \hline
  18071. \CanyASTPython \\
  18072. \begin{array}{lcl}
  18073. \LangCAnyM{} & ::= & \CPROGRAMDEFS{\LS\Def\code{,}\ldots\RS}
  18074. \end{array}
  18075. \end{array}
  18076. \]
  18077. \fi}
  18078. \end{tcolorbox}
  18079. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (figure~\ref{fig:Clam-syntax}).}
  18080. \label{fig:c5-syntax}
  18081. \end{figure}
  18082. \section{Select Instructions}
  18083. \label{sec:select-Lany}
  18084. \index{subject}{select instructions}
  18085. In the \code{select\_instructions} pass, we translate the primitive
  18086. operations on the \ANYTY{} type to x86 instructions that manipulate
  18087. the three tag bits of the tagged value. In the following descriptions,
  18088. given an atom $e$ we use a primed variable $e'$ to refer to the result
  18089. of translating $e$ into an x86 argument:
  18090. \paragraph{\racket{\code{make-any}}\python{\code{make\_any}}}
  18091. We recommend compiling the
  18092. \racket{\code{make-any}}\python{\code{make\_any}} operation as follows
  18093. if the tag is for \INTTY{} or \BOOLTY{}. The \key{salq} instruction
  18094. shifts the destination to the left by the number of bits specified by its
  18095. source argument (in this case three, the length of the tag), and it
  18096. preserves the sign of the integer. We use the \key{orq} instruction to
  18097. combine the tag and the value to form the tagged value.
  18098. {\if\edition\racketEd
  18099. \begin{lstlisting}
  18100. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18101. |$\Rightarrow$|
  18102. movq |$e'$|, |\itm{lhs'}|
  18103. salq $3, |\itm{lhs'}|
  18104. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18105. \end{lstlisting}
  18106. \fi}
  18107. %
  18108. {\if\edition\pythonEd\pythonColor
  18109. \begin{lstlisting}
  18110. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18111. |$\Rightarrow$|
  18112. movq |$e'$|, |\itm{lhs'}|
  18113. salq $3, |\itm{lhs'}|
  18114. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18115. \end{lstlisting}
  18116. \fi}
  18117. %
  18118. The instruction selection\index{subject}{instruction selection} for
  18119. tuples and procedures is different because there is no need to shift
  18120. them to the left. The rightmost 3 bits are already zeros, so we simply
  18121. combine the value and the tag using \key{orq}. \\
  18122. %
  18123. {\if\edition\racketEd
  18124. \begin{center}
  18125. \begin{minipage}{\textwidth}
  18126. \begin{lstlisting}
  18127. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  18128. |$\Rightarrow$|
  18129. movq |$e'$|, |\itm{lhs'}|
  18130. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18131. \end{lstlisting}
  18132. \end{minipage}
  18133. \end{center}
  18134. \fi}
  18135. %
  18136. {\if\edition\pythonEd\pythonColor
  18137. \begin{lstlisting}
  18138. Assign([|\itm{lhs}|], Call(Name('make_any'), [|$e$|, Constant(|$\itm{tag}$|)]))
  18139. |$\Rightarrow$|
  18140. movq |$e'$|, |\itm{lhs'}|
  18141. orq $|$\itm{tag}$|, |\itm{lhs'}|
  18142. \end{lstlisting}
  18143. \fi}
  18144. \paragraph{\racket{\code{tag-of-any}}\python{\code{TagOf}}}
  18145. Recall that the \racket{\code{tag-of-any}}\python{\code{TagOf}}
  18146. operation extracts the type tag from a value of type \ANYTY{}. The
  18147. type tag is the bottom $3$ bits, so we obtain the tag by taking the
  18148. bitwise-and of the value with $111$ ($7$ decimal).
  18149. %
  18150. {\if\edition\racketEd
  18151. \begin{lstlisting}
  18152. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  18153. |$\Rightarrow$|
  18154. movq |$e'$|, |\itm{lhs'}|
  18155. andq $7, |\itm{lhs'}|
  18156. \end{lstlisting}
  18157. \fi}
  18158. %
  18159. {\if\edition\pythonEd\pythonColor
  18160. \begin{lstlisting}
  18161. Assign([|\itm{lhs}|], TagOf(|$e$|))
  18162. |$\Rightarrow$|
  18163. movq |$e'$|, |\itm{lhs'}|
  18164. andq $7, |\itm{lhs'}|
  18165. \end{lstlisting}
  18166. \fi}
  18167. \paragraph{\code{ValueOf}}
  18168. The instructions for \key{ValueOf} also differ, depending on whether
  18169. the type $T$ is a pointer (tuple or function) or not (integer or
  18170. Boolean). The following shows the instruction
  18171. selection for integers and
  18172. Booleans, in which we produce an untagged value by shifting it to the
  18173. right by 3 bits:
  18174. %
  18175. {\if\edition\racketEd
  18176. \begin{lstlisting}
  18177. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18178. |$\Rightarrow$|
  18179. movq |$e'$|, |\itm{lhs'}|
  18180. sarq $3, |\itm{lhs'}|
  18181. \end{lstlisting}
  18182. \fi}
  18183. %
  18184. {\if\edition\pythonEd\pythonColor
  18185. \begin{lstlisting}
  18186. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18187. |$\Rightarrow$|
  18188. movq |$e'$|, |\itm{lhs'}|
  18189. sarq $3, |\itm{lhs'}|
  18190. \end{lstlisting}
  18191. \fi}
  18192. %
  18193. In the case for tuples and procedures, we zero out the rightmost 3
  18194. bits. We accomplish this by creating the bit pattern $\ldots 0111$
  18195. ($7$ decimal) and apply bitwise-not to obtain $\ldots 11111000$ (-8
  18196. decimal), which we \code{movq} into the destination $\itm{lhs'}$.
  18197. Finally, we apply \code{andq} with the tagged value to get the desired
  18198. result.
  18199. %
  18200. {\if\edition\racketEd
  18201. \begin{lstlisting}
  18202. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  18203. |$\Rightarrow$|
  18204. movq $|$-8$|, |\itm{lhs'}|
  18205. andq |$e'$|, |\itm{lhs'}|
  18206. \end{lstlisting}
  18207. \fi}
  18208. %
  18209. {\if\edition\pythonEd\pythonColor
  18210. \begin{lstlisting}
  18211. Assign([|\itm{lhs}|], ValueOf(|$e$|, |$T$|))
  18212. |$\Rightarrow$|
  18213. movq $|$-8$|, |\itm{lhs'}|
  18214. andq |$e'$|, |\itm{lhs'}|
  18215. \end{lstlisting}
  18216. \fi}
  18217. %% \paragraph{Type Predicates} We leave it to the reader to
  18218. %% devise a sequence of instructions to implement the type predicates
  18219. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  18220. \paragraph{\racket{\code{any-vector-length}}\python{\code{any\_len}}}
  18221. The \racket{\code{any-vector-length}}\python{\code{any\_len}}
  18222. operation combines the effect of \code{ValueOf} with accessing the
  18223. length of a tuple from the tag stored at the zero index of the tuple.
  18224. {\if\edition\racketEd
  18225. \begin{lstlisting}
  18226. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$e_1$|)))
  18227. |$\Longrightarrow$|
  18228. movq $|$-8$|, %r11
  18229. andq |$e_1'$|, %r11
  18230. movq 0(%r11), %r11
  18231. andq $126, %r11
  18232. sarq $1, %r11
  18233. movq %r11, |$\itm{lhs'}$|
  18234. \end{lstlisting}
  18235. \fi}
  18236. {\if\edition\pythonEd\pythonColor
  18237. \begin{lstlisting}
  18238. Assign([|$\itm{lhs}$|], Call(Name('any_len'), [|$e_1$|]))
  18239. |$\Longrightarrow$|
  18240. movq $|$-8$|, %r11
  18241. andq |$e_1'$|, %r11
  18242. movq 0(%r11), %r11
  18243. andq $126, %r11
  18244. sarq $1, %r11
  18245. movq %r11, |$\itm{lhs'}$|
  18246. \end{lstlisting}
  18247. \fi}
  18248. \paragraph{\racket{\code{any-vector-ref}}\python{\code{\code{any\_tuple\_load\_unsafe}}}}
  18249. This operation combines the effect of \code{ValueOf} with reading an
  18250. element of the tuple (see
  18251. section~\ref{sec:select-instructions-gc}). However, the index may be
  18252. an arbitrary atom, so instead of computing the offset at compile time,
  18253. we must generate instructions to compute the offset at runtime as
  18254. follows. Note the use of the new instruction \code{imulq}.
  18255. \begin{center}
  18256. \begin{minipage}{0.96\textwidth}
  18257. {\if\edition\racketEd
  18258. \begin{lstlisting}
  18259. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  18260. |$\Longrightarrow$|
  18261. movq |$\neg 111$|, %r11
  18262. andq |$e_1'$|, %r11
  18263. movq |$e_2'$|, %rax
  18264. addq $1, %rax
  18265. imulq $8, %rax
  18266. addq %rax, %r11
  18267. movq 0(%r11) |$\itm{lhs'}$|
  18268. \end{lstlisting}
  18269. \fi}
  18270. %
  18271. {\if\edition\pythonEd\pythonColor
  18272. \begin{lstlisting}
  18273. Assign([|$\itm{lhs}$|], Call(Name('any_tuple_load_unsafe'), [|$e_1$|,|$e_2$|]))
  18274. |$\Longrightarrow$|
  18275. movq $|$-8$|, %r11
  18276. andq |$e_1'$|, %r11
  18277. movq |$e_2'$|, %rax
  18278. addq $1, %rax
  18279. imulq $8, %rax
  18280. addq %rax, %r11
  18281. movq 0(%r11) |$\itm{lhs'}$|
  18282. \end{lstlisting}
  18283. \fi}
  18284. \end{minipage}
  18285. \end{center}
  18286. % $ pacify font lock
  18287. %% \paragraph{\racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}}}
  18288. %% The code generation for
  18289. %% \racket{\code{any-vector-set!}}\python{\code{any\_tuple\_store}} is
  18290. %% analogous to the above translation for reading from a tuple.
  18291. \section{Register Allocation for \LangAny{}}
  18292. \label{sec:register-allocation-Lany}
  18293. \index{subject}{register allocation}
  18294. There is an interesting interaction between tagged values and garbage
  18295. collection that has an impact on register allocation. A variable of
  18296. type \ANYTY{} might refer to a tuple, and therefore it might be a root
  18297. that needs to be inspected and copied during garbage collection. Thus,
  18298. we need to treat variables of type \ANYTY{} in a similar way to
  18299. variables of tuple type for purposes of register allocation,
  18300. with particular attention to the following:
  18301. \begin{itemize}
  18302. \item If a variable of type \ANYTY{} is live during a function call,
  18303. then it must be spilled. This can be accomplished by changing
  18304. \code{build\_interference} to mark all variables of type \ANYTY{}
  18305. that are live after a \code{callq} to be interfering with all the
  18306. registers.
  18307. \item If a variable of type \ANYTY{} is spilled, it must be spilled to
  18308. the root stack instead of the normal procedure call stack.
  18309. \end{itemize}
  18310. Another concern regarding the root stack is that the garbage collector
  18311. needs to differentiate among (1) plain old pointers to tuples, (2) a
  18312. tagged value that points to a tuple, and (3) a tagged value that is
  18313. not a tuple. We enable this differentiation by choosing not to use the
  18314. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  18315. reserved for identifying plain old pointers to tuples. That way, if
  18316. one of the first three bits is set, then we have a tagged value and
  18317. inspecting the tag can differentiate between tuples ($010$) and the
  18318. other kinds of values.
  18319. %% \begin{exercise}\normalfont
  18320. %% Expand your compiler to handle \LangAny{} as discussed in the last few
  18321. %% sections. Create 5 new programs that use the \ANYTY{} type and the
  18322. %% new operations (\code{Inject}, \code{Project}, etc.). Test your
  18323. %% compiler on these new programs and all of your previously created test
  18324. %% programs.
  18325. %% \end{exercise}
  18326. \begin{exercise}\normalfont\normalsize
  18327. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  18328. Create tests for \LangDyn{} by adapting ten of your previous test programs
  18329. by removing type annotations. Add five more test programs that
  18330. specifically rely on the language being dynamically typed. That is,
  18331. they should not be legal programs in a statically typed language, but
  18332. nevertheless they should be valid \LangDyn{} programs that run to
  18333. completion without error.
  18334. \end{exercise}
  18335. \begin{figure}[p]
  18336. \begin{tcolorbox}[colback=white]
  18337. {\if\edition\racketEd
  18338. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18339. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18340. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18341. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18342. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18343. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18344. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18345. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18346. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18347. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18348. \node (F1-4) at (4,0) {\large \LangAnyAlloc{}};
  18349. \node (F1-5) at (8,0) {\large \LangAnyAlloc{}};
  18350. \node (F1-6) at (12,0) {\large \LangAnyAlloc{}};
  18351. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18352. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18353. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  18354. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  18355. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18356. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18357. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  18358. \path[->,bend left=15] (Lfun) edge [above] node
  18359. {\ttfamily\footnotesize shrink} (Lfun-2);
  18360. \path[->,bend left=15] (Lfun-2) edge [above] node
  18361. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18362. \path[->,bend left=15] (Lfun-3) edge [above] node
  18363. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18364. \path[->,bend left=15] (Lfun-4) edge [left] node
  18365. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18366. \path[->,bend left=15] (Lfun-5) edge [below] node
  18367. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18368. \path[->,bend left=15] (Lfun-6) edge [below] node
  18369. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18370. \path[->,bend right=15] (Lfun-7) edge [above] node
  18371. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18372. \path[->,bend right=15] (F1-2) edge [right] node
  18373. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18374. \path[->,bend right=15] (F1-3) edge [below] node
  18375. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  18376. \path[->,bend right=15] (F1-4) edge [below] node
  18377. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  18378. \path[->,bend left=15] (F1-5) edge [above] node
  18379. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18380. \path[->,bend left=10] (F1-6) edge [below] node
  18381. {\ttfamily\footnotesize \ \ \ \ \ explicate\_control} (C3-2);
  18382. \path[->,bend left=15] (C3-2) edge [right] node
  18383. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18384. \path[->,bend right=15] (x86-2) edge [right] node
  18385. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  18386. \path[->,bend right=15] (x86-2-1) edge [below] node
  18387. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  18388. \path[->,bend right=15] (x86-2-2) edge [right] node
  18389. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  18390. \path[->,bend left=15] (x86-3) edge [above] node
  18391. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18392. \path[->,bend left=15] (x86-4) edge [right] node
  18393. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18394. \end{tikzpicture}
  18395. \fi}
  18396. {\if\edition\pythonEd\pythonColor
  18397. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  18398. \node (Lfun) at (0,4) {\large \LangDyn{}};
  18399. \node (Lfun-2) at (4,4) {\large \LangDyn{}};
  18400. \node (Lfun-3) at (8,4) {\large \LangDyn{}};
  18401. \node (Lfun-4) at (12,4) {\large \LangDynFunRef{}};
  18402. \node (Lfun-5) at (12,2) {\large \LangAnyFunRef{}};
  18403. \node (Lfun-6) at (8,2) {\large \LangAnyFunRef{}};
  18404. \node (Lfun-7) at (4,2) {\large \LangAnyFunRef{}};
  18405. \node (F1-2) at (0,2) {\large \LangAnyFunRef{}};
  18406. \node (F1-3) at (0,0) {\large \LangAnyFunRef{}};
  18407. \node (F1-5) at (4,0) {\large \LangAnyAlloc{}};
  18408. \node (F1-6) at (8,0) {\large \LangAnyAlloc{}};
  18409. \node (C3-2) at (0,-2) {\large \LangCAny{}};
  18410. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  18411. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  18412. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  18413. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  18414. \path[->,bend left=15] (Lfun) edge [above] node
  18415. {\ttfamily\footnotesize shrink} (Lfun-2);
  18416. \path[->,bend left=15] (Lfun-2) edge [above] node
  18417. {\ttfamily\footnotesize uniquify} (Lfun-3);
  18418. \path[->,bend left=15] (Lfun-3) edge [above] node
  18419. {\ttfamily\footnotesize reveal\_functions} (Lfun-4);
  18420. \path[->,bend left=15] (Lfun-4) edge [left] node
  18421. {\ttfamily\footnotesize cast\_insert} (Lfun-5);
  18422. \path[->,bend left=15] (Lfun-5) edge [below] node
  18423. {\ttfamily\footnotesize reveal\_casts} (Lfun-6);
  18424. \path[->,bend right=15] (Lfun-6) edge [above] node
  18425. {\ttfamily\footnotesize convert\_assignments} (Lfun-7);
  18426. \path[->,bend right=15] (Lfun-7) edge [above] node
  18427. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  18428. \path[->,bend right=15] (F1-2) edge [right] node
  18429. {\ttfamily\footnotesize limit\_functions} (F1-3);
  18430. \path[->,bend right=15] (F1-3) edge [below] node
  18431. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  18432. \path[->,bend left=15] (F1-5) edge [above] node
  18433. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  18434. \path[->,bend left=10] (F1-6) edge [below] node
  18435. {\ttfamily\footnotesize \ \ \ \ \ \ \ \ explicate\_control} (C3-2);
  18436. \path[->,bend right=15] (C3-2) edge [right] node
  18437. {\ttfamily\footnotesize select\_instructions} (x86-2);
  18438. \path[->,bend right=15] (x86-2) edge [below] node
  18439. {\ttfamily\footnotesize assign\_homes} (x86-3);
  18440. \path[->,bend right=15] (x86-3) edge [below] node
  18441. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  18442. \path[->,bend left=15] (x86-4) edge [above] node
  18443. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  18444. \end{tikzpicture}
  18445. \fi}
  18446. \end{tcolorbox}
  18447. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  18448. \label{fig:Ldyn-passes}
  18449. \end{figure}
  18450. Figure~\ref{fig:Ldyn-passes} provides an overview of the passes needed
  18451. for the compilation of \LangDyn{}.
  18452. % Further Reading
  18453. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18454. %% {\if\edition\pythonEd\pythonColor
  18455. %% \chapter{Objects}
  18456. %% \label{ch:Lobject}
  18457. %% \index{subject}{objects}
  18458. %% \index{subject}{classes}
  18459. %% \setcounter{footnote}{0}
  18460. %% \fi}
  18461. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  18462. \chapter{Gradual Typing}
  18463. \label{ch:Lgrad}
  18464. \index{subject}{gradual typing}
  18465. \setcounter{footnote}{0}
  18466. This chapter studies the language \LangGrad{}, in which the programmer
  18467. can choose between static and dynamic type checking in different parts
  18468. of a program, thereby mixing the statically typed \LangLam{} language
  18469. with the dynamically typed \LangDyn{}. There are several approaches to
  18470. mixing static and dynamic typing, including multilanguage
  18471. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  18472. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  18473. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  18474. programmer controls the amount of static versus dynamic checking by
  18475. adding or removing type annotations on parameters and
  18476. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  18477. The definition of the concrete syntax of \LangGrad{} is shown in
  18478. figure~\ref{fig:Lgrad-concrete-syntax}, and the definition of its
  18479. abstract syntax is shown in figure~\ref{fig:Lgrad-syntax}. The main
  18480. syntactic difference between \LangLam{} and \LangGrad{} is that type
  18481. annotations are optional, which is specified in the grammar using the
  18482. \Param{} and \itm{ret} nonterminals. In the abstract syntax, type
  18483. annotations are not optional, but we use the \CANYTY{} type when a type
  18484. annotation is absent.
  18485. %
  18486. Both the type checker and the interpreter for \LangGrad{} require some
  18487. interesting changes to enable gradual typing, which we discuss in the
  18488. next two sections.
  18489. \newcommand{\LgradGrammarRacket}{
  18490. \begin{array}{lcl}
  18491. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18492. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18493. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  18494. \Exp &::=& \LP\Exp \; \Exp \ldots\RP
  18495. \MID \CGLAMBDA{\LP\Param\ldots\RP}{\itm{ret}}{\Exp} \\
  18496. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  18497. \Def &::=& \CGDEF{\Var}{\Param\ldots}{\itm{ret}}{\Exp}
  18498. \end{array}
  18499. }
  18500. \newcommand{\LgradASTRacket}{
  18501. \begin{array}{lcl}
  18502. \Type &::=& \LP\Type \ldots \; \key{->}\; \Type\RP \\
  18503. \Param &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  18504. \Exp &::=& \APPLY{\Exp}{\Exp\ldots}
  18505. \MID \LAMBDA{\LP\Param\ldots\RP}{\Type}{\Exp} \\
  18506. \itm{op} &::=& \code{procedure-arity} \\
  18507. \Def &::=& \FUNDEF{\Var}{\LP\Param\ldots\RP}{\Type}{\code{'()}}{\Exp}
  18508. \end{array}
  18509. }
  18510. \newcommand{\LgradGrammarPython}{
  18511. \begin{array}{lcl}
  18512. \Type &::=& \key{Any}
  18513. \MID \key{int}
  18514. \MID \key{bool}
  18515. \MID \key{tuple}\LS \Type \code{, } \ldots \RS
  18516. \MID \key{Callable}\LS \LS \Type \key{,} \ldots \RS \key{, } \Type \RS \\
  18517. \Exp &::=& \CAPPLY{\Exp}{\Exp\code{,} \ldots}
  18518. \MID \CLAMBDA{\Var\code{, }\ldots}{\Exp}
  18519. \MID \CARITY{\Exp} \\
  18520. \Stmt &::=& \CANNASSIGN{\Var}{\Type}{\Exp} \MID \CRETURN{\Exp} \\
  18521. \Param &::=& \Var \MID \Var \key{:} \Type \\
  18522. \itm{ret} &::=& \epsilon \MID \key{->}~\Type \\
  18523. \Def &::=& \CGDEF{\Var}{\Param\key{, }\ldots}{\itm{ret}}{\Stmt^{+}}
  18524. \end{array}
  18525. }
  18526. \newcommand{\LgradASTPython}{
  18527. \begin{array}{lcl}
  18528. \Type &::=& \key{AnyType()} \MID \key{IntType()} \MID \key{BoolType()} \MID \key{VoidType()}\\
  18529. &\MID& \key{TupleType}\LP\Type^{*}\RP
  18530. \MID \key{FunctionType}\LP \Type^{*} \key{, } \Type \RP \\
  18531. \Exp &::=& \CALL{\Exp}{\Exp^{*}} \MID \LAMBDA{\Var^{*}}{\Exp}\\
  18532. &\MID& \ARITY{\Exp} \\
  18533. \Stmt &::=& \ANNASSIGN{\Var}{\Type}{\Exp}
  18534. \MID \RETURN{\Exp} \\
  18535. \Param &::=& \LP\Var\key{,}\Type\RP \\
  18536. \Def &::=& \FUNDEF{\Var}{\Param^{*}}{\Type}{}{\Stmt^{+}}
  18537. \end{array}
  18538. }
  18539. \begin{figure}[tp]
  18540. \centering
  18541. \begin{tcolorbox}[colback=white]
  18542. \small
  18543. {\if\edition\racketEd
  18544. \[
  18545. \begin{array}{l}
  18546. \gray{\LintGrammarRacket{}} \\ \hline
  18547. \gray{\LvarGrammarRacket{}} \\ \hline
  18548. \gray{\LifGrammarRacket{}} \\ \hline
  18549. \gray{\LwhileGrammarRacket} \\ \hline
  18550. \gray{\LtupGrammarRacket} \\ \hline
  18551. \LgradGrammarRacket \\
  18552. \begin{array}{lcl}
  18553. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  18554. \end{array}
  18555. \end{array}
  18556. \]
  18557. \fi}
  18558. {\if\edition\pythonEd\pythonColor
  18559. \[
  18560. \begin{array}{l}
  18561. \gray{\LintGrammarPython{}} \\ \hline
  18562. \gray{\LvarGrammarPython{}} \\ \hline
  18563. \gray{\LifGrammarPython{}} \\ \hline
  18564. \gray{\LwhileGrammarPython} \\ \hline
  18565. \gray{\LtupGrammarPython} \\ \hline
  18566. \LgradGrammarPython \\
  18567. \begin{array}{lcl}
  18568. \LangGradM{} &::=& \Def\ldots \Stmt\ldots
  18569. \end{array}
  18570. \end{array}
  18571. \]
  18572. \fi}
  18573. \end{tcolorbox}
  18574. \caption{The concrete syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-concrete-syntax}).}
  18575. \label{fig:Lgrad-concrete-syntax}
  18576. \end{figure}
  18577. \begin{figure}[tp]
  18578. \centering
  18579. \begin{tcolorbox}[colback=white]
  18580. \small
  18581. {\if\edition\racketEd
  18582. \[
  18583. \begin{array}{l}
  18584. \gray{\LintOpAST} \\ \hline
  18585. \gray{\LvarASTRacket{}} \\ \hline
  18586. \gray{\LifASTRacket{}} \\ \hline
  18587. \gray{\LwhileASTRacket{}} \\ \hline
  18588. \gray{\LtupASTRacket{}} \\ \hline
  18589. \LgradASTRacket \\
  18590. \begin{array}{lcl}
  18591. \LangGradM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  18592. \end{array}
  18593. \end{array}
  18594. \]
  18595. \fi}
  18596. {\if\edition\pythonEd\pythonColor
  18597. \[
  18598. \begin{array}{l}
  18599. \gray{\LintASTPython{}} \\ \hline
  18600. \gray{\LvarASTPython{}} \\ \hline
  18601. \gray{\LifASTPython{}} \\ \hline
  18602. \gray{\LwhileASTPython} \\ \hline
  18603. \gray{\LtupASTPython} \\ \hline
  18604. \LgradASTPython \\
  18605. \begin{array}{lcl}
  18606. \LangGradM{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  18607. \end{array}
  18608. \end{array}
  18609. \]
  18610. \fi}
  18611. \end{tcolorbox}
  18612. \caption{The abstract syntax of \LangGrad{}, extending \LangVec{} (figure~\ref{fig:Lvec-syntax}).}
  18613. \label{fig:Lgrad-syntax}
  18614. \end{figure}
  18615. % TODO: more road map -Jeremy
  18616. %\clearpage
  18617. \section{Type Checking \LangGrad{}}
  18618. \label{sec:gradual-type-check}
  18619. We begin by discussing the type checking of a partially typed variant
  18620. of the \code{map} example from chapter~\ref{ch:Lfun}, shown in
  18621. figure~\ref{fig:gradual-map}. The \code{map} function itself is
  18622. statically typed, so there is nothing special happening there with
  18623. respect to type checking. On the other hand, the \code{inc} function
  18624. does not have type annotations, so the type checker assigns the type
  18625. \CANYTY{} to parameter \code{x} and the return type. Now consider the
  18626. \code{+} operator inside \code{inc}. It expects both arguments to have
  18627. type \INTTY{}, but its first argument \code{x} has type \CANYTY{}. In
  18628. a gradually typed language, such differences are allowed so long as
  18629. the types are \emph{consistent}; that is, they are equal except in
  18630. places where there is an \CANYTY{} type. That is, the type \CANYTY{}
  18631. is consistent with every other type. Figure~\ref{fig:consistent}
  18632. shows the definition of the
  18633. \racket{\code{consistent?}}\python{\code{consistent}} method.
  18634. %
  18635. So the type checker allows the \code{+} operator to be applied
  18636. to \code{x} because \CANYTY{} is consistent with \INTTY{}.
  18637. %
  18638. Next consider the call to the \code{map} function shown in
  18639. figure~\ref{fig:gradual-map} with the arguments \code{inc} and a
  18640. tuple. The \code{inc} function has type
  18641. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}},
  18642. but parameter \code{f} of \code{map} has type
  18643. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18644. The type checker for \LangGrad{} accepts this call because the two types are
  18645. consistent.
  18646. \begin{figure}[btp]
  18647. % gradual_test_9.rkt
  18648. \begin{tcolorbox}[colback=white]
  18649. {\if\edition\racketEd
  18650. \begin{lstlisting}
  18651. (define (map [f : (Integer -> Integer)]
  18652. [v : (Vector Integer Integer)])
  18653. : (Vector Integer Integer)
  18654. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18655. (define (inc x) (+ x 1))
  18656. (vector-ref (map inc (vector 0 41)) 1)
  18657. \end{lstlisting}
  18658. \fi}
  18659. {\if\edition\pythonEd\pythonColor
  18660. \begin{lstlisting}
  18661. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18662. return f(v[0]), f(v[1])
  18663. def inc(x):
  18664. return x + 1
  18665. t = map(inc, (0, 41))
  18666. print(t[1])
  18667. \end{lstlisting}
  18668. \fi}
  18669. \end{tcolorbox}
  18670. \caption{A partially typed version of the \code{map} example.}
  18671. \label{fig:gradual-map}
  18672. \end{figure}
  18673. \begin{figure}[tbp]
  18674. \begin{tcolorbox}[colback=white]
  18675. {\if\edition\racketEd
  18676. \begin{lstlisting}
  18677. (define/public (consistent? t1 t2)
  18678. (match* (t1 t2)
  18679. [('Integer 'Integer) #t]
  18680. [('Boolean 'Boolean) #t]
  18681. [('Void 'Void) #t]
  18682. [('Any t2) #t]
  18683. [(t1 'Any) #t]
  18684. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  18685. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  18686. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  18687. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  18688. (consistent? rt1 rt2))]
  18689. [(other wise) #f]))
  18690. \end{lstlisting}
  18691. \fi}
  18692. {\if\edition\pythonEd\pythonColor
  18693. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18694. def consistent(self, t1, t2):
  18695. match (t1, t2):
  18696. case (AnyType(), _):
  18697. return True
  18698. case (_, AnyType()):
  18699. return True
  18700. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  18701. return all(map(self.consistent, ps1, ps2)) and consistent(rt1, rt2)
  18702. case (TupleType(ts1), TupleType(ts2)):
  18703. return all(map(self.consistent, ts1, ts2))
  18704. case (_, _):
  18705. return t1 == t2
  18706. \end{lstlisting}
  18707. \fi}
  18708. \end{tcolorbox}
  18709. \caption{The consistency method on types.}
  18710. \label{fig:consistent}
  18711. \end{figure}
  18712. It is also helpful to consider how gradual typing handles programs with an
  18713. error, such as applying \code{map} to a function that sometimes
  18714. returns a Boolean, as shown in figure~\ref{fig:map-maybe_inc}. The
  18715. type checker for \LangGrad{} accepts this program because the type of
  18716. \code{maybe\_inc} is consistent with the type of parameter \code{f} of
  18717. \code{map}; that is,
  18718. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any],Any]}}
  18719. is consistent with
  18720. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18721. One might say that a gradual type checker is optimistic in that it
  18722. accepts programs that might execute without a runtime type error.
  18723. %
  18724. The definition of the type checker for \LangGrad{} is shown in
  18725. figures~\ref{fig:type-check-Lgradual-1}, \ref{fig:type-check-Lgradual-2},
  18726. and \ref{fig:type-check-Lgradual-3}.
  18727. %% \begin{figure}[tp]
  18728. %% \centering
  18729. %% \fbox{
  18730. %% \begin{minipage}{0.96\textwidth}
  18731. %% \small
  18732. %% \[
  18733. %% \begin{array}{lcl}
  18734. %% \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  18735. %% \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  18736. %% \end{array}
  18737. %% \]
  18738. %% \end{minipage}
  18739. %% }
  18740. %% \caption{The abstract syntax of \LangCast{}, extending \LangLam{} (figure~\ref{fig:Lwhile-syntax}).}
  18741. %% \label{fig:Lgrad-prime-syntax}
  18742. %% \end{figure}
  18743. \begin{figure}[tbp]
  18744. \begin{tcolorbox}[colback=white]
  18745. {\if\edition\racketEd
  18746. \begin{lstlisting}
  18747. (define (map [f : (Integer -> Integer)]
  18748. [v : (Vector Integer Integer)])
  18749. : (Vector Integer Integer)
  18750. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18751. (define (inc x) (+ x 1))
  18752. (define (true) #t)
  18753. (define (maybe_inc x) (if (eq? 0 (read)) (inc x) (true)))
  18754. (vector-ref (map maybe_inc (vector 0 41)) 0)
  18755. \end{lstlisting}
  18756. \fi}
  18757. {\if\edition\pythonEd\pythonColor
  18758. \begin{lstlisting}
  18759. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18760. return f(v[0]), f(v[1])
  18761. def inc(x):
  18762. return x + 1
  18763. def true():
  18764. return True
  18765. def maybe_inc(x):
  18766. return inc(x) if input_int() == 0 else true()
  18767. t = map(maybe_inc, (0, 41))
  18768. print( t[1] )
  18769. \end{lstlisting}
  18770. \fi}
  18771. \end{tcolorbox}
  18772. \caption{A variant of the \code{map} example with an error.}
  18773. \label{fig:map-maybe_inc}
  18774. \end{figure}
  18775. Running this program with input \code{1} triggers an
  18776. error when the \code{maybe\_inc} function returns
  18777. \racket{\code{\#t}}\python{\code{True}}. The \LangGrad{} language
  18778. performs checking at runtime to ensure the integrity of the static
  18779. types, such as the
  18780. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}
  18781. annotation on
  18782. parameter \code{f} of \code{map}.
  18783. Here we give a preview of how the runtime checking is accomplished;
  18784. the following sections provide the details.
  18785. The runtime checking is carried out by a new \code{Cast} AST node that
  18786. is generated in a new pass named \code{cast\_insert}. The output of
  18787. \code{cast\_insert} is a program in the \LangCast{} language, which
  18788. simply adds \code{Cast} and \CANYTY{} to \LangLam{}.
  18789. %
  18790. Figure~\ref{fig:map-cast} shows the output of \code{cast\_insert} for
  18791. \code{map} and \code{maybe\_inc}. The idea is that \code{Cast} is
  18792. inserted every time the type checker encounters two types that are
  18793. consistent but not equal. In the \code{inc} function, \code{x} is
  18794. cast to \INTTY{} and the result of the \code{+} is cast to
  18795. \CANYTY{}. In the call to \code{map}, the \code{inc} argument
  18796. is cast from
  18797. \racket{\code{(Any -> Any)}}
  18798. \python{\code{Callable[[Any], Any]}}
  18799. to
  18800. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int],int]}}.
  18801. %
  18802. In the next section we see how to interpret the \code{Cast} node.
  18803. \begin{figure}[btp]
  18804. \begin{tcolorbox}[colback=white]
  18805. {\if\edition\racketEd
  18806. \begin{lstlisting}
  18807. (define (map [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  18808. : (Vector Integer Integer)
  18809. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  18810. (define (inc [x : Any]) : Any
  18811. (cast (+ (cast x Any Integer) 1) Integer Any))
  18812. (define (true) : Any (cast #t Boolean Any))
  18813. (define (maybe_inc [x : Any]) : Any
  18814. (if (eq? 0 (read)) (inc x) (true)))
  18815. (vector-ref (map (cast maybe_inc (Any -> Any) (Integer -> Integer))
  18816. (vector 0 41)) 0)
  18817. \end{lstlisting}
  18818. \fi}
  18819. {\if\edition\pythonEd\pythonColor
  18820. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18821. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  18822. return f(v[0]), f(v[1])
  18823. def inc(x : Any) -> Any:
  18824. return Cast(Cast(x, Any, int) + 1, int, Any)
  18825. def true() -> Any:
  18826. return Cast(True, bool, Any)
  18827. def maybe_inc(x : Any) -> Any:
  18828. return inc(x) if input_int() == 0 else true()
  18829. t = map(Cast(maybe_inc, Callable[[Any], Any], Callable[[int], int]),
  18830. (0, 41))
  18831. print(t[1])
  18832. \end{lstlisting}
  18833. \fi}
  18834. \end{tcolorbox}
  18835. \caption{Output of the \code{cast\_insert} pass for the \code{map}
  18836. and \code{maybe\_inc} example.}
  18837. \label{fig:map-cast}
  18838. \end{figure}
  18839. {\if\edition\pythonEd\pythonColor
  18840. \begin{figure}[tbp]
  18841. \begin{tcolorbox}[colback=white]
  18842. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18843. class TypeCheckLgrad(TypeCheckLlambda):
  18844. def type_check_exp(self, e, env) -> Type:
  18845. match e:
  18846. case Name(id):
  18847. return env[id]
  18848. case Constant(value) if isinstance(value, bool):
  18849. return BoolType()
  18850. case Constant(value) if isinstance(value, int):
  18851. return IntType()
  18852. case Call(Name('input_int'), []):
  18853. return IntType()
  18854. case BinOp(left, op, right):
  18855. left_type = self.type_check_exp(left, env)
  18856. self.check_consistent(left_type, IntType(), left)
  18857. right_type = self.type_check_exp(right, env)
  18858. self.check_consistent(right_type, IntType(), right)
  18859. return IntType()
  18860. case IfExp(test, body, orelse):
  18861. test_t = self.type_check_exp(test, env)
  18862. self.check_consistent(test_t, BoolType(), test)
  18863. body_t = self.type_check_exp(body, env)
  18864. orelse_t = self.type_check_exp(orelse, env)
  18865. self.check_consistent(body_t, orelse_t, e)
  18866. return self.join_types(body_t, orelse_t)
  18867. case Call(func, args):
  18868. func_t = self.type_check_exp(func, env)
  18869. args_t = [self.type_check_exp(arg, env) for arg in args]
  18870. match func_t:
  18871. case FunctionType(params_t, return_t) if len(params_t) == len(args_t):
  18872. for (arg_t, param_t) in zip(args_t, params_t):
  18873. self.check_consistent(param_t, arg_t, e)
  18874. return return_t
  18875. case AnyType():
  18876. return AnyType()
  18877. case _:
  18878. raise Exception('type_check_exp: in call, unexpected ' + repr(func_t))
  18879. ...
  18880. case _:
  18881. raise Exception('type_check_exp: unexpected ' + repr(e))
  18882. \end{lstlisting}
  18883. \end{tcolorbox}
  18884. \caption{Type checking expressions in the \LangGrad{} language.}
  18885. \label{fig:type-check-Lgradual-1}
  18886. \end{figure}
  18887. \begin{figure}[tbp]
  18888. \begin{tcolorbox}[colback=white]
  18889. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18890. def check_exp(self, e, expected_ty, env):
  18891. match e:
  18892. case Lambda(params, body):
  18893. match expected_ty:
  18894. case FunctionType(params_t, return_t):
  18895. new_env = env.copy().update(zip(params, params_t))
  18896. e.has_type = expected_ty
  18897. body_ty = self.type_check_exp(body, new_env)
  18898. self.check_consistent(body_ty, return_t)
  18899. case AnyType():
  18900. new_env = env.copy().update((p, AnyType()) for p in params)
  18901. e.has_type = FunctionType([AnyType() for _ in params], AnyType())
  18902. body_ty = self.type_check_exp(body, new_env)
  18903. case _:
  18904. raise Exception('lambda does not have type ' + str(expected_ty))
  18905. case _:
  18906. e_ty = self.type_check_exp(e, env)
  18907. self.check_consistent(e_ty, expected_ty, e)
  18908. \end{lstlisting}
  18909. \end{tcolorbox}
  18910. \caption{Checking expressions with respect to a type in the \LangGrad{} language.}
  18911. \label{fig:type-check-Lgradual-2}
  18912. \end{figure}
  18913. \begin{figure}[tbp]
  18914. \begin{tcolorbox}[colback=white]
  18915. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18916. def type_check_stmt(self, s, env, return_type):
  18917. match s:
  18918. case Assign([Name(id)], value):
  18919. value_ty = self.type_check_exp(value, env)
  18920. if id in env:
  18921. self.check_consistent(env[id], value_ty, value)
  18922. else:
  18923. env[id] = value_ty
  18924. ...
  18925. case _:
  18926. raise Exception('type_check_stmts: unexpected ' + repr(ss))
  18927. def type_check_stmts(self, ss, env, return_type):
  18928. for s in ss:
  18929. self.type_check_stmt(s, env, return_type)
  18930. \end{lstlisting}
  18931. \end{tcolorbox}
  18932. \caption{Type checking statements in the \LangGrad{} language.}
  18933. \label{fig:type-check-Lgradual-3}
  18934. \end{figure}
  18935. \begin{figure}[tbp]
  18936. \begin{tcolorbox}[colback=white]
  18937. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  18938. def join_types(self, t1, t2):
  18939. match (t1, t2):
  18940. case (AnyType(), _):
  18941. return t2
  18942. case (_, AnyType()):
  18943. return t1
  18944. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  18945. return FunctionType(list(map(self.join_types, ps1, ps2)),
  18946. self.join_types(rt1,rt2))
  18947. case (TupleType(ts1), TupleType(ts2)):
  18948. return TupleType(list(map(self.join_types, ts1, ts2)))
  18949. case (_, _):
  18950. return t1
  18951. def check_consistent(self, t1, t2, e):
  18952. if not self.consistent(t1, t2):
  18953. raise Exception('error: ' + repr(t1) + ' inconsistent with ' + repr(t2) \
  18954. + ' in ' + repr(e))
  18955. \end{lstlisting}
  18956. \end{tcolorbox}
  18957. \caption{Auxiliary methods for type checking \LangGrad{}.}
  18958. \label{fig:type-check-Lgradual-aux}
  18959. \end{figure}
  18960. \fi}
  18961. {\if\edition\racketEd
  18962. \begin{figure}[tbp]
  18963. \begin{tcolorbox}[colback=white]
  18964. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  18965. (define/override (type-check-exp env)
  18966. (lambda (e)
  18967. (define recur (type-check-exp env))
  18968. (match e
  18969. [(Prim op es) #:when (not (set-member? explicit-prim-ops op))
  18970. (define-values (new-es ts)
  18971. (for/lists (exprs types) ([e es])
  18972. (recur e)))
  18973. (define t-ret (type-check-op op ts e))
  18974. (values (Prim op new-es) t-ret)]
  18975. [(Prim 'eq? (list e1 e2))
  18976. (define-values (e1^ t1) (recur e1))
  18977. (define-values (e2^ t2) (recur e2))
  18978. (check-consistent? t1 t2 e)
  18979. (define T (meet t1 t2))
  18980. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  18981. [(Prim 'and (list e1 e2))
  18982. (recur (If e1 e2 (Bool #f)))]
  18983. [(Prim 'or (list e1 e2))
  18984. (define tmp (gensym 'tmp))
  18985. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  18986. [(If e1 e2 e3)
  18987. (define-values (e1^ T1) (recur e1))
  18988. (define-values (e2^ T2) (recur e2))
  18989. (define-values (e3^ T3) (recur e3))
  18990. (check-consistent? T1 'Boolean e)
  18991. (check-consistent? T2 T3 e)
  18992. (define Tif (meet T2 T3))
  18993. (values (If e1^ e2^ e3^) Tif)]
  18994. [(SetBang x e1)
  18995. (define-values (e1^ T1) (recur e1))
  18996. (define varT (dict-ref env x))
  18997. (check-consistent? T1 varT e)
  18998. (values (SetBang x e1^) 'Void)]
  18999. [(WhileLoop e1 e2)
  19000. (define-values (e1^ T1) (recur e1))
  19001. (check-consistent? T1 'Boolean e)
  19002. (define-values (e2^ T2) ((type-check-exp env) e2))
  19003. (values (WhileLoop e1^ e2^) 'Void)]
  19004. [(Prim 'vector-length (list e1))
  19005. (define-values (e1^ t) (recur e1))
  19006. (match t
  19007. [`(Vector ,ts ...)
  19008. (values (Prim 'vector-length (list e1^)) 'Integer)]
  19009. ['Any (values (Prim 'vector-length (list e1^)) 'Integer)])]
  19010. \end{lstlisting}
  19011. \end{tcolorbox}
  19012. \caption{Type checker for the \LangGrad{} language, part 1.}
  19013. \label{fig:type-check-Lgradual-1}
  19014. \end{figure}
  19015. \begin{figure}[tbp]
  19016. \begin{tcolorbox}[colback=white]
  19017. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19018. [(Prim 'vector-ref (list e1 e2))
  19019. (define-values (e1^ t1) (recur e1))
  19020. (define-values (e2^ t2) (recur e2))
  19021. (check-consistent? t2 'Integer e)
  19022. (match t1
  19023. [`(Vector ,ts ...)
  19024. (match e2^
  19025. [(Int i)
  19026. (unless (and (0 . <= . i) (i . < . (length ts)))
  19027. (error 'type-check "invalid index ~a in ~a" i e))
  19028. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  19029. [else (values (Prim 'vector-ref (list e1^ e2^)) 'Any)])]
  19030. ['Any (values (Prim 'vector-ref (list e1^ e2^)) 'Any)]
  19031. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19032. [(Prim 'vector-set! (list e1 e2 e3) )
  19033. (define-values (e1^ t1) (recur e1))
  19034. (define-values (e2^ t2) (recur e2))
  19035. (define-values (e3^ t3) (recur e3))
  19036. (check-consistent? t2 'Integer e)
  19037. (match t1
  19038. [`(Vector ,ts ...)
  19039. (match e2^
  19040. [(Int i)
  19041. (unless (and (0 . <= . i) (i . < . (length ts)))
  19042. (error 'type-check "invalid index ~a in ~a" i e))
  19043. (check-consistent? (list-ref ts i) t3 e)
  19044. (values (Prim 'vector-set! (list e1^ (Int i) e3^)) 'Void)]
  19045. [else (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)])]
  19046. ['Any (values (Prim 'vector-set! (list e1^ e2^ e3^)) 'Void)]
  19047. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  19048. [(Apply e1 e2s)
  19049. (define-values (e1^ T1) (recur e1))
  19050. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  19051. (match T1
  19052. [`(,T1ps ... -> ,T1rt)
  19053. (for ([T2 T2s] [Tp T1ps])
  19054. (check-consistent? T2 Tp e))
  19055. (values (Apply e1^ e2s^) T1rt)]
  19056. [`Any (values (Apply e1^ e2s^) 'Any)]
  19057. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  19058. [(Lambda params Tr e1)
  19059. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  19060. (match p
  19061. [`[,x : ,T] (values x T)]
  19062. [(? symbol? x) (values x 'Any)])))
  19063. (define-values (e1^ T1)
  19064. ((type-check-exp (append (map cons xs Ts) env)) e1))
  19065. (check-consistent? Tr T1 e)
  19066. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr e1^)
  19067. `(,@Ts -> ,Tr))]
  19068. [else ((super type-check-exp env) e)]
  19069. )))
  19070. \end{lstlisting}
  19071. \end{tcolorbox}
  19072. \caption{Type checker for the \LangGrad{} language, part 2.}
  19073. \label{fig:type-check-Lgradual-2}
  19074. \end{figure}
  19075. \begin{figure}[tbp]
  19076. \begin{tcolorbox}[colback=white]
  19077. \begin{lstlisting}
  19078. (define/override (type-check-def env)
  19079. (lambda (e)
  19080. (match e
  19081. [(Def f params rt info body)
  19082. (define-values (xs ps) (for/lists (l1 l2) ([p params])
  19083. (match p
  19084. [`[,x : ,T] (values x T)]
  19085. [(? symbol? x) (values x 'Any)])))
  19086. (define new-env (append (map cons xs ps) env))
  19087. (define-values (body^ ty^) ((type-check-exp new-env) body))
  19088. (check-consistent? ty^ rt e)
  19089. (Def f (for/list ([x xs] [T ps]) `[,x : ,T]) rt info body^)]
  19090. [else (error 'type-check "ill-formed function definition ~a" e)]
  19091. )))
  19092. (define/override (type-check-program e)
  19093. (match e
  19094. [(Program info body)
  19095. (define-values (body^ ty) ((type-check-exp '()) body))
  19096. (check-consistent? ty 'Integer e)
  19097. (ProgramDefsExp info '() body^)]
  19098. [(ProgramDefsExp info ds body)
  19099. (define new-env (for/list ([d ds])
  19100. (cons (Def-name d) (fun-def-type d))))
  19101. (define ds^ (for/list ([d ds])
  19102. ((type-check-def new-env) d)))
  19103. (define-values (body^ ty) ((type-check-exp new-env) body))
  19104. (check-consistent? ty 'Integer e)
  19105. (ProgramDefsExp info ds^ body^)]
  19106. [else (super type-check-program e)]))
  19107. \end{lstlisting}
  19108. \end{tcolorbox}
  19109. \caption{Type checker for the \LangGrad{} language, part 3.}
  19110. \label{fig:type-check-Lgradual-3}
  19111. \end{figure}
  19112. \begin{figure}[tbp]
  19113. \begin{tcolorbox}[colback=white]
  19114. \begin{lstlisting}
  19115. (define/public (join t1 t2)
  19116. (match* (t1 t2)
  19117. [('Integer 'Integer) 'Integer]
  19118. [('Boolean 'Boolean) 'Boolean]
  19119. [('Void 'Void) 'Void]
  19120. [('Any t2) t2]
  19121. [(t1 'Any) t1]
  19122. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19123. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  19124. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19125. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  19126. -> ,(join rt1 rt2))]))
  19127. (define/public (meet t1 t2)
  19128. (match* (t1 t2)
  19129. [('Integer 'Integer) 'Integer]
  19130. [('Boolean 'Boolean) 'Boolean]
  19131. [('Void 'Void) 'Void]
  19132. [('Any t2) 'Any]
  19133. [(t1 'Any) 'Any]
  19134. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19135. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  19136. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19137. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  19138. -> ,(meet rt1 rt2))]))
  19139. (define/public (check-consistent? t1 t2 e)
  19140. (unless (consistent? t1 t2)
  19141. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  19142. (define explicit-prim-ops
  19143. (set-union
  19144. (type-predicates)
  19145. (set 'procedure-arity 'eq? 'not 'and 'or
  19146. 'vector 'vector-length 'vector-ref 'vector-set!
  19147. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  19148. (define/override (fun-def-type d)
  19149. (match d
  19150. [(Def f params rt info body)
  19151. (define ps
  19152. (for/list ([p params])
  19153. (match p
  19154. [`[,x : ,T] T]
  19155. [(? symbol?) 'Any]
  19156. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  19157. `(,@ps -> ,rt)]
  19158. [else (error 'fun-def-type "ill-formed definition in ~a" d)]))
  19159. \end{lstlisting}
  19160. \end{tcolorbox}
  19161. \caption{Auxiliary functions for type checking \LangGrad{}.}
  19162. \label{fig:type-check-Lgradual-aux}
  19163. \end{figure}
  19164. \fi}
  19165. \clearpage
  19166. \section{Interpreting \LangCast{}}
  19167. \label{sec:interp-casts}
  19168. The runtime behavior of casts involving simple types such as
  19169. \INTTY{} and \BOOLTY{} is straightforward. For example, a
  19170. cast from \INTTY{} to \CANYTY{} can be accomplished with the
  19171. \code{Inject} operator of \LangAny{}, which puts the integer into a
  19172. tagged value (figure~\ref{fig:interp-Lany}). Similarly, a cast from
  19173. \CANYTY{} to \INTTY{} is accomplished with the \code{Project}
  19174. operator, by checking the value's tag and either retrieving
  19175. the underlying integer or signaling an error if the tag is not the
  19176. one for integers (figure~\ref{fig:interp-Lany-aux}).
  19177. %
  19178. Things get more interesting with casts involving
  19179. \racket{function and tuple types}\python{function, tuple, and array types}.
  19180. Consider the cast of the function \code{maybe\_inc} from
  19181. \racket{\code{(Any -> Any)}}\python{\code{Callable[[Any], Any]}}
  19182. to
  19183. \racket{\code{(Integer -> Integer)}}\python{\code{Callable[[int], int]}}
  19184. shown in figure~\ref{fig:map-maybe_inc}.
  19185. When the \code{maybe\_inc} function flows through
  19186. this cast at runtime, we don't know whether it will return
  19187. an integer, because that depends on the input from the user.
  19188. The \LangCast{} interpreter therefore delays the checking
  19189. of the cast until the function is applied. To do so it
  19190. wraps \code{maybe\_inc} in a new function that casts its parameter
  19191. from \INTTY{} to \CANYTY{}, applies \code{maybe\_inc}, and then
  19192. casts the return value from \CANYTY{} to \INTTY{}.
  19193. {\if\edition\pythonEd\pythonColor
  19194. %
  19195. There are further complications regarding casts on mutable data
  19196. such as the \code{list} type introduced in
  19197. the challenge assignment of section~\ref{sec:arrays}.
  19198. %
  19199. \fi}
  19200. %
  19201. Consider the example presented in figure~\ref{fig:map-bang} that
  19202. defines a partially typed version of \code{map} whose parameter
  19203. \code{v} has type
  19204. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}
  19205. and that updates \code{v} in place
  19206. instead of returning a new tuple. We name this function
  19207. \code{map\_inplace}. We apply \code{map\_inplace} to
  19208. \racket{a tuple}\python{an array} of integers, so the type checker
  19209. inserts a cast from
  19210. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}}
  19211. to
  19212. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}.
  19213. A naive way for the \LangCast{} interpreter to cast between
  19214. \racket{tuple}\python{array} types would be to build a new
  19215. \racket{tuple}\python{array} whose elements are the result
  19216. of casting each of the original elements to the appropriate target
  19217. type. However, this approach is not valid for mutable data structures.
  19218. In the example of figure~\ref{fig:map-bang},
  19219. if the cast created a new \racket{tuple}\python{array}, then the updates inside
  19220. \code{map\_inplace} would happen to the new \racket{tuple}\python{array} and not
  19221. the original one.
  19222. \begin{figure}[tbp]
  19223. \begin{tcolorbox}[colback=white]
  19224. % gradual_test_11.rkt
  19225. {\if\edition\racketEd
  19226. \begin{lstlisting}
  19227. (define (map_inplace [f : (Any -> Any)]
  19228. [v : (Vector Any Any)]) : Void
  19229. (begin
  19230. (vector-set! v 0 (f (vector-ref v 0)))
  19231. (vector-set! v 1 (f (vector-ref v 1)))))
  19232. (define (inc x) (+ x 1))
  19233. (let ([v (vector 0 41)])
  19234. (begin (map_inplace inc v) (vector-ref v 1)))
  19235. \end{lstlisting}
  19236. \fi}
  19237. {\if\edition\pythonEd\pythonColor
  19238. \begin{lstlisting}
  19239. def map_inplace(f : Callable[[int], int], v : list[Any]) -> None:
  19240. i = 0
  19241. while i != len(v):
  19242. v[i] = f(v[i])
  19243. i = i + 1
  19244. def inc(x : int) -> int:
  19245. return x + 1
  19246. v = [0, 41]
  19247. map_inplace(inc, v)
  19248. print( v[1] )
  19249. \end{lstlisting}
  19250. \fi}
  19251. \end{tcolorbox}
  19252. \caption{An example involving casts on arrays.}
  19253. \label{fig:map-bang}
  19254. \end{figure}
  19255. Instead the interpreter needs to create a new kind of value, a
  19256. \emph{proxy}, that intercepts every \racket{tuple}\python{array} operation.
  19257. On a read, the proxy reads from the underlying \racket{tuple}\python{array}
  19258. and then applies a
  19259. cast to the resulting value. On a write, the proxy casts the argument
  19260. value and then performs the write to the underlying \racket{tuple}\python{array}.
  19261. \racket{
  19262. For the first \code{(vector-ref v 0)} in \code{map\_inplace}, the proxy casts
  19263. \code{0} from \INTTY{} to \CANYTY{}.
  19264. For the first \code{vector-set!}, the proxy casts a tagged \code{1}
  19265. from \CANYTY{} to \INTTY{}.
  19266. }
  19267. \python{
  19268. For the subscript \code{v[i]} in \code{f(v[i])} of \code{map\_inplace},
  19269. the proxy casts the integer from \INTTY{} to \CANYTY{}.
  19270. For the subscript on the left of the assignment,
  19271. the proxy casts the tagged value from \CANYTY{} to \INTTY{}.
  19272. }
  19273. Finally we consider casts between the \CANYTY{} type and higher-order types
  19274. such as functions and \racket{tuples}\python{lists}. Figure~\ref{fig:map-any}
  19275. shows a variant of \code{map\_inplace} in which parameter \code{v} does not
  19276. have a type annotation, so it is given type \CANYTY{}. In the call to
  19277. \code{map\_inplace}, the \racket{tuple}\python{list} has type
  19278. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}},
  19279. so the type checker inserts a cast to \CANYTY{}. A first thought is to use
  19280. \code{Inject}, but that doesn't work because
  19281. \racket{\code{(Vector Integer Integer)}}\python{\code{list[int]}} is not
  19282. a flat type. Instead, we must first cast to
  19283. \racket{\code{(Vector Any Any)}}\python{\code{list[Any]}}, which is flat,
  19284. and then inject to \CANYTY{}.
  19285. \begin{figure}[tbp]
  19286. \begin{tcolorbox}[colback=white]
  19287. {\if\edition\racketEd
  19288. \begin{lstlisting}
  19289. (define (map_inplace [f : (Any -> Any)] v) : Void
  19290. (begin
  19291. (vector-set! v 0 (f (vector-ref v 0)))
  19292. (vector-set! v 1 (f (vector-ref v 1)))))
  19293. (define (inc x) (+ x 1))
  19294. (let ([v (vector 0 41)])
  19295. (begin (map_inplace inc v) (vector-ref v 1)))
  19296. \end{lstlisting}
  19297. \fi}
  19298. {\if\edition\pythonEd\pythonColor
  19299. \begin{lstlisting}
  19300. def map_inplace(f : Callable[[Any], Any], v) -> None:
  19301. i = 0
  19302. while i != len(v):
  19303. v[i] = f(v[i])
  19304. i = i + 1
  19305. def inc(x):
  19306. return x + 1
  19307. v = [0, 41]
  19308. map_inplace(inc, v)
  19309. print( v[1] )
  19310. \end{lstlisting}
  19311. \fi}
  19312. \end{tcolorbox}
  19313. \caption{Casting \racket{a tuple}\python{an array} to \CANYTY{}.}
  19314. \label{fig:map-any}
  19315. \end{figure}
  19316. \begin{figure}[tbp]
  19317. \begin{tcolorbox}[colback=white]
  19318. {\if\edition\racketEd
  19319. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19320. (define/public (apply_cast v s t)
  19321. (match* (s t)
  19322. [(t1 t2) #:when (equal? t1 t2) v]
  19323. [('Any t2)
  19324. (match t2
  19325. [`(,ts ... -> ,rt)
  19326. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19327. (define v^ (apply-project v any->any))
  19328. (apply_cast v^ any->any `(,@ts -> ,rt))]
  19329. [`(Vector ,ts ...)
  19330. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19331. (define v^ (apply-project v vec-any))
  19332. (apply_cast v^ vec-any `(Vector ,@ts))]
  19333. [else (apply-project v t2)])]
  19334. [(t1 'Any)
  19335. (match t1
  19336. [`(,ts ... -> ,rt)
  19337. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  19338. (define v^ (apply_cast v `(,@ts -> ,rt) any->any))
  19339. (apply-inject v^ (any-tag any->any))]
  19340. [`(Vector ,ts ...)
  19341. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  19342. (define v^ (apply_cast v `(Vector ,@ts) vec-any))
  19343. (apply-inject v^ (any-tag vec-any))]
  19344. [else (apply-inject v (any-tag t1))])]
  19345. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  19346. (define x (gensym 'x))
  19347. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  19348. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  19349. (define cast-writes
  19350. (for/list ([t1 ts1] [t2 ts2])
  19351. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  19352. `(vector-proxy ,(vector v (apply vector cast-reads)
  19353. (apply vector cast-writes)))]
  19354. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  19355. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  19356. `(function ,xs ,(Cast
  19357. (Apply (Value v)
  19358. (for/list ([x xs][t1 ts1][t2 ts2])
  19359. (Cast (Var x) t2 t1)))
  19360. rt1 rt2) ())]
  19361. ))
  19362. \end{lstlisting}
  19363. \fi}
  19364. {\if\edition\pythonEd\pythonColor
  19365. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19366. def apply_cast(self, value, src, tgt):
  19367. match (src, tgt):
  19368. case (AnyType(), FunctionType(ps2, rt2)):
  19369. anyfun = FunctionType([AnyType() for p in ps2], AnyType())
  19370. return self.apply_cast(self.apply_project(value, anyfun), anyfun, tgt)
  19371. case (AnyType(), TupleType(ts2)):
  19372. anytup = TupleType([AnyType() for t1 in ts2])
  19373. return self.apply_cast(self.apply_project(value, anytup), anytup, tgt)
  19374. case (AnyType(), ListType(t2)):
  19375. anylist = ListType([AnyType() for t1 in ts2])
  19376. return self.apply_cast(self.apply_project(value, anylist), anylist, tgt)
  19377. case (AnyType(), AnyType()):
  19378. return value
  19379. case (AnyType(), _):
  19380. return self.apply_project(value, tgt)
  19381. case (FunctionType(ps1,rt1), AnyType()):
  19382. anyfun = FunctionType([AnyType() for p in ps1], AnyType())
  19383. return self.apply_inject(self.apply_cast(value, src, anyfun), anyfun)
  19384. case (TupleType(ts1), AnyType()):
  19385. anytup = TupleType([AnyType() for t1 in ts1])
  19386. return self.apply_inject(self.apply_cast(value, src, anytup), anytup)
  19387. case (ListType(t1), AnyType()):
  19388. anylist = ListType(AnyType())
  19389. return self.apply_inject(self.apply_cast(value,src,anylist), anylist)
  19390. case (_, AnyType()):
  19391. return self.apply_inject(value, src)
  19392. case (FunctionType(ps1, rt1), FunctionType(ps2, rt2)):
  19393. params = [generate_name('x') for p in ps2]
  19394. args = [Cast(Name(x), t2, t1)
  19395. for (x,t1,t2) in zip(params, ps1, ps2)]
  19396. body = Cast(Call(ValueExp(value), args), rt1, rt2)
  19397. return Function('cast', params, [Return(body)], {})
  19398. case (TupleType(ts1), TupleType(ts2)):
  19399. x = generate_name('x')
  19400. reads = [Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19401. for (t1,t2) in zip(ts1,ts2)]
  19402. return ProxiedTuple(value, reads)
  19403. case (ListType(t1), ListType(t2)):
  19404. x = generate_name('x')
  19405. read = Function('cast', [x], [Return(Cast(Name(x), t1, t2))], {})
  19406. write = Function('cast', [x], [Return(Cast(Name(x), t2, t1))], {})
  19407. return ProxiedList(value, read, write)
  19408. case (t1, t2) if t1 == t2:
  19409. return value
  19410. case (t1, t2):
  19411. raise Exception('apply_cast unexpected ' + repr(src) + ' ' + repr(tgt))
  19412. def apply_inject(self, value, src):
  19413. return Tagged(value, self.type_to_tag(src))
  19414. def apply_project(self, value, tgt):
  19415. match value:
  19416. case Tagged(val, tag) if self.type_to_tag(tgt) == tag:
  19417. return val
  19418. case _:
  19419. raise Exception('apply_project, unexpected ' + repr(value))
  19420. \end{lstlisting}
  19421. \fi}
  19422. \end{tcolorbox}
  19423. \caption{The \code{apply\_cast} auxiliary method.}
  19424. \label{fig:apply_cast}
  19425. \end{figure}
  19426. The \LangCast{} interpreter uses an auxiliary function named
  19427. \code{apply\_cast} to cast a value from a source type to a target type,
  19428. shown in figure~\ref{fig:apply_cast}. You'll find that it handles all
  19429. the kinds of casts that we've discussed in this section.
  19430. %
  19431. The definition of the interpreter for \LangCast{} is shown in
  19432. figure~\ref{fig:interp-Lcast}, with the case for \code{Cast}
  19433. dispatching to \code{apply\_cast}.
  19434. \racket{To handle the addition of tuple
  19435. proxies, we update the tuple primitives in \code{interp-op} using the
  19436. functions given in figure~\ref{fig:guarded-tuple}.}
  19437. Next we turn to the individual passes needed for compiling \LangGrad{}.
  19438. \begin{figure}[tbp]
  19439. \begin{tcolorbox}[colback=white]
  19440. {\if\edition\racketEd
  19441. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19442. (define interp-Lcast-class
  19443. (class interp-Llambda-class
  19444. (super-new)
  19445. (inherit apply-fun apply-inject apply-project)
  19446. (define/override (interp-op op)
  19447. (match op
  19448. ['vector-length guarded-vector-length]
  19449. ['vector-ref guarded-vector-ref]
  19450. ['vector-set! guarded-vector-set!]
  19451. ['any-vector-ref (lambda (v i)
  19452. (match v [`(tagged ,v^ ,tg)
  19453. (guarded-vector-ref v^ i)]))]
  19454. ['any-vector-set! (lambda (v i a)
  19455. (match v [`(tagged ,v^ ,tg)
  19456. (guarded-vector-set! v^ i a)]))]
  19457. ['any-vector-length (lambda (v)
  19458. (match v [`(tagged ,v^ ,tg)
  19459. (guarded-vector-length v^)]))]
  19460. [else (super interp-op op)]
  19461. ))
  19462. (define/override ((interp-exp env) e)
  19463. (define (recur e) ((interp-exp env) e))
  19464. (match e
  19465. [(Value v) v]
  19466. [(Cast e src tgt) (apply_cast (recur e) src tgt)]
  19467. [else ((super interp-exp env) e)]))
  19468. ))
  19469. (define (interp-Lcast p)
  19470. (send (new interp-Lcast-class) interp-program p))
  19471. \end{lstlisting}
  19472. \fi}
  19473. {\if\edition\pythonEd\pythonColor
  19474. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19475. class InterpLcast(InterpLany):
  19476. def interp_exp(self, e, env):
  19477. match e:
  19478. case Cast(value, src, tgt):
  19479. v = self.interp_exp(value, env)
  19480. return self.apply_cast(v, src, tgt)
  19481. case ValueExp(value):
  19482. return value
  19483. ...
  19484. case _:
  19485. return super().interp_exp(e, env)
  19486. \end{lstlisting}
  19487. \fi}
  19488. \end{tcolorbox}
  19489. \caption{The interpreter for \LangCast{}.}
  19490. \label{fig:interp-Lcast}
  19491. \end{figure}
  19492. {\if\edition\racketEd
  19493. \begin{figure}[tbp]
  19494. \begin{tcolorbox}[colback=white]
  19495. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19496. (define (guarded-vector-ref vec i)
  19497. (match vec
  19498. [`(vector-proxy ,proxy)
  19499. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  19500. (define rd (vector-ref (vector-ref proxy 1) i))
  19501. (apply-fun rd (list val) 'guarded-vector-ref)]
  19502. [else (vector-ref vec i)]))
  19503. (define (guarded-vector-set! vec i arg)
  19504. (match vec
  19505. [`(vector-proxy ,proxy)
  19506. (define wr (vector-ref (vector-ref proxy 2) i))
  19507. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  19508. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  19509. [else (vector-set! vec i arg)]))
  19510. (define (guarded-vector-length vec)
  19511. (match vec
  19512. [`(vector-proxy ,proxy)
  19513. (guarded-vector-length (vector-ref proxy 0))]
  19514. [else (vector-length vec)]))
  19515. \end{lstlisting}
  19516. %% {\if\edition\pythonEd\pythonColor
  19517. %% \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19518. %% UNDER CONSTRUCTION
  19519. %% \end{lstlisting}
  19520. %% \fi}
  19521. \end{tcolorbox}
  19522. \caption{The \code{guarded-vector} auxiliary functions.}
  19523. \label{fig:guarded-tuple}
  19524. \end{figure}
  19525. \fi}
  19526. {\if\edition\pythonEd\pythonColor
  19527. \section{Overload Resolution}
  19528. \label{sec:gradual-resolution}
  19529. Recall that when we added support for arrays in
  19530. section~\ref{sec:arrays}, the syntax for the array operations were the
  19531. same as for tuple operations (for example, accessing an element, getting the
  19532. length). So we performed overload resolution, with a pass named
  19533. \code{resolve}, to separate the array and tuple operations. In
  19534. particular, we introduced the primitives \code{array\_load},
  19535. \code{array\_store}, and \code{array\_len}.
  19536. For gradual typing, we further overload these operators to work on
  19537. values of type \CANYTY{}. Thus, the \code{resolve} pass should be
  19538. updated with new cases for the \CANYTY{} type, translating the element
  19539. access and length operations to the primitives \code{any\_load},
  19540. \code{any\_store}, and \code{any\_len}.
  19541. \fi}
  19542. \section{Cast Insertion}
  19543. \label{sec:gradual-insert-casts}
  19544. In our discussion of type checking of \LangGrad{}, we mentioned how
  19545. the runtime aspect of type checking is carried out by the \code{Cast}
  19546. AST node, which is added to the program by a new pass named
  19547. \code{cast\_insert}. The target of this pass is the \LangCast{}
  19548. language. We now discuss the details of this pass.
  19549. The \code{cast\_insert} pass is closely related to the type checker
  19550. for \LangGrad{} (starting in figure~\ref{fig:type-check-Lgradual-1}).
  19551. In particular, the type checker allows implicit casts between
  19552. consistent types. The job of the \code{cast\_insert} pass is to make
  19553. those casts explicit. It does so by inserting
  19554. \code{Cast} nodes into the AST.
  19555. %
  19556. For the most part, the implicit casts occur in places where the type
  19557. checker checks two types for consistency. Consider the case for
  19558. binary operators in figure~\ref{fig:type-check-Lgradual-1}. The type
  19559. checker requires that the type of the left operand is consistent with
  19560. \INTTY{}. Thus, the \code{cast\_insert} pass should insert a
  19561. \code{Cast} around the left operand, converting from its type to
  19562. \INTTY{}. The story is similar for the right operand. It is not always
  19563. necessary to insert a cast, for example, if the left operand already has type
  19564. \INTTY{} then there is no need for a \code{Cast}.
  19565. Some of the implicit casts are not as straightforward. One such case
  19566. arises with the
  19567. conditional expression. In figure~\ref{fig:type-check-Lgradual-1} we
  19568. see that the type checker requires that the two branches have
  19569. consistent types and that type of the conditional expression is the
  19570. meet of the branches' types. In the target language \LangCast{}, both
  19571. branches will need to have the same type, and that type
  19572. will be the type of the conditional expression. Thus, each branch requires
  19573. a \code{Cast} to convert from its type to the meet of the branches' types.
  19574. The case for the function call exhibits another interesting situation. If
  19575. the function expression is of type \CANYTY{}, then it needs to be cast
  19576. to a function type so that it can be used in a function call in
  19577. \LangCast{}. Which function type should it be cast to? The parameter
  19578. and return types are unknown, so we can simply use \CANYTY{} for all
  19579. of them. Furthermore, in \LangCast{} the argument types will need to
  19580. exactly match the parameter types, so we must cast all the arguments
  19581. to type \CANYTY{} (if they are not already of that type).
  19582. {\if\edition\racketEd
  19583. %
  19584. Likewise, the cases for the tuple operators \code{vector-length},
  19585. \code{vector-ref}, and \code{vector-set!} need to handle the situation
  19586. where the tuple expression is of type \CANYTY{}. Instead of
  19587. handling these situations with casts, we recommend translating
  19588. the special-purpose variants of the tuple operators that handle
  19589. tuples of type \CANYTY{}: \code{any-vector-length},
  19590. \code{any-vector-ref}, and \code{any-vector-set!}.
  19591. %
  19592. \fi}
  19593. \section{Lower Casts}
  19594. \label{sec:lower_casts}
  19595. The next step in the journey toward x86 is the \code{lower\_casts}
  19596. pass that translates the casts in \LangCast{} to the lower-level
  19597. \code{Inject} and \code{Project} operators and new operators for
  19598. proxies, extending the \LangLam{} language to \LangProxy{}.
  19599. The \LangProxy{} language can also be described as an extension of
  19600. \LangAny{}, with the addition of proxies. We recommend creating an
  19601. auxiliary function named \code{lower\_cast} that takes an expression
  19602. (in \LangCast{}), a source type, and a target type and translates it
  19603. to an expression in \LangProxy{}.
  19604. The \code{lower\_cast} function can follow a code structure similar to
  19605. the \code{apply\_cast} function (figure~\ref{fig:apply_cast}) used in
  19606. the interpreter for \LangCast{}, because it must handle the same cases
  19607. as \code{apply\_cast} and it needs to mimic the behavior of
  19608. \code{apply\_cast}. The most interesting cases concern
  19609. the casts involving \racket{tuple and function types}\python{tuple, array, and function types}.
  19610. {\if\edition\racketEd
  19611. As mentioned in section~\ref{sec:interp-casts}, a cast from one tuple
  19612. type to another tuple type is accomplished by creating a proxy that
  19613. intercepts the operations on the underlying tuple. Here we make the
  19614. creation of the proxy explicit with the \code{vector-proxy} AST
  19615. node. It takes three arguments: the first is an expression for the
  19616. tuple, the second is a tuple of functions for casting an element that is
  19617. being read from the tuple, and the third is a tuple of functions for
  19618. casting an element that is being written to the array. You can create
  19619. the functions for reading and writing using lambda expressions. Also,
  19620. as we show in the next section, we need to differentiate these tuples
  19621. of functions from the user-created ones, so we recommend using a new
  19622. AST node named \code{raw-vector} instead of \code{vector}.
  19623. %
  19624. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19625. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19626. that involved casting a tuple of integers to a tuple of \CANYTY{}.
  19627. \fi}
  19628. {\if\edition\pythonEd\pythonColor
  19629. As mentioned in section~\ref{sec:interp-casts}, a cast from one array
  19630. type to another array type is accomplished by creating a proxy that
  19631. intercepts the operations on the underlying array. Here we make the
  19632. creation of the proxy explicit with the \code{ListProxy} AST node. It
  19633. takes fives arguments: the first is an expression for the array, the
  19634. second is a function for casting an element that is being read from
  19635. the array, the third is a function for casting an element that is
  19636. being written to the array, the fourth is the type of the underlying
  19637. array, and the fifth is the type of the proxied array. You can create
  19638. the functions for reading and writing using lambda expressions.
  19639. A cast between two tuple types can be handled in a similar manner. We
  19640. create a proxy with the \code{TupleProxy} AST node. Tuples are
  19641. immutable, so there is no need for a function to cast the value during
  19642. a write. Because there is a separate element type for each slot in
  19643. the tuple, we need not just one function for casting during a read,
  19644. but instead a tuple of functions.
  19645. %
  19646. Also, as we show in the next section, we need to differentiate these
  19647. tuples from the user-created ones, so we recommend using a new AST
  19648. node named \code{RawTuple} instead of \code{Tuple} to create the
  19649. tuples of functions.
  19650. %
  19651. Figure~\ref{fig:map-bang-lower-cast} shows the output of
  19652. \code{lower\_casts} on the example given in figure~\ref{fig:map-bang}
  19653. that involved casting an array of integers to an array of \CANYTY{}.
  19654. \fi}
  19655. \begin{figure}[tbp]
  19656. \begin{tcolorbox}[colback=white]
  19657. {\if\edition\racketEd
  19658. \begin{lstlisting}
  19659. (define (map_inplace [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  19660. (begin
  19661. (vector-set! v 0 (f (vector-ref v 0)))
  19662. (vector-set! v 1 (f (vector-ref v 1)))))
  19663. (define (inc [x : Any]) : Any
  19664. (inject (+ (project x Integer) 1) Integer))
  19665. (let ([v (vector 0 41)])
  19666. (begin
  19667. (map_inplace inc (vector-proxy v
  19668. (raw-vector (lambda: ([x9 : Integer]) : Any
  19669. (inject x9 Integer))
  19670. (lambda: ([x9 : Integer]) : Any
  19671. (inject x9 Integer)))
  19672. (raw-vector (lambda: ([x9 : Any]) : Integer
  19673. (project x9 Integer))
  19674. (lambda: ([x9 : Any]) : Integer
  19675. (project x9 Integer)))))
  19676. (vector-ref v 1)))
  19677. \end{lstlisting}
  19678. \fi}
  19679. {\if\edition\pythonEd\pythonColor
  19680. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19681. def map_inplace(f : Callable[[int], int], v : list[Any]) -> void:
  19682. i = 0
  19683. while i != array_len(v):
  19684. array_store(v, i, inject(f(project(array_load(v, i), int)), int))
  19685. i = (i + 1)
  19686. def inc(x : int) -> int:
  19687. return (x + 1)
  19688. def main() -> int:
  19689. v = [0, 41]
  19690. map_inplace(inc, array_proxy(v, list[int], list[Any]))
  19691. print(array_load(v, 1))
  19692. return 0
  19693. \end{lstlisting}
  19694. \fi}
  19695. \end{tcolorbox}
  19696. \caption{Output of \code{lower\_casts} on the example shown in
  19697. figure~\ref{fig:map-bang}.}
  19698. \label{fig:map-bang-lower-cast}
  19699. \end{figure}
  19700. A cast from one function type to another function type is accomplished
  19701. by generating a \code{lambda} whose parameter and return types match
  19702. the target function type. The body of the \code{lambda} should cast
  19703. the parameters from the target type to the source type. (Yes,
  19704. backward! Functions are contravariant\index{subject}{contravariant}
  19705. in the parameters.) Afterward, call the underlying function and then
  19706. cast the result from the source return type to the target return type.
  19707. Figure~\ref{fig:map-lower-cast} shows the output of the
  19708. \code{lower\_casts} pass on the \code{map} example give in
  19709. figure~\ref{fig:gradual-map}. Note that the \code{inc} argument in the
  19710. call to \code{map} is wrapped in a \code{lambda}.
  19711. \begin{figure}[tbp]
  19712. \begin{tcolorbox}[colback=white]
  19713. {\if\edition\racketEd
  19714. \begin{lstlisting}
  19715. (define (map [f : (Integer -> Integer)]
  19716. [v : (Vector Integer Integer)])
  19717. : (Vector Integer Integer)
  19718. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  19719. (define (inc [x : Any]) : Any
  19720. (inject (+ (project x Integer) 1) Integer))
  19721. (vector-ref (map (lambda: ([x9 : Integer]) : Integer
  19722. (project (inc (inject x9 Integer)) Integer))
  19723. (vector 0 41)) 1)
  19724. \end{lstlisting}
  19725. \fi}
  19726. {\if\edition\pythonEd\pythonColor
  19727. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  19728. def map(f : Callable[[int], int], v : tuple[int,int]) -> tuple[int,int]:
  19729. return (f(v[0]), f(v[1]),)
  19730. def inc(x : any) -> any:
  19731. return inject((project(x, int) + 1), int)
  19732. def main() -> int:
  19733. t = map(lambda x: project(inc(inject(x, int)), int), (0, 41,))
  19734. print(t[1])
  19735. return 0
  19736. \end{lstlisting}
  19737. \fi}
  19738. \end{tcolorbox}
  19739. \caption{Output of \code{lower\_casts} on the example shown in
  19740. figure~\ref{fig:gradual-map}.}
  19741. \label{fig:map-lower-cast}
  19742. \end{figure}
  19743. \section{Differentiate Proxies}
  19744. \label{sec:differentiate-proxies}
  19745. So far, the responsibility of differentiating tuples and tuple proxies
  19746. has been the job of the interpreter.
  19747. %
  19748. \racket{For example, the interpreter for \LangCast{} implements
  19749. \code{vector-ref} using the \code{guarded-vector-ref} function shown in
  19750. figure~\ref{fig:guarded-tuple}.}
  19751. %
  19752. In the \code{differentiate\_proxies} pass we shift this responsibility
  19753. to the generated code.
  19754. We begin by designing the output language \LangPVec{}. In \LangGrad{}
  19755. we used the type \TUPLETYPENAME{} for both
  19756. real tuples and tuple proxies.
  19757. \python{Similarly, we use the type \code{list} for both arrays and
  19758. array proxies.}
  19759. In \LangPVec{} we return the
  19760. \TUPLETYPENAME{} type to its original
  19761. meaning, as the type of just tuples, and we introduce a new type,
  19762. \PTUPLETYNAME{}, whose values
  19763. can be either real tuples or tuple
  19764. proxies.
  19765. %
  19766. {\if\edition\pythonEd\pythonColor
  19767. Likewise, we return the
  19768. \ARRAYTYPENAME{} type to its original
  19769. meaning, as the type of arrays, and we introduce a new type,
  19770. \PARRAYTYNAME{}, whose values
  19771. can be either arrays or array proxies.
  19772. These new types come with a suite of new primitive operations.
  19773. \fi}
  19774. {\if\edition\racketEd
  19775. A tuple proxy is represented by a tuple containing three things: (1) the
  19776. underlying tuple, (2) a tuple of functions for casting elements that
  19777. are read from the tuple, and (3) a tuple of functions for casting
  19778. values to be written to the tuple. So, we define the following
  19779. abbreviation for the type of a tuple proxy:
  19780. \[
  19781. \itm{TupleProxy} (T\ldots \Rightarrow T'\ldots)
  19782. = (\ttm{Vector}~\PTUPLETY{T\ldots} ~R~ W) \to \PTUPLETY{T' \ldots})
  19783. \]
  19784. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  19785. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  19786. %
  19787. Next we describe each of the new primitive operations.
  19788. \begin{description}
  19789. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  19790. (\key{PVector} $T \ldots$)]\ \\
  19791. %
  19792. This operation brands a vector as a value of the \code{PVector} type.
  19793. \item[\code{inject-proxy} : $\itm{TupleProxy}(T\ldots \Rightarrow T'\ldots)$
  19794. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  19795. %
  19796. This operation brands a vector proxy as value of the \code{PVector} type.
  19797. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  19798. \BOOLTY{}] \ \\
  19799. %
  19800. This returns true if the value is a tuple proxy and false if it is a
  19801. real tuple.
  19802. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  19803. (\key{Vector} $T \ldots$)]\ \\
  19804. %
  19805. Assuming that the input is a tuple, this operation returns the
  19806. tuple.
  19807. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  19808. $\to$ \BOOLTY{}]\ \\
  19809. %
  19810. Given a tuple proxy, this operation returns the length of the tuple.
  19811. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  19812. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  19813. %
  19814. Given a tuple proxy, this operation returns the $i$th element of the
  19815. tuple.
  19816. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  19817. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\
  19818. Given a tuple proxy, this operation writes a value to the $i$th element
  19819. of the tuple.
  19820. \end{description}
  19821. \fi}
  19822. {\if\edition\pythonEd\pythonColor
  19823. %
  19824. A tuple proxy is represented by a tuple containing 1) the underlying
  19825. tuple and 2) a tuple of functions for casting elements that are read
  19826. from the tuple. The \LangPVec{} language includes the following AST
  19827. classes and primitive functions.
  19828. \begin{description}
  19829. \item[\code{InjectTuple}] \ \\
  19830. %
  19831. This AST node brands a tuple as a value of the \PTUPLETYNAME{} type.
  19832. \item[\code{InjectTupleProxy}]\ \\
  19833. %
  19834. This AST node brands a tuple proxy as value of the \PTUPLETYNAME{} type.
  19835. \item[\code{is\_tuple\_proxy}]\ \\
  19836. %
  19837. This primitive returns true if the value is a tuple proxy and false
  19838. if it is a tuple.
  19839. \item[\code{project\_tuple}]\ \\
  19840. %
  19841. Converts a tuple that is branded as \PTUPLETYNAME{}
  19842. back to a tuple.
  19843. \item[\code{proxy\_tuple\_len}]\ \\
  19844. %
  19845. Given a tuple proxy, returns the length of the underlying tuple.
  19846. \item[\code{proxy\_tuple\_load}]\ \\
  19847. %
  19848. Given a tuple proxy, returns the $i$th element of the underlying
  19849. tuple.
  19850. \end{description}
  19851. An array proxy is represented by a tuple containing 1) the underlying
  19852. array, 2) a function for casting elements that are read from the
  19853. array, and 3) a function for casting elements that are written to the
  19854. array. The \LangPVec{} language includes the following AST classes
  19855. and primitive functions.
  19856. \begin{description}
  19857. \item[\code{InjectList}]\ \\
  19858. This AST node brands an array as a value of the \PARRAYTYNAME{} type.
  19859. \item[\code{InjectListProxy}]\ \\
  19860. %
  19861. This AST node brands a array proxy as value of the \PARRAYTYNAME{} type.
  19862. \item[\code{is\_array\_proxy}]\ \\
  19863. %
  19864. Returns true if the value is a array proxy and false if it is an
  19865. array.
  19866. \item[\code{project\_array}]\ \\
  19867. %
  19868. Converts an array that is branded as \PARRAYTYNAME{} back to an
  19869. array.
  19870. \item[\code{proxy\_array\_len}]\ \\
  19871. %
  19872. Given a array proxy, returns the length of the underlying array.
  19873. \item[\code{proxy\_array\_load}]\ \\
  19874. %
  19875. Given a array proxy, returns the $i$th element of the underlying
  19876. array.
  19877. \item[\code{proxy\_array\_store}]\ \\
  19878. %
  19879. Given an array proxy, writes a value to the $i$th element of the
  19880. underlying array.
  19881. \end{description}
  19882. \fi}
  19883. Now we discuss the translation that differentiates tuples and arrays
  19884. from proxies. First, every type annotation in the program is
  19885. translated (recursively) to replace \TUPLETYPENAME{} with \PTUPLETYNAME{}.
  19886. Next, we insert uses of \PTUPLETYNAME{} operations in the appropriate
  19887. places. For example, we wrap every tuple creation with an
  19888. \racket{\code{inject-vector}}\python{\code{InjectTuple}}.
  19889. %
  19890. {\if\edition\racketEd
  19891. \begin{minipage}{0.96\textwidth}
  19892. \begin{lstlisting}
  19893. (vector |$e_1 \ldots e_n$|)
  19894. |$\Rightarrow$|
  19895. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  19896. \end{lstlisting}
  19897. \end{minipage}
  19898. \fi}
  19899. {\if\edition\pythonEd\pythonColor
  19900. \begin{lstlisting}
  19901. Tuple(|$e_1, \ldots, e_n$|)
  19902. |$\Rightarrow$|
  19903. InjectTuple(Tuple(|$e'_1, \ldots, e'_n$|))
  19904. \end{lstlisting}
  19905. \fi}
  19906. The \racket{\code{raw-vector}}\python{\code{RawTuple}}
  19907. AST node that we introduced in the previous
  19908. section does not get injected.
  19909. {\if\edition\racketEd
  19910. \begin{lstlisting}
  19911. (raw-vector |$e_1 \ldots e_n$|)
  19912. |$\Rightarrow$|
  19913. (vector |$e'_1 \ldots e'_n$|)
  19914. \end{lstlisting}
  19915. \fi}
  19916. {\if\edition\pythonEd\pythonColor
  19917. \begin{lstlisting}
  19918. RawTuple(|$e_1, \ldots, e_n$|)
  19919. |$\Rightarrow$|
  19920. Tuple(|$e'_1, \ldots, e'_n$|)
  19921. \end{lstlisting}
  19922. \fi}
  19923. The \racket{\code{vector-proxy}}\python{\code{TupleProxy}} AST
  19924. translates as follows:
  19925. %
  19926. {\if\edition\racketEd
  19927. \begin{lstlisting}
  19928. (vector-proxy |$e_1~e_2~e_3$|)
  19929. |$\Rightarrow$|
  19930. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  19931. \end{lstlisting}
  19932. \fi}
  19933. {\if\edition\pythonEd\pythonColor
  19934. \begin{lstlisting}
  19935. TupleProxy(|$e_1, e_2, T_1, T_2$|)
  19936. |$\Rightarrow$|
  19937. InjectTupleProxy(Tuple(|$e'_1,e'_2, T'_1, T'_2$|))
  19938. \end{lstlisting}
  19939. \fi}
  19940. We translate the element access operations into conditional
  19941. expressions that check whether the value is a proxy and then dispatch
  19942. to either the appropriate proxy tuple operation or the regular tuple
  19943. operation.
  19944. {\if\edition\racketEd
  19945. \begin{lstlisting}
  19946. (vector-ref |$e_1$| |$i$|)
  19947. |$\Rightarrow$|
  19948. (let ([|$v~e_1$|])
  19949. (if (proxy? |$v$|)
  19950. (proxy-vector-ref |$v$| |$i$|)
  19951. (vector-ref (project-vector |$v$|) |$i$|)
  19952. \end{lstlisting}
  19953. \fi}
  19954. %
  19955. Note that in the branch for a tuple, we must apply
  19956. \racket{\code{project-vector}}\python{\code{project\_tuple}} before reading
  19957. from the tuple.
  19958. The translation of array operations is similar to the ones for tuples.
  19959. \section{Reveal Casts}
  19960. \label{sec:reveal-casts-gradual}
  19961. {\if\edition\racketEd
  19962. Recall that the \code{reveal\_casts} pass
  19963. (section~\ref{sec:reveal-casts-Lany}) is responsible for lowering
  19964. \code{Inject} and \code{Project} into lower-level operations.
  19965. %
  19966. In particular, \code{Project} turns into a conditional expression that
  19967. inspects the tag and retrieves the underlying value. Here we need to
  19968. augment the translation of \code{Project} to handle the situation in which
  19969. the target type is \code{PVector}. Instead of using
  19970. \code{vector-length} we need to use \code{proxy-vector-length}.
  19971. \begin{lstlisting}
  19972. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  19973. |$\Rightarrow$|
  19974. (let |$\itm{tmp}$| |$e'$|
  19975. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  19976. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  19977. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  19978. (exit)))
  19979. \end{lstlisting}
  19980. \fi}
  19981. %
  19982. {\if\edition\pythonEd\pythonColor
  19983. Recall that the $\itm{tagof}$ function determines the bits used to
  19984. identify values of different types and it is used in the \code{reveal\_casts}
  19985. pass in the translation of \code{Project}. The \PTUPLETYNAME{} and
  19986. \PARRAYTYNAME{} types can be mapped to $010$ in binary ($2$ is
  19987. decimal), just like the tuple and array types.
  19988. \fi}
  19989. %
  19990. Otherwise, the only other changes are adding cases that copy the new AST nodes.
  19991. \section{Closure Conversion}
  19992. \label{sec:closure-conversion-gradual}
  19993. The auxiliary function that translates type annotations needs to be
  19994. updated to handle the \PTUPLETYNAME{}
  19995. \racket{type}\python{and \PARRAYTYNAME{} types}.
  19996. %
  19997. Otherwise, the only other changes are adding cases that copy the new
  19998. AST nodes.
  19999. \section{Select Instructions}
  20000. \label{sec:select-instructions-gradual}
  20001. \index{subject}{select instructions}
  20002. Recall that the \code{select\_instructions} pass is responsible for
  20003. lowering the primitive operations into x86 instructions. So, we need
  20004. to translate the new operations on \PTUPLETYNAME{} \python{and \PARRAYTYNAME{}}
  20005. to x86. To do so, the first question we need to answer is how to
  20006. differentiate between tuple and tuple proxies\python{, and likewise for
  20007. arrays and array proxies}. We need just one bit to accomplish this;
  20008. we use the bit in position $63$ of the 64-bit tag at the front of
  20009. every tuple (see figure~\ref{fig:tuple-rep})\python{ or array
  20010. (section~\ref{sec:array-rep})}. So far, this bit has been set to $0$,
  20011. so for \racket{\code{inject-vector}}\python{\code{InjectTuple}} we leave
  20012. it that way.
  20013. {\if\edition\racketEd
  20014. \begin{lstlisting}
  20015. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  20016. |$\Rightarrow$|
  20017. movq |$e'_1$|, |$\itm{lhs'}$|
  20018. \end{lstlisting}
  20019. \fi}
  20020. {\if\edition\pythonEd\pythonColor
  20021. \begin{lstlisting}
  20022. Assign([|$\itm{lhs}$|], InjectTuple(|$e_1$|))
  20023. |$\Rightarrow$|
  20024. movq |$e'_1$|, |$\itm{lhs'}$|
  20025. \end{lstlisting}
  20026. \fi}
  20027. \python{The translation for \code{InjectList} is also a move instruction.}
  20028. \noindent On the other hand,
  20029. \racket{\code{inject-proxy}}\python{\code{InjectTupleProxy}} sets bit
  20030. $63$ to $1$.
  20031. %
  20032. {\if\edition\racketEd
  20033. \begin{lstlisting}
  20034. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  20035. |$\Rightarrow$|
  20036. movq |$e'_1$|, %r11
  20037. movq |$(1 << 63)$|, %rax
  20038. orq 0(%r11), %rax
  20039. movq %rax, 0(%r11)
  20040. movq %r11, |$\itm{lhs'}$|
  20041. \end{lstlisting}
  20042. \fi}
  20043. {\if\edition\pythonEd\pythonColor
  20044. \begin{lstlisting}
  20045. Assign([|$\itm{lhs}$|], InjectTupleProxy(|$e_1$|))
  20046. |$\Rightarrow$|
  20047. movq |$e'_1$|, %r11
  20048. movq |$(1 << 63)$|, %rax
  20049. orq 0(%r11), %rax
  20050. movq %rax, 0(%r11)
  20051. movq %r11, |$\itm{lhs'}$|
  20052. \end{lstlisting}
  20053. \fi}
  20054. \python{\noindent The translation for \code{InjectListProxy} should set bit $63$
  20055. of the tag and also bit $62$, to differentiate between arrays and tuples.}
  20056. The \racket{\code{proxy?} operation consumes}%
  20057. \python{\code{is\_tuple\_proxy} and \code{is\_array\_proxy} operations
  20058. consume}
  20059. the information so carefully stashed away by the injections. It
  20060. isolates bit $63$ to tell whether the value is a proxy.
  20061. %
  20062. {\if\edition\racketEd
  20063. \begin{lstlisting}
  20064. (Assign |$\itm{lhs}$| (Prim 'proxy? (list |$e_1$|)))
  20065. |$\Rightarrow$|
  20066. movq |$e_1'$|, %r11
  20067. movq 0(%r11), %rax
  20068. sarq $63, %rax
  20069. andq $1, %rax
  20070. movq %rax, |$\itm{lhs'}$|
  20071. \end{lstlisting}
  20072. \fi}%
  20073. %
  20074. {\if\edition\pythonEd\pythonColor
  20075. \begin{lstlisting}
  20076. Assign([|$\itm{lhs}$|], Call(Name('is_tuple_proxy'), [|$e_1$|]))
  20077. |$\Rightarrow$|
  20078. movq |$e_1'$|, %r11
  20079. movq 0(%r11), %rax
  20080. sarq $63, %rax
  20081. andq $1, %rax
  20082. movq %rax, |$\itm{lhs'}$|
  20083. \end{lstlisting}
  20084. \fi}%
  20085. %
  20086. The \racket{\code{project-vector} operation is}
  20087. \python{\code{project\_tuple} and \code{project\_array} operations are}
  20088. straightforward to translate, so we leave that to the reader.
  20089. Regarding the element access operations for tuples\python{ and arrays}, the
  20090. runtime provides procedures that implement them (they are recursive
  20091. functions!), so here we simply need to translate these tuple
  20092. operations into the appropriate function call. For example, here is
  20093. the translation for
  20094. \racket{\code{proxy-vector-ref}}\python{\code{proxy\_tuple\_load}}.
  20095. {\if\edition\racketEd
  20096. \begin{minipage}{0.96\textwidth}
  20097. \begin{lstlisting}
  20098. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  20099. |$\Rightarrow$|
  20100. movq |$e_1'$|, %rdi
  20101. movq |$e_2'$|, %rsi
  20102. callq proxy_vector_ref
  20103. movq %rax, |$\itm{lhs'}$|
  20104. \end{lstlisting}
  20105. \end{minipage}
  20106. \fi}
  20107. {\if\edition\pythonEd\pythonColor
  20108. \begin{lstlisting}
  20109. Assign([|$\itm{lhs}$|], Call(Name('proxy_tuple_load'), [|$e_1$|, |$e_2$|]))
  20110. |$\Rightarrow$|
  20111. movq |$e_1'$|, %rdi
  20112. movq |$e_2'$|, %rsi
  20113. callq proxy_vector_ref
  20114. movq %rax, |$\itm{lhs'}$|
  20115. \end{lstlisting}
  20116. \fi}
  20117. {\if\edition\pythonEd\pythonColor
  20118. % TODO: revisit the names vecof for python -Jeremy
  20119. We translate
  20120. \code{proxy\_array\_load} to \code{proxy\_vecof\_ref},
  20121. \code{proxy\_array\_store} to \code{proxy\_vecof\_set}, and
  20122. \code{proxy\_array\_len} to \code{proxy\_vecof\_length}.
  20123. \fi}
  20124. We have another batch of operations to deal with: those for the
  20125. \CANYTY{} type. Recall that we generate an
  20126. \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}} when
  20127. there is a element access on something of type \CANYTY{}, and
  20128. similarly for
  20129. \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}} and
  20130. \racket{\code{any-vector-length}}\python{\code{any\_len}}. In
  20131. section~\ref{sec:select-Lany} we selected instructions for these
  20132. operations on the basis of the idea that the underlying value was a tuple or
  20133. array. But in the current setting, the underlying value is of type
  20134. \PTUPLETYNAME{}\python{ or \PARRAYTYNAME{}}. We have added three runtime
  20135. functions to deal with this:
  20136. \code{proxy\_vector\_ref},
  20137. \code{proxy\_vector\_set}, and
  20138. \code{proxy\_vector\_length} that inspect bit $62$ of the tag
  20139. to determine whether the value is a proxy, and then
  20140. dispatches to the the appropriate code.
  20141. %
  20142. So \racket{\code{any-vector-ref}}\python{\code{any\_load\_unsafe}}
  20143. can be translated as follows.
  20144. We begin by projecting the underlying value out of the tagged value and
  20145. then call the \code{proxy\_vector\_ref} procedure in the runtime.
  20146. {\if\edition\racketEd
  20147. \begin{lstlisting}
  20148. (Assign |$\itm{lhs}$| (Prim 'any-vec-ref (list |$e_1$| |$e_2$|)))
  20149. |$\Rightarrow$|
  20150. movq |$\neg 111$|, %rdi
  20151. andq |$e_1'$|, %rdi
  20152. movq |$e_2'$|, %rsi
  20153. callq proxy_vector_ref
  20154. movq %rax, |$\itm{lhs'}$|
  20155. \end{lstlisting}
  20156. \fi}
  20157. {\if\edition\pythonEd\pythonColor
  20158. \begin{lstlisting}
  20159. Assign([|$\itm{lhs}$|], Call(Name('any_load_unsafe'), [|$e_1$|, |$e_2$|]))
  20160. |$\Rightarrow$|
  20161. movq |$\neg 111$|, %rdi
  20162. andq |$e_1'$|, %rdi
  20163. movq |$e_2'$|, %rsi
  20164. callq proxy_vector_ref
  20165. movq %rax, |$\itm{lhs'}$|
  20166. \end{lstlisting}
  20167. \fi}
  20168. \noindent The \racket{\code{any-vector-set!}}\python{\code{any\_store\_unsafe}}
  20169. and \racket{\code{any-vector-length}}\python{\code{any\_len}} operators
  20170. are translated in a similar way. Alternatively, you could generate
  20171. instructions to open-code
  20172. the \code{proxy\_vector\_ref}, \code{proxy\_vector\_set},
  20173. and \code{proxy\_vector\_length} functions.
  20174. \begin{exercise}\normalfont\normalsize
  20175. Implement a compiler for the gradually typed \LangGrad{} language by
  20176. extending and adapting your compiler for \LangLam{}. Create ten new
  20177. partially typed test programs. In addition to testing with these
  20178. new programs, test your compiler on all the tests for \LangLam{}
  20179. and for \LangDyn{}.
  20180. %
  20181. \racket{Sometimes you may get a type checking error on the
  20182. \LangDyn{} programs, but you can adapt them by inserting a cast to
  20183. the \CANYTY{} type around each subexpression that has caused a type
  20184. error. Although \LangDyn{} does not have explicit casts, you can
  20185. induce one by wrapping the subexpression \code{e} with a call to
  20186. an unannotated identity function, as follows: \code{((lambda (x) x) e)}.}
  20187. %
  20188. \python{Sometimes you may get a type checking error on the
  20189. \LangDyn{} programs but you can adapt them by inserting a
  20190. temporary variable of type \CANYTY{} that is initialized with the
  20191. troublesome expression.}
  20192. \end{exercise}
  20193. \begin{figure}[p]
  20194. \begin{tcolorbox}[colback=white]
  20195. {\if\edition\racketEd
  20196. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  20197. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20198. \node (Lgradual2) at (4,4) {\large \LangCast{}};
  20199. \node (Lgradual3) at (8,4) {\large \LangProxy{}};
  20200. \node (Lgradual4) at (12,4) {\large \LangPVec{}};
  20201. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20202. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20203. \node (Llambdapp) at (4,2) {\large \LangPVecFunRef{}};
  20204. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20205. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20206. %\node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20207. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20208. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20209. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  20210. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20211. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20212. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20213. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20214. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  20215. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  20216. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20217. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20218. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  20219. \path[->,bend left=15] (Lgradual) edge [above] node
  20220. {\ttfamily\footnotesize cast\_insert} (Lgradual2);
  20221. \path[->,bend left=15] (Lgradual2) edge [above] node
  20222. {\ttfamily\footnotesize lower\_casts} (Lgradual3);
  20223. \path[->,bend left=15] (Lgradual3) edge [above] node
  20224. {\ttfamily\footnotesize differentiate\_proxies} (Lgradual4);
  20225. \path[->,bend left=15] (Lgradual4) edge [left] node
  20226. {\ttfamily\footnotesize shrink} (Lgradualr);
  20227. \path[->,bend left=15] (Lgradualr) edge [above] node
  20228. {\ttfamily\footnotesize uniquify} (Lgradualp);
  20229. \path[->,bend right=15] (Lgradualp) edge [above] node
  20230. {\ttfamily\footnotesize reveal\_functions} (Llambdapp);
  20231. %% \path[->,bend left=15] (Llambdaproxy-4) edge [left] node
  20232. %% {\ttfamily\footnotesize resolve} (Lgradualr);
  20233. \path[->,bend right=15] (Llambdapp) edge [above] node
  20234. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-4);
  20235. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20236. {\ttfamily\footnotesize convert\_assignments} (Llambdaproxy-5);
  20237. \path[->,bend right=10] (Llambdaproxy-5) edge [above] node
  20238. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20239. \path[->,bend left=15] (F1-2) edge [above] node
  20240. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20241. \path[->,bend left=15] (F1-3) edge [left] node
  20242. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  20243. \path[->,bend left=15] (F1-4) edge [below] node
  20244. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  20245. \path[->,bend right=15] (F1-5) edge [above] node
  20246. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20247. \path[->,bend right=15] (F1-6) edge [above] node
  20248. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20249. \path[->,bend right=15] (C3-2) edge [right] node
  20250. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20251. \path[->,bend right=15] (x86-2) edge [right] node
  20252. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  20253. \path[->,bend right=15] (x86-2-1) edge [below] node
  20254. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  20255. \path[->,bend right=15] (x86-2-2) edge [right] node
  20256. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  20257. \path[->,bend left=15] (x86-3) edge [above] node
  20258. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20259. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20260. \end{tikzpicture}
  20261. \fi}
  20262. {\if\edition\pythonEd\pythonColor
  20263. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.80]
  20264. \node (Lgradual) at (0,4) {\large \LangGrad{}};
  20265. \node (Lgradual2) at (4,4) {\large \LangGrad{}};
  20266. \node (Lgradual3) at (8,4) {\large \LangCast{}};
  20267. \node (Lgradual4) at (12,4) {\large \LangProxy{}};
  20268. \node (Lgradualr) at (12,2) {\large \LangPVec{}};
  20269. \node (Lgradualp) at (8,2) {\large \LangPVec{}};
  20270. \node (Llambdapp) at (4,2) {\large \LangPVec{}};
  20271. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  20272. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  20273. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  20274. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  20275. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  20276. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  20277. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  20278. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  20279. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  20280. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  20281. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  20282. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  20283. \path[->,bend left=15] (Lgradual) edge [above] node
  20284. {\ttfamily\footnotesize shrink} (Lgradual2);
  20285. \path[->,bend left=15] (Lgradual2) edge [above] node
  20286. {\ttfamily\footnotesize uniquify} (Lgradual3);
  20287. \path[->,bend left=15] (Lgradual3) edge [above] node
  20288. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  20289. \path[->,bend left=15] (Lgradual4) edge [left] node
  20290. {\ttfamily\footnotesize resolve} (Lgradualr);
  20291. \path[->,bend left=15] (Lgradualr) edge [below] node
  20292. {\ttfamily\footnotesize cast\_insert} (Lgradualp);
  20293. \path[->,bend right=15] (Lgradualp) edge [above] node
  20294. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  20295. \path[->,bend right=15] (Llambdapp) edge [above] node
  20296. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  20297. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  20298. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  20299. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  20300. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  20301. \path[->,bend left=15] (F1-1) edge [above] node
  20302. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  20303. \path[->,bend left=15] (F1-2) edge [above] node
  20304. {\ttfamily\footnotesize limit\_functions} (F1-3);
  20305. \path[->,bend left=15] (F1-3) edge [right] node
  20306. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  20307. \path[->,bend right=15] (F1-5) edge [above] node
  20308. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  20309. \path[->,bend right=15] (F1-6) edge [above] node
  20310. {\ttfamily\footnotesize explicate\_control} (C3-2);
  20311. \path[->,bend right=15] (C3-2) edge [right] node
  20312. {\ttfamily\footnotesize select\_instructions} (x86-2);
  20313. \path[->,bend right=15] (x86-2) edge [below] node
  20314. {\ttfamily\footnotesize assign\_homes} (x86-3);
  20315. \path[->,bend right=15] (x86-3) edge [below] node
  20316. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  20317. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  20318. \end{tikzpicture}
  20319. \fi}
  20320. \end{tcolorbox}
  20321. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  20322. \label{fig:Lgradual-passes}
  20323. \end{figure}
  20324. Figure~\ref{fig:Lgradual-passes} provides an overview of the passes
  20325. needed for the compilation of \LangGrad{}.
  20326. \section{Further Reading}
  20327. This chapter just scratches the surface of gradual typing. The basic
  20328. approach described here is missing two key ingredients that one would
  20329. want in a implementation of gradual typing: blame
  20330. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  20331. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  20332. problem addressed by blame tracking is that when a cast on a
  20333. higher-order value fails, it often does so at a point in the program
  20334. that is far removed from the original cast. Blame tracking is a
  20335. technique for propagating extra information through casts and proxies
  20336. so that when a cast fails, the error message can point back to the
  20337. original location of the cast in the source program.
  20338. The problem addressed by space-efficient casts also relates to
  20339. higher-order casts. It turns out that in partially typed programs, a
  20340. function or tuple can flow through a great many casts at runtime. With
  20341. the approach described in this chapter, each cast adds another
  20342. \code{lambda} wrapper or a tuple proxy. Not only does this take up
  20343. considerable space, but it also makes the function calls and tuple
  20344. operations slow. For example, a partially typed version of quicksort
  20345. could, in the worst case, build a chain of proxies of length $O(n)$
  20346. around the tuple, changing the overall time complexity of the
  20347. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  20348. solution to this problem by representing casts using the coercion
  20349. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  20350. long chains of proxies by compressing them into a concise normal
  20351. form. \citet{Siek:2015ab} give an algorithm for compressing coercions,
  20352. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  20353. the Grift compiler:
  20354. \begin{center}
  20355. \url{https://github.com/Gradual-Typing/Grift}
  20356. \end{center}
  20357. There are also interesting interactions between gradual typing and
  20358. other language features, such as generics, information-flow types, and
  20359. type inference, to name a few. We recommend to the reader the
  20360. online gradual typing bibliography for more material:
  20361. \begin{center}
  20362. \url{http://samth.github.io/gradual-typing-bib/}
  20363. \end{center}
  20364. % TODO: challenge problem:
  20365. % type analysis and type specialization?
  20366. % coercions?
  20367. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  20368. \chapter{Generics}
  20369. \label{ch:Lpoly}
  20370. \setcounter{footnote}{0}
  20371. This chapter studies the compilation of
  20372. generics\index{subject}{generics} (aka parametric
  20373. polymorphism\index{subject}{parametric polymorphism}), compiling the
  20374. \LangPoly{} subset of \racket{Typed Racket}\python{Python}. Generics
  20375. enable programmers to make code more reusable by parameterizing
  20376. functions and data structures with respect to the types on which they
  20377. operate. For example, figure~\ref{fig:map-poly} revisits the
  20378. \code{map} example and this time gives it a more fitting type. This
  20379. \code{map} function is parameterized with respect to the element type
  20380. of the tuple. The type of \code{map} is the following generic type
  20381. specified by the \code{All} type with parameter \code{T}:
  20382. {\if\edition\racketEd
  20383. \begin{lstlisting}
  20384. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  20385. \end{lstlisting}
  20386. \fi}
  20387. {\if\edition\pythonEd\pythonColor
  20388. \begin{lstlisting}
  20389. All[[T], Callable[[Callable[[T],T], tuple[T,T]], tuple[T,T]]]
  20390. \end{lstlisting}
  20391. \fi}
  20392. %
  20393. The idea is that \code{map} can be used at \emph{all} choices of a
  20394. type for parameter \code{T}. In the example shown in
  20395. figure~\ref{fig:map-poly} we apply \code{map} to a tuple of integers,
  20396. implicitly choosing \racket{\code{Integer}}\python{\code{int}} for
  20397. \code{T}, but we could have just as well applied \code{map} to a tuple
  20398. of Booleans.
  20399. %
  20400. A \emph{monomorphic} function is simply one that is not generic.
  20401. %
  20402. We use the term \emph{instantiation} for the process (within the
  20403. language implementation) of turning a generic function into a
  20404. monomorphic one, where the type parameters have been replaced by
  20405. types.
  20406. {\if\edition\pythonEd\pythonColor
  20407. %
  20408. In Python, when writing a generic function such as \code{map}, one
  20409. does not explicitly write down its generic type (using \code{All}).
  20410. Instead, the fact that it is generic is implied by the use of type
  20411. variables (such as \code{T}) in the type annotations of its
  20412. parameters.
  20413. %
  20414. \fi}
  20415. \begin{figure}[tbp]
  20416. % poly_test_2.rkt
  20417. \begin{tcolorbox}[colback=white]
  20418. {\if\edition\racketEd
  20419. \begin{lstlisting}
  20420. (: map (All (T) ((T -> T) (Vector T T) -> (Vector T T))))
  20421. (define (map f v)
  20422. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  20423. (define (inc [x : Integer]) : Integer (+ x 1))
  20424. (vector-ref (map inc (vector 0 41)) 1)
  20425. \end{lstlisting}
  20426. \fi}
  20427. {\if\edition\pythonEd\pythonColor
  20428. \begin{lstlisting}
  20429. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  20430. return (f(tup[0]), f(tup[1]))
  20431. def add1(x : int) -> int:
  20432. return x + 1
  20433. t = map(add1, (0, 41))
  20434. print(t[1])
  20435. \end{lstlisting}
  20436. \fi}
  20437. \end{tcolorbox}
  20438. \caption{A generic version of the \code{map} function.}
  20439. \label{fig:map-poly}
  20440. \end{figure}
  20441. Figure~\ref{fig:Lpoly-concrete-syntax} presents the definition of the
  20442. concrete syntax of \LangPoly{}, and figure~\ref{fig:Lpoly-syntax}
  20443. shows the definition of the abstract syntax.
  20444. %
  20445. {\if\edition\racketEd
  20446. We add a second form for function definitions in which a type
  20447. declaration comes before the \code{define}. In the abstract syntax,
  20448. the return type in the \code{Def} is \CANYTY{}, but that should be
  20449. ignored in favor of the return type in the type declaration. (The
  20450. \CANYTY{} comes from using the same parser as discussed in
  20451. chapter~\ref{ch:Ldyn}.) The presence of a type declaration
  20452. enables the use of an \code{All} type for a function, thereby making
  20453. it generic.
  20454. \fi}
  20455. %
  20456. The grammar for types is extended to include the type of a generic
  20457. (\code{All}) and type variables\python{\ (\code{GenericVar} in the
  20458. abstract syntax)}.
  20459. \newcommand{\LpolyGrammarRacket}{
  20460. \begin{array}{lcl}
  20461. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20462. \Def &::=& \LP\key{:}~\Var~\Type\RP \\
  20463. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP
  20464. \end{array}
  20465. }
  20466. \newcommand{\LpolyASTRacket}{
  20467. \begin{array}{lcl}
  20468. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  20469. \Def &::=& \DECL{\Var}{\Type} \\
  20470. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp}
  20471. \end{array}
  20472. }
  20473. \newcommand{\LpolyGrammarPython}{
  20474. \begin{array}{lcl}
  20475. \Type &::=& \key{All}\LS \LS\Var\ldots\RS,\Type\RS \MID \Var
  20476. \end{array}
  20477. }
  20478. \newcommand{\LpolyASTPython}{
  20479. \begin{array}{lcl}
  20480. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP
  20481. \MID \key{GenericVar}\LP\Var\RP
  20482. \end{array}
  20483. }
  20484. \begin{figure}[tp]
  20485. \centering
  20486. \begin{tcolorbox}[colback=white]
  20487. \footnotesize
  20488. {\if\edition\racketEd
  20489. \[
  20490. \begin{array}{l}
  20491. \gray{\LintGrammarRacket{}} \\ \hline
  20492. \gray{\LvarGrammarRacket{}} \\ \hline
  20493. \gray{\LifGrammarRacket{}} \\ \hline
  20494. \gray{\LwhileGrammarRacket} \\ \hline
  20495. \gray{\LtupGrammarRacket} \\ \hline
  20496. \gray{\LfunGrammarRacket} \\ \hline
  20497. \gray{\LlambdaGrammarRacket} \\ \hline
  20498. \LpolyGrammarRacket \\
  20499. \begin{array}{lcl}
  20500. \LangPoly{} &::=& \Def \ldots ~ \Exp
  20501. \end{array}
  20502. \end{array}
  20503. \]
  20504. \fi}
  20505. {\if\edition\pythonEd\pythonColor
  20506. \[
  20507. \begin{array}{l}
  20508. \gray{\LintGrammarPython{}} \\ \hline
  20509. \gray{\LvarGrammarPython{}} \\ \hline
  20510. \gray{\LifGrammarPython{}} \\ \hline
  20511. \gray{\LwhileGrammarPython} \\ \hline
  20512. \gray{\LtupGrammarPython} \\ \hline
  20513. \gray{\LfunGrammarPython} \\ \hline
  20514. \gray{\LlambdaGrammarPython} \\\hline
  20515. \LpolyGrammarPython \\
  20516. \begin{array}{lcl}
  20517. \LangPoly{} &::=& \Def\ldots \Stmt\ldots
  20518. \end{array}
  20519. \end{array}
  20520. \]
  20521. \fi}
  20522. \end{tcolorbox}
  20523. \caption{The concrete syntax of \LangPoly{}, extending \LangLam{}
  20524. (figure~\ref{fig:Llam-concrete-syntax}).}
  20525. \label{fig:Lpoly-concrete-syntax}
  20526. \end{figure}
  20527. \begin{figure}[tp]
  20528. \centering
  20529. \begin{tcolorbox}[colback=white]
  20530. \footnotesize
  20531. {\if\edition\racketEd
  20532. \[
  20533. \begin{array}{l}
  20534. \gray{\LintOpAST} \\ \hline
  20535. \gray{\LvarASTRacket{}} \\ \hline
  20536. \gray{\LifASTRacket{}} \\ \hline
  20537. \gray{\LwhileASTRacket{}} \\ \hline
  20538. \gray{\LtupASTRacket{}} \\ \hline
  20539. \gray{\LfunASTRacket} \\ \hline
  20540. \gray{\LlambdaASTRacket} \\ \hline
  20541. \LpolyASTRacket \\
  20542. \begin{array}{lcl}
  20543. \LangPoly{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  20544. \end{array}
  20545. \end{array}
  20546. \]
  20547. \fi}
  20548. {\if\edition\pythonEd\pythonColor
  20549. \[
  20550. \begin{array}{l}
  20551. \gray{\LintASTPython} \\ \hline
  20552. \gray{\LvarASTPython{}} \\ \hline
  20553. \gray{\LifASTPython{}} \\ \hline
  20554. \gray{\LwhileASTPython{}} \\ \hline
  20555. \gray{\LtupASTPython{}} \\ \hline
  20556. \gray{\LfunASTPython} \\ \hline
  20557. \gray{\LlambdaASTPython} \\ \hline
  20558. \LpolyASTPython \\
  20559. \begin{array}{lcl}
  20560. \LangPoly{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  20561. \end{array}
  20562. \end{array}
  20563. \]
  20564. \fi}
  20565. \end{tcolorbox}
  20566. \caption{The abstract syntax of \LangPoly{}, extending \LangLam{}
  20567. (figure~\ref{fig:Llam-syntax}).}
  20568. \label{fig:Lpoly-syntax}
  20569. \end{figure}
  20570. By including the \code{All} type in the $\Type$ nonterminal of the
  20571. grammar we choose to make generics first class, which has interesting
  20572. repercussions on the compiler.\footnote{The Python \code{typing} library does
  20573. not include syntax for the \code{All} type. It is inferred for functions whose
  20574. type annotations contain type variables.} Many languages with generics, such as
  20575. C++~\citep{stroustrup88:_param_types} and Standard
  20576. ML~\citep{Milner:1990fk}, support only second-class generics, so it
  20577. may be helpful to see an example of first-class generics in action. In
  20578. figure~\ref{fig:apply-twice} we define a function \code{apply\_twice}
  20579. whose parameter is a generic function. Indeed, because the grammar for
  20580. $\Type$ includes the \code{All} type, a generic function may also be
  20581. returned from a function or stored inside a tuple. The body of
  20582. \code{apply\_twice} applies the generic function \code{f} to a Boolean
  20583. and also to an integer, which would not be possible if \code{f} were
  20584. not generic.
  20585. \begin{figure}[tbp]
  20586. \begin{tcolorbox}[colback=white]
  20587. {\if\edition\racketEd
  20588. \begin{lstlisting}
  20589. (: apply_twice ((All (U) (U -> U)) -> Integer))
  20590. (define (apply_twice f)
  20591. (if (f #t) (f 42) (f 777)))
  20592. (: id (All (T) (T -> T)))
  20593. (define (id x) x)
  20594. (apply_twice id)
  20595. \end{lstlisting}
  20596. \fi}
  20597. {\if\edition\pythonEd\pythonColor
  20598. \begin{lstlisting}
  20599. def apply_twice(f : All[[U], Callable[[U],U]]) -> int:
  20600. if f(True):
  20601. return f(42)
  20602. else:
  20603. return f(777)
  20604. def id(x: T) -> T:
  20605. return x
  20606. print(apply_twice(id))
  20607. \end{lstlisting}
  20608. \fi}
  20609. \end{tcolorbox}
  20610. \caption{An example illustrating first-class generics.}
  20611. \label{fig:apply-twice}
  20612. \end{figure}
  20613. The type checker for \LangPoly{} shown in
  20614. figure~\ref{fig:type-check-Lpoly} has several new responsibilities
  20615. (compared to \LangLam{}) which we discuss in the following paragraphs.
  20616. {\if\edition\pythonEd\pythonColor
  20617. %
  20618. Regarding function definitions, if the type annotations on its
  20619. parameters contain generic variables, then the function is generic and
  20620. therefore its type is an \code{All} type wrapped around a function
  20621. type. Otherwise the function is monomorphic and its type is simply
  20622. a function type.
  20623. %
  20624. \fi}
  20625. The type checking of a function application is extended to handle the
  20626. case in which the operator expression is a generic function. In that case
  20627. the type arguments are deduced by matching the types of the parameters
  20628. with the types of the arguments.
  20629. %
  20630. The \code{match\_types} auxiliary function
  20631. (figure~\ref{fig:type-check-Lpoly-aux}) carries out this deduction by
  20632. recursively descending through a parameter type \code{param\_ty} and
  20633. the corresponding argument type \code{arg\_ty}, making sure that they
  20634. are equal except when there is a type parameter in the parameter
  20635. type. Upon encountering a type parameter for the first time, the
  20636. algorithm deduces an association of the type parameter to the
  20637. corresponding part of the argument type. If it is not the first time
  20638. that the type parameter has been encountered, the algorithm looks up
  20639. its deduced type and makes sure that it is equal to the corresponding
  20640. part of the argument type. The return type of the application is the
  20641. return type of the generic function with the type parameters
  20642. replaced by the deduced type arguments, using the
  20643. \code{substitute\_type} auxiliary function, which is also listed in
  20644. figure~\ref{fig:type-check-Lpoly-aux}.
  20645. The type checker extends type equality to handle the \code{All} type.
  20646. This is not quite as simple as for other types, such as function and
  20647. tuple types, because two \code{All} types can be syntactically
  20648. different even though they are equivalent. For example,
  20649. \begin{center}
  20650. \racket{\code{(All (T) (T -> T))}}\python{\code{All[[T], Callable[[T], T]]}}
  20651. \end{center}
  20652. is equivalent to
  20653. \begin{center}
  20654. \racket{\code{(All (U) (U -> U))}}\python{\code{All[[U], Callable[[U], U]]}}.
  20655. \end{center}
  20656. Two generic types are equal if they differ only in
  20657. the choice of the names of the type parameters. The definition of type
  20658. equality shown in figure~\ref{fig:type-check-Lpoly-aux} renames the type
  20659. parameters in one type to match the type parameters of the other type.
  20660. {\if\edition\racketEd
  20661. %
  20662. The type checker also ensures that only defined type variables appear
  20663. in type annotations. The \code{check\_well\_formed} function for which
  20664. the definition is shown in figure~\ref{fig:well-formed-types}
  20665. recursively inspects a type, making sure that each type variable has
  20666. been defined.
  20667. %
  20668. \fi}
  20669. \begin{figure}[tbp]
  20670. \begin{tcolorbox}[colback=white]
  20671. {\if\edition\racketEd
  20672. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20673. (define type-check-poly-class
  20674. (class type-check-Llambda-class
  20675. (super-new)
  20676. (inherit check-type-equal?)
  20677. (define/override (type-check-apply env e1 es)
  20678. (define-values (e^ ty) ((type-check-exp env) e1))
  20679. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  20680. ((type-check-exp env) e)))
  20681. (match ty
  20682. [`(,ty^* ... -> ,rt)
  20683. (for ([arg-ty ty*] [param-ty ty^*])
  20684. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  20685. (values e^ es^ rt)]
  20686. [`(All ,xs (,tys ... -> ,rt))
  20687. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  20688. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  20689. (match_types env^^ param-ty arg-ty)))
  20690. (define targs
  20691. (for/list ([x xs])
  20692. (match (dict-ref env^^ x (lambda () #f))
  20693. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  20694. x (Apply e1 es))]
  20695. [ty ty])))
  20696. (values (Inst e^ ty targs) es^ (substitute_type env^^ rt))]
  20697. [else (error 'type-check "expected a function, not ~a" ty)]))
  20698. (define/override ((type-check-exp env) e)
  20699. (match e
  20700. [(Lambda `([,xs : ,Ts] ...) rT body)
  20701. (for ([T Ts]) ((check_well_formed env) T))
  20702. ((check_well_formed env) rT)
  20703. ((super type-check-exp env) e)]
  20704. [(HasType e1 ty)
  20705. ((check_well_formed env) ty)
  20706. ((super type-check-exp env) e)]
  20707. [else ((super type-check-exp env) e)]))
  20708. (define/override ((type-check-def env) d)
  20709. (verbose 'type-check "poly/def" d)
  20710. (match d
  20711. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  20712. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  20713. (for ([p ps]) ((check_well_formed ts-env) p))
  20714. ((check_well_formed ts-env) rt)
  20715. (define new-env (append ts-env (map cons xs ps) env))
  20716. (define-values (body^ ty^) ((type-check-exp new-env) body))
  20717. (check-type-equal? ty^ rt body)
  20718. (Generic ts (Def f p:t* rt info body^))]
  20719. [else ((super type-check-def env) d)]))
  20720. (define/override (type-check-program p)
  20721. (match p
  20722. [(Program info body)
  20723. (type-check-program (ProgramDefsExp info '() body))]
  20724. [(ProgramDefsExp info ds body)
  20725. (define ds^ (combine-decls-defs ds))
  20726. (define new-env (for/list ([d ds^])
  20727. (cons (def-name d) (fun-def-type d))))
  20728. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  20729. (define-values (body^ ty) ((type-check-exp new-env) body))
  20730. (check-type-equal? ty 'Integer body)
  20731. (ProgramDefsExp info ds^^ body^)]))
  20732. ))
  20733. \end{lstlisting}
  20734. \fi}
  20735. {\if\edition\pythonEd\pythonColor
  20736. \begin{lstlisting}[basicstyle=\ttfamily\small]
  20737. def type_check_exp(self, e, env):
  20738. match e:
  20739. case Call(Name(f), args) if f in builtin_functions:
  20740. return super().type_check_exp(e, env)
  20741. case Call(func, args):
  20742. func_t = self.type_check_exp(func, env)
  20743. func.has_type = func_t
  20744. match func_t:
  20745. case AllType(ps, FunctionType(p_tys, rt)):
  20746. for arg in args:
  20747. arg.has_type = self.type_check_exp(arg, env)
  20748. arg_tys = [arg.has_type for arg in args]
  20749. deduced = {}
  20750. for (p, a) in zip(p_tys, arg_tys):
  20751. self.match_types(p, a, deduced, e)
  20752. return self.substitute_type(rt, deduced)
  20753. case _:
  20754. return super().type_check_exp(e, env)
  20755. case _:
  20756. return super().type_check_exp(e, env)
  20757. def type_check(self, p):
  20758. match p:
  20759. case Module(body):
  20760. env = {}
  20761. for s in body:
  20762. match s:
  20763. case FunctionDef(name, params, bod, dl, returns, comment):
  20764. params_t = [t for (x,t) in params]
  20765. ty_params = set()
  20766. for t in params_t:
  20767. ty_params |$\mid$|= self.generic_variables(t)
  20768. ty = FunctionType(params_t, returns)
  20769. if len(ty_params) > 0:
  20770. ty = AllType(list(ty_params), ty)
  20771. env[name] = ty
  20772. self.check_stmts(body, IntType(), env)
  20773. case _:
  20774. raise Exception('type_check: unexpected ' + repr(p))
  20775. \end{lstlisting}
  20776. \fi}
  20777. \end{tcolorbox}
  20778. \caption{Type checker for the \LangPoly{} language.}
  20779. \label{fig:type-check-Lpoly}
  20780. \end{figure}
  20781. \begin{figure}[tbp]
  20782. \begin{tcolorbox}[colback=white]
  20783. {\if\edition\racketEd
  20784. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20785. (define/override (type-equal? t1 t2)
  20786. (match* (t1 t2)
  20787. [(`(All ,xs ,T1) `(All ,ys ,T2))
  20788. (define env (map cons xs ys))
  20789. (type-equal? (substitute_type env T1) T2)]
  20790. [(other wise)
  20791. (super type-equal? t1 t2)]))
  20792. (define/public (match_types env pt at)
  20793. (match* (pt at)
  20794. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  20795. [('Void 'Void) env] [('Any 'Any) env]
  20796. [(`(Vector ,pts ...) `(Vector ,ats ...))
  20797. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  20798. (match_types env^ pt1 at1))]
  20799. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  20800. (define env^ (match_types env prt art))
  20801. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  20802. (match_types env^^ pt1 at1))]
  20803. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  20804. (define env^ (append (map cons pxs axs) env))
  20805. (match_types env^ pt1 at1)]
  20806. [((? symbol? x) at)
  20807. (match (dict-ref env x (lambda () #f))
  20808. [#f (error 'type-check "undefined type variable ~a" x)]
  20809. ['Type (cons (cons x at) env)]
  20810. [t^ (check-type-equal? at t^ 'matching) env])]
  20811. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  20812. (define/public (substitute_type env pt)
  20813. (match pt
  20814. ['Integer 'Integer] ['Boolean 'Boolean]
  20815. ['Void 'Void] ['Any 'Any]
  20816. [`(Vector ,ts ...)
  20817. `(Vector ,@(for/list ([t ts]) (substitute_type env t)))]
  20818. [`(,ts ... -> ,rt)
  20819. `(,@(for/list ([t ts]) (substitute_type env t)) -> ,(substitute_type env rt))]
  20820. [`(All ,xs ,t)
  20821. `(All ,xs ,(substitute_type (append (map cons xs xs) env) t))]
  20822. [(? symbol? x) (dict-ref env x)]
  20823. [else (error 'type-check "expected a type not ~a" pt)]))
  20824. (define/public (combine-decls-defs ds)
  20825. (match ds
  20826. ['() '()]
  20827. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  20828. (unless (equal? name f)
  20829. (error 'type-check "name mismatch, ~a != ~a" name f))
  20830. (match type
  20831. [`(All ,xs (,ps ... -> ,rt))
  20832. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  20833. (cons (Generic xs (Def name params^ rt info body))
  20834. (combine-decls-defs ds^))]
  20835. [`(,ps ... -> ,rt)
  20836. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  20837. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  20838. [else (error 'type-check "expected a function type, not ~a" type) ])]
  20839. [`(,(Def f params rt info body) . ,ds^)
  20840. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  20841. \end{lstlisting}
  20842. \fi}
  20843. {\if\edition\pythonEd\pythonColor
  20844. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  20845. def match_types(self, param_ty, arg_ty, deduced, e):
  20846. match (param_ty, arg_ty):
  20847. case (GenericVar(id), _):
  20848. if id in deduced:
  20849. self.check_type_equal(arg_ty, deduced[id], e)
  20850. else:
  20851. deduced[id] = arg_ty
  20852. case (AllType(ps, ty), AllType(arg_ps, arg_ty)):
  20853. rename = {ap:p for (ap,p) in zip(arg_ps, ps)}
  20854. new_arg_ty = self.substitute_type(arg_ty, rename)
  20855. self.match_types(ty, new_arg_ty, deduced, e)
  20856. case (TupleType(ps), TupleType(ts)):
  20857. for (p, a) in zip(ps, ts):
  20858. self.match_types(p, a, deduced, e)
  20859. case (ListType(p), ListType(a)):
  20860. self.match_types(p, a, deduced, e)
  20861. case (FunctionType(pps, prt), FunctionType(aps, art)):
  20862. for (pp, ap) in zip(pps, aps):
  20863. self.match_types(pp, ap, deduced, e)
  20864. self.match_types(prt, art, deduced, e)
  20865. case (IntType(), IntType()):
  20866. pass
  20867. case (BoolType(), BoolType()):
  20868. pass
  20869. case _:
  20870. raise Exception('mismatch: ' + str(param_ty) + '\n!= ' + str(arg_ty))
  20871. def substitute_type(self, ty, var_map):
  20872. match ty:
  20873. case GenericVar(id):
  20874. return var_map[id]
  20875. case AllType(ps, ty):
  20876. new_map = copy.deepcopy(var_map)
  20877. for p in ps:
  20878. new_map[p] = GenericVar(p)
  20879. return AllType(ps, self.substitute_type(ty, new_map))
  20880. case TupleType(ts):
  20881. return TupleType([self.substitute_type(t, var_map) for t in ts])
  20882. case ListType(ty):
  20883. return ListType(self.substitute_type(ty, var_map))
  20884. case FunctionType(pts, rt):
  20885. return FunctionType([self.substitute_type(p, var_map) for p in pts],
  20886. self.substitute_type(rt, var_map))
  20887. case IntType():
  20888. return IntType()
  20889. case BoolType():
  20890. return BoolType()
  20891. case _:
  20892. raise Exception('substitute_type: unexpected ' + repr(ty))
  20893. def check_type_equal(self, t1, t2, e):
  20894. match (t1, t2):
  20895. case (AllType(ps1, ty1), AllType(ps2, ty2)):
  20896. rename = {p2: GenericVar(p1) for (p1,p2) in zip(ps1,ps2)}
  20897. return self.check_type_equal(ty1, self.substitute_type(ty2, rename), e)
  20898. case (_, _):
  20899. return super().check_type_equal(t1, t2, e)
  20900. \end{lstlisting}
  20901. \fi}
  20902. \end{tcolorbox}
  20903. \caption{Auxiliary functions for type checking \LangPoly{}.}
  20904. \label{fig:type-check-Lpoly-aux}
  20905. \end{figure}
  20906. {\if\edition\racketEd
  20907. \begin{figure}[tbp]
  20908. \begin{tcolorbox}[colback=white]
  20909. \begin{lstlisting}
  20910. (define/public ((check_well_formed env) ty)
  20911. (match ty
  20912. ['Integer (void)]
  20913. ['Boolean (void)]
  20914. ['Void (void)]
  20915. [(? symbol? a)
  20916. (match (dict-ref env a (lambda () #f))
  20917. ['Type (void)]
  20918. [else (error 'type-check "undefined type variable ~a" a)])]
  20919. [`(Vector ,ts ...)
  20920. (for ([t ts]) ((check_well_formed env) t))]
  20921. [`(,ts ... -> ,t)
  20922. (for ([t ts]) ((check_well_formed env) t))
  20923. ((check_well_formed env) t)]
  20924. [`(All ,xs ,t)
  20925. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  20926. ((check_well_formed env^) t)]
  20927. [else (error 'type-check "unrecognized type ~a" ty)]))
  20928. \end{lstlisting}
  20929. \end{tcolorbox}
  20930. \caption{Well-formed types.}
  20931. \label{fig:well-formed-types}
  20932. \end{figure}
  20933. \fi}
  20934. % TODO: interpreter for R'_10
  20935. \clearpage
  20936. \section{Compiling Generics}
  20937. \label{sec:compiling-poly}
  20938. Broadly speaking, there are four approaches to compiling generics, as
  20939. follows:
  20940. \begin{description}
  20941. \item[Monomorphization] generates a different version of a generic
  20942. function for each set of type arguments with which it is used,
  20943. producing type-specialized code. This approach results in the most
  20944. efficient code but requires whole-program compilation (no separate
  20945. compilation) and may increase code size. Unfortunately,
  20946. monomorphization is incompatible with first-class generics because
  20947. it is not always possible to determine which generic functions are
  20948. used with which type arguments during compilation. (It can be done
  20949. at runtime with just-in-time compilation.) Monomorphization is
  20950. used to compile C++ templates~\citep{stroustrup88:_param_types} and
  20951. generic functions in NESL~\citep{Blelloch:1993aa} and
  20952. ML~\citep{Weeks:2006aa}.
  20953. \item[Uniform representation] generates one version of each generic
  20954. function and requires all values to have a common \emph{boxed} format,
  20955. such as the tagged values of type \CANYTY{} in \LangAny{}. Both
  20956. generic and monomorphic code is compiled similarly to code in a
  20957. dynamically typed language (like \LangDyn{}), in which primitive
  20958. operators require their arguments to be projected from \CANYTY{} and
  20959. their results to be injected into \CANYTY{}. (In object-oriented
  20960. languages, the projection is accomplished via virtual method
  20961. dispatch.) The uniform representation approach is compatible with
  20962. separate compilation and with first-class generics. However, it
  20963. produces the least efficient code because it introduces overhead in
  20964. the entire program. This approach is used in
  20965. Java~\citep{Bracha:1998fk},
  20966. CLU~\citep{liskov79:_clu_ref,Liskov:1993dk}, and some implementations
  20967. of ML~\citep{Cardelli:1984aa,Appel:1987aa}.
  20968. \item[Mixed representation] generates one version of each generic
  20969. function, using a boxed representation for type variables. However,
  20970. monomorphic code is compiled as usual (as in \LangLam{}), and
  20971. conversions are performed at the boundaries between monomorphic code
  20972. and polymorphic code (for example, when a generic function is instantiated
  20973. and called). This approach is compatible with separate compilation
  20974. and first-class generics and maintains efficiency in monomorphic
  20975. code. The trade-off is increased overhead at the boundary between
  20976. monomorphic and generic code. This approach is used in
  20977. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  20978. Java 5 with the addition of autoboxing.
  20979. \item[Type passing] uses the unboxed representation in both
  20980. monomorphic and generic code. Each generic function is compiled to a
  20981. single function with extra parameters that describe the type
  20982. arguments. The type information is used by the generated code to
  20983. determine how to access the unboxed values at runtime. This approach is
  20984. used in implementation of Napier88~\citep{Morrison:1991aa} and
  20985. ML~\citep{Harper:1995um}. Type passing is compatible with separate
  20986. compilation and first-class generics and maintains the
  20987. efficiency for monomorphic code. There is runtime overhead in
  20988. polymorphic code from dispatching on type information.
  20989. \end{description}
  20990. In this chapter we use the mixed representation approach, partly
  20991. because of its favorable attributes and partly because it is
  20992. straightforward to implement using the tools that we have already
  20993. built to support gradual typing. The work of compiling generic
  20994. functions is performed in two passes, \code{resolve} and
  20995. \code{erase\_types}, that we discuss next. The output of
  20996. \code{erase\_types} is \LangCast{}
  20997. (section~\ref{sec:gradual-insert-casts}), so the rest of the
  20998. compilation is handled by the compiler of chapter~\ref{ch:Lgrad}.
  20999. \section{Resolve Instantiation}
  21000. \label{sec:generic-resolve}
  21001. Recall that the type checker for \LangPoly{} deduces the type
  21002. arguments at call sites to a generic function. The purpose of the
  21003. \code{resolve} pass is to turn this implicit instantiation into an
  21004. explicit one, by adding \code{inst} nodes to the syntax of the
  21005. intermediate language. An \code{inst} node records the mapping of
  21006. type parameters to type arguments. The semantics of the \code{inst}
  21007. node is to instantiate the result of its first argument, a generic
  21008. function, to produce a monomorphic function. However, because the
  21009. interpreter never analyzes type annotations, instantiation can be a
  21010. no-op and simply return the generic function.
  21011. %
  21012. The output language of the \code{resolve} pass is \LangInst{},
  21013. for which the definition is shown in figure~\ref{fig:Lpoly-prime-syntax}.
  21014. {\if\edition\racketEd
  21015. The \code{resolve} pass combines the type declaration and polymorphic
  21016. function into a single definition, using the \code{Poly} form, to make
  21017. polymorphic functions more convenient to process in the next pass of the
  21018. compiler.
  21019. \fi}
  21020. \newcommand{\LinstASTRacket}{
  21021. \begin{array}{lcl}
  21022. \Type &::=& \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  21023. \Exp &::=& \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  21024. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  21025. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP
  21026. \end{array}
  21027. }
  21028. \newcommand{\LinstASTPython}{
  21029. \begin{array}{lcl}
  21030. \Type &::=& \key{AllType}\LP\LS\Var\ldots\RS, \Type\RP \MID \Var \\
  21031. \Exp &::=& \INST{\Exp}{\LC\Var\key{:}\Type\ldots\RC}
  21032. \end{array}
  21033. }
  21034. \begin{figure}[tp]
  21035. \centering
  21036. \begin{tcolorbox}[colback=white]
  21037. \small
  21038. {\if\edition\racketEd
  21039. \[
  21040. \begin{array}{l}
  21041. \gray{\LintOpAST} \\ \hline
  21042. \gray{\LvarASTRacket{}} \\ \hline
  21043. \gray{\LifASTRacket{}} \\ \hline
  21044. \gray{\LwhileASTRacket{}} \\ \hline
  21045. \gray{\LtupASTRacket{}} \\ \hline
  21046. \gray{\LfunASTRacket} \\ \hline
  21047. \gray{\LlambdaASTRacket} \\ \hline
  21048. \LinstASTRacket \\
  21049. \begin{array}{lcl}
  21050. \LangInst{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  21051. \end{array}
  21052. \end{array}
  21053. \]
  21054. \fi}
  21055. {\if\edition\pythonEd\pythonColor
  21056. \[
  21057. \begin{array}{l}
  21058. \gray{\LintASTPython} \\ \hline
  21059. \gray{\LvarASTPython{}} \\ \hline
  21060. \gray{\LifASTPython{}} \\ \hline
  21061. \gray{\LwhileASTPython{}} \\ \hline
  21062. \gray{\LtupASTPython{}} \\ \hline
  21063. \gray{\LfunASTPython} \\ \hline
  21064. \gray{\LlambdaASTPython} \\ \hline
  21065. \LinstASTPython \\
  21066. \begin{array}{lcl}
  21067. \LangInst{} &::=& \PROGRAM{}{\LS \Def \ldots \Stmt \ldots \RS}
  21068. \end{array}
  21069. \end{array}
  21070. \]
  21071. \fi}
  21072. \end{tcolorbox}
  21073. \caption{The abstract syntax of \LangInst{}, extending \LangLam{}
  21074. (figure~\ref{fig:Llam-syntax}).}
  21075. \label{fig:Lpoly-prime-syntax}
  21076. \end{figure}
  21077. The output of the \code{resolve} pass on the generic \code{map}
  21078. example is listed in figure~\ref{fig:map-resolve}. Note that the use
  21079. of \code{map} is wrapped in an \code{inst} node, with the parameter
  21080. \code{T} chosen to be \racket{\code{Integer}}\python{\code{int}}.
  21081. \begin{figure}[tbp]
  21082. % poly_test_2.rkt
  21083. \begin{tcolorbox}[colback=white]
  21084. {\if\edition\racketEd
  21085. \begin{lstlisting}
  21086. (poly (T) (define (map [f : (T -> T)] [v : (Vector T T)]) : (Vector T T)
  21087. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  21088. (define (inc [x : Integer]) : Integer (+ x 1))
  21089. (vector-ref ((inst map (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21090. (Integer))
  21091. inc (vector 0 41)) 1)
  21092. \end{lstlisting}
  21093. \fi}
  21094. {\if\edition\pythonEd\pythonColor
  21095. \begin{lstlisting}
  21096. def map(f : Callable[[T],T], tup : tuple[T,T]) -> tuple[T,T]:
  21097. return (f(tup[0]), f(tup[1]))
  21098. def add1(x : int) -> int:
  21099. return x + 1
  21100. t = inst(map, {T: int})(add1, (0, 41))
  21101. print(t[1])
  21102. \end{lstlisting}
  21103. \fi}
  21104. \end{tcolorbox}
  21105. \caption{Output of the \code{resolve} pass on the \code{map} example.}
  21106. \label{fig:map-resolve}
  21107. \end{figure}
  21108. \section{Erase Generic Types}
  21109. \label{sec:erase_types}
  21110. We use the \CANYTY{} type presented in chapter~\ref{ch:Ldyn} to
  21111. represent type variables. For example, figure~\ref{fig:map-erase}
  21112. shows the output of the \code{erase\_types} pass on the generic
  21113. \code{map} (figure~\ref{fig:map-poly}). The occurrences of
  21114. type parameter \code{a} are replaced by \CANYTY{}, and the generic
  21115. \code{All} types are removed from the type of \code{map}.
  21116. \begin{figure}[tbp]
  21117. \begin{tcolorbox}[colback=white]
  21118. {\if\edition\racketEd
  21119. \begin{lstlisting}
  21120. (define (map [f : (Any -> Any)] [v : (Vector Any Any)])
  21121. : (Vector Any Any)
  21122. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  21123. (define (inc [x : Integer]) : Integer (+ x 1))
  21124. (vector-ref ((cast map
  21125. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21126. ((Integer -> Integer) (Vector Integer Integer)
  21127. -> (Vector Integer Integer)))
  21128. inc (vector 0 41)) 1)
  21129. \end{lstlisting}
  21130. \fi}
  21131. {\if\edition\pythonEd\pythonColor
  21132. \begin{lstlisting}
  21133. def map(f : Callable[[Any],Any], tup : tuple[Any,Any])-> tuple[Any,Any]:
  21134. return (f(tup[0]), f(tup[1]))
  21135. def add1(x : int) -> int:
  21136. return (x + 1)
  21137. def main() -> int:
  21138. t = cast(map, |$T_1$|, |$T_2$|)(add1, (0, 41))
  21139. print(t[1])
  21140. return 0
  21141. \end{lstlisting}
  21142. {\small
  21143. where\\
  21144. $T_1 = $ \code{Callable[[Callable[[Any], Any],tuple[Any,Any]], tuple[Any,Any]]}\\
  21145. $T_2 = $ \code{Callable[[Callable[[int], int],tuple[int,int]], tuple[int,int]]}
  21146. }
  21147. \fi}
  21148. \end{tcolorbox}
  21149. \caption{The generic \code{map} example after type erasure.}
  21150. \label{fig:map-erase}
  21151. \end{figure}
  21152. This process of type erasure creates a challenge at points of
  21153. instantiation. For example, consider the instantiation of
  21154. \code{map} shown in figure~\ref{fig:map-resolve}.
  21155. The type of \code{map} is
  21156. %
  21157. {\if\edition\racketEd
  21158. \begin{lstlisting}
  21159. (All (T) ((T -> T) (Vector T T) -> (Vector T T)))
  21160. \end{lstlisting}
  21161. \fi}
  21162. {\if\edition\pythonEd\pythonColor
  21163. \begin{lstlisting}
  21164. All[[T], Callable[[Callable[[T], T], tuple[T, T]], tuple[T, T]]]
  21165. \end{lstlisting}
  21166. \fi}
  21167. %
  21168. and it is instantiated to
  21169. %
  21170. {\if\edition\racketEd
  21171. \begin{lstlisting}
  21172. ((Integer -> Integer) (Vector Integer Integer)
  21173. -> (Vector Integer Integer))
  21174. \end{lstlisting}
  21175. \fi}
  21176. {\if\edition\pythonEd\pythonColor
  21177. \begin{lstlisting}
  21178. Callable[[Callable[[int], int], tuple[int, int]], tuple[int, int]]
  21179. \end{lstlisting}
  21180. \fi}
  21181. %
  21182. After erasure, the type of \code{map} is
  21183. %
  21184. {\if\edition\racketEd
  21185. \begin{lstlisting}
  21186. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  21187. \end{lstlisting}
  21188. \fi}
  21189. {\if\edition\pythonEd\pythonColor
  21190. \begin{lstlisting}
  21191. Callable[[Callable[[Any], Any], tuple[Any, Any]], tuple[Any, Any]]
  21192. \end{lstlisting}
  21193. \fi}
  21194. %
  21195. but we need to convert it to the instantiated type. This is easy to
  21196. do in the language \LangCast{} with a single \code{cast}. In the
  21197. example shown in figure~\ref{fig:map-erase}, the instantiation of
  21198. \code{map} has been compiled to a \code{cast} from the type of
  21199. \code{map} to the instantiated type. The source and the target type of a
  21200. cast must be consistent (figure~\ref{fig:consistent}), which indeed is
  21201. the case because both the source and target are obtained from the same
  21202. generic type of \code{map}, replacing the type parameters with
  21203. \CANYTY{} in the former and with the deduced type arguments in the
  21204. latter. (Recall that the \CANYTY{} type is consistent with any type.)
  21205. To implement the \code{erase\_types} pass, we first recommend defining
  21206. a recursive function that translates types, named
  21207. \code{erase\_type}. It replaces type variables with \CANYTY{} as
  21208. follows.
  21209. %
  21210. {\if\edition\racketEd
  21211. \begin{lstlisting}
  21212. |$T$|
  21213. |$\Rightarrow$|
  21214. Any
  21215. \end{lstlisting}
  21216. \fi}
  21217. {\if\edition\pythonEd\pythonColor
  21218. \begin{lstlisting}
  21219. GenericVar(|$T$|)
  21220. |$\Rightarrow$|
  21221. Any
  21222. \end{lstlisting}
  21223. \fi}
  21224. %
  21225. \noindent The \code{erase\_type} function also removes the generic
  21226. \code{All} types.
  21227. %
  21228. {\if\edition\racketEd
  21229. \begin{lstlisting}
  21230. (All |$xs$| |$T_1$|)
  21231. |$\Rightarrow$|
  21232. |$T'_1$|
  21233. \end{lstlisting}
  21234. \fi}
  21235. {\if\edition\pythonEd\pythonColor
  21236. \begin{lstlisting}
  21237. AllType(|$xs$|, |$T_1$|)
  21238. |$\Rightarrow$|
  21239. |$T'_1$|
  21240. \end{lstlisting}
  21241. \fi}
  21242. where $T'_1$ is the result of applying \code{erase\_type} to $T_1$.
  21243. %
  21244. In this compiler pass, apply the \code{erase\_type} function to all
  21245. the type annotations in the program.
  21246. Regarding the translation of expressions, the case for \code{Inst} is
  21247. the interesting one. We translate it into a \code{Cast}, as shown
  21248. next.
  21249. The type of the subexpression $e$ is a generic type of the form
  21250. \racket{$\LP\key{All}~\itm{xs}~T\RP$}\python{$\key{AllType}\LP\itm{xs}, T\RP$}.
  21251. The source type of the cast is the erasure of $T$, the type $T_s$.
  21252. %
  21253. {\if\edition\racketEd
  21254. %
  21255. The target type $T_t$ is the result of substituting the argument types
  21256. $ts$ for the type parameters $xs$ in $T$ followed by doing type
  21257. erasure.
  21258. %
  21259. \begin{lstlisting}
  21260. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  21261. |$\Rightarrow$|
  21262. (Cast |$e'$| |$T_s$| |$T_t$|)
  21263. \end{lstlisting}
  21264. %
  21265. where $T_t = \LP\code{erase\_type}~\LP\code{substitute\_type}~s~T\RP\RP$,
  21266. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  21267. \fi}
  21268. {\if\edition\pythonEd\pythonColor
  21269. %
  21270. The target type $T_t$ is the result of substituting the deduced
  21271. argument types $d$ in $T$ followed by doing type erasure.
  21272. %
  21273. \begin{lstlisting}
  21274. Inst(|$e$|, |$d$|)
  21275. |$\Rightarrow$|
  21276. Cast(|$e'$|, |$T_s$|, |$T_t$|)
  21277. \end{lstlisting}
  21278. %
  21279. where
  21280. $T_t = \code{erase\_type}\LP\code{substitute\_type}\LP d, T\RP\RP$.
  21281. \fi}
  21282. Finally, each generic function is translated to a regular
  21283. function in which type erasure has been applied to all the type
  21284. annotations and the body.
  21285. %% \begin{lstlisting}
  21286. %% (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  21287. %% |$\Rightarrow$|
  21288. %% (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  21289. %% \end{lstlisting}
  21290. \begin{exercise}\normalfont\normalsize
  21291. Implement a compiler for the polymorphic language \LangPoly{} by
  21292. extending and adapting your compiler for \LangGrad{}. Create six new
  21293. test programs that use polymorphic functions. Some of them should
  21294. make use of first-class generics.
  21295. \end{exercise}
  21296. \begin{figure}[tbp]
  21297. \begin{tcolorbox}[colback=white]
  21298. {\if\edition\racketEd
  21299. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21300. \node (Lpoly) at (0,4) {\large \LangPoly{}};
  21301. \node (Lpolyp) at (4,4) {\large \LangInst{}};
  21302. \node (Lgradualp) at (8,4) {\large \LangCast{}};
  21303. \node (Llambdapp) at (12,4) {\large \LangProxy{}};
  21304. \node (Llambdaproxy) at (12,2) {\large \LangPVec{}};
  21305. \node (Llambdaproxy-2) at (8,2) {\large \LangPVec{}};
  21306. \node (Llambdaproxy-3) at (4,2) {\large \LangPVec{}};
  21307. \node (Llambdaproxy-4) at (0,2) {\large \LangPVecFunRef{}};
  21308. \node (Llambdaproxy-5) at (0,0) {\large \LangPVecFunRef{}};
  21309. \node (F1-1) at (4,0) {\large \LangPVecFunRef{}};
  21310. \node (F1-2) at (8,0) {\large \LangPVecFunRef{}};
  21311. \node (F1-3) at (12,0) {\large \LangPVecFunRef{}};
  21312. \node (F1-4) at (12,-2) {\large \LangPVecAlloc{}};
  21313. \node (F1-5) at (8,-2) {\large \LangPVecAlloc{}};
  21314. \node (F1-6) at (4,-2) {\large \LangPVecAlloc{}};
  21315. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21316. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21317. \node (x86-2-1) at (0,-6) {\large \LangXIndCallVar{}};
  21318. \node (x86-2-2) at (4,-6) {\large \LangXIndCallVar{}};
  21319. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21320. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21321. \node (x86-5) at (8,-6) {\large \LangXIndCall{}};
  21322. \path[->,bend left=15] (Lpoly) edge [above] node
  21323. {\ttfamily\footnotesize resolve} (Lpolyp);
  21324. \path[->,bend left=15] (Lpolyp) edge [above] node
  21325. {\ttfamily\footnotesize erase\_types} (Lgradualp);
  21326. \path[->,bend left=15] (Lgradualp) edge [above] node
  21327. {\ttfamily\footnotesize lower\_casts} (Llambdapp);
  21328. \path[->,bend left=15] (Llambdapp) edge [left] node
  21329. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy);
  21330. \path[->,bend left=15] (Llambdaproxy) edge [below] node
  21331. {\ttfamily\footnotesize shrink} (Llambdaproxy-2);
  21332. \path[->,bend right=15] (Llambdaproxy-2) edge [above] node
  21333. {\ttfamily\footnotesize uniquify} (Llambdaproxy-3);
  21334. \path[->,bend right=15] (Llambdaproxy-3) edge [above] node
  21335. {\ttfamily\footnotesize reveal\_functions} (Llambdaproxy-4);
  21336. \path[->,bend right=15] (Llambdaproxy-4) edge [right] node
  21337. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21338. \path[->,bend right=15] (Llambdaproxy-5) edge [below] node
  21339. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21340. \path[->,bend left=15] (F1-1) edge [above] node
  21341. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21342. \path[->,bend left=15] (F1-2) edge [above] node
  21343. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21344. \path[->,bend left=15] (F1-3) edge [left] node
  21345. {\ttfamily\footnotesize expose\_allocation} (F1-4);
  21346. \path[->,bend left=15] (F1-4) edge [below] node
  21347. {\ttfamily\footnotesize uncover\_get!} (F1-5);
  21348. \path[->,bend right=15] (F1-5) edge [above] node
  21349. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21350. \path[->,bend right=15] (F1-6) edge [above] node
  21351. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21352. \path[->,bend right=15] (C3-2) edge [right] node
  21353. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21354. \path[->,bend right=15] (x86-2) edge [right] node
  21355. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  21356. \path[->,bend right=15] (x86-2-1) edge [below] node
  21357. {\ttfamily\footnotesize build\_interference} (x86-2-2);
  21358. \path[->,bend right=15] (x86-2-2) edge [right] node
  21359. {\ttfamily\footnotesize allocate\_registers} (x86-3);
  21360. \path[->,bend left=15] (x86-3) edge [above] node
  21361. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21362. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21363. \end{tikzpicture}
  21364. \fi}
  21365. {\if\edition\pythonEd\pythonColor
  21366. \begin{tikzpicture}[baseline=(current bounding box.center),scale=0.85]
  21367. \node (Lgradual) at (0,4) {\large \LangPoly{}};
  21368. \node (Lgradual2) at (4,4) {\large \LangPoly{}};
  21369. \node (Lgradual3) at (8,4) {\large \LangPoly{}};
  21370. \node (Lgradual4) at (12,4) {\large \LangPoly{}};
  21371. \node (Lgradualr) at (12,2) {\large \LangInst{}};
  21372. \node (Llambdapp) at (8,2) {\large \LangCast{}};
  21373. \node (Llambdaproxy-4) at (4,2) {\large \LangPVec{}};
  21374. \node (Llambdaproxy-5) at (0,2) {\large \LangPVec{}};
  21375. \node (F1-1) at (0,0) {\large \LangPVec{}};
  21376. \node (F1-2) at (4,0) {\large \LangPVec{}};
  21377. \node (F1-3) at (8,0) {\large \LangPVec{}};
  21378. \node (F1-5) at (12,0) {\large \LangPVecAlloc{}};
  21379. \node (F1-6) at (12,-2) {\large \LangPVecAlloc{}};
  21380. \node (C3-2) at (0,-2) {\large \LangCLoopPVec{}};
  21381. \node (x86-2) at (0,-4) {\large \LangXIndCallVar{}};
  21382. \node (x86-3) at (4,-4) {\large \LangXIndCallVar{}};
  21383. \node (x86-4) at (8,-4) {\large \LangXIndCall{}};
  21384. \node (x86-5) at (12,-4) {\large \LangXIndCall{}};
  21385. \path[->,bend left=15] (Lgradual) edge [above] node
  21386. {\ttfamily\footnotesize shrink} (Lgradual2);
  21387. \path[->,bend left=15] (Lgradual2) edge [above] node
  21388. {\ttfamily\footnotesize uniquify} (Lgradual3);
  21389. \path[->,bend left=15] (Lgradual3) edge [above] node
  21390. {\ttfamily\footnotesize reveal\_functions} (Lgradual4);
  21391. \path[->,bend left=15] (Lgradual4) edge [left] node
  21392. {\ttfamily\footnotesize resolve} (Lgradualr);
  21393. \path[->,bend left=15] (Lgradualr) edge [below] node
  21394. {\ttfamily\footnotesize erase\_types} (Llambdapp);
  21395. \path[->,bend right=15] (Llambdapp) edge [above] node
  21396. {\ttfamily\footnotesize differentiate\_proxies} (Llambdaproxy-4);
  21397. \path[->,bend right=15] (Llambdaproxy-4) edge [above] node
  21398. {\ttfamily\footnotesize reveal\_casts} (Llambdaproxy-5);
  21399. \path[->,bend right=15] (Llambdaproxy-5) edge [right] node
  21400. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  21401. \path[->,bend right=15] (F1-1) edge [below] node
  21402. {\ttfamily\footnotesize convert\_to\_closures} (F1-2);
  21403. \path[->,bend right=15] (F1-2) edge [below] node
  21404. {\ttfamily\footnotesize limit\_functions} (F1-3);
  21405. \path[->,bend left=15] (F1-3) edge [above] node
  21406. {\ttfamily\footnotesize expose\_allocation} (F1-5);
  21407. \path[->,bend left=15] (F1-5) edge [left] node
  21408. {\ttfamily\footnotesize remove\_complex\_operands} (F1-6);
  21409. \path[->,bend left=5] (F1-6) edge [below] node
  21410. {\ttfamily\footnotesize explicate\_control} (C3-2);
  21411. \path[->,bend right=15] (C3-2) edge [right] node
  21412. {\ttfamily\footnotesize select\_instructions} (x86-2);
  21413. \path[->,bend right=15] (x86-2) edge [below] node
  21414. {\ttfamily\footnotesize assign\_homes} (x86-3);
  21415. \path[->,bend right=15] (x86-3) edge [below] node
  21416. {\ttfamily\footnotesize patch\_instructions} (x86-4);
  21417. \path[->,bend left=15] (x86-4) edge [above] node
  21418. {\ttfamily\footnotesize prelude\_and\_conclusion} (x86-5);
  21419. \end{tikzpicture}
  21420. \fi}
  21421. \end{tcolorbox}
  21422. \caption{Diagram of the passes for \LangPoly{} (generics).}
  21423. \label{fig:Lpoly-passes}
  21424. \end{figure}
  21425. Figure~\ref{fig:Lpoly-passes} provides an overview of the passes
  21426. needed to compile \LangPoly{}.
  21427. % TODO: challenge problem: specialization of instantiations
  21428. % Further Reading
  21429. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  21430. \clearpage
  21431. \appendix
  21432. \chapter{Appendix}
  21433. \setcounter{footnote}{0}
  21434. {\if\edition\racketEd
  21435. \section{Interpreters}
  21436. \label{appendix:interp}
  21437. \index{subject}{interpreter}
  21438. We provide interpreters for each of the source languages \LangInt{},
  21439. \LangVar{}, $\ldots$ in the files \code{interp-Lint.rkt},
  21440. \code{interp-Lvar.rkt}, and so on. The interpreters for the
  21441. intermediate languages \LangCVar{} and \LangCIf{} are in
  21442. \code{interp-Cvar.rkt} and \code{interp-C1.rkt}. The interpreters for
  21443. \LangCVec{}, \LangCFun{}, pseudo-x86, and x86 are in the
  21444. \key{interp.rkt} file.
  21445. \section{Utility Functions}
  21446. \label{appendix:utilities}
  21447. The utility functions described in this section are in the
  21448. \key{utilities.rkt} file of the support code.
  21449. \paragraph{\code{interp-tests}}
  21450. This function runs the compiler passes and the interpreters on each of
  21451. the specified tests to check whether each pass is correct. The
  21452. \key{interp-tests} function has the following parameters:
  21453. \begin{description}
  21454. \item[name (a string)] A name to identify the compiler.
  21455. \item[typechecker] A function of exactly one argument that either
  21456. raises an error using the \code{error} function when it encounters a
  21457. type error, or returns \code{\#f} when it encounters a type
  21458. error. If there is no type error, the type checker returns the
  21459. program.
  21460. \item[passes] A list with one entry per pass. An entry is a list
  21461. consisting of four things:
  21462. \begin{enumerate}
  21463. \item a string giving the name of the pass;
  21464. \item the function that implements the pass (a translator from AST
  21465. to AST);
  21466. \item a function that implements the interpreter (a function from
  21467. AST to result value) for the output language; and,
  21468. \item a type checker for the output language. Type checkers for
  21469. all the $\Lang{}$ and $\CLang{}$ languages are provided in the support code.
  21470. For example, the type checkers for \LangVar{} and \LangCVar{} are in
  21471. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  21472. type checker entry is optional. The support code does not provide
  21473. type checkers for the x86 languages.
  21474. \end{enumerate}
  21475. \item[source-interp] An interpreter for the source language. The
  21476. interpreters from appendix~\ref{appendix:interp} make a good choice.
  21477. \item[test-family (a string)] For example, \code{"var"} or \code{"cond"}.
  21478. \item[tests] A list of test numbers that specifies which tests to
  21479. run (explained next).
  21480. \end{description}
  21481. %
  21482. The \key{interp-tests} function assumes that the subdirectory
  21483. \key{tests} has a collection of Racket programs whose names all start
  21484. with the family name, followed by an underscore and then the test
  21485. number, and ending with the file extension \key{.rkt}. Also, for each test
  21486. program that calls \code{read} one or more times, there is a file with
  21487. the same name except that the file extension is \key{.in}, which
  21488. provides the input for the Racket program. If the test program is
  21489. expected to fail type checking, then there should be an empty file of
  21490. the same name with extension \key{.tyerr}.
  21491. \paragraph{\code{compiler-tests}}
  21492. This function runs the compiler passes to generate x86 (a \key{.s}
  21493. file) and then runs the GNU C compiler (gcc) to generate machine code.
  21494. It runs the machine code and checks that the output is $42$. The
  21495. parameters to the \code{compiler-tests} function are similar to those
  21496. of the \code{interp-tests} function, and they consist of
  21497. \begin{itemize}
  21498. \item a compiler name (a string),
  21499. \item a type checker,
  21500. \item description of the passes,
  21501. \item name of a test-family, and
  21502. \item a list of test numbers.
  21503. \end{itemize}
  21504. \paragraph{\code{compile-file}}
  21505. This function takes a description of the compiler passes (see the
  21506. comment for \key{interp-tests}) and returns a function that, given a
  21507. program file name (a string ending in \key{.rkt}), applies all the
  21508. passes and writes the output to a file whose name is the same as the
  21509. program file name with extension \key{.rkt} replaced by \key{.s}.
  21510. \paragraph{\code{read-program}}
  21511. This function takes a file path and parses that file (it must be a
  21512. Racket program) into an abstract syntax tree.
  21513. \paragraph{\code{parse-program}}
  21514. This function takes an S-expression representation of an abstract
  21515. syntax tree and converts it into the struct-based representation.
  21516. \paragraph{\code{assert}}
  21517. This function takes two parameters, a string (\code{msg}) and Boolean
  21518. (\code{bool}), and displays the message \key{msg} if the Boolean
  21519. \key{bool} is false.
  21520. \paragraph{\code{lookup}}
  21521. % remove discussion of lookup? -Jeremy
  21522. This function takes a key and an alist and returns the first value that is
  21523. associated with the given key, if there is one. If not, an error is
  21524. triggered. The alist may contain both immutable pairs (built with
  21525. \key{cons}) and mutable pairs (built with \key{mcons}).
  21526. %The \key{map2} function ...
  21527. \fi} %\racketEd
  21528. \section{x86 Instruction Set Quick Reference}
  21529. \label{sec:x86-quick-reference}
  21530. \index{subject}{x86}
  21531. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  21532. do. We write $A \to B$ to mean that the value of $A$ is written into
  21533. location $B$. Address offsets are given in bytes. The instruction
  21534. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  21535. registers (such as \code{\%rax}), or memory references (such as
  21536. \code{-4(\%ebp)}). Most x86 instructions allow at most one memory
  21537. reference per instruction. Other operands must be immediates or
  21538. registers.
  21539. \begin{table}[tbp]
  21540. \centering
  21541. \begin{tabular}{l|l}
  21542. \textbf{Instruction} & \textbf{Operation} \\ \hline
  21543. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  21544. \texttt{negq} $A$ & $- A \to A$ \\
  21545. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  21546. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  21547. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  21548. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$ \\
  21549. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  21550. \texttt{retq} & Pops the return address and jumps to it \\
  21551. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  21552. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  21553. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  21554. \texttt{cmpq} $A$, $B$ & Compare $A$ and $B$ and set the flag register ($B$ must not
  21555. be an immediate) \\
  21556. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  21557. matches the condition code of the instruction; otherwise go to the
  21558. next instructions. The condition codes are \key{e} for \emph{equal},
  21559. \key{l} for \emph{less}, \key{le} for \emph{less or equal}, \key{g}
  21560. for \emph{greater}, and \key{ge} for \emph{greater or equal}.} \\
  21561. \texttt{jl} $L$ & \\
  21562. \texttt{jle} $L$ & \\
  21563. \texttt{jg} $L$ & \\
  21564. \texttt{jge} $L$ & \\
  21565. \texttt{jmp} $L$ & Jump to label $L$ \\
  21566. \texttt{movq} $A$, $B$ & $A \to B$ \\
  21567. \texttt{movzbq} $A$, $B$ &
  21568. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  21569. (e.g., \texttt{al} or \texttt{cl}), $B$ is an 8-byte register,
  21570. and the extra bytes of $B$ are set to zero.} \\
  21571. & \\
  21572. & \\
  21573. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  21574. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  21575. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  21576. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  21577. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  21578. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  21579. then $1 \to A$; else $0 \to A$. Refer to \texttt{je} for the
  21580. description of the condition codes. $A$ must be a single byte register
  21581. (e.g., \texttt{al} or \texttt{cl}).} \\
  21582. \texttt{setl} $A$ & \\
  21583. \texttt{setle} $A$ & \\
  21584. \texttt{setg} $A$ & \\
  21585. \texttt{setge} $A$ &
  21586. \end{tabular}
  21587. \vspace{5pt}
  21588. \caption{Quick reference for the x86 instructions used in this book.}
  21589. \label{tab:x86-instr}
  21590. \end{table}
  21591. \backmatter
  21592. \addtocontents{toc}{\vspace{11pt}}
  21593. \cleardoublepage % needed for right page number in TOC for References
  21594. %% \nocite{*} is a way to get all the entries in the .bib file to
  21595. %% print in the bibliography:
  21596. \nocite{*}\let\bibname\refname
  21597. \addcontentsline{toc}{fmbm}{\refname}
  21598. \printbibliography
  21599. %\printindex{authors}{Author Index}
  21600. \printindex{subject}{Index}
  21601. \end{document}
  21602. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  21603. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  21604. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  21605. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  21606. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  21607. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  21608. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  21609. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  21610. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  21611. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  21612. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  21613. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  21614. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  21615. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  21616. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  21617. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  21618. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  21619. % LocalWords: numberstyle Cormen sudoku Balakrishnan ve aka DSATUR
  21620. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS wb
  21621. % LocalWords: morekeywords fullflexible goto allocator tuples Wailes
  21622. % LocalWords: Kernighan runtime Freiburg Thiemann Bloomington unary
  21623. % LocalWords: eq prog rcl binaryop unaryop definitional Evaluator os
  21624. % LocalWords: subexpression evaluator InterpLint lcl quadwords concl
  21625. % LocalWords: nanopass subexpressions decompositions Lawall Hatcliff
  21626. % LocalWords: subdirectory monadic Moggi mon utils macosx unix repr
  21627. % LocalWords: Uncomment undirected vertices callee Liveness liveness
  21628. % LocalWords: frozenset unordered Appel Rosen pqueue cmp Fortran vl
  21629. % LocalWords: Horwitz Kempe colorable subgraph kx iteratively Matula
  21630. % LocalWords: ys ly Palsberg si JoeQ cardinality Poletto Booleans hj
  21631. % LocalWords: subscriptable MyPy Lehtosalo Listof Pairof indexable
  21632. % LocalWords: bool boolop NotEq LtE GtE refactor els orelse BoolOp
  21633. % LocalWords: boolean initializer param exprs TypeCheckLvar msg Tt
  21634. % LocalWords: isinstance TypeCheckLif tyerr xorq bytereg al dh dl ne
  21635. % LocalWords: le ge cmpq movzbq EFLAGS jle inlined setl je jl Cif
  21636. % LocalWords: lll pred IfStmt sete CFG tsort multigraph FunctionType
  21637. % LocalWords: Wijngaarden Plotkin Logothetis PeytonJones SetBang Ph
  21638. % LocalWords: WhileLoop unboxes Lwhile unbox InterpLwhile rhsT varT
  21639. % LocalWords: Tbody TypeCheckLwhile acyclic mainstart mainconclusion
  21640. % LocalWords: versa Kildall Kleene worklist enqueue dequeue deque tb
  21641. % LocalWords: GetBang effectful SPERBER Lfun tuple implementer's tup
  21642. % LocalWords: indices HasType Lvec InterpLtup tuple's vec ty Ungar
  21643. % LocalWords: TypeCheckLtup Detlefs Tene FromSpace ToSpace Diwan ptr
  21644. % LocalWords: Siebert TupleType endian salq sarq fromspace rootstack
  21645. % LocalWords: uint th vecinit alloc GlobalValue andq bitwise ior elt
  21646. % LocalWords: dereferencing StructDef Vectorof vectorof Lvecof Jacek
  21647. % LocalWords: AllocateArray cheney tospace Dieckmann Shahriyar di xs
  21648. % LocalWords: Shidal Osterlund Gamari lexically FunctionDef IntType
  21649. % LocalWords: BoolType VoidType ProgramDefsExp vals params ps ds num
  21650. % LocalWords: InterpLfun FunRef TypeCheckLfun leaq callee's mainDef
  21651. % LocalWords: ProgramDefs TailCall tailjmp IndirectCallq TailJmp rT
  21652. % LocalWords: prepending addstart addconclusion Cardelli Llambda typ
  21653. % LocalWords: Llambda InterpLlambda AnnAssign Dunfield bodyT str fvs
  21654. % LocalWords: TypeCheckLlambda annot dereference clos fvts closTy tg
  21655. % LocalWords: Minamide AllocateClosure Gilray Milner morphos subtype
  21656. % LocalWords: polymorphism untyped AnyType dataclass untag Ldyn conc
  21657. % LocalWords: lookup InterpLdyn elif tagof Lany TypeCheckLany tv orq
  21658. % LocalWords: AnnLambda InterpLany ClosureTuple ValueOf TagOf imulq
  21659. % LocalWords: untagged multi Tobin Hochstadt zr mn Gronski kd ret Tp
  21660. % LocalWords: Tif src tgt Lcast wr contravariant PVector un Lgradual
  21661. % LocalWords: Lgradualp Llambdapp Llambdaproxy Wadler qv quicksort
  21662. % LocalWords: Henglein nz coercions Grift parametetric parameterized
  21663. % LocalWords: parameterizing stroustrup subst tys targs decls defs
  21664. % LocalWords: pts ats prt pxs axs Decl Monomorphization NESL CLU qb
  21665. % LocalWords: monomorphization Blelloch monomorphic Bracha unboxed
  21666. % LocalWords: instantiation Lpoly Lpolyp typechecker mcons ebp jge
  21667. % LocalWords: notq setle setg setge uncredited LT Std groundbreaking
  21668. % LocalWords: colback GitHub inputint nonatomic ea tcolorbox bassed
  21669. % LocalWords: tikzpicture Chaitin's Belady's Cocke Freiburghouse Lt
  21670. % LocalWords: lessthan lessthaneq greaterthan greaterthaneq Gt pt Te
  21671. % LocalWords: ts escapechar Tc bl ch cl cc foo lt metavariables vars
  21672. % LocalWords: trans naively IR rep assoc ListType TypeCheckLarray dz
  21673. % LocalWords: Mult InterpLarray lst array's generation's Collins inc
  21674. % LocalWords: Cutler Kelsey val rt bod conflates reg inlining lam AF
  21675. % LocalWords: ASTPython body's bot todo rs ls TypeCheckLgrad ops ab
  21676. % LocalWords: value's inplace anyfun anytup anylist ValueExp proxied
  21677. % LocalWords: ProxiedTuple ProxiedList InterpLcast ListProxy vectof
  21678. % LocalWords: TupleProxy RawTuple InjectTuple InjectTupleProxy vecof
  21679. % LocalWords: InjectList InjectListProxy unannotated Lgradualr poly
  21680. % LocalWords: GenericVar AllType Inst builtin ap pps aps pp deepcopy
  21681. % LocalWords: liskov clu Liskov dk Napier um inst popl jg seq ith qy
  21682. % LocalWords: racketEd subparts subpart nonterminal nonterminals Dyn
  21683. % LocalWords: pseudocode underapproximation underapproximations LALR
  21684. % LocalWords: semilattices overapproximate incrementing Earley docs
  21685. % LocalWords: multilanguage Prelim shinan DeRemer lexer Lesk LPAR cb
  21686. % LocalWords: RPAR abcbab abc bzca usub paren expr lang WS Tomita qr
  21687. % LocalWords: subparses LCCN ebook hardcover epub pdf LCSH LCC DDC
  21688. % LocalWords: LC partialevaluation pythonEd TOC