book.tex 649 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908
  1. \documentclass[7x10]{TimesAPriori_MIT}%%7x10
  2. \usepackage[utf8]{inputenc}
  3. %% \usepackage{setspace}
  4. %% \doublespacing
  5. \usepackage{listings}
  6. \usepackage{verbatim}
  7. \usepackage{amssymb}
  8. \usepackage{lmodern} % better typewriter font for code
  9. %\usepackage{wrapfig}
  10. \usepackage{multirow}
  11. \usepackage{tcolorbox}
  12. \usepackage{color}
  13. %\usepackage{ifthen}
  14. \usepackage{upquote}
  15. \definecolor{lightgray}{gray}{1}
  16. \newcommand{\black}[1]{{\color{black} #1}}
  17. %\newcommand{\gray}[1]{{\color{lightgray} #1}}
  18. \newcommand{\gray}[1]{{\color{gray} #1}}
  19. \def\racketEd{0}
  20. \def\pythonEd{1}
  21. \def\edition{0}
  22. % material that is specific to the Racket edition of the book
  23. \newcommand{\racket}[1]{{\if\edition\racketEd{#1}\fi}}
  24. % would like a command for: \if\edition\racketEd\color{olive}
  25. % and : \fi\color{black}
  26. % material that is specific to the Python edition of the book
  27. \newcommand{\python}[1]{{\if\edition\pythonEd #1\fi}}
  28. %% For multiple indices:
  29. \usepackage{multind}
  30. \makeindex{subject}
  31. \makeindex{authors}
  32. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  33. \if\edition\racketEd
  34. \lstset{%
  35. language=Lisp,
  36. basicstyle=\ttfamily\small,
  37. morekeywords={seq,assign,program,block,define,lambda,match,goto,if,else,then,struct,Integer,Boolean,Vector,Void,Any,while,begin,define,public,override,class},
  38. deletekeywords={read,mapping,vector},
  39. escapechar=|,
  40. columns=flexible,
  41. moredelim=[is][\color{red}]{~}{~},
  42. showstringspaces=false
  43. }
  44. \fi
  45. \if\edition\pythonEd
  46. \lstset{%
  47. language=Python,
  48. basicstyle=\ttfamily\small,
  49. morekeywords={match,case,bool,int},
  50. deletekeywords={},
  51. escapechar=|,
  52. columns=flexible,
  53. moredelim=[is][\color{red}]{~}{~},
  54. showstringspaces=false
  55. }
  56. \fi
  57. %%% Any shortcut own defined macros place here
  58. %% sample of author macro:
  59. \input{defs}
  60. \newtheorem{exercise}[theorem]{Exercise}
  61. % Adjusted settings
  62. \setlength{\columnsep}{4pt}
  63. %% \begingroup
  64. %% \setlength{\intextsep}{0pt}%
  65. %% \setlength{\columnsep}{0pt}%
  66. %% \begin{wrapfigure}{r}{0.5\textwidth}
  67. %% \centering\includegraphics[width=\linewidth]{example-image-a}
  68. %% \caption{Basic layout}
  69. %% \end{wrapfigure}
  70. %% \lipsum[1]
  71. %% \endgroup
  72. \newbox\oiintbox
  73. \setbox\oiintbox=\hbox{$\lower2pt\hbox{\huge$\displaystyle\circ$}
  74. \hskip-13pt\displaystyle\int\hskip-7pt\int_{S}\ $}
  75. \def\oiint{\copy\oiintbox}
  76. \def\boldnabla{\hbox{\boldmath$\displaystyle\nabla$}}
  77. %\usepackage{showframe}
  78. \def\ShowFrameLinethickness{0.125pt}
  79. \addbibresource{book.bib}
  80. \begin{document}
  81. \frontmatter
  82. \HalfTitle{Essentials of Compilation \\ An Incremental Approach in \python{Python}\racket{Racket}}
  83. \halftitlepage
  84. \Title{Essentials of Compilation}
  85. \Booksubtitle{An Incremental Approach in \python{Python}\racket{Racket}}
  86. %\edition{First Edition}
  87. \BookAuthor{Jeremy G. Siek}
  88. \imprint{The MIT Press\\
  89. Cambridge, Massachusetts\\
  90. London, England}
  91. \begin{copyrightpage}
  92. \textcopyright\ 2021 Jeremy G. Siek. Available for free viewing
  93. or personal downloading under the
  94. \href{https://creativecommons.org/licenses/by-nc-nd/2.0/uk/}{CC-BY-NC-ND}
  95. license.
  96. Copyright in this monograph has been licensed exclusively to The MIT
  97. Press, \url{http://mitpress.mit.edu}, which will be releasing the final
  98. version to the public in 2022. All inquiries regarding rights should
  99. be addressed to The MIT Press, Rights and Permissions Department.
  100. %% \textcopyright\ [YEAR] Massachusetts Institute of Technology
  101. %% All rights reserved. No part of this book may be reproduced in any
  102. %% form by any electronic or mechanical means (including photocopying,
  103. %% recording, or information storage and retrieval) without permission in
  104. %% writing from the publisher.
  105. %% This book was set in LaTeX by Jeremy G. Siek. Printed and bound in the
  106. %% United States of America.
  107. %% Library of Congress Cataloging-in-Publication Data is available.
  108. %% ISBN:
  109. %% 10\quad9\quad8\quad7\quad6\quad5\quad4\quad3\quad2\quad1
  110. \end{copyrightpage}
  111. \dedication{This book is dedicated to the programming language wonks
  112. at Indiana University.}
  113. %% \begin{epigraphpage}
  114. %% \epigraph{First Epigraph line goes here}{Mention author name if any,
  115. %% \textit{Book Name if any}}
  116. %% \epigraph{Second Epigraph line goes here}{Mention author name if any}
  117. %% \end{epigraphpage}
  118. \tableofcontents
  119. %\listoffigures
  120. %\listoftables
  121. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  122. \chapter*{Preface}
  123. \addcontentsline{toc}{fmbm}{Preface}
  124. There is a magical moment when a programmer presses the ``run'' button
  125. and the software begins to execute. Somehow a program written in a
  126. high-level language is running on a computer that is only capable of
  127. shuffling bits. Here we reveal the wizardry that makes that moment
  128. possible. Beginning with the ground breaking work of Backus and
  129. colleagues in the 1950s, computer scientists discovered techniques for
  130. constructing programs, called \emph{compilers}, that automatically
  131. translate high-level programs into machine code.
  132. We take you on a journey by constructing your own compiler for a small
  133. but powerful language. Along the way we explain the essential
  134. concepts, algorithms, and data structures that underlie compilers. We
  135. develop your understanding of how programs are mapped onto computer
  136. hardware, which is helpful when reasoning about properties at the
  137. junction between hardware and software such as execution time,
  138. software errors, and security vulnerabilities. For those interested
  139. in pursuing compiler construction, our goal is to provide a
  140. stepping-stone to advanced topics such as just-in-time compilation,
  141. program analysis, and program optimization. For those interested in
  142. designing and implementing programming languages, we connect
  143. language design choices to their impact on the compiler and the generated
  144. code.
  145. A compiler is typically organized as a sequence of stages that
  146. progressively translate a program to code that runs on hardware. We
  147. take this approach to the extreme by partitioning our compiler into a
  148. large number of \emph{nanopasses}, each of which performs a single
  149. task. This allows us to test the output of each pass in isolation, and
  150. furthermore, allows us to focus our attention which makes the compiler
  151. far easier to understand.
  152. The most familiar approach to describing compilers is with one pass
  153. per chapter. The problem with that approach is it obfuscates how
  154. language features motivate design choices in a compiler. We take an
  155. \emph{incremental} approach in which we build a complete compiler in
  156. each chapter, starting with a small input language that includes only
  157. arithmetic and variables and we add new language features in
  158. subsequent chapters.
  159. Our choice of language features is designed to elicit the fundamental
  160. concepts and algorithms used in compilers.
  161. \begin{itemize}
  162. \item We begin with integer arithmetic and local variables in
  163. Chapters~\ref{ch:trees-recur} and \ref{ch:Lvar}, where we introduce
  164. the fundamental tools of compiler construction: \emph{abstract
  165. syntax trees} and \emph{recursive functions}.
  166. \item In Chapter~\ref{ch:register-allocation-Lvar} we apply
  167. \emph{graph coloring} to assign variables to machine registers.
  168. \item Chapter~\ref{ch:Lif} adds \code{if} expressions, which motivates
  169. an elegant recursive algorithm for translating them into conditional
  170. \code{goto}'s.
  171. \item Chapter~\ref{ch:Lwhile} fleshes out support for imperative
  172. programming languages with the addition of loops\racket{ and mutable
  173. variables}. This elicits the need for \emph{dataflow
  174. analysis} in the register allocator.
  175. \item Chapter~\ref{ch:Lvec} adds heap-allocated tuples, motivating
  176. \emph{garbage collection}.
  177. \item Chapter~\ref{ch:Rfun} adds functions that are first-class values
  178. but lack lexical scoping, similar to the C programming
  179. language~\citep{Kernighan:1988nx} except that we generate efficient
  180. tail calls. The reader learns about the procedure call stack,
  181. \emph{calling conventions}, and their interaction with register
  182. allocation and garbage collection.
  183. \item Chapter~\ref{ch:Rlam} adds anonymous functions with lexical
  184. scoping, i.e., \emph{lambda abstraction}. The reader learns about
  185. \emph{closure conversion}, in which lambdas are translated into a
  186. combination of functions and tuples.
  187. % Chapter about classes and objects?
  188. \item Chapter~\ref{ch:Rdyn} adds \emph{dynamic typing}. Prior to this
  189. point the input languages are statically typed. The reader extends
  190. the statically typed language with an \code{Any} type which serves
  191. as a target for compiling the dynamically typed language.
  192. {\if\edition\pythonEd
  193. \item Chapter~\ref{ch:Robject} adds support for \emph{objects} and
  194. \emph{classes}.
  195. \fi}
  196. \item Chapter~\ref{ch:Rgrad} uses the \code{Any} type of
  197. Chapter~\ref{ch:Rdyn} to implement a \emph{gradually typed language}
  198. in which different regions of a program may be static or dynamically
  199. typed. The reader implements runtime support for \emph{proxies} that
  200. allow values to safely move between regions.
  201. \item Chapter~\ref{ch:Rpoly} adds \emph{generics} with autoboxing,
  202. leveraging the \code{Any} type and type casts developed in Chapters
  203. \ref{ch:Rdyn} and \ref{ch:Rgrad}.
  204. \end{itemize}
  205. There are many language features that we do not include. Our choices
  206. balance the incidental complexity of a feature versus the fundamental
  207. concepts that it exposes. For example, we include tuples and not
  208. records because they both elicit the study of heap allocation and
  209. garbage collection but records come with more incidental complexity.
  210. Since 2009 drafts of this book have served as the textbook for 16-week
  211. compiler courses for upper-level undergraduates and first-year
  212. graduate students at the University of Colorado and Indiana
  213. University.
  214. %
  215. Students come into the course having learned the basics of
  216. programming, data structures and algorithms, and discrete
  217. mathematics.
  218. %
  219. At the beginning of the course, students form groups of 2-4 people.
  220. The groups complete one chapter every two weeks, starting with
  221. Chapter~\ref{ch:Lvar}. Many chapters include a challenge problem that
  222. we assign to the graduate students. The last two weeks of the course
  223. involve a final project in which students design and implement a
  224. compiler extension of their choosing. Chapters~\ref{ch:Rgrad} and
  225. \ref{ch:Rpoly} can be used in support of these projects or they can
  226. replace some of the other chapters. For example, a course with an
  227. emphasis on statically-typed imperative languages could include
  228. Chapter~\ref{ch:Rpoly} but skip Chapter~\ref{ch:Rdyn}. For compiler
  229. courses at universities on the quarter system, with 10 weeks, we
  230. recommend completing up through Chapter~\ref{ch:Rfun}. (If pressed
  231. for time, one can skip Chapter~\ref{ch:Lvec} but still include
  232. Chapter~\ref{ch:Rfun} by limiting the number of parameters allowed in
  233. functions.) Figure~\ref{fig:chapter-dependences} depicts the
  234. dependencies between chapters.
  235. This book has also been used in compiler courses at California
  236. Polytechnic State University, Portland State University, Rose–Hulman
  237. Institute of Technology, University of Massachusetts Lowell, and the
  238. University of Vermont.
  239. \begin{figure}[tp]
  240. {\if\edition\racketEd
  241. \begin{tikzpicture}[baseline=(current bounding box.center)]
  242. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  243. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  244. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  245. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  246. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  247. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  248. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  249. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  250. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  251. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  252. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  253. \path[->] (C1) edge [above] node {} (C2);
  254. \path[->] (C2) edge [above] node {} (C3);
  255. \path[->] (C3) edge [above] node {} (C4);
  256. \path[->] (C4) edge [above] node {} (C5);
  257. \path[->] (C5) edge [above] node {} (C6);
  258. \path[->] (C6) edge [above] node {} (C7);
  259. \path[->] (C4) edge [above] node {} (C8);
  260. \path[->] (C4) edge [above] node {} (C9);
  261. \path[->] (C8) edge [above] node {} (C10);
  262. \path[->] (C10) edge [above] node {} (C11);
  263. \end{tikzpicture}
  264. \fi}
  265. {\if\edition\pythonEd
  266. \begin{tikzpicture}[baseline=(current bounding box.center)]
  267. \node (C1) at (0,1.5) {\small Ch.~\ref{ch:trees-recur} Preliminaries};
  268. \node (C2) at (4,1.5) {\small Ch.~\ref{ch:Lvar} Variables};
  269. \node (C3) at (8,1.5) {\small Ch.~\ref{ch:register-allocation-Lvar} Registers};
  270. \node (C4) at (0,0) {\small Ch.~\ref{ch:Lif} Conditionals};
  271. \node (C5) at (4,0) {\small Ch.~\ref{ch:Lvec} Tuples};
  272. \node (C6) at (8,0) {\small Ch.~\ref{ch:Rfun} Functions};
  273. \node (C9) at (0,-1.5) {\small Ch.~\ref{ch:Lwhile} Loops};
  274. \node (C8) at (4,-1.5) {\small Ch.~\ref{ch:Rdyn} Dynamic};
  275. \node (CO) at (0,-3) {\small Ch.~\ref{ch:Robject} Objects};
  276. \node (C7) at (8,-1.5) {\small Ch.~\ref{ch:Rlam} Lambda};
  277. \node (C10) at (4,-3) {\small Ch.~\ref{ch:Rgrad} Gradual Typing};
  278. \node (C11) at (8,-3) {\small Ch.~\ref{ch:Rpoly} Generics};
  279. \path[->] (C1) edge [above] node {} (C2);
  280. \path[->] (C2) edge [above] node {} (C3);
  281. \path[->] (C3) edge [above] node {} (C4);
  282. \path[->] (C4) edge [above] node {} (C5);
  283. \path[->] (C5) edge [above] node {} (C6);
  284. \path[->] (C6) edge [above] node {} (C7);
  285. \path[->] (C4) edge [above] node {} (C8);
  286. \path[->] (C4) edge [above] node {} (C9);
  287. \path[->] (C8) edge [above] node {} (C10);
  288. \path[->] (C8) edge [above] node {} (CO);
  289. \path[->] (C10) edge [above] node {} (C11);
  290. \end{tikzpicture}
  291. \fi}
  292. \caption{Diagram of chapter dependencies.}
  293. \label{fig:chapter-dependences}
  294. \end{figure}
  295. \racket{
  296. We use the \href{https://racket-lang.org/}{Racket} language both for
  297. the implementation of the compiler and for the input language, so the
  298. reader should be proficient with Racket or Scheme. There are many
  299. excellent resources for learning Scheme and
  300. Racket~\citep{Dybvig:1987aa,Abelson:1996uq,Friedman:1996aa,Felleisen:2001aa,Felleisen:2013aa,Flatt:2014aa}.
  301. }
  302. \python{
  303. This edition of the book uses \href{https://www.python.org/}{Python}
  304. both for the implementation of the compiler and for the input language, so the
  305. reader should be proficient with Python. There are many
  306. excellent resources for learning Python~\citep{Lutz:2013vp,Barry:2016vj,Sweigart:2019vn,Matthes:2019vs}.
  307. }
  308. The support code for this book is in the github repository at
  309. the following URL:
  310. \if\edition\racketEd
  311. \begin{center}\small
  312. \url{https://github.com/IUCompilerCourse/public-student-support-code}
  313. \end{center}
  314. \fi
  315. \if\edition\pythonEd
  316. \begin{center}\small
  317. \url{https://github.com/IUCompilerCourse/}
  318. \end{center}
  319. \fi
  320. The compiler targets x86 assembly language~\citep{Intel:2015aa}, so it
  321. is helpful but not necessary for the reader to have taken a computer
  322. systems course~\citep{Bryant:2010aa}. This book introduces the parts
  323. of x86-64 assembly language that are needed.
  324. %
  325. We follow the System V calling
  326. conventions~\citep{Bryant:2005aa,Matz:2013aa}, so the assembly code
  327. that we generate works with the runtime system (written in C) when it
  328. is compiled using the GNU C compiler (\code{gcc}) on Linux and MacOS
  329. operating systems on Intel hardware.
  330. %
  331. On the Windows operating system, \code{gcc} uses the Microsoft x64
  332. calling convention~\citep{Microsoft:2018aa,Microsoft:2020aa}. So the
  333. assembly code that we generate does \emph{not} work with the runtime
  334. system on Windows. One workaround is to use a virtual machine with
  335. Linux as the guest operating system.
  336. \section*{Acknowledgments}
  337. The tradition of compiler construction at Indiana University goes back
  338. to research and courses on programming languages by Daniel Friedman in
  339. the 1970's and 1980's. One of his students, Kent Dybvig, implemented
  340. Chez Scheme~\citep{Dybvig:2006aa}, an efficient, production-quality
  341. compiler for Scheme. Throughout the 1990's and 2000's, Dybvig taught
  342. the compiler course and continued the development of Chez Scheme.
  343. %
  344. The compiler course evolved to incorporate novel pedagogical ideas
  345. while also including elements of real-world compilers. One of
  346. Friedman's ideas was to split the compiler into many small
  347. passes. Another idea, called ``the game'', was to test the code
  348. generated by each pass using interpreters.
  349. Dybvig, with help from his students Dipanwita Sarkar and Andrew Keep,
  350. developed infrastructure to support this approach and evolved the
  351. course to use even smaller
  352. nanopasses~\citep{Sarkar:2004fk,Keep:2012aa}. Many of the compiler
  353. design decisions in this book are inspired by the assignment
  354. descriptions of \citet{Dybvig:2010aa}. In the mid 2000's a student of
  355. Dybvig's named Abdulaziz Ghuloum observed that the front-to-back
  356. organization of the course made it difficult for students to
  357. understand the rationale for the compiler design. Ghuloum proposed the
  358. incremental approach~\citep{Ghuloum:2006bh} that this book is based
  359. on.
  360. We thank the many students who served as teaching assistants for the
  361. compiler course at IU and made suggestions for improving the book
  362. including Carl Factora, Ryan Scott, and Cameron Swords. We especially
  363. thank Andre Kuhlenschmidt for his work on the garbage collector,
  364. Michael Vollmer for his work on efficient tail calls, and Michael
  365. Vitousek for his help running the first offering of the incremental
  366. compiler course at IU.
  367. We thank professors Bor-Yuh Chang, John Clements, Jay McCarthy, Joseph
  368. Near, Ryan Newton, Nate Nystrom, Andrew Tolmach, and Michael Wollowski
  369. for teaching courses based on drafts of this book and for their
  370. invaluable feedback.
  371. We thank Ronald Garcia for helping Jeremy survive Dybvig's compiler
  372. course in the early 2000's and especially for finding the bug that
  373. sent our garbage collector on a wild goose chase!
  374. \mbox{}\\
  375. \noindent Jeremy G. Siek \\
  376. Bloomington, Indiana
  377. \mainmatter
  378. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  379. \chapter{Preliminaries}
  380. \label{ch:trees-recur}
  381. In this chapter we review the basic tools that are needed to implement
  382. a compiler. Programs are typically input by a programmer as text,
  383. i.e., a sequence of characters. The program-as-text representation is
  384. called \emph{concrete syntax}. We use concrete syntax to concisely
  385. write down and talk about programs. Inside the compiler, we use
  386. \emph{abstract syntax trees} (ASTs) to represent programs in a way
  387. that efficiently supports the operations that the compiler needs to
  388. perform.\index{subject}{concrete syntax}\index{subject}{abstract syntax}\index{subject}{abstract
  389. syntax tree}\index{subject}{AST}\index{subject}{program}\index{subject}{parse} The translation
  390. from concrete syntax to abstract syntax is a process called
  391. \emph{parsing}~\citep{Aho:2006wb}. We do not cover the theory and
  392. implementation of parsing in this book.
  393. %
  394. \racket{A parser is provided in the support code for translating from
  395. concrete to abstract syntax.}
  396. %
  397. \python{We use Python's \code{ast} module to translate from concrete
  398. to abstract syntax.}
  399. ASTs can be represented in many different ways inside the compiler,
  400. depending on the programming language used to write the compiler.
  401. %
  402. \racket{We use Racket's
  403. \href{https://docs.racket-lang.org/guide/define-struct.html}{\code{struct}}
  404. feature to represent ASTs (Section~\ref{sec:ast}).}
  405. %
  406. \python{We use Python classes and objects to represent ASTs, especially the
  407. classes defined in the standard \code{ast} module for the Python
  408. source language.}
  409. %
  410. We use grammars to define the abstract syntax of programming languages
  411. (Section~\ref{sec:grammar}) and pattern matching to inspect individual
  412. nodes in an AST (Section~\ref{sec:pattern-matching}). We use
  413. recursive functions to construct and deconstruct ASTs
  414. (Section~\ref{sec:recursion}). This chapter provides an brief
  415. introduction to these ideas.
  416. \racket{\index{subject}{struct}}
  417. \python{\index{subject}{class}\index{subject}{object}}
  418. \section{Abstract Syntax Trees}
  419. \label{sec:ast}
  420. Compilers use abstract syntax trees to represent programs because they
  421. often need to ask questions like: for a given part of a program, what
  422. kind of language feature is it? What are its sub-parts? Consider the
  423. program on the left and its AST on the right. This program is an
  424. addition operation and it has two sub-parts, a
  425. \racket{read}\python{input} operation and a negation. The negation has
  426. another sub-part, the integer constant \code{8}. By using a tree to
  427. represent the program, we can easily follow the links to go from one
  428. part of a program to its sub-parts.
  429. \begin{center}
  430. \begin{minipage}{0.4\textwidth}
  431. \if\edition\racketEd
  432. \begin{lstlisting}
  433. (+ (read) (- 8))
  434. \end{lstlisting}
  435. \fi
  436. \if\edition\pythonEd
  437. \begin{lstlisting}
  438. input_int() + -8
  439. \end{lstlisting}
  440. \fi
  441. \end{minipage}
  442. \begin{minipage}{0.4\textwidth}
  443. \begin{equation}
  444. \begin{tikzpicture}
  445. \node[draw] (plus) at (0 , 0) {\key{+}};
  446. \node[draw] (read) at (-1, -1.5) {{\if\edition\racketEd\footnotesize\key{read}\fi\if\edition\pythonEd\key{input\_int()}\fi}};
  447. \node[draw] (minus) at (1 , -1.5) {$\key{-}$};
  448. \node[draw] (8) at (1 , -3) {\key{8}};
  449. \draw[->] (plus) to (read);
  450. \draw[->] (plus) to (minus);
  451. \draw[->] (minus) to (8);
  452. \end{tikzpicture}
  453. \label{eq:arith-prog}
  454. \end{equation}
  455. \end{minipage}
  456. \end{center}
  457. We use the standard terminology for trees to describe ASTs: each
  458. rectangle above is called a \emph{node}. The arrows connect a node to its
  459. \emph{children} (which are also nodes). The top-most node is the
  460. \emph{root}. Every node except for the root has a \emph{parent} (the
  461. node it is the child of). If a node has no children, it is a
  462. \emph{leaf} node. Otherwise it is an \emph{internal} node.
  463. \index{subject}{node}
  464. \index{subject}{children}
  465. \index{subject}{root}
  466. \index{subject}{parent}
  467. \index{subject}{leaf}
  468. \index{subject}{internal node}
  469. %% Recall that an \emph{symbolic expression} (S-expression) is either
  470. %% \begin{enumerate}
  471. %% \item an atom, or
  472. %% \item a pair of two S-expressions, written $(e_1 \key{.} e_2)$,
  473. %% where $e_1$ and $e_2$ are each an S-expression.
  474. %% \end{enumerate}
  475. %% An \emph{atom} can be a symbol, such as \code{`hello}, a number, the
  476. %% null value \code{'()}, etc. We can create an S-expression in Racket
  477. %% simply by writing a backquote (called a quasi-quote in Racket)
  478. %% followed by the textual representation of the S-expression. It is
  479. %% quite common to use S-expressions to represent a list, such as $a, b
  480. %% ,c$ in the following way:
  481. %% \begin{lstlisting}
  482. %% `(a . (b . (c . ())))
  483. %% \end{lstlisting}
  484. %% Each element of the list is in the first slot of a pair, and the
  485. %% second slot is either the rest of the list or the null value, to mark
  486. %% the end of the list. Such lists are so common that Racket provides
  487. %% special notation for them that removes the need for the periods
  488. %% and so many parenthesis:
  489. %% \begin{lstlisting}
  490. %% `(a b c)
  491. %% \end{lstlisting}
  492. %% The following expression creates an S-expression that represents AST
  493. %% \eqref{eq:arith-prog}.
  494. %% \begin{lstlisting}
  495. %% `(+ (read) (- 8))
  496. %% \end{lstlisting}
  497. %% When using S-expressions to represent ASTs, the convention is to
  498. %% represent each AST node as a list and to put the operation symbol at
  499. %% the front of the list. The rest of the list contains the children. So
  500. %% in the above case, the root AST node has operation \code{`+} and its
  501. %% two children are \code{`(read)} and \code{`(- 8)}, just as in the
  502. %% diagram \eqref{eq:arith-prog}.
  503. %% To build larger S-expressions one often needs to splice together
  504. %% several smaller S-expressions. Racket provides the comma operator to
  505. %% splice an S-expression into a larger one. For example, instead of
  506. %% creating the S-expression for AST \eqref{eq:arith-prog} all at once,
  507. %% we could have first created an S-expression for AST
  508. %% \eqref{eq:arith-neg8} and then spliced that into the addition
  509. %% S-expression.
  510. %% \begin{lstlisting}
  511. %% (define ast1.4 `(- 8))
  512. %% (define ast1_1 `(+ (read) ,ast1.4))
  513. %% \end{lstlisting}
  514. %% In general, the Racket expression that follows the comma (splice)
  515. %% can be any expression that produces an S-expression.
  516. {\if\edition\racketEd
  517. We define a Racket \code{struct} for each kind of node. For this
  518. chapter we require just two kinds of nodes: one for integer constants
  519. and one for primitive operations. The following is the \code{struct}
  520. definition for integer constants.
  521. \begin{lstlisting}
  522. (struct Int (value))
  523. \end{lstlisting}
  524. An integer node includes just one thing: the integer value.
  525. To create an AST node for the integer $8$, we write \INT{8}.
  526. \begin{lstlisting}
  527. (define eight (Int 8))
  528. \end{lstlisting}
  529. We say that the value created by \INT{8} is an
  530. \emph{instance} of the
  531. \code{Int} structure.
  532. The following is the \code{struct} definition for primitive operations.
  533. \begin{lstlisting}
  534. (struct Prim (op args))
  535. \end{lstlisting}
  536. A primitive operation node includes an operator symbol \code{op} and a
  537. list of child \code{args}. For example, to create an AST that negates
  538. the number $8$, we write \code{(Prim '- (list eight))}.
  539. \begin{lstlisting}
  540. (define neg-eight (Prim '- (list eight)))
  541. \end{lstlisting}
  542. Primitive operations may have zero or more children. The \code{read}
  543. operator has zero children:
  544. \begin{lstlisting}
  545. (define rd (Prim 'read '()))
  546. \end{lstlisting}
  547. whereas the addition operator has two children:
  548. \begin{lstlisting}
  549. (define ast1_1 (Prim '+ (list rd neg-eight)))
  550. \end{lstlisting}
  551. We have made a design choice regarding the \code{Prim} structure.
  552. Instead of using one structure for many different operations
  553. (\code{read}, \code{+}, and \code{-}), we could have instead defined a
  554. structure for each operation, as follows.
  555. \begin{lstlisting}
  556. (struct Read ())
  557. (struct Add (left right))
  558. (struct Neg (value))
  559. \end{lstlisting}
  560. The reason we choose to use just one structure is that in many parts
  561. of the compiler the code for the different primitive operators is the
  562. same, so we might as well just write that code once, which is enabled
  563. by using a single structure.
  564. \fi}
  565. {\if\edition\pythonEd
  566. We use a Python \code{class} for each kind of node.
  567. The following is the class definition for constants.
  568. \begin{lstlisting}
  569. class Constant:
  570. def __init__(self, value):
  571. self.value = value
  572. \end{lstlisting}
  573. An integer constant node includes just one thing: the integer value.
  574. To create an AST node for the integer $8$, we write \INT{8}.
  575. \begin{lstlisting}
  576. eight = Constant(8)
  577. \end{lstlisting}
  578. We say that the value created by \INT{8} is an
  579. \emph{instance} of the \code{Constant} class.
  580. The following is the class definition for unary operators.
  581. \begin{lstlisting}
  582. class UnaryOp:
  583. def __init__(self, op, operand):
  584. self.op = op
  585. self.operand = operand
  586. \end{lstlisting}
  587. The specific operation is specified by the \code{op} parameter. For
  588. example, the class \code{USub} is for unary subtraction. (More unary
  589. operators are introduced in later chapters.) To create an AST that
  590. negates the number $8$, we write the following.
  591. \begin{lstlisting}
  592. neg_eight = UnaryOp(USub(), eight)
  593. \end{lstlisting}
  594. The call to the \code{input\_int} function is represented by the
  595. \code{Call} and \code{Name} classes.
  596. \begin{lstlisting}
  597. class Call:
  598. def __init__(self, func, args):
  599. self.func = func
  600. self.args = args
  601. class Name:
  602. def __init__(self, id):
  603. self.id = id
  604. \end{lstlisting}
  605. To create an AST node that calls \code{input\_int}, we write
  606. \begin{lstlisting}
  607. read = Call(Name('input_int'), [])
  608. \end{lstlisting}
  609. Finally, to represent the addition in \eqref{eq:arith-prog}, we use
  610. the \code{BinOp} class for binary operators.
  611. \begin{lstlisting}
  612. class BinOp:
  613. def __init__(self, left, op, right):
  614. self.op = op
  615. self.left = left
  616. self.right = right
  617. \end{lstlisting}
  618. Similar to \code{UnaryOp}, the specific operation is specified by the
  619. \code{op} parameter, which for now is just an instance of the
  620. \code{Add} class. So to create the AST node that adds negative eight
  621. to some user input, we write the following.
  622. \begin{lstlisting}
  623. ast1_1 = BinOp(read, Add(), neg_eight)
  624. \end{lstlisting}
  625. \fi}
  626. When compiling a program such as \eqref{eq:arith-prog}, we need to
  627. know that the operation associated with the root node is addition and
  628. we need to be able to access its two children. \racket{Racket}\python{Python}
  629. provides pattern matching to support these kinds of queries, as we see in
  630. Section~\ref{sec:pattern-matching}.
  631. In this book, we often write down the concrete syntax of a program
  632. even when we really have in mind the AST because the concrete syntax
  633. is more concise. We recommend that, in your mind, you always think of
  634. programs as abstract syntax trees.
  635. \section{Grammars}
  636. \label{sec:grammar}
  637. \index{subject}{integer}
  638. \index{subject}{literal}
  639. \index{subject}{constant}
  640. A programming language can be thought of as a \emph{set} of programs.
  641. The set is typically infinite (one can always create larger and larger
  642. programs), so one cannot simply describe a language by listing all of
  643. the programs in the language. Instead we write down a set of rules, a
  644. \emph{grammar}, for building programs. Grammars are often used to
  645. define the concrete syntax of a language, but they can also be used to
  646. describe the abstract syntax. We write our rules in a variant of
  647. Backus-Naur Form (BNF)~\citep{Backus:1960aa,Knuth:1964aa}.
  648. \index{subject}{Backus-Naur Form}\index{subject}{BNF}
  649. As an example, we describe a small language, named \LangInt{}, that consists of
  650. integers and arithmetic operations.
  651. \index{subject}{grammar}
  652. The first grammar rule for the abstract syntax of \LangInt{} says that an
  653. instance of the \racket{\code{Int} structure}\python{\code{Constant} class} is an expression:
  654. \begin{equation}
  655. \Exp ::= \INT{\Int} \label{eq:arith-int}
  656. \end{equation}
  657. %
  658. Each rule has a left-hand-side and a right-hand-side.
  659. If you have an AST node that matches the
  660. right-hand-side, then you can categorize it according to the
  661. left-hand-side.
  662. %
  663. Symbols in typewriter font are \emph{terminal} symbols and must
  664. literally appear in the program for the rule to be applicable.
  665. \index{subject}{terminal}
  666. %
  667. Our grammars do not mention \emph{white-space}, that is, separating characters
  668. like spaces, tabulators, and newlines. White-space may be inserted
  669. between symbols for disambiguation and to improve readability.
  670. \index{subject}{white-space}
  671. %
  672. A name such as $\Exp$ that is defined by the grammar rules is a
  673. \emph{non-terminal}. \index{subject}{non-terminal}
  674. %
  675. The name $\Int$ is also a non-terminal, but instead of defining it
  676. with a grammar rule, we define it with the following explanation. An
  677. $\Int$ is a sequence of decimals ($0$ to $9$), possibly starting with
  678. $-$ (for negative integers), such that the sequence of decimals
  679. represent an integer in range $-2^{62}$ to $2^{62}-1$. This enables
  680. the representation of integers using 63 bits, which simplifies several
  681. aspects of compilation. \racket{Thus, these integers corresponds to
  682. the Racket \texttt{fixnum} datatype on a 64-bit machine.}
  683. \python{In contrast, integers in Python have unlimited precision, but
  684. the techniques needed to handle unlimited precision fall outside the
  685. scope of this book.}
  686. The second grammar rule is the \READOP{} operation that receives an
  687. input integer from the user of the program.
  688. \begin{equation}
  689. \Exp ::= \READ{} \label{eq:arith-read}
  690. \end{equation}
  691. The third rule says that, given an $\Exp$ node, the negation of that
  692. node is also an $\Exp$.
  693. \begin{equation}
  694. \Exp ::= \NEG{\Exp} \label{eq:arith-neg}
  695. \end{equation}
  696. We can apply these rules to categorize the ASTs that are in the
  697. \LangInt{} language. For example, by rule \eqref{eq:arith-int}
  698. \INT{8} is an $\Exp$, then by rule \eqref{eq:arith-neg} the
  699. following AST is an $\Exp$.
  700. \begin{center}
  701. \begin{minipage}{0.5\textwidth}
  702. \NEG{\INT{\code{8}}}
  703. \end{minipage}
  704. \begin{minipage}{0.25\textwidth}
  705. \begin{equation}
  706. \begin{tikzpicture}
  707. \node[draw, circle] (minus) at (0, 0) {$\text{--}$};
  708. \node[draw, circle] (8) at (0, -1.2) {$8$};
  709. \draw[->] (minus) to (8);
  710. \end{tikzpicture}
  711. \label{eq:arith-neg8}
  712. \end{equation}
  713. \end{minipage}
  714. \end{center}
  715. The next grammar rule is for addition expressions:
  716. \begin{equation}
  717. \Exp ::= \ADD{\Exp}{\Exp} \label{eq:arith-add}
  718. \end{equation}
  719. We can now justify that the AST \eqref{eq:arith-prog} is an $\Exp$ in
  720. \LangInt{}. We know that \READ{} is an $\Exp$ by rule
  721. \eqref{eq:arith-read} and we have already categorized
  722. \NEG{\INT{\code{8}}} as an $\Exp$, so we apply rule \eqref{eq:arith-add}
  723. to show that
  724. \[
  725. \ADD{\READ{}}{\NEG{\INT{\code{8}}}}
  726. \]
  727. is an $\Exp$ in the \LangInt{} language.
  728. If you have an AST for which the above rules do not apply, then the
  729. AST is not in \LangInt{}. For example, the program \racket{\code{(-
  730. (read) 8)}} \python{\code{input\_int() - 8}} is not in \LangInt{}
  731. because there are no rules for the \key{-} operator with two
  732. arguments. Whenever we define a language with a grammar, the language
  733. only includes those programs that are justified by the grammar rules.
  734. {\if\edition\pythonEd
  735. The language \LangInt{} includes a second non-terminal $\Stmt$ for statements.
  736. There is a statement for printing the value of an expression
  737. \[
  738. \Stmt{} ::= \PRINT{\Exp}
  739. \]
  740. and a statement that evaluates an expression but ignores the result.
  741. \[
  742. \Stmt{} ::= \EXPR{\Exp}
  743. \]
  744. \fi}
  745. {\if\edition\racketEd
  746. The last grammar rule for \LangInt{} states that there is a
  747. \code{Program} node to mark the top of the whole program:
  748. \[
  749. \LangInt{} ::= \PROGRAM{\code{'()}}{\Exp}
  750. \]
  751. The \code{Program} structure is defined as follows
  752. \begin{lstlisting}
  753. (struct Program (info body))
  754. \end{lstlisting}
  755. where \code{body} is an expression. In later chapters, the \code{info}
  756. part will be used to store auxiliary information but for now it is
  757. just the empty list.
  758. \fi}
  759. {\if\edition\pythonEd
  760. The last grammar rule for \LangInt{} states that there is a
  761. \code{Module} node to mark the top of the whole program:
  762. \[
  763. \LangInt{} ::= \PROGRAM{}{\Stmt^{*}}
  764. \]
  765. The asterisk symbol $*$ indicates a list of the preceding grammar item, in
  766. this case, a list of statements.
  767. %
  768. The \code{Module} class is defined as follows
  769. \begin{lstlisting}
  770. class Module:
  771. def __init__(self, body):
  772. self.body = body
  773. \end{lstlisting}
  774. where \code{body} is a list of statements.
  775. \fi}
  776. It is common to have many grammar rules with the same left-hand side
  777. but different right-hand sides, such as the rules for $\Exp$ in the
  778. grammar of \LangInt{}. As a short-hand, a vertical bar can be used to
  779. combine several right-hand-sides into a single rule.
  780. We collect all of the grammar rules for the abstract syntax of \LangInt{}
  781. in Figure~\ref{fig:r0-syntax}. The concrete syntax for \LangInt{} is
  782. defined in Figure~\ref{fig:r0-concrete-syntax}.
  783. \racket{The \code{read-program} function provided in
  784. \code{utilities.rkt} of the support code reads a program in from a
  785. file (the sequence of characters in the concrete syntax of Racket)
  786. and parses it into an abstract syntax tree. See the description of
  787. \code{read-program} in Appendix~\ref{appendix:utilities} for more
  788. details.}
  789. \python{The \code{parse} function in Python's \code{ast} module
  790. converts the concrete syntax (represented as a string) into an
  791. abstract syntax tree.}
  792. \begin{figure}[tp]
  793. \fbox{
  794. \begin{minipage}{0.96\textwidth}
  795. {\if\edition\racketEd
  796. \[
  797. \begin{array}{rcl}
  798. \Exp &::=& \Int \MID \LP\key{read}\RP \MID \LP\key{-}\;\Exp\RP \MID \LP\key{+} \; \Exp\;\Exp\RP\\
  799. \LangInt{} &::=& \Exp
  800. \end{array}
  801. \]
  802. \fi}
  803. {\if\edition\pythonEd
  804. \[
  805. \begin{array}{rcl}
  806. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \LP\Exp\RP\\
  807. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp\\
  808. \LangInt{} &::=& \Stmt^{*}
  809. \end{array}
  810. \]
  811. \fi}
  812. \end{minipage}
  813. }
  814. \caption{The concrete syntax of \LangInt{}.}
  815. \label{fig:r0-concrete-syntax}
  816. \end{figure}
  817. \begin{figure}[tp]
  818. \fbox{
  819. \begin{minipage}{0.96\textwidth}
  820. {\if\edition\racketEd
  821. \[
  822. \begin{array}{rcl}
  823. \Exp &::=& \INT{\Int} \MID \READ{} \MID \NEG{\Exp} \\
  824. &\MID& \ADD{\Exp}{\Exp} \\
  825. \LangInt{} &::=& \PROGRAM{\code{'()}}{\Exp}
  826. \end{array}
  827. \]
  828. \fi}
  829. {\if\edition\pythonEd
  830. \[
  831. \begin{array}{rcl}
  832. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  833. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \\
  834. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  835. \LangInt{} &::=& \PROGRAM{}{\Stmt^{*}}
  836. \end{array}
  837. \]
  838. \fi}
  839. \end{minipage}
  840. }
  841. \caption{The abstract syntax of \LangInt{}.}
  842. \label{fig:r0-syntax}
  843. \end{figure}
  844. \section{Pattern Matching}
  845. \label{sec:pattern-matching}
  846. As mentioned in Section~\ref{sec:ast}, compilers often need to access
  847. the parts of an AST node. \racket{Racket}\python{As of version 3.10, Python} provides the
  848. \texttt{match} feature to access the parts of a value.
  849. Consider the following example. \index{subject}{match} \index{subject}{pattern matching}
  850. \begin{center}
  851. \begin{minipage}{0.5\textwidth}
  852. {\if\edition\racketEd
  853. \begin{lstlisting}
  854. (match ast1_1
  855. [(Prim op (list child1 child2))
  856. (print op)])
  857. \end{lstlisting}
  858. \fi}
  859. {\if\edition\pythonEd
  860. \begin{lstlisting}
  861. match ast1_1:
  862. case BinOp(child1, op, child2):
  863. print(op)
  864. \end{lstlisting}
  865. \fi}
  866. \end{minipage}
  867. \end{center}
  868. {\if\edition\racketEd
  869. %
  870. In the above example, the \texttt{match} form checks whether the AST
  871. \eqref{eq:arith-prog} is a binary operator, binds its parts to the
  872. three pattern variables \texttt{op}, \texttt{child1}, and
  873. \texttt{child2}, and then prints out the operator. In general, a match
  874. clause consists of a \emph{pattern} and a
  875. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  876. to be either a pattern variable, a structure name followed by a
  877. pattern for each of the structure's arguments, or an S-expression
  878. (symbols, lists, etc.). (See Chapter 12 of The Racket
  879. Guide\footnote{\url{https://docs.racket-lang.org/guide/match.html}}
  880. and Chapter 9 of The Racket
  881. Reference\footnote{\url{https://docs.racket-lang.org/reference/match.html}}
  882. for a complete description of \code{match}.)
  883. %
  884. The body of a match clause may contain arbitrary Racket code. The
  885. pattern variables can be used in the scope of the body, such as
  886. \code{op} in \code{(print op)}.
  887. %
  888. \fi}
  889. %
  890. %
  891. {\if\edition\pythonEd
  892. %
  893. In the above example, the \texttt{match} form checks whether the AST
  894. \eqref{eq:arith-prog} is a binary operator and binds its parts to the
  895. three pattern variables \texttt{child1}, \texttt{op}, and
  896. \texttt{child2}, and then prints out the operator. In general, each
  897. \code{case} consists of a \emph{pattern} and a
  898. \emph{body}.\index{subject}{pattern} Patterns are recursively defined
  899. to be either a pattern variable, a class name followed by a pattern
  900. for each of its constructor's arguments, or other literals such as
  901. strings, lists, etc.
  902. %
  903. The body of each \code{case} may contain arbitrary Python code. The
  904. pattern variables can be used in the body, such as \code{op} in
  905. \code{print(op)}.
  906. %
  907. \fi}
  908. A \code{match} form may contain several clauses, as in the following
  909. function \code{leaf} that recognizes when an \LangInt{} node is a leaf in
  910. the AST. The \code{match} proceeds through the clauses in order,
  911. checking whether the pattern can match the input AST. The body of the
  912. first clause that matches is executed. The output of \code{leaf} for
  913. several ASTs is shown on the right.
  914. \begin{center}
  915. \begin{minipage}{0.6\textwidth}
  916. {\if\edition\racketEd
  917. \begin{lstlisting}
  918. (define (leaf arith)
  919. (match arith
  920. [(Int n) #t]
  921. [(Prim 'read '()) #t]
  922. [(Prim '- (list e1)) #f]
  923. [(Prim '+ (list e1 e2)) #f]))
  924. (leaf (Prim 'read '()))
  925. (leaf (Prim '- (list (Int 8))))
  926. (leaf (Int 8))
  927. \end{lstlisting}
  928. \fi}
  929. {\if\edition\pythonEd
  930. \begin{lstlisting}
  931. def leaf(arith):
  932. match arith:
  933. case Constant(n):
  934. return True
  935. case Call(Name('input_int'), []):
  936. return True
  937. case UnaryOp(USub(), e1):
  938. return False
  939. case BinOp(e1, Add(), e2):
  940. return False
  941. print(leaf(Call(Name('input_int'), [])))
  942. print(leaf(UnaryOp(USub(), eight)))
  943. print(leaf(Constant(8)))
  944. \end{lstlisting}
  945. \fi}
  946. \end{minipage}
  947. \vrule
  948. \begin{minipage}{0.25\textwidth}
  949. {\if\edition\racketEd
  950. \begin{lstlisting}
  951. #t
  952. #f
  953. #t
  954. \end{lstlisting}
  955. \fi}
  956. {\if\edition\pythonEd
  957. \begin{lstlisting}
  958. True
  959. False
  960. True
  961. \end{lstlisting}
  962. \fi}
  963. \end{minipage}
  964. \end{center}
  965. When writing a \code{match}, we refer to the grammar definition to
  966. identify which non-terminal we are expecting to match against, then we
  967. make sure that 1) we have one \racket{clause}\python{case} for each alternative of that
  968. non-terminal and 2) that the pattern in each \racket{clause}\python{case} corresponds to the
  969. corresponding right-hand side of a grammar rule. For the \code{match}
  970. in the \code{leaf} function, we refer to the grammar for \LangInt{} in
  971. Figure~\ref{fig:r0-syntax}. The $\Exp$ non-terminal has 4
  972. alternatives, so the \code{match} has 4 \racket{clauses}\python{cases}.
  973. The pattern in each \racket{clause}\python{case} corresponds to the right-hand side
  974. of a grammar rule. For example, the pattern \ADD{\code{e1}}{\code{e2}} corresponds to the
  975. right-hand side $\ADD{\Exp}{\Exp}$. When translating from grammars to
  976. patterns, replace non-terminals such as $\Exp$ with pattern variables
  977. of your choice (e.g. \code{e1} and \code{e2}).
  978. \section{Recursive Functions}
  979. \label{sec:recursion}
  980. \index{subject}{recursive function}
  981. Programs are inherently recursive. For example, an expression is often
  982. made of smaller expressions. Thus, the natural way to process an
  983. entire program is with a recursive function. As a first example of
  984. such a recursive function, we define the function \code{exp} in
  985. Figure~\ref{fig:exp-predicate}, which takes an arbitrary value and
  986. determines whether or not it is an expression in \LangInt{}.
  987. %
  988. We say that a function is defined by \emph{structural recursion} when
  989. it is defined using a sequence of match \racket{clauses}\python{cases}
  990. that correspond to a grammar, and the body of each \racket{clause}\python{case}
  991. makes a recursive call on each
  992. child node.\footnote{This principle of structuring code according to
  993. the data definition is advocated in the book \emph{How to Design
  994. Programs} \url{https://htdp.org/2020-8-1/Book/index.html}.}
  995. \python{We define a second function, named \code{stmt}, that recognizes
  996. whether a value is a \LangInt{} statement.}
  997. \python{Finally, }
  998. Figure~\ref{fig:exp-predicate} \racket{also} defines \code{Lint}, which
  999. determines whether an AST is a program in \LangInt{}. In general we can
  1000. expect to write one recursive function to handle each non-terminal in
  1001. a grammar.\index{subject}{structural recursion}
  1002. \begin{figure}[tp]
  1003. {\if\edition\racketEd
  1004. \begin{minipage}{0.7\textwidth}
  1005. \begin{lstlisting}
  1006. (define (exp ast)
  1007. (match ast
  1008. [(Int n) #t]
  1009. [(Prim 'read '()) #t]
  1010. [(Prim '- (list e)) (exp e)]
  1011. [(Prim '+ (list e1 e2))
  1012. (and (exp e1) (exp e2))]
  1013. [else #f]))
  1014. (define (Lint ast)
  1015. (match ast
  1016. [(Program '() e) (exp e)]
  1017. [else #f]))
  1018. (Lint (Program '() ast1_1)
  1019. (Lint (Program '()
  1020. (Prim '- (list (Prim 'read '())
  1021. (Prim '+ (list (Num 8)))))))
  1022. \end{lstlisting}
  1023. \end{minipage}
  1024. \vrule
  1025. \begin{minipage}{0.25\textwidth}
  1026. \begin{lstlisting}
  1027. #t
  1028. #f
  1029. \end{lstlisting}
  1030. \end{minipage}
  1031. \fi}
  1032. {\if\edition\pythonEd
  1033. \begin{minipage}{0.7\textwidth}
  1034. \begin{lstlisting}
  1035. def exp(e):
  1036. match e:
  1037. case Constant(n):
  1038. return True
  1039. case Call(Name('input_int'), []):
  1040. return True
  1041. case UnaryOp(USub(), e1):
  1042. return exp(e1)
  1043. case BinOp(e1, Add(), e2):
  1044. return exp(e1) and exp(e2)
  1045. case _:
  1046. return False
  1047. def stmt(s):
  1048. match s:
  1049. case Expr(Call(Name('print'), [e])):
  1050. return exp(e)
  1051. case Expr(e):
  1052. return exp(e)
  1053. case _:
  1054. return False
  1055. def Lint(p):
  1056. match p:
  1057. case Module(body):
  1058. return all([stmt(s) for s in body])
  1059. case _:
  1060. return False
  1061. print(Lint(Module([Expr(ast1_1)])))
  1062. print(Lint(Module([Expr(BinOp(read, Sub(),
  1063. UnaryOp(Add(), Constant(8))))])))
  1064. \end{lstlisting}
  1065. \end{minipage}
  1066. \vrule
  1067. \begin{minipage}{0.25\textwidth}
  1068. \begin{lstlisting}
  1069. True
  1070. False
  1071. \end{lstlisting}
  1072. \end{minipage}
  1073. \fi}
  1074. \caption{Example of recursive functions for \LangInt{}. These functions
  1075. recognize whether an AST is in \LangInt{}.}
  1076. \label{fig:exp-predicate}
  1077. \end{figure}
  1078. %% You may be tempted to merge the two functions into one, like this:
  1079. %% \begin{center}
  1080. %% \begin{minipage}{0.5\textwidth}
  1081. %% \begin{lstlisting}
  1082. %% (define (Lint ast)
  1083. %% (match ast
  1084. %% [(Int n) #t]
  1085. %% [(Prim 'read '()) #t]
  1086. %% [(Prim '- (list e)) (Lint e)]
  1087. %% [(Prim '+ (list e1 e2)) (and (Lint e1) (Lint e2))]
  1088. %% [(Program '() e) (Lint e)]
  1089. %% [else #f]))
  1090. %% \end{lstlisting}
  1091. %% \end{minipage}
  1092. %% \end{center}
  1093. %% %
  1094. %% Sometimes such a trick will save a few lines of code, especially when
  1095. %% it comes to the \code{Program} wrapper. Yet this style is generally
  1096. %% \emph{not} recommended because it can get you into trouble.
  1097. %% %
  1098. %% For example, the above function is subtly wrong:
  1099. %% \lstinline{(Lint (Program '() (Program '() (Int 3))))}
  1100. %% returns true when it should return false.
  1101. \section{Interpreters}
  1102. \label{sec:interp_Lint}
  1103. \index{subject}{interpreter}
  1104. The behavior of a program is defined by the specification of the
  1105. programming language.
  1106. %
  1107. \racket{For example, the Scheme language is defined in the report by
  1108. \cite{SPERBER:2009aa}. The Racket language is defined in its
  1109. reference manual~\citep{plt-tr}.}
  1110. %
  1111. \python{For example, the Python language is defined in the Python
  1112. Language Reference~\citep{PSF21:python_ref} and the CPython interpreter~\citep{PSF21:cpython}.}
  1113. %
  1114. In this book we use interpreters
  1115. to specify each language that we consider. An interpreter that is
  1116. designated as the definition of a language is called a
  1117. \emph{definitional interpreter}~\citep{reynolds72:_def_interp}.
  1118. \index{subject}{definitional interpreter} We warm up by creating a
  1119. definitional interpreter for the \LangInt{} language, which serves as
  1120. a second example of structural recursion. The \code{interp\_Lint}
  1121. function is defined in Figure~\ref{fig:interp_Lint}.
  1122. %
  1123. \racket{The body of the function is a match on the input program
  1124. followed by a call to the \lstinline{interp_exp} helper function,
  1125. which in turn has one match clause per grammar rule for \LangInt{}
  1126. expressions.}
  1127. %
  1128. \python{The body of the function matches on the \code{Module} AST node
  1129. and then invokes \code{interp\_stmt} on each statement in the
  1130. module. The \code{interp\_stmt} function includes a case for each
  1131. grammar rule of the \Stmt{} non-terminal and it calls
  1132. \code{interp\_exp} on each subexpression. The \code{interp\_exp}
  1133. function includes a case for each grammar rule of the \Exp{}
  1134. non-terminal.}
  1135. \begin{figure}[tp]
  1136. {\if\edition\racketEd
  1137. \begin{lstlisting}
  1138. (define (interp_exp e)
  1139. (match e
  1140. [(Int n) n]
  1141. [(Prim 'read '())
  1142. (define r (read))
  1143. (cond [(fixnum? r) r]
  1144. [else (error 'interp_exp "read expected an integer" r)])]
  1145. [(Prim '- (list e))
  1146. (define v (interp_exp e))
  1147. (fx- 0 v)]
  1148. [(Prim '+ (list e1 e2))
  1149. (define v1 (interp_exp e1))
  1150. (define v2 (interp_exp e2))
  1151. (fx+ v1 v2)]))
  1152. (define (interp_Lint p)
  1153. (match p
  1154. [(Program '() e) (interp_exp e)]))
  1155. \end{lstlisting}
  1156. \fi}
  1157. {\if\edition\pythonEd
  1158. \begin{lstlisting}
  1159. def interp_exp(e):
  1160. match e:
  1161. case BinOp(left, Add(), right):
  1162. l = interp_exp(left)
  1163. r = interp_exp(right)
  1164. return l + r
  1165. case UnaryOp(USub(), v):
  1166. return - interp_exp(v)
  1167. case Constant(value):
  1168. return value
  1169. case Call(Name('input_int'), []):
  1170. return int(input())
  1171. def interp_stmt(s):
  1172. match s:
  1173. case Expr(Call(Name('print'), [arg])):
  1174. print(interp_exp(arg))
  1175. case Expr(value):
  1176. interp_exp(value)
  1177. def interp_Lint(p):
  1178. match p:
  1179. case Module(body):
  1180. for s in body:
  1181. interp_stmt(s)
  1182. \end{lstlisting}
  1183. \fi}
  1184. \caption{Interpreter for the \LangInt{} language.}
  1185. \label{fig:interp_Lint}
  1186. \end{figure}
  1187. Let us consider the result of interpreting a few \LangInt{} programs. The
  1188. following program adds two integers.
  1189. {\if\edition\racketEd
  1190. \begin{lstlisting}
  1191. (+ 10 32)
  1192. \end{lstlisting}
  1193. \fi}
  1194. {\if\edition\pythonEd
  1195. \begin{lstlisting}
  1196. print(10 + 32)
  1197. \end{lstlisting}
  1198. \fi}
  1199. The result is \key{42}, the answer to life, the universe, and
  1200. everything: \code{42}!\footnote{\emph{The Hitchhiker's Guide to the
  1201. Galaxy} by Douglas Adams.}
  1202. %
  1203. We wrote the above program in concrete syntax whereas the parsed
  1204. abstract syntax is:
  1205. {\if\edition\racketEd
  1206. \begin{lstlisting}
  1207. (Program '() (Prim '+ (list (Int 10) (Int 32))))
  1208. \end{lstlisting}
  1209. \fi}
  1210. {\if\edition\pythonEd
  1211. \begin{lstlisting}
  1212. Module([Expr(Call(Name('print'), [BinOp(Constant(10), Add(), Constant(32))]))])
  1213. \end{lstlisting}
  1214. \fi}
  1215. The next example demonstrates that expressions may be nested within
  1216. each other, in this case nesting several additions and negations.
  1217. {\if\edition\racketEd
  1218. \begin{lstlisting}
  1219. (+ 10 (- (+ 12 20)))
  1220. \end{lstlisting}
  1221. \fi}
  1222. {\if\edition\pythonEd
  1223. \begin{lstlisting}
  1224. print(10 + -(12 + 20))
  1225. \end{lstlisting}
  1226. \fi}
  1227. %
  1228. \noindent What is the result of the above program?
  1229. {\if\edition\racketEd
  1230. As mentioned previously, the \LangInt{} language does not support
  1231. arbitrarily-large integers, but only $63$-bit integers, so we
  1232. interpret the arithmetic operations of \LangInt{} using fixnum arithmetic
  1233. in Racket.
  1234. Suppose
  1235. \[
  1236. n = 999999999999999999
  1237. \]
  1238. which indeed fits in $63$-bits. What happens when we run the
  1239. following program in our interpreter?
  1240. \begin{lstlisting}
  1241. (+ (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)) (+ (+ |$n$| |$n$|) (+ |$n$| |$n$|)))))
  1242. \end{lstlisting}
  1243. It produces an error:
  1244. \begin{lstlisting}
  1245. fx+: result is not a fixnum
  1246. \end{lstlisting}
  1247. We establish the convention that if running the definitional
  1248. interpreter on a program produces an error then the meaning of that
  1249. program is \emph{unspecified}\index{subject}{unspecified behavior}, unless the
  1250. error is a \code{trapped-error}. A compiler for the language is under
  1251. no obligations regarding programs with unspecified behavior; it does
  1252. not have to produce an executable, and if it does, that executable can
  1253. do anything. On the other hand, if the error is a
  1254. \code{trapped-error}, then the compiler must produce an executable and
  1255. it is required to report that an error occurred. To signal an error,
  1256. exit with a return code of \code{255}. The interpreters in chapters
  1257. \ref{ch:Rdyn} and \ref{ch:Rgrad} use
  1258. \code{trapped-error}.
  1259. \fi}
  1260. % TODO: how to deal with too-large integers in the Python interpreter?
  1261. %% This convention applies to the languages defined in this
  1262. %% book, as a way to simplify the student's task of implementing them,
  1263. %% but this convention is not applicable to all programming languages.
  1264. %%
  1265. Moving on to the last feature of the \LangInt{} language, the
  1266. \READOP{} operation prompts the user of the program for an integer.
  1267. Recall that program \eqref{eq:arith-prog} requests an integer input
  1268. and then subtracts \code{8}. So if we run
  1269. {\if\edition\racketEd
  1270. \begin{lstlisting}
  1271. (interp_Lint (Program '() ast1_1))
  1272. \end{lstlisting}
  1273. \fi}
  1274. {\if\edition\pythonEd
  1275. \begin{lstlisting}
  1276. interp_Lint(Module([Expr(Call(Name('print'), [ast1_1]))]))
  1277. \end{lstlisting}
  1278. \fi}
  1279. \noindent and if the input is \code{50}, the result is \code{42}.
  1280. We include the \READOP{} operation in \LangInt{} so a clever student
  1281. cannot implement a compiler for \LangInt{} that simply runs the interpreter
  1282. during compilation to obtain the output and then generates the trivial
  1283. code to produce the output.\footnote{Yes, a clever student did this in the
  1284. first instance of this course!}
  1285. The job of a compiler is to translate a program in one language into a
  1286. program in another language so that the output program behaves the
  1287. same way as the input program. This idea is depicted in the
  1288. following diagram. Suppose we have two languages, $\mathcal{L}_1$ and
  1289. $\mathcal{L}_2$, and a definitional interpreter for each language.
  1290. Given a compiler that translates from language $\mathcal{L}_1$ to
  1291. $\mathcal{L}_2$ and given any program $P_1$ in $\mathcal{L}_1$, the
  1292. compiler must translate it into some program $P_2$ such that
  1293. interpreting $P_1$ and $P_2$ on their respective interpreters with
  1294. same input $i$ yields the same output $o$.
  1295. \begin{equation} \label{eq:compile-correct}
  1296. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1297. \node (p1) at (0, 0) {$P_1$};
  1298. \node (p2) at (3, 0) {$P_2$};
  1299. \node (o) at (3, -2.5) {$o$};
  1300. \path[->] (p1) edge [above] node {compile} (p2);
  1301. \path[->] (p2) edge [right] node {interp\_$\mathcal{L}_2$($i$)} (o);
  1302. \path[->] (p1) edge [left] node {interp\_$\mathcal{L}_1$($i$)} (o);
  1303. \end{tikzpicture}
  1304. \end{equation}
  1305. In the next section we see our first example of a compiler.
  1306. \section{Example Compiler: a Partial Evaluator}
  1307. \label{sec:partial-evaluation}
  1308. In this section we consider a compiler that translates \LangInt{}
  1309. programs into \LangInt{} programs that may be more efficient. The
  1310. compiler eagerly computes the parts of the program that do not depend
  1311. on any inputs, a process known as \emph{partial
  1312. evaluation}~\citep{Jones:1993uq}. \index{subject}{partial evaluation}
  1313. For example, given the following program
  1314. {\if\edition\racketEd
  1315. \begin{lstlisting}
  1316. (+ (read) (- (+ 5 3)))
  1317. \end{lstlisting}
  1318. \fi}
  1319. {\if\edition\pythonEd
  1320. \begin{lstlisting}
  1321. print(input_int() + -(5 + 3) )
  1322. \end{lstlisting}
  1323. \fi}
  1324. \noindent our compiler translates it into the program
  1325. {\if\edition\racketEd
  1326. \begin{lstlisting}
  1327. (+ (read) -8)
  1328. \end{lstlisting}
  1329. \fi}
  1330. {\if\edition\pythonEd
  1331. \begin{lstlisting}
  1332. print(input_int() + -8)
  1333. \end{lstlisting}
  1334. \fi}
  1335. Figure~\ref{fig:pe-arith} gives the code for a simple partial
  1336. evaluator for the \LangInt{} language. The output of the partial evaluator
  1337. is a program in \LangInt{}. In Figure~\ref{fig:pe-arith}, the structural
  1338. recursion over $\Exp$ is captured in the \code{pe\_exp} function
  1339. whereas the code for partially evaluating the negation and addition
  1340. operations is factored into two auxiliary functions:
  1341. \code{pe\_neg} and \code{pe\_add}. The input to these
  1342. functions is the output of partially evaluating the children.
  1343. The \code{pe\_neg} and \code{pe\_add} functions check whether their
  1344. arguments are integers and if they are, perform the appropriate
  1345. arithmetic. Otherwise, they create an AST node for the arithmetic
  1346. operation.
  1347. \begin{figure}[tp]
  1348. {\if\edition\racketEd
  1349. \begin{lstlisting}
  1350. (define (pe_neg r)
  1351. (match r
  1352. [(Int n) (Int (fx- 0 n))]
  1353. [else (Prim '- (list r))]))
  1354. (define (pe_add r1 r2)
  1355. (match* (r1 r2)
  1356. [((Int n1) (Int n2)) (Int (fx+ n1 n2))]
  1357. [(_ _) (Prim '+ (list r1 r2))]))
  1358. (define (pe_exp e)
  1359. (match e
  1360. [(Int n) (Int n)]
  1361. [(Prim 'read '()) (Prim 'read '())]
  1362. [(Prim '- (list e1)) (pe_neg (pe_exp e1))]
  1363. [(Prim '+ (list e1 e2)) (pe_add (pe_exp e1) (pe_exp e2))]))
  1364. (define (pe_Lint p)
  1365. (match p
  1366. [(Program '() e) (Program '() (pe_exp e))]))
  1367. \end{lstlisting}
  1368. \fi}
  1369. {\if\edition\pythonEd
  1370. \begin{lstlisting}
  1371. def pe_neg(r):
  1372. match r:
  1373. case Constant(n):
  1374. return Constant(-n)
  1375. case _:
  1376. return UnaryOp(USub(), r)
  1377. def pe_add(r1, r2):
  1378. match (r1, r2):
  1379. case (Constant(n1), Constant(n2)):
  1380. return Constant(n1 + n2)
  1381. case _:
  1382. return BinOp(r1, Add(), r2)
  1383. def pe_exp(e):
  1384. match e:
  1385. case BinOp(left, Add(), right):
  1386. return pe_add(pe_exp(left), pe_exp(right))
  1387. case UnaryOp(USub(), v):
  1388. return pe_neg(pe_exp(v))
  1389. case Constant(value):
  1390. return e
  1391. case Call(Name('input_int'), []):
  1392. return e
  1393. def pe_stmt(s):
  1394. match s:
  1395. case Expr(Call(Name('print'), [arg])):
  1396. return Expr(Call(Name('print'), [pe_exp(arg)]))
  1397. case Expr(value):
  1398. return Expr(pe_exp(value))
  1399. def pe_P_int(p):
  1400. match p:
  1401. case Module(body):
  1402. new_body = [pe_stmt(s) for s in body]
  1403. return Module(new_body)
  1404. \end{lstlisting}
  1405. \fi}
  1406. \caption{A partial evaluator for \LangInt{}.}
  1407. \label{fig:pe-arith}
  1408. \end{figure}
  1409. To gain some confidence that the partial evaluator is correct, we can
  1410. test whether it produces programs that get the same result as the
  1411. input programs. That is, we can test whether it satisfies Diagram
  1412. \ref{eq:compile-correct}.
  1413. %
  1414. {\if\edition\racketEd
  1415. The following code runs the partial evaluator on several examples and
  1416. tests the output program. The \texttt{parse-program} and
  1417. \texttt{assert} functions are defined in
  1418. Appendix~\ref{appendix:utilities}.\\
  1419. \begin{minipage}{1.0\textwidth}
  1420. \begin{lstlisting}
  1421. (define (test_pe p)
  1422. (assert "testing pe_Lint"
  1423. (equal? (interp_Lint p) (interp_Lint (pe_Lint p)))))
  1424. (test_pe (parse-program `(program () (+ 10 (- (+ 5 3))))))
  1425. (test_pe (parse-program `(program () (+ 1 (+ 3 1)))))
  1426. (test_pe (parse-program `(program () (- (+ 3 (- 5))))))
  1427. \end{lstlisting}
  1428. \end{minipage}
  1429. \fi}
  1430. % TODO: python version of testing the PE
  1431. \begin{exercise}\normalfont
  1432. Create three programs in the \LangInt{} language and test whether
  1433. partially evaluating them with \code{pe\_Lint} and then
  1434. interpreting them with \code{interp\_Lint} gives the same result
  1435. as directly interpreting them with \code{interp\_Lint}.
  1436. \end{exercise}
  1437. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  1438. \chapter{Integers and Variables}
  1439. \label{ch:Lvar}
  1440. This chapter is about compiling a subset of
  1441. \racket{Racket}\python{Python} to x86-64 assembly
  1442. code~\citep{Intel:2015aa}. The subset, named \LangVar{}, includes
  1443. integer arithmetic and local variables. We often refer to x86-64
  1444. simply as x86. The chapter begins with a description of the
  1445. \LangVar{} language (Section~\ref{sec:s0}) followed by an introduction
  1446. to x86 assembly (Section~\ref{sec:x86}). The x86 assembly language is
  1447. large so we discuss only the instructions needed for compiling
  1448. \LangVar{}. We introduce more x86 instructions in later chapters.
  1449. After introducing \LangVar{} and x86, we reflect on their differences
  1450. and come up with a plan to break down the translation from \LangVar{}
  1451. to x86 into a handful of steps (Section~\ref{sec:plan-s0-x86}). The
  1452. rest of the sections in this chapter give detailed hints regarding
  1453. each step. We hope to give enough hints that the well-prepared
  1454. reader, together with a few friends, can implement a compiler from
  1455. \LangVar{} to x86 in a short time. To give the reader a feeling for
  1456. the scale of this first compiler, the instructor solution for the
  1457. \LangVar{} compiler is approximately \racket{500}\python{300} lines of
  1458. code.
  1459. \section{The \LangVar{} Language}
  1460. \label{sec:s0}
  1461. \index{subject}{variable}
  1462. The \LangVar{} language extends the \LangInt{} language with
  1463. variables. The concrete syntax of the \LangVar{} language is defined
  1464. by the grammar in Figure~\ref{fig:Lvar-concrete-syntax} and the
  1465. abstract syntax is defined in Figure~\ref{fig:Lvar-syntax}. The
  1466. non-terminal \Var{} may be any \racket{Racket}\python{Python} identifier.
  1467. As in \LangInt{}, \READOP{} is a nullary operator, \key{-} is a unary operator, and
  1468. \key{+} is a binary operator. Similar to \LangInt{}, the abstract
  1469. syntax of \LangVar{} includes the \racket{\key{Program}
  1470. struct}\python{\key{Module} instance} to mark the top of the
  1471. program.
  1472. %% The $\itm{info}$
  1473. %% field of the \key{Program} structure contains an \emph{association
  1474. %% list} (a list of key-value pairs) that is used to communicate
  1475. %% auxiliary data from one compiler pass the next.
  1476. Despite the simplicity of the \LangVar{} language, it is rich enough to
  1477. exhibit several compilation techniques.
  1478. \begin{figure}[tp]
  1479. \centering
  1480. \fbox{
  1481. \begin{minipage}{0.96\textwidth}
  1482. {\if\edition\racketEd
  1483. \[
  1484. \begin{array}{rcl}
  1485. \Exp &::=& \Int{} \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp}\\
  1486. &\MID& \Var{} \MID \CLET{\Var}{\Exp}{\Exp} \\
  1487. \LangVarM{} &::=& \Exp
  1488. \end{array}
  1489. \]
  1490. \fi}
  1491. {\if\edition\pythonEd
  1492. \[
  1493. \begin{array}{rcl}
  1494. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \key{-}\;\Exp \MID \Exp \; \key{+} \; \Exp \MID \LP\Exp\RP \MID \Var{} \\
  1495. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp \MID \Var\mathop{\key{=}}\Exp\\
  1496. \LangVarM{} &::=& \Stmt^{*}
  1497. \end{array}
  1498. \]
  1499. \fi}
  1500. \end{minipage}
  1501. }
  1502. \caption{The concrete syntax of \LangVar{}.}
  1503. \label{fig:Lvar-concrete-syntax}
  1504. \end{figure}
  1505. \begin{figure}[tp]
  1506. \centering
  1507. \fbox{
  1508. \begin{minipage}{0.96\textwidth}
  1509. {\if\edition\racketEd
  1510. \[
  1511. \begin{array}{rcl}
  1512. \Exp &::=& \INT{\Int} \MID \READ{} \\
  1513. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \\
  1514. &\MID& \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  1515. \LangVarM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  1516. \end{array}
  1517. \]
  1518. \fi}
  1519. {\if\edition\pythonEd
  1520. \[
  1521. \begin{array}{rcl}
  1522. \Exp{} &::=& \INT{\Int} \MID \READ{} \\
  1523. &\MID& \NEG{\Exp} \MID \ADD{\Exp}{\Exp} \MID \VAR{\Var{}} \\
  1524. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  1525. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  1526. \LangVarM{} &::=& \PROGRAM{}{\Stmt^{*}}
  1527. \end{array}
  1528. \]
  1529. \fi}
  1530. \end{minipage}
  1531. }
  1532. \caption{The abstract syntax of \LangVar{}.}
  1533. \label{fig:Lvar-syntax}
  1534. \end{figure}
  1535. {\if\edition\racketEd
  1536. Let us dive further into the syntax and semantics of the \LangVar{}
  1537. language. The \key{let} feature defines a variable for use within its
  1538. body and initializes the variable with the value of an expression.
  1539. The abstract syntax for \key{let} is defined in
  1540. Figure~\ref{fig:Lvar-syntax}. The concrete syntax for \key{let} is
  1541. \begin{lstlisting}
  1542. (let ([|$\itm{var}$| |$\itm{exp}$|]) |$\itm{exp}$|)
  1543. \end{lstlisting}
  1544. For example, the following program initializes \code{x} to $32$ and then
  1545. evaluates the body \code{(+ 10 x)}, producing $42$.
  1546. \begin{lstlisting}
  1547. (let ([x (+ 12 20)]) (+ 10 x))
  1548. \end{lstlisting}
  1549. \fi}
  1550. %
  1551. {\if\edition\pythonEd
  1552. %
  1553. The \LangVar{} language includes assignment statements, which define a
  1554. variable for use in later statements and initializes the variable with
  1555. the value of an expression. The abstract syntax for assignment is
  1556. defined in Figure~\ref{fig:Lvar-syntax}. The concrete syntax for
  1557. assignment is
  1558. \begin{lstlisting}
  1559. |$\itm{var}$| = |$\itm{exp}$|
  1560. \end{lstlisting}
  1561. For example, the following program initializes the variable \code{x}
  1562. to $32$ and then prints the result of \code{10 + x}, producing $42$.
  1563. \begin{lstlisting}
  1564. x = 12 + 20
  1565. print(10 + x)
  1566. \end{lstlisting}
  1567. \fi}
  1568. {\if\edition\racketEd
  1569. %
  1570. When there are multiple \key{let}'s for the same variable, the closest
  1571. enclosing \key{let} is used. That is, variable definitions overshadow
  1572. prior definitions. Consider the following program with two \key{let}'s
  1573. that define variables named \code{x}. Can you figure out the result?
  1574. \begin{lstlisting}
  1575. (let ([x 32]) (+ (let ([x 10]) x) x))
  1576. \end{lstlisting}
  1577. For the purposes of depicting which variable uses correspond to which
  1578. definitions, the following shows the \code{x}'s annotated with
  1579. subscripts to distinguish them. Double check that your answer for the
  1580. above is the same as your answer for this annotated version of the
  1581. program.
  1582. \begin{lstlisting}
  1583. (let ([x|$_1$| 32]) (+ (let ([x|$_2$| 10]) x|$_2$|) x|$_1$|))
  1584. \end{lstlisting}
  1585. The initializing expression is always evaluated before the body of the
  1586. \key{let}, so in the following, the \key{read} for \code{x} is
  1587. performed before the \key{read} for \code{y}. Given the input
  1588. $52$ then $10$, the following produces $42$ (not $-42$).
  1589. \begin{lstlisting}
  1590. (let ([x (read)]) (let ([y (read)]) (+ x (- y))))
  1591. \end{lstlisting}
  1592. \fi}
  1593. \subsection{Extensible Interpreters via Method Overriding}
  1594. \label{sec:extensible-interp}
  1595. To prepare for discussing the interpreter of \LangVar{}, we explain
  1596. why we implement it in an object-oriented style. Throughout this book
  1597. we define many interpreters, one for each of language that we
  1598. study. Because each language builds on the prior one, there is a lot
  1599. of commonality between these interpreters. We want to write down the
  1600. common parts just once instead of many times. A naive approach would
  1601. be for the interpreter of \LangVar{} to handle the
  1602. \racket{cases for variables and \code{let}}
  1603. \python{case for variables}
  1604. but dispatch to \LangInt{}
  1605. for the rest of the cases. The following code sketches this idea. (We
  1606. explain the \code{env} parameter soon, in
  1607. Section~\ref{sec:interp-Lvar}.)
  1608. \begin{center}
  1609. {\if\edition\racketEd
  1610. \begin{minipage}{0.45\textwidth}
  1611. \begin{lstlisting}
  1612. (define ((interp_Lint env) e)
  1613. (match e
  1614. [(Prim '- (list e1))
  1615. (fx- 0 ((interp_Lint env) e1))]
  1616. ...))
  1617. \end{lstlisting}
  1618. \end{minipage}
  1619. \begin{minipage}{0.45\textwidth}
  1620. \begin{lstlisting}
  1621. (define ((interp_Lvar env) e)
  1622. (match e
  1623. [(Var x)
  1624. (dict-ref env x)]
  1625. [(Let x e body)
  1626. (define v ((interp_exp env) e))
  1627. (define env^ (dict-set env x v))
  1628. ((interp_exp env^) body)]
  1629. [else ((interp_Lint env) e)]))
  1630. \end{lstlisting}
  1631. \end{minipage}
  1632. \fi}
  1633. {\if\edition\pythonEd
  1634. \begin{minipage}{0.45\textwidth}
  1635. \begin{lstlisting}
  1636. def interp_Lint(e, env):
  1637. match e:
  1638. case UnaryOp(USub(), e1):
  1639. return - interp_Lint(e1, env)
  1640. ...
  1641. \end{lstlisting}
  1642. \end{minipage}
  1643. \begin{minipage}{0.45\textwidth}
  1644. \begin{lstlisting}
  1645. def interp_Lvar(e, env):
  1646. match e:
  1647. case Name(id):
  1648. return env[id]
  1649. case _:
  1650. return interp_Lint(e, env)
  1651. \end{lstlisting}
  1652. \end{minipage}
  1653. \fi}
  1654. \end{center}
  1655. The problem with this approach is that it does not handle situations
  1656. in which an \LangVar{} feature, such as a variable, is nested inside
  1657. an \LangInt{} feature, like the \code{-} operator, as in the following
  1658. program.
  1659. %
  1660. {\if\edition\racketEd
  1661. \begin{lstlisting}
  1662. (Let 'y (Int 10) (Prim '- (list (Var 'y))))
  1663. \end{lstlisting}
  1664. \fi}
  1665. {\if\edition\pythonEd
  1666. \begin{lstlisting}
  1667. y = 10
  1668. print(-y)
  1669. \end{lstlisting}
  1670. \fi}
  1671. %
  1672. \noindent If we invoke \code{interp\_Lvar} on this program, it
  1673. dispatches to \code{interp\_Lint} to handle the \code{-} operator, but
  1674. then it recursively calls \code{interp\_Lint} again on its argument.
  1675. But there is no case for \code{Var} in \code{interp\_Lint} so we get
  1676. an error!
  1677. To make our interpreters extensible we need something called
  1678. \emph{open recursion}\index{subject}{open recursion}, where the tying of the
  1679. recursive knot is delayed to when the functions are
  1680. composed. Object-oriented languages provide open recursion via
  1681. method overriding\index{subject}{method overriding}. The
  1682. following code uses method overriding to interpret \LangInt{} and
  1683. \LangVar{} using
  1684. %
  1685. \racket{the
  1686. \href{https://docs.racket-lang.org/guide/classes.html}{\code{class}}
  1687. \index{subject}{class} feature of Racket}
  1688. %
  1689. \python{a Python \code{class} definition}.
  1690. %
  1691. We define one class for each language and define a method for
  1692. interpreting expressions inside each class. The class for \LangVar{}
  1693. inherits from the class for \LangInt{} and the method
  1694. \code{interp\_exp} in \LangVar{} overrides the \code{interp\_exp} in
  1695. \LangInt{}. Note that the default case of \code{interp\_exp} in
  1696. \LangVar{} uses \code{super} to invoke \code{interp\_exp}, and because
  1697. \LangVar{} inherits from \LangInt{}, that dispatches to the
  1698. \code{interp\_exp} in \LangInt{}.
  1699. \begin{center}
  1700. \hspace{-20pt}
  1701. {\if\edition\racketEd
  1702. \begin{minipage}{0.45\textwidth}
  1703. \begin{lstlisting}
  1704. (define interp_Lint_class
  1705. (class object%
  1706. (define/public ((interp_exp env) e)
  1707. (match e
  1708. [(Prim '- (list e))
  1709. (fx- 0 ((interp_exp env) e))]
  1710. ...))
  1711. ...))
  1712. \end{lstlisting}
  1713. \end{minipage}
  1714. \begin{minipage}{0.45\textwidth}
  1715. \begin{lstlisting}
  1716. (define interp_Lvar_class
  1717. (class interp_Lint_class
  1718. (define/override ((interp_exp env) e)
  1719. (match e
  1720. [(Var x)
  1721. (dict-ref env x)]
  1722. [(Let x e body)
  1723. (define v ((interp_exp env) e))
  1724. (define env^ (dict-set env x v))
  1725. ((interp_exp env^) body)]
  1726. [else
  1727. (super (interp_exp env) e)]))
  1728. ...
  1729. ))
  1730. \end{lstlisting}
  1731. \end{minipage}
  1732. \fi}
  1733. {\if\edition\pythonEd
  1734. \begin{minipage}{0.45\textwidth}
  1735. \begin{lstlisting}
  1736. class InterpLint:
  1737. def interp_exp(e):
  1738. match e:
  1739. case UnaryOp(USub(), e1):
  1740. return -self.interp_exp(e1)
  1741. ...
  1742. ...
  1743. \end{lstlisting}
  1744. \end{minipage}
  1745. \begin{minipage}{0.45\textwidth}
  1746. \begin{lstlisting}
  1747. def InterpLvar(InterpLint):
  1748. def interp_exp(e):
  1749. match e:
  1750. case Name(id):
  1751. return env[id]
  1752. case _:
  1753. return super().interp_exp(e)
  1754. ...
  1755. \end{lstlisting}
  1756. \end{minipage}
  1757. \fi}
  1758. \end{center}
  1759. Getting back to the troublesome example, repeated here:
  1760. {\if\edition\racketEd
  1761. \begin{lstlisting}
  1762. (Let 'y (Int 10) (Prim '- (Var 'y)))
  1763. \end{lstlisting}
  1764. \fi}
  1765. {\if\edition\pythonEd
  1766. \begin{lstlisting}
  1767. y = 10
  1768. print(-y)
  1769. \end{lstlisting}
  1770. \fi}
  1771. \noindent We can invoke the \code{interp\_exp} method for \LangVar{}
  1772. \racket{on this expression,}
  1773. \python{on the \code{-y} expression,}
  1774. %
  1775. call it \code{e0}, by creating an object of the \LangVar{} class
  1776. and calling the \code{interp\_exp} method.
  1777. {\if\edition\racketEd
  1778. \begin{lstlisting}
  1779. (send (new interp_Lvar_class) interp_exp e0)
  1780. \end{lstlisting}
  1781. \fi}
  1782. {\if\edition\pythonEd
  1783. \begin{lstlisting}
  1784. InterpLvar().interp_exp(e0)
  1785. \end{lstlisting}
  1786. \fi}
  1787. \noindent To process the \code{-} operator, the default case of
  1788. \code{interp\_exp} in \LangVar{} dispatches to the \code{interp\_exp}
  1789. method in \LangInt{}. But then for the recursive method call, it
  1790. dispatches back to \code{interp\_exp} in \LangVar{}, where the
  1791. \code{Var} node is handled correctly. Thus, method overriding gives us
  1792. the open recursion that we need to implement our interpreters in an
  1793. extensible way.
  1794. \subsection{Definitional Interpreter for \LangVar{}}
  1795. \label{sec:interp-Lvar}
  1796. {\if\edition\racketEd
  1797. \begin{figure}[tp]
  1798. %\begin{wrapfigure}[26]{r}[0.75in]{0.55\textwidth}
  1799. \small
  1800. \begin{tcolorbox}[title=Association Lists as Dictionaries]
  1801. An \emph{association list} (alist) is a list of key-value pairs.
  1802. For example, we can map people to their ages with an alist.
  1803. \index{subject}{alist}\index{subject}{association list}
  1804. \begin{lstlisting}[basicstyle=\ttfamily]
  1805. (define ages '((jane . 25) (sam . 24) (kate . 45)))
  1806. \end{lstlisting}
  1807. The \emph{dictionary} interface is for mapping keys to values.
  1808. Every alist implements this interface. \index{subject}{dictionary} The package
  1809. \href{https://docs.racket-lang.org/reference/dicts.html}{\code{racket/dict}}
  1810. provides many functions for working with dictionaries. Here
  1811. are a few of them:
  1812. \begin{description}
  1813. \item[$\LP\key{dict-ref}\,\itm{dict}\,\itm{key}\RP$]
  1814. returns the value associated with the given $\itm{key}$.
  1815. \item[$\LP\key{dict-set}\,\itm{dict}\,\itm{key}\,\itm{val}\RP$]
  1816. returns a new dictionary that maps $\itm{key}$ to $\itm{val}$
  1817. but otherwise is the same as $\itm{dict}$.
  1818. \item[$\LP\code{in-dict}\,\itm{dict}\RP$] returns the
  1819. \href{https://docs.racket-lang.org/reference/sequences.html}{sequence}
  1820. of keys and values in $\itm{dict}$. For example, the following
  1821. creates a new alist in which the ages are incremented.
  1822. \end{description}
  1823. \vspace{-10pt}
  1824. \begin{lstlisting}[basicstyle=\ttfamily]
  1825. (for/list ([(k v) (in-dict ages)])
  1826. (cons k (add1 v)))
  1827. \end{lstlisting}
  1828. \end{tcolorbox}
  1829. %\end{wrapfigure}
  1830. \caption{Association lists implement the dictionary interface.}
  1831. \label{fig:alist}
  1832. \end{figure}
  1833. \fi}
  1834. Having justified the use of classes and methods to implement
  1835. interpreters, we revisit the definitional interpreter for \LangInt{}
  1836. in Figure~\ref{fig:interp-Lint-class} and then extend it to create an
  1837. interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}. The
  1838. interpreter for \LangVar{} adds two new \key{match} cases for
  1839. variables and \racket{\key{let}}\python{assignment}. For
  1840. \racket{\key{let}}\python{assignment} we need a way to communicate the
  1841. value bound to a variable to all the uses of the variable. To
  1842. accomplish this, we maintain a mapping from variables to values
  1843. called an \emph{environment}\index{subject}{environment}.
  1844. %
  1845. We use%
  1846. %
  1847. \racket{an association list (alist)}
  1848. %
  1849. \python{a Python \href{https://docs.python.org/3.10/library/stdtypes.html\#mapping-types-dict}{dictionary}}
  1850. %
  1851. to represent the environment.
  1852. %
  1853. \racket{Figure~\ref{fig:alist} gives a brief introduction to alists
  1854. and the \code{racket/dict} package.}
  1855. %
  1856. The \code{interp\_exp} function takes the current environment,
  1857. \code{env}, as an extra parameter. When the interpreter encounters a
  1858. variable, it looks up the corresponding value in the dictionary.
  1859. %
  1860. \racket{When the interpreter encounters a \key{Let}, it evaluates the
  1861. initializing expression, extends the environment with the result
  1862. value bound to the variable, using \code{dict-set}, then evaluates
  1863. the body of the \key{Let}.}
  1864. %
  1865. \python{When the interpreter encounters an assignment, it evaluates
  1866. the initializing expression and then associates the resulting value
  1867. with the variable in the environment.}
  1868. \begin{figure}[tp]
  1869. {\if\edition\racketEd
  1870. \begin{lstlisting}
  1871. (define interp_Lint_class
  1872. (class object%
  1873. (super-new)
  1874. (define/public ((interp_exp env) e)
  1875. (match e
  1876. [(Int n) n]
  1877. [(Prim 'read '())
  1878. (define r (read))
  1879. (cond [(fixnum? r) r]
  1880. [else (error 'interp_exp "expected an integer" r)])]
  1881. [(Prim '- (list e)) (fx- 0 ((interp_exp env) e))]
  1882. [(Prim '+ (list e1 e2))
  1883. (fx+ ((interp_exp env) e1) ((interp_exp env) e2))]))
  1884. (define/public (interp_program p)
  1885. (match p
  1886. [(Program '() e) ((interp_exp '()) e)]))
  1887. ))
  1888. \end{lstlisting}
  1889. \fi}
  1890. {\if\edition\pythonEd
  1891. \begin{lstlisting}
  1892. class InterpLint:
  1893. def interp_exp(self, e, env):
  1894. match e:
  1895. case BinOp(left, Add(), right):
  1896. return self.interp_exp(left, env) + self.interp_exp(right, env)
  1897. case UnaryOp(USub(), v):
  1898. return - self.interp_exp(v, env)
  1899. case Constant(value):
  1900. return value
  1901. case Call(Name('input_int'), []):
  1902. return int(input())
  1903. def interp_stmts(self, ss, env):
  1904. if len(ss) == 0:
  1905. return
  1906. match ss[0]:
  1907. case Expr(Call(Name('print'), [arg])):
  1908. print(self.interp_exp(arg, env), end='')
  1909. return self.interp_stmts(ss[1:], env)
  1910. case Expr(value):
  1911. self.interp_exp(value, env)
  1912. return self.interp_stmts(ss[1:], env)
  1913. def interp(self, p):
  1914. match p:
  1915. case Module(body):
  1916. self.interp_stmts(body, {})
  1917. def interp_Lint(p):
  1918. return InterpLint().interp(p)
  1919. \end{lstlisting}
  1920. \fi}
  1921. \caption{Interpreter for \LangInt{} as a class.}
  1922. \label{fig:interp-Lint-class}
  1923. \end{figure}
  1924. \begin{figure}[tp]
  1925. {\if\edition\racketEd
  1926. \begin{lstlisting}
  1927. (define interp_Lvar_class
  1928. (class interp_Lint_class
  1929. (super-new)
  1930. (define/override ((interp_exp env) e)
  1931. (match e
  1932. [(Var x) (dict-ref env x)]
  1933. [(Let x e body)
  1934. (define new-env (dict-set env x ((interp_exp env) e)))
  1935. ((interp_exp new-env) body)]
  1936. [else ((super interp-exp env) e)]))
  1937. ))
  1938. (define (interp_Lvar p)
  1939. (send (new interp_Lvar_class) interp_program p))
  1940. \end{lstlisting}
  1941. \fi}
  1942. {\if\edition\pythonEd
  1943. \begin{lstlisting}
  1944. class InterpLvar(InterpLint):
  1945. def interp_exp(self, e, env):
  1946. match e:
  1947. case Name(id):
  1948. return env[id]
  1949. case _:
  1950. return super().interp_exp(e, env)
  1951. def interp_stmts(self, ss, env):
  1952. if len(ss) == 0:
  1953. return
  1954. match ss[0]:
  1955. case Assign([lhs], value):
  1956. env[lhs.id] = self.interp_exp(value, env)
  1957. return self.interp_stmts(ss[1:], env)
  1958. case _:
  1959. return super().interp_stmts(ss, env)
  1960. def interp_Lvar(p):
  1961. return InterpLvar().interp(p)
  1962. \end{lstlisting}
  1963. \fi}
  1964. \caption{Interpreter for the \LangVar{} language.}
  1965. \label{fig:interp-Lvar}
  1966. \end{figure}
  1967. The goal for this chapter is to implement a compiler that translates
  1968. any program $P_1$ written in the \LangVar{} language into an x86 assembly
  1969. program $P_2$ such that $P_2$ exhibits the same behavior when run on a
  1970. computer as the $P_1$ program interpreted by \code{interp\_Lvar}.
  1971. That is, they output the same integer $n$. We depict this correctness
  1972. criteria in the following diagram.
  1973. \[
  1974. \begin{tikzpicture}[baseline=(current bounding box.center)]
  1975. \node (p1) at (0, 0) {$P_1$};
  1976. \node (p2) at (4, 0) {$P_2$};
  1977. \node (o) at (4, -2) {$n$};
  1978. \path[->] (p1) edge [above] node {\footnotesize compile} (p2);
  1979. \path[->] (p1) edge [left] node {\footnotesize\code{interp\_Lvar}} (o);
  1980. \path[->] (p2) edge [right] node {\footnotesize\code{interp\_x86int}} (o);
  1981. \end{tikzpicture}
  1982. \]
  1983. In the next section we introduce the \LangXInt{} subset of x86 that
  1984. suffices for compiling \LangVar{}.
  1985. \section{The \LangXInt{} Assembly Language}
  1986. \label{sec:x86}
  1987. \index{subject}{x86}
  1988. Figure~\ref{fig:x86-int-concrete} defines the concrete syntax for
  1989. \LangXInt{}. We use the AT\&T syntax expected by the GNU
  1990. assembler.
  1991. %
  1992. A program begins with a \code{main} label followed by a sequence of
  1993. instructions. The \key{globl} directive says that the \key{main}
  1994. procedure is externally visible, which is necessary so that the
  1995. operating system can call it.
  1996. %
  1997. An x86 program is stored in the computer's memory. For our purposes,
  1998. the computer's memory is a mapping of 64-bit addresses to 64-bit
  1999. values. The computer has a \emph{program counter} (PC)\index{subject}{program
  2000. counter}\index{subject}{PC} stored in the \code{rip} register that points to
  2001. the address of the next instruction to be executed. For most
  2002. instructions, the program counter is incremented after the instruction
  2003. is executed, so it points to the next instruction in memory. Most x86
  2004. instructions take two operands, where each operand is either an
  2005. integer constant (called an \emph{immediate value}\index{subject}{immediate
  2006. value}), a \emph{register}\index{subject}{register}, or a memory location.
  2007. \newcommand{\allregisters}{\key{rsp} \MID \key{rbp} \MID \key{rax} \MID \key{rbx} \MID \key{rcx}
  2008. \MID \key{rdx} \MID \key{rsi} \MID \key{rdi} \MID \\
  2009. && \key{r8} \MID \key{r9} \MID \key{r10}
  2010. \MID \key{r11} \MID \key{r12} \MID \key{r13}
  2011. \MID \key{r14} \MID \key{r15}}
  2012. \begin{figure}[tp]
  2013. \fbox{
  2014. \begin{minipage}{0.96\textwidth}
  2015. {\if\edition\racketEd
  2016. \[
  2017. \begin{array}{lcl}
  2018. \Reg &::=& \allregisters{} \\
  2019. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2020. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2021. \key{subq} \; \Arg\key{,} \Arg \MID
  2022. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2023. && \key{callq} \; \mathit{label} \MID
  2024. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \key{jmp}\,\itm{label} \\
  2025. && \itm{label}\key{:}\; \Instr \\
  2026. \LangXIntM{} &::= & \key{.globl main}\\
  2027. & & \key{main:} \; \Instr\ldots
  2028. \end{array}
  2029. \]
  2030. \fi}
  2031. {\if\edition\pythonEd
  2032. \[
  2033. \begin{array}{lcl}
  2034. \Reg &::=& \allregisters{} \\
  2035. \Arg &::=& \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)}\\
  2036. \Instr &::=& \key{addq} \; \Arg\key{,} \Arg \MID
  2037. \key{subq} \; \Arg\key{,} \Arg \MID
  2038. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID \\
  2039. && \key{callq} \; \mathit{label} \MID
  2040. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \\
  2041. \LangXIntM{} &::= & \key{.globl main}\\
  2042. & & \key{main:} \; \Instr^{*}
  2043. \end{array}
  2044. \]
  2045. \fi}
  2046. \end{minipage}
  2047. }
  2048. \caption{The syntax of the \LangXInt{} assembly language (AT\&T syntax).}
  2049. \label{fig:x86-int-concrete}
  2050. \end{figure}
  2051. A register is a special kind of variable that holds a 64-bit
  2052. value. There are 16 general-purpose registers in the computer and
  2053. their names are given in Figure~\ref{fig:x86-int-concrete}. A register
  2054. is written with a \key{\%} followed by the register name, such as
  2055. \key{\%rax}.
  2056. An immediate value is written using the notation \key{\$}$n$ where $n$
  2057. is an integer.
  2058. %
  2059. %
  2060. An access to memory is specified using the syntax $n(\key{\%}r)$,
  2061. which obtains the address stored in register $r$ and then adds $n$
  2062. bytes to the address. The resulting address is used to load or store
  2063. to memory depending on whether it occurs as a source or destination
  2064. argument of an instruction.
  2065. An arithmetic instruction such as $\key{addq}\,s\key{,}\,d$ reads from the
  2066. source $s$ and destination $d$, applies the arithmetic operation, then
  2067. writes the result back to the destination $d$. \index{subject}{instruction}
  2068. %
  2069. The move instruction $\key{movq}\,s\key{,}\,d$ reads from $s$ and
  2070. stores the result in $d$.
  2071. %
  2072. The $\key{callq}\,\itm{label}$ instruction jumps to the procedure
  2073. specified by the label and $\key{retq}$ returns from a procedure to
  2074. its caller.
  2075. %
  2076. We discuss procedure calls in more detail later in this chapter and in
  2077. Chapter~\ref{ch:Rfun}.
  2078. %
  2079. The last letter \key{q} indicates that these instructions operate on
  2080. quadwords, i.e., 64-bit values.
  2081. %
  2082. \racket{The instruction $\key{jmp}\,\itm{label}$ updates the program
  2083. counter to the address of the instruction after the specified
  2084. label.}
  2085. Appendix~\ref{sec:x86-quick-reference} contains a quick-reference for
  2086. all of the x86 instructions used in this book.
  2087. Figure~\ref{fig:p0-x86} depicts an x86 program that computes
  2088. \racket{\code{(+ 10 32)}}\python{10 + 32}. The instruction
  2089. \lstinline{movq $10, %rax}
  2090. puts $10$ into register \key{rax} and then \lstinline{addq $32, %rax}
  2091. adds $32$ to the $10$ in \key{rax} and
  2092. puts the result, $42$, back into \key{rax}.
  2093. %
  2094. The last instruction, \key{retq}, finishes the \key{main} function by
  2095. returning the integer in \key{rax} to the operating system. The
  2096. operating system interprets this integer as the program's exit
  2097. code. By convention, an exit code of 0 indicates that a program
  2098. completed successfully, and all other exit codes indicate various
  2099. errors.
  2100. %
  2101. \racket{Nevertheless, in this book we return the result of the program
  2102. as the exit code.}
  2103. \begin{figure}[tbp]
  2104. \begin{lstlisting}
  2105. .globl main
  2106. main:
  2107. movq $10, %rax
  2108. addq $32, %rax
  2109. retq
  2110. \end{lstlisting}
  2111. \caption{An x86 program that computes
  2112. \racket{\code{(+ 10 32)}}\python{10 + 32}.}
  2113. \label{fig:p0-x86}
  2114. \end{figure}
  2115. We exhibit the use of memory for storing intermediate results in the
  2116. next example. Figure~\ref{fig:p1-x86} lists an x86 program that
  2117. computes \racket{\code{(+ 52 (- 10))}}\python{52 + -10}. This program
  2118. uses a region of memory called the \emph{procedure call stack} (or
  2119. \emph{stack} for
  2120. short). \index{subject}{stack}\index{subject}{procedure call stack}
  2121. The stack consists of a separate \emph{frame}\index{subject}{frame}
  2122. for each procedure call. The memory layout for an individual frame is
  2123. shown in Figure~\ref{fig:frame}. The register \key{rsp} is called the
  2124. \emph{stack pointer}\index{subject}{stack pointer} and points to the
  2125. item at the top of the stack. The stack grows downward in memory, so
  2126. we increase the size of the stack by subtracting from the stack
  2127. pointer. In the context of a procedure call, the \emph{return
  2128. address}\index{subject}{return address} is the instruction after the
  2129. call instruction on the caller side. The function call instruction,
  2130. \code{callq}, pushes the return address onto the stack prior to
  2131. jumping to the procedure. The register \key{rbp} is the \emph{base
  2132. pointer}\index{subject}{base pointer} and is used to access variables
  2133. that are stored in the frame of the current procedure call. The base
  2134. pointer of the caller is store after the return address. In
  2135. Figure~\ref{fig:frame} we number the variables from $1$ to
  2136. $n$. Variable $1$ is stored at address $-8\key{(\%rbp)}$, variable $2$
  2137. at $-16\key{(\%rbp)}$, etc.
  2138. \begin{figure}[tbp]
  2139. {\if\edition\racketEd
  2140. \begin{lstlisting}
  2141. start:
  2142. movq $10, -8(%rbp)
  2143. negq -8(%rbp)
  2144. movq -8(%rbp), %rax
  2145. addq $52, %rax
  2146. jmp conclusion
  2147. .globl main
  2148. main:
  2149. pushq %rbp
  2150. movq %rsp, %rbp
  2151. subq $16, %rsp
  2152. jmp start
  2153. conclusion:
  2154. addq $16, %rsp
  2155. popq %rbp
  2156. retq
  2157. \end{lstlisting}
  2158. \fi}
  2159. {\if\edition\pythonEd
  2160. \begin{lstlisting}
  2161. .globl main
  2162. main:
  2163. pushq %rbp
  2164. movq %rsp, %rbp
  2165. subq $16, %rsp
  2166. movq $10, -8(%rbp)
  2167. negq -8(%rbp)
  2168. movq -8(%rbp), %rax
  2169. addq $52, %rax
  2170. addq $16, %rsp
  2171. popq %rbp
  2172. retq
  2173. \end{lstlisting}
  2174. \fi}
  2175. \caption{An x86 program that computes
  2176. \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2177. \label{fig:p1-x86}
  2178. \end{figure}
  2179. \begin{figure}[tbp]
  2180. \centering
  2181. \begin{tabular}{|r|l|} \hline
  2182. Position & Contents \\ \hline
  2183. 8(\key{\%rbp}) & return address \\
  2184. 0(\key{\%rbp}) & old \key{rbp} \\
  2185. -8(\key{\%rbp}) & variable $1$ \\
  2186. -16(\key{\%rbp}) & variable $2$ \\
  2187. \ldots & \ldots \\
  2188. 0(\key{\%rsp}) & variable $n$\\ \hline
  2189. \end{tabular}
  2190. \caption{Memory layout of a frame.}
  2191. \label{fig:frame}
  2192. \end{figure}
  2193. Getting back to the program in Figure~\ref{fig:p1-x86}, consider how
  2194. control is transferred from the operating system to the \code{main}
  2195. function. The operating system issues a \code{callq main} instruction
  2196. which pushes its return address on the stack and then jumps to
  2197. \code{main}. In x86-64, the stack pointer \code{rsp} must be divisible
  2198. by 16 bytes prior to the execution of any \code{callq} instruction, so
  2199. when control arrives at \code{main}, the \code{rsp} is 8 bytes out of
  2200. alignment (because the \code{callq} pushed the return address). The
  2201. first three instructions are the typical \emph{prelude}\index{subject}{prelude}
  2202. for a procedure. The instruction \code{pushq \%rbp} first subtracts $8$ from the stack
  2203. pointer and then saves the base pointer of the caller at address
  2204. \code{rsp} on the stack. The next instruction \code{movq \%rsp, \%rbp} sets the
  2205. base pointer to the current stack pointer, which is pointing at the location
  2206. of the old base pointer. The instruction \code{subq \$16, \%rsp} moves the stack
  2207. pointer down to make enough room for storing variables. This program
  2208. needs one variable ($8$ bytes) but we round up to 16 bytes so that
  2209. \code{rsp} is 16-byte aligned and we're ready to make calls to other
  2210. functions.
  2211. \racket{The last instruction of the prelude is \code{jmp start},
  2212. which transfers control to the instructions that were generated from
  2213. the expression \racket{\code{(+ 52 (- 10))}}\python{52 + -10}.}
  2214. \racket{The first instruction under the \code{start} label is}
  2215. %
  2216. \python{The first instruction after the prelude is}
  2217. %
  2218. \code{movq \$10, -8(\%rbp)}, which stores $10$ in variable $1$.
  2219. %
  2220. The instruction \code{negq -8(\%rbp)} changes variable $1$ to $-10$.
  2221. %
  2222. The next instruction moves the $-10$ from variable $1$ into the
  2223. \code{rax} register. Finally, \code{addq \$52, \%rax} adds $52$ to
  2224. the value in \code{rax}, updating its contents to $42$.
  2225. \racket{The three instructions under the label \code{conclusion} are the
  2226. typical \emph{conclusion}\index{subject}{conclusion} of a procedure.}
  2227. %
  2228. \python{The \emph{conclusion}\index{subject}{conclusion} of the
  2229. \code{main} function consists of the last three instructions.}
  2230. %
  2231. The first two restore the \code{rsp} and \code{rbp} registers to the
  2232. state they were in at the beginning of the procedure. In particular,
  2233. \key{addq \$16, \%rsp} moves the stack pointer back to point at the
  2234. old base pointer. Then \key{popq \%rbp} returns the old base pointer
  2235. to \key{rbp} and adds $8$ to the stack pointer. The last instruction,
  2236. \key{retq}, jumps back to the procedure that called this one and adds
  2237. $8$ to the stack pointer.
  2238. Our compiler needs a convenient representation for manipulating x86
  2239. programs, so we define an abstract syntax for x86 in
  2240. Figure~\ref{fig:x86-int-ast}. We refer to this language as
  2241. \LangXInt{}.
  2242. %
  2243. {\if\edition\racketEd
  2244. The main difference compared to the concrete syntax of \LangXInt{}
  2245. (Figure~\ref{fig:x86-int-concrete}) is that labels are not allowed in
  2246. front of every instruction. Instead instructions are grouped into
  2247. \emph{blocks}\index{subject}{block} with a
  2248. label associated with every block, which is why the \key{X86Program}
  2249. struct includes an alist mapping labels to blocks. The reason for this
  2250. organization becomes apparent in Chapter~\ref{ch:Lif} when we
  2251. introduce conditional branching. The \code{Block} structure includes
  2252. an $\itm{info}$ field that is not needed for this chapter, but becomes
  2253. useful in Chapter~\ref{ch:register-allocation-Lvar}. For now, the
  2254. $\itm{info}$ field should contain an empty list.
  2255. \fi}
  2256. %
  2257. Regarding the abstract syntax for \code{callq}, the \code{Callq} AST
  2258. node includes an integer for representing the arity of the function,
  2259. i.e., the number of arguments, which is helpful to know during
  2260. register allocation (Chapter~\ref{ch:register-allocation-Lvar}).
  2261. \begin{figure}[tp]
  2262. \fbox{
  2263. \begin{minipage}{0.98\textwidth}
  2264. \small
  2265. {\if\edition\racketEd
  2266. \[
  2267. \begin{array}{lcl}
  2268. \Reg &::=& \allregisters{} \\
  2269. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2270. \MID \DEREF{\Reg}{\Int} \\
  2271. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2272. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2273. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2274. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2275. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  2276. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} \\
  2277. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP} \\
  2278. \LangXIntM{} &::= & \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}
  2279. \end{array}
  2280. \]
  2281. \fi}
  2282. {\if\edition\pythonEd
  2283. \[
  2284. \begin{array}{lcl}
  2285. \Reg &::=& \allregisters{} \\
  2286. \Arg &::=& \IMM{\Int} \MID \REG{\Reg}
  2287. \MID \DEREF{\Reg}{\Int} \\
  2288. \Instr &::=& \BININSTR{\code{addq}}{\Arg}{\Arg}
  2289. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} \\
  2290. &\MID& \BININSTR{\code{movq}}{\Arg}{\Arg}
  2291. \MID \UNIINSTR{\code{negq}}{\Arg}\\
  2292. &\MID& \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  2293. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} \\
  2294. \LangXIntM{} &::= & \XPROGRAM{}{\Instr^{*}}{}
  2295. \end{array}
  2296. \]
  2297. \fi}
  2298. \end{minipage}
  2299. }
  2300. \caption{The abstract syntax of \LangXInt{} assembly.}
  2301. \label{fig:x86-int-ast}
  2302. \end{figure}
  2303. \section{Planning the trip to x86}
  2304. \label{sec:plan-s0-x86}
  2305. To compile one language to another it helps to focus on the
  2306. differences between the two languages because the compiler will need
  2307. to bridge those differences. What are the differences between \LangVar{}
  2308. and x86 assembly? Here are some of the most important ones:
  2309. \begin{enumerate}
  2310. \item x86 arithmetic instructions typically have two arguments and
  2311. update the second argument in place. In contrast, \LangVar{}
  2312. arithmetic operations take two arguments and produce a new value.
  2313. An x86 instruction may have at most one memory-accessing argument.
  2314. Furthermore, some x86 instructions place special restrictions on
  2315. their arguments.
  2316. \item An argument of an \LangVar{} operator can be a deeply-nested
  2317. expression, whereas x86 instructions restrict their arguments to be
  2318. integer constants, registers, and memory locations.
  2319. {\if\edition\racketEd
  2320. \item The order of execution in x86 is explicit in the syntax: a
  2321. sequence of instructions and jumps to labeled positions, whereas in
  2322. \LangVar{} the order of evaluation is a left-to-right depth-first
  2323. traversal of the abstract syntax tree.
  2324. \fi}
  2325. \item A program in \LangVar{} can have any number of variables
  2326. whereas x86 has 16 registers and the procedure call stack.
  2327. {\if\edition\racketEd
  2328. \item Variables in \LangVar{} can shadow other variables with the
  2329. same name. In x86, registers have unique names and memory locations
  2330. have unique addresses.
  2331. \fi}
  2332. \end{enumerate}
  2333. We ease the challenge of compiling from \LangVar{} to x86 by breaking
  2334. down the problem into several steps, dealing with the above
  2335. differences one at a time. Each of these steps is called a \emph{pass}
  2336. of the compiler.\index{subject}{pass}\index{subject}{compiler pass}
  2337. %
  2338. This terminology comes from the way each step passes over, that is,
  2339. traverses the AST of the program.
  2340. %
  2341. Furthermore, we follow the nanopass approach, which means we strive
  2342. for each pass to accomplish one clear objective (not two or three at
  2343. the same time).
  2344. %
  2345. We begin by sketching how we might implement each pass, and give them
  2346. names. We then figure out an ordering of the passes and the
  2347. input/output language for each pass. The very first pass has
  2348. \LangVar{} as its input language and the last pass has \LangXInt{} as
  2349. its output language. In between we can choose whichever language is
  2350. most convenient for expressing the output of each pass, whether that
  2351. be \LangVar{}, \LangXInt{}, or new \emph{intermediate languages} of
  2352. our own design. Finally, to implement each pass we write one
  2353. recursive function per non-terminal in the grammar of the input
  2354. language of the pass. \index{subject}{intermediate language}
  2355. Our compiler for \LangVar{} consists of the following passes.
  2356. %
  2357. \begin{description}
  2358. {\if\edition\racketEd
  2359. \item[\key{uniquify}] deals with the shadowing of variables by
  2360. renaming every variable to a unique name.
  2361. \fi}
  2362. \item[\key{remove\_complex\_operands}] ensures that each subexpression
  2363. of a primitive operation or function call is a variable or integer,
  2364. that is, an \emph{atomic} expression. We refer to non-atomic
  2365. expressions as \emph{complex}. This pass introduces temporary
  2366. variables to hold the results of complex
  2367. subexpressions.\index{subject}{atomic
  2368. expression}\index{subject}{complex expression}%
  2369. {\if\edition\racketEd
  2370. \item[\key{explicate\_control}] makes the execution order of the
  2371. program explicit. It converts the abstract syntax tree representation
  2372. into a control-flow graph in which each node contains a sequence of
  2373. statements and the edges between nodes say which nodes contain jumps
  2374. to other nodes.
  2375. \fi}
  2376. \item[\key{select\_instructions}] handles the difference between
  2377. \LangVar{} operations and x86 instructions. This pass converts each
  2378. \LangVar{} operation to a short sequence of instructions that
  2379. accomplishes the same task.
  2380. \item[\key{assign\_homes}] replaces variables with registers or stack
  2381. locations.
  2382. \end{description}
  2383. %
  2384. {\if\edition\racketEd
  2385. %
  2386. Our treatment of \code{remove\_complex\_operands} and
  2387. \code{explicate\_control} as separate passes is an example of the
  2388. nanopass approach\footnote{For analogous decompositions of the
  2389. translation into continuation passing style, see the work of
  2390. \citet{Lawall:1993} and \citet{Hatcliff:1994ea}.}. The traditional
  2391. approach is to combine them into a single step~\citep{Aho:2006wb}.
  2392. %
  2393. \fi}
  2394. The next question is: in what order should we apply these passes? This
  2395. question can be challenging because it is difficult to know ahead of
  2396. time which orderings will be better (easier to implement, produce more
  2397. efficient code, etc.) so oftentimes trial-and-error is
  2398. involved. Nevertheless, we can try to plan ahead and make educated
  2399. choices regarding the ordering.
  2400. \racket{What should be the ordering of \key{explicate\_control} with respect to
  2401. \key{uniquify}? The \key{uniquify} pass should come first because
  2402. \key{explicate\_control} changes all the \key{let}-bound variables to
  2403. become local variables whose scope is the entire program, which would
  2404. confuse variables with the same name.}
  2405. %
  2406. \racket{We place \key{remove\_complex\_opera*} before \key{explicate\_control}
  2407. because the later removes the \key{let} form, but it is convenient to
  2408. use \key{let} in the output of \key{remove\_complex\_opera*}.}
  2409. %
  2410. \racket{The ordering of \key{uniquify} with respect to
  2411. \key{remove\_complex\_opera*} does not matter so we arbitrarily choose
  2412. \key{uniquify} to come first.}
  2413. The \key{select\_instructions} and \key{assign\_homes} passes are
  2414. intertwined.
  2415. %
  2416. In Chapter~\ref{ch:Rfun} we learn that, in x86, registers are used for
  2417. passing arguments to functions and it is preferable to assign
  2418. parameters to their corresponding registers. This suggests that it
  2419. would be better to start with the \key{select\_instructions} pass,
  2420. which generates the instructions for argument passing, before
  2421. performing register allocation.
  2422. %
  2423. On the other hand, by selecting instructions first we may run into a
  2424. dead end in \key{assign\_homes}. Recall that only one argument of an
  2425. x86 instruction may be a memory access but \key{assign\_homes} might
  2426. be forced to assign both arguments to memory locations.
  2427. %
  2428. A sophisticated approach is to iteratively repeat the two passes until
  2429. a solution is found. However, to reduce implementation complexity we
  2430. recommend placing \key{select\_instructions} first, followed by the
  2431. \key{assign\_homes}, then a third pass named \key{patch\_instructions}
  2432. that uses a reserved register to fix outstanding problems.
  2433. \begin{figure}[tbp]
  2434. {\if\edition\racketEd
  2435. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2436. \node (Lvar) at (0,2) {\large \LangVar{}};
  2437. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  2438. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  2439. %\node (Cvar-1) at (6,0) {\large \LangCVar{}};
  2440. \node (Cvar-2) at (3,0) {\large \LangCVar{}};
  2441. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  2442. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  2443. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  2444. \node (x86-5) at (12,-2) {\large \LangXInt{}};
  2445. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  2446. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  2447. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-2);
  2448. \path[->,bend right=15] (Cvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  2449. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize assign\_homes} (x86-3);
  2450. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  2451. \path[->,bend left=15] (x86-4) edge [above] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  2452. \end{tikzpicture}
  2453. \fi}
  2454. {\if\edition\pythonEd
  2455. \begin{tikzpicture}[baseline=(current bounding box.center)]
  2456. \node (Lvar) at (0,2) {\large \LangVar{}};
  2457. \node (Lvar-2) at (3,2) {\large \LangVarANF{}};
  2458. \node (x86-1) at (3,0) {\large \LangXVar{}};
  2459. \node (x86-2) at (6,0) {\large \LangXVar{}};
  2460. \node (x86-3) at (9,0) {\large \LangXInt{}};
  2461. \node (x86-4) at (12,0) {\large \LangXInt{}};
  2462. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-2);
  2463. \path[->,bend right=15] (Lvar-2) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  2464. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  2465. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  2466. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-4);
  2467. \end{tikzpicture}
  2468. \fi}
  2469. \caption{Diagram of the passes for compiling \LangVar{}. }
  2470. \label{fig:Lvar-passes}
  2471. \end{figure}
  2472. Figure~\ref{fig:Lvar-passes} presents the ordering of the compiler
  2473. passes and identifies the input and output language of each pass.
  2474. %
  2475. The output of the \key{select\_instructions} pass is the \LangXVar{}
  2476. language, which extends \LangXInt{} with an unbounded number of
  2477. program-scope variables and removes the restrictions regarding
  2478. instruction arguments.
  2479. %
  2480. The last pass, \key{prelude\_and\_conclusion}, places the program
  2481. instructions inside a \code{main} function with instructions for the
  2482. prelude and conclusion.
  2483. %
  2484. \racket{In the following section we discuss the \LangCVar{}
  2485. intermediate language.}
  2486. %
  2487. The remainder of this chapter provides guidance on the implementation
  2488. of each of the compiler passes in Figure~\ref{fig:Lvar-passes}.
  2489. %% The output of \key{uniquify} and \key{remove-complex-opera*}
  2490. %% are programs that are still in the \LangVar{} language, though the
  2491. %% output of the later is a subset of \LangVar{} named \LangVarANF{}
  2492. %% (Section~\ref{sec:remove-complex-opera-Lvar}).
  2493. %% %
  2494. %% The output of \code{explicate\_control} is in an intermediate language
  2495. %% \LangCVar{} designed to make the order of evaluation explicit in its
  2496. %% syntax, which we introduce in the next section. The
  2497. %% \key{select-instruction} pass translates from \LangCVar{} to
  2498. %% \LangXVar{}. The \key{assign-homes} and
  2499. %% \key{patch-instructions}
  2500. %% passes input and output variants of x86 assembly.
  2501. {\if\edition\racketEd
  2502. \subsection{The \LangCVar{} Intermediate Language}
  2503. The output of \code{explicate\_control} is similar to the $C$
  2504. language~\citep{Kernighan:1988nx} in that it has separate syntactic
  2505. categories for expressions and statements, so we name it \LangCVar{}.
  2506. This style of intermediate language is also known as
  2507. \emph{three-address code}, to emphasize that the typical form of a
  2508. statement is \CASSIGN{\key{x}}{\CADD{\key{y}}{\key{z}}} involves three
  2509. addresses~\citep{Aho:2006wb}.
  2510. The concrete syntax for \LangCVar{} is defined in
  2511. Figure~\ref{fig:c0-concrete-syntax} and the abstract syntax for
  2512. \LangCVar{} is defined in Figure~\ref{fig:c0-syntax}.
  2513. %
  2514. The \LangCVar{} language supports the same operators as \LangVar{} but
  2515. the arguments of operators are restricted to atomic
  2516. expressions. Instead of \key{let} expressions, \LangCVar{} has
  2517. assignment statements which can be executed in sequence using the
  2518. \key{Seq} form. A sequence of statements always ends with
  2519. \key{Return}, a guarantee that is baked into the grammar rules for
  2520. \itm{tail}. The naming of this non-terminal comes from the term
  2521. \emph{tail position}\index{subject}{tail position}, which refers to an
  2522. expression that is the last one to execute within a function.
  2523. A \LangCVar{} program consists of an alist mapping labels to
  2524. tails. This is more general than necessary for the present chapter, as
  2525. we do not yet introduce \key{goto} for jumping to labels, but it saves
  2526. us from having to change the syntax in Chapter~\ref{ch:Lif}. For now
  2527. there will be just one label, \key{start}, and the whole program is
  2528. its tail.
  2529. %
  2530. The $\itm{info}$ field of the \key{CProgram} form, after the
  2531. \code{explicate\_control} pass, contains a mapping from the symbol
  2532. \key{locals} to a list of variables, that is, a list of all the
  2533. variables used in the program. At the start of the program, these
  2534. variables are uninitialized; they become initialized on their first
  2535. assignment.
  2536. \begin{figure}[tbp]
  2537. \fbox{
  2538. \begin{minipage}{0.96\textwidth}
  2539. \[
  2540. \begin{array}{lcl}
  2541. \Atm &::=& \Int \MID \Var \\
  2542. \Exp &::=& \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)}\\
  2543. \Stmt &::=& \Var~\key{=}~\Exp\key{;} \\
  2544. \Tail &::= & \key{return}~\Exp\key{;} \MID \Stmt~\Tail \\
  2545. \LangCVarM{} & ::= & (\itm{label}\key{:}~ \Tail)\ldots
  2546. \end{array}
  2547. \]
  2548. \end{minipage}
  2549. }
  2550. \caption{The concrete syntax of the \LangCVar{} intermediate language.}
  2551. \label{fig:c0-concrete-syntax}
  2552. \end{figure}
  2553. \begin{figure}[tbp]
  2554. \fbox{
  2555. \begin{minipage}{0.96\textwidth}
  2556. \[
  2557. \begin{array}{lcl}
  2558. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2559. \Exp &::=& \Atm \MID \READ{} \MID \NEG{\Atm} \\
  2560. &\MID& \ADD{\Atm}{\Atm}\\
  2561. \Stmt &::=& \ASSIGN{\VAR{\Var}}{\Exp} \\
  2562. \Tail &::= & \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail} \\
  2563. \LangCVarM{} & ::= & \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}
  2564. \end{array}
  2565. \]
  2566. \end{minipage}
  2567. }
  2568. \caption{The abstract syntax of the \LangCVar{} intermediate language.}
  2569. \label{fig:c0-syntax}
  2570. \end{figure}
  2571. The definitional interpreter for \LangCVar{} is in the support code,
  2572. in the file \code{interp-Cvar.rkt}.
  2573. \fi}
  2574. {\if\edition\racketEd
  2575. \section{Uniquify Variables}
  2576. \label{sec:uniquify-Lvar}
  2577. The \code{uniquify} pass compiles \LangVar{} programs into \LangVar{}
  2578. programs in which every \key{let} binds a unique variable name. For
  2579. example, the \code{uniquify} pass should translate the program on the
  2580. left into the program on the right.
  2581. \begin{transformation}
  2582. \begin{lstlisting}
  2583. (let ([x 32])
  2584. (+ (let ([x 10]) x) x))
  2585. \end{lstlisting}
  2586. \compilesto
  2587. \begin{lstlisting}
  2588. (let ([x.1 32])
  2589. (+ (let ([x.2 10]) x.2) x.1))
  2590. \end{lstlisting}
  2591. \end{transformation}
  2592. The following is another example translation, this time of a program
  2593. with a \key{let} nested inside the initializing expression of another
  2594. \key{let}.
  2595. \begin{transformation}
  2596. \begin{lstlisting}
  2597. (let ([x (let ([x 4])
  2598. (+ x 1))])
  2599. (+ x 2))
  2600. \end{lstlisting}
  2601. \compilesto
  2602. \begin{lstlisting}
  2603. (let ([x.2 (let ([x.1 4])
  2604. (+ x.1 1))])
  2605. (+ x.2 2))
  2606. \end{lstlisting}
  2607. \end{transformation}
  2608. We recommend implementing \code{uniquify} by creating a structurally
  2609. recursive function named \code{uniquify-exp} that mostly just copies
  2610. an expression. However, when encountering a \key{let}, it should
  2611. generate a unique name for the variable and associate the old name
  2612. with the new name in an alist.\footnote{The Racket function
  2613. \code{gensym} is handy for generating unique variable names.} The
  2614. \code{uniquify-exp} function needs to access this alist when it gets
  2615. to a variable reference, so we add a parameter to \code{uniquify-exp}
  2616. for the alist.
  2617. The skeleton of the \code{uniquify-exp} function is shown in
  2618. Figure~\ref{fig:uniquify-Lvar}. The function is curried so that it is
  2619. convenient to partially apply it to an alist and then apply it to
  2620. different expressions, as in the last case for primitive operations in
  2621. Figure~\ref{fig:uniquify-Lvar}. The
  2622. %
  2623. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flist%29%29}{\key{for/list}}
  2624. %
  2625. form of Racket is useful for transforming each element of a list to
  2626. produce a new list.\index{subject}{for/list}
  2627. \begin{figure}[tbp]
  2628. \begin{lstlisting}
  2629. (define (uniquify-exp env)
  2630. (lambda (e)
  2631. (match e
  2632. [(Var x) ___]
  2633. [(Int n) (Int n)]
  2634. [(Let x e body) ___]
  2635. [(Prim op es)
  2636. (Prim op (for/list ([e es]) ((uniquify-exp env) e)))])))
  2637. (define (uniquify p)
  2638. (match p
  2639. [(Program '() e) (Program '() ((uniquify-exp '()) e))]))
  2640. \end{lstlisting}
  2641. \caption{Skeleton for the \key{uniquify} pass.}
  2642. \label{fig:uniquify-Lvar}
  2643. \end{figure}
  2644. \begin{exercise}
  2645. \normalfont % I don't like the italics for exercises. -Jeremy
  2646. Complete the \code{uniquify} pass by filling in the blanks in
  2647. Figure~\ref{fig:uniquify-Lvar}, that is, implement the cases for
  2648. variables and for the \key{let} form in the file \code{compiler.rkt}
  2649. in the support code.
  2650. \end{exercise}
  2651. \begin{exercise}
  2652. \normalfont % I don't like the italics for exercises. -Jeremy
  2653. \label{ex:Lvar}
  2654. Create five \LangVar{} programs that exercise the most interesting
  2655. parts of the \key{uniquify} pass, that is, the programs should include
  2656. \key{let} forms, variables, and variables that shadow each other.
  2657. The five programs should be placed in the subdirectory named
  2658. \key{tests} and the file names should start with \code{var\_test\_}
  2659. followed by a unique integer and end with the file extension
  2660. \key{.rkt}.
  2661. %
  2662. The \key{run-tests.rkt} script in the support code checks whether the
  2663. output programs produce the same result as the input programs. The
  2664. script uses the \key{interp-tests} function
  2665. (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2666. your \key{uniquify} pass on the example programs. The \code{passes}
  2667. parameter of \key{interp-tests} is a list that should have one entry
  2668. for each pass in your compiler. For now, define \code{passes} to
  2669. contain just one entry for \code{uniquify} as shown below.
  2670. \begin{lstlisting}
  2671. (define passes
  2672. (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2673. \end{lstlisting}
  2674. Run the \key{run-tests.rkt} script in the support code to check
  2675. whether the output programs produce the same result as the input
  2676. programs.
  2677. \end{exercise}
  2678. \fi}
  2679. \section{Remove Complex Operands}
  2680. \label{sec:remove-complex-opera-Lvar}
  2681. The \code{remove\_complex\_operands} pass compiles \LangVar{} programs
  2682. into a restricted form in which the arguments of operations are atomic
  2683. expressions. Put another way, this pass removes complex
  2684. operands\index{subject}{complex operand}, such as the expression
  2685. \racket{\code{(- 10)}}\python{\code{-10}}
  2686. in the program below. This is accomplished by introducing a new
  2687. temporary variable, assigning the complex operand to the new
  2688. variable, and then using the new variable in place of the complex
  2689. operand, as shown in the output of \code{remove\_complex\_operands} on the
  2690. right.
  2691. {\if\edition\racketEd
  2692. \begin{transformation}
  2693. % var_test_19.rkt
  2694. \begin{lstlisting}
  2695. (let ([x (+ 42 (- 10))])
  2696. (+ x 10))
  2697. \end{lstlisting}
  2698. \compilesto
  2699. \begin{lstlisting}
  2700. (let ([x (let ([tmp.1 (- 10)])
  2701. (+ 42 tmp.1))])
  2702. (+ x 10))
  2703. \end{lstlisting}
  2704. \end{transformation}
  2705. \fi}
  2706. {\if\edition\pythonEd
  2707. \begin{transformation}
  2708. \begin{lstlisting}
  2709. x = 42 + -10
  2710. print(x + 10)
  2711. \end{lstlisting}
  2712. \compilesto
  2713. \begin{lstlisting}
  2714. tmp_0 = -10
  2715. x = 42 + tmp_0
  2716. tmp_1 = x + 10
  2717. print(tmp_1)
  2718. \end{lstlisting}
  2719. \end{transformation}
  2720. \fi}
  2721. \begin{figure}[tp]
  2722. \centering
  2723. \fbox{
  2724. \begin{minipage}{0.96\textwidth}
  2725. {\if\edition\racketEd
  2726. \[
  2727. \begin{array}{rcl}
  2728. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2729. \Exp &::=& \Atm \MID \READ{} \\
  2730. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2731. &\MID& \LET{\Var}{\Exp}{\Exp} \\
  2732. \LangVarANFM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  2733. \end{array}
  2734. \]
  2735. \fi}
  2736. {\if\edition\pythonEd
  2737. \[
  2738. \begin{array}{rcl}
  2739. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \\
  2740. \Exp{} &::=& \Atm \MID \READ{} \\
  2741. &\MID& \NEG{\Atm} \MID \ADD{\Atm}{\Atm} \\
  2742. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  2743. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}\\
  2744. \LangVarANFM{} &::=& \PROGRAM{}{\Stmt^{*}}
  2745. \end{array}
  2746. \]
  2747. \fi}
  2748. \end{minipage}
  2749. }
  2750. \caption{\LangVarANF{} is \LangVar{} with operands restricted to
  2751. atomic expressions.}
  2752. \label{fig:Lvar-anf-syntax}
  2753. \end{figure}
  2754. Figure~\ref{fig:Lvar-anf-syntax} presents the grammar for the output
  2755. of this pass, the language \LangVarANF{}. The only difference is that
  2756. operator arguments are restricted to be atomic expressions that are
  2757. defined by the \Atm{} non-terminal. In particular, integer constants
  2758. and variables are atomic.
  2759. The atomic expressions are pure (they do not cause side-effects or
  2760. depend on them) whereas complex expressions may have side effects,
  2761. such as \READ{}. A language with this separation between pure versus
  2762. side-effecting expressions is said to be in monadic normal
  2763. form~\citep{Moggi:1991in,Danvy:2003fk} which explains the \textit{mon}
  2764. in \LangVarANF{}. An important invariant of the
  2765. \code{remove\_complex\_operands} pass is that the relative ordering
  2766. among complex expressions is not changed, but the relative ordering
  2767. between atomic expressions and complex expressions can change and
  2768. often does. The reason that these changes are behaviour preserving is
  2769. that the atomic expressions are pure.
  2770. Another well-known form for intermediate languages is the
  2771. \emph{administrative normal form}
  2772. (ANF)~\citep{Danvy:1991fk,Flanagan:1993cg}.
  2773. \index{subject}{administrative normal form} \index{subject}{ANF}
  2774. %
  2775. The \LangVarANF{} language is not quite in ANF because we allow the
  2776. right-hand side of a \code{let} to be a complex expression.
  2777. {\if\edition\racketEd
  2778. We recommend implementing this pass with two mutually recursive
  2779. functions, \code{rco\_atom} and \code{rco\_exp}. The idea is to apply
  2780. \code{rco\_atom} to subexpressions that need to become atomic and to
  2781. apply \code{rco\_exp} to subexpressions that do not. Both functions
  2782. take an \LangVar{} expression as input. The \code{rco\_exp} function
  2783. returns an expression. The \code{rco\_atom} function returns two
  2784. things: an atomic expression and an alist mapping temporary variables to
  2785. complex subexpressions. You can return multiple things from a function
  2786. using Racket's \key{values} form and you can receive multiple things
  2787. from a function call using the \key{define-values} form.
  2788. Also, the
  2789. \href{https://docs.racket-lang.org/reference/for.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for%2Flists%29%29}{\code{for/lists}}
  2790. form is useful for applying a function to each element of a list, in
  2791. the case where the function returns multiple values.
  2792. \index{subject}{for/lists}
  2793. \fi}
  2794. %
  2795. {\if\edition\pythonEd
  2796. %
  2797. We recommend implementing this pass with an auxiliary method named
  2798. \code{rco\_exp} with two parameters: an \LangVar{} expression and a
  2799. Boolean that specifies whether the expression needs to become atomic
  2800. or not. The \code{rco\_exp} method should return a pair consisting of
  2801. the new expression and a list of pairs, associating new temporary
  2802. variables with their initializing expressions.
  2803. %
  2804. \fi}
  2805. {\if\edition\racketEd
  2806. Returning to the example program with the expression \code{(+ 42 (-
  2807. 10))}, the subexpression \code{(- 10)} should be processed using the
  2808. \code{rco\_atom} function because it is an argument of the \code{+} and
  2809. therefore needs to become atomic. The output of \code{rco\_atom}
  2810. applied to \code{(- 10)} is as follows.
  2811. \begin{transformation}
  2812. \begin{lstlisting}
  2813. (- 10)
  2814. \end{lstlisting}
  2815. \compilesto
  2816. \begin{lstlisting}
  2817. tmp.1
  2818. ((tmp.1 . (- 10)))
  2819. \end{lstlisting}
  2820. \end{transformation}
  2821. \fi}
  2822. %
  2823. {\if\edition\pythonEd
  2824. %
  2825. Returning to the example program with the expression \code{42 + -10},
  2826. the subexpression \code{-10} should be processed using the
  2827. \code{rco\_exp} function with \code{True} as the second argument
  2828. because \code{-10} is an argument of the \code{+} operator and
  2829. therefore needs to become atomic. The output of \code{rco\_exp}
  2830. applied to \code{-10} is as follows.
  2831. \begin{transformation}
  2832. \begin{lstlisting}
  2833. -10
  2834. \end{lstlisting}
  2835. \compilesto
  2836. \begin{lstlisting}
  2837. tmp_1
  2838. [(tmp_1, -10)]
  2839. \end{lstlisting}
  2840. \end{transformation}
  2841. %
  2842. \fi}
  2843. Take special care of programs such as the following that
  2844. %
  2845. \racket{bind a variable to an atomic expression}
  2846. %
  2847. \python{assign an atomic expression to a variable}.
  2848. %
  2849. You should leave such \racket{variable bindings}\python{assignments}
  2850. unchanged, as shown in the program on the right\\
  2851. %
  2852. {\if\edition\racketEd
  2853. \begin{transformation}
  2854. % var_test_20.rkt
  2855. \begin{lstlisting}
  2856. (let ([a 42])
  2857. (let ([b a])
  2858. b))
  2859. \end{lstlisting}
  2860. \compilesto
  2861. \begin{lstlisting}
  2862. (let ([a 42])
  2863. (let ([b a])
  2864. b))
  2865. \end{lstlisting}
  2866. \end{transformation}
  2867. \fi}
  2868. {\if\edition\pythonEd
  2869. \begin{transformation}
  2870. \begin{lstlisting}
  2871. a = 42
  2872. b = a
  2873. print(b)
  2874. \end{lstlisting}
  2875. \compilesto
  2876. \begin{lstlisting}
  2877. a = 42
  2878. b = a
  2879. print(b)
  2880. \end{lstlisting}
  2881. \end{transformation}
  2882. \fi}
  2883. %
  2884. \noindent A careless implementation might produce the following output with
  2885. unnecessary temporary variables.
  2886. \begin{center}
  2887. \begin{minipage}{0.4\textwidth}
  2888. {\if\edition\racketEd
  2889. \begin{lstlisting}
  2890. (let ([tmp.1 42])
  2891. (let ([a tmp.1])
  2892. (let ([tmp.2 a])
  2893. (let ([b tmp.2])
  2894. b))))
  2895. \end{lstlisting}
  2896. \fi}
  2897. {\if\edition\pythonEd
  2898. \begin{lstlisting}
  2899. tmp_1 = 42
  2900. a = tmp_1
  2901. tmp_2 = a
  2902. b = tmp_2
  2903. print(b)
  2904. \end{lstlisting}
  2905. \fi}
  2906. \end{minipage}
  2907. \end{center}
  2908. \begin{exercise}
  2909. \normalfont
  2910. {\if\edition\racketEd
  2911. Implement the \code{remove\_complex\_operands} function in
  2912. \code{compiler.rkt}.
  2913. %
  2914. Create three new \LangVar{} programs that exercise the interesting
  2915. code in the \code{remove\_complex\_operands} pass. Follow the guidelines
  2916. regarding file names described in Exercise~\ref{ex:Lvar}.
  2917. %
  2918. In the \code{run-tests.rkt} script, add the following entry to the
  2919. list of \code{passes} and then run the script to test your compiler.
  2920. \begin{lstlisting}
  2921. (list "remove-complex" remove-complex-opera* interp_Lvar type-check-Lvar)
  2922. \end{lstlisting}
  2923. While debugging your compiler, it is often useful to see the
  2924. intermediate programs that are output from each pass. To print the
  2925. intermediate programs, place \lstinline{(debug-level 1)} before the call to
  2926. \code{interp-tests} in \code{run-tests.rkt}.
  2927. \fi}
  2928. %
  2929. {\if\edition\pythonEd
  2930. Implement the \code{remove\_complex\_operands} pass in
  2931. \code{compiler.py}, creating auxiliary functions for each
  2932. non-terminal in the grammar, i.e., \code{rco\_exp}
  2933. and \code{rco\_stmt}.
  2934. \fi}
  2935. \end{exercise}
  2936. {\if\edition\pythonEd
  2937. \begin{exercise}
  2938. \normalfont % I don't like the italics for exercises. -Jeremy
  2939. \label{ex:Lvar}
  2940. Create five \LangVar{} programs that exercise the most interesting
  2941. parts of the \code{remove\_complex\_operands} pass. The five programs
  2942. should be placed in the subdirectory named \key{tests} and the file
  2943. names should start with \code{var\_test\_} followed by a unique
  2944. integer and end with the file extension \key{.py}.
  2945. %% The \key{run-tests.rkt} script in the support code checks whether the
  2946. %% output programs produce the same result as the input programs. The
  2947. %% script uses the \key{interp-tests} function
  2948. %% (Appendix~\ref{appendix:utilities}) from \key{utilities.rkt} to test
  2949. %% your \key{uniquify} pass on the example programs. The \code{passes}
  2950. %% parameter of \key{interp-tests} is a list that should have one entry
  2951. %% for each pass in your compiler. For now, define \code{passes} to
  2952. %% contain just one entry for \code{uniquify} as shown below.
  2953. %% \begin{lstlisting}
  2954. %% (define passes
  2955. %% (list (list "uniquify" uniquify interp_Lvar type-check-Lvar)))
  2956. %% \end{lstlisting}
  2957. Run the \key{run-tests.py} script in the support code to check
  2958. whether the output programs produce the same result as the input
  2959. programs.
  2960. \end{exercise}
  2961. \fi}
  2962. {\if\edition\racketEd
  2963. \section{Explicate Control}
  2964. \label{sec:explicate-control-Lvar}
  2965. The \code{explicate\_control} pass compiles \LangVar{} programs into \LangCVar{}
  2966. programs that make the order of execution explicit in their
  2967. syntax. For now this amounts to flattening \key{let} constructs into a
  2968. sequence of assignment statements. For example, consider the following
  2969. \LangVar{} program.\\
  2970. % var_test_11.rkt
  2971. \begin{minipage}{0.96\textwidth}
  2972. \begin{lstlisting}
  2973. (let ([y (let ([x 20])
  2974. (+ x (let ([x 22]) x)))])
  2975. y)
  2976. \end{lstlisting}
  2977. \end{minipage}\\
  2978. %
  2979. The output of the previous pass and of \code{explicate\_control} is
  2980. shown below. Recall that the right-hand-side of a \key{let} executes
  2981. before its body, so the order of evaluation for this program is to
  2982. assign \code{20} to \code{x.1}, \code{22} to \code{x.2}, and
  2983. \code{(+ x.1 x.2)} to \code{y}, then return \code{y}. Indeed, the
  2984. output of \code{explicate\_control} makes this ordering explicit.
  2985. \begin{transformation}
  2986. \begin{lstlisting}
  2987. (let ([y (let ([x.1 20])
  2988. (let ([x.2 22])
  2989. (+ x.1 x.2)))])
  2990. y)
  2991. \end{lstlisting}
  2992. \compilesto
  2993. \begin{lstlisting}[language=C]
  2994. start:
  2995. x.1 = 20;
  2996. x.2 = 22;
  2997. y = (+ x.1 x.2);
  2998. return y;
  2999. \end{lstlisting}
  3000. \end{transformation}
  3001. \begin{figure}[tbp]
  3002. \begin{lstlisting}
  3003. (define (explicate_tail e)
  3004. (match e
  3005. [(Var x) ___]
  3006. [(Int n) (Return (Int n))]
  3007. [(Let x rhs body) ___]
  3008. [(Prim op es) ___]
  3009. [else (error "explicate_tail unhandled case" e)]))
  3010. (define (explicate_assign e x cont)
  3011. (match e
  3012. [(Var x) ___]
  3013. [(Int n) (Seq (Assign (Var x) (Int n)) cont)]
  3014. [(Let y rhs body) ___]
  3015. [(Prim op es) ___]
  3016. [else (error "explicate_assign unhandled case" e)]))
  3017. (define (explicate_control p)
  3018. (match p
  3019. [(Program info body) ___]))
  3020. \end{lstlisting}
  3021. \caption{Skeleton for the \code{explicate\_control} pass.}
  3022. \label{fig:explicate-control-Lvar}
  3023. \end{figure}
  3024. The organization of this pass depends on the notion of tail position
  3025. that we have alluded to earlier.
  3026. \begin{definition}
  3027. The following rules define when an expression is in \textbf{\emph{tail
  3028. position}}\index{subject}{tail position} for the language \LangVar{}.
  3029. \begin{enumerate}
  3030. \item In $\PROGRAM{\code{()}}{e}$, expression $e$ is in tail position.
  3031. \item If $\LET{x}{e_1}{e_2}$ is in tail position, then so is $e_2$.
  3032. \end{enumerate}
  3033. \end{definition}
  3034. We recommend implementing \code{explicate\_control} using two mutually
  3035. recursive functions, \code{explicate\_tail} and
  3036. \code{explicate\_assign}, as suggested in the skeleton code in
  3037. Figure~\ref{fig:explicate-control-Lvar}. The \code{explicate\_tail}
  3038. function should be applied to expressions in tail position whereas the
  3039. \code{explicate\_assign} should be applied to expressions that occur on
  3040. the right-hand-side of a \key{let}.
  3041. %
  3042. The \code{explicate\_tail} function takes an \Exp{} in \LangVar{} as
  3043. input and produces a \Tail{} in \LangCVar{} (see
  3044. Figure~\ref{fig:c0-syntax}).
  3045. %
  3046. The \code{explicate\_assign} function takes an \Exp{} in \LangVar{},
  3047. the variable that it is to be assigned to, and a \Tail{} in
  3048. \LangCVar{} for the code that comes after the assignment. The
  3049. \code{explicate\_assign} function returns a $\Tail$ in \LangCVar{}.
  3050. The \code{explicate\_assign} function is in accumulator-passing style:
  3051. the \code{cont} parameter is used for accumulating the output. This
  3052. accumulator-passing style plays an important role in how we generate
  3053. high-quality code for conditional expressions in Chapter~\ref{ch:Lif}.
  3054. \begin{exercise}\normalfont
  3055. %
  3056. Implement the \code{explicate\_control} function in
  3057. \code{compiler.rkt}. Create three new \LangInt{} programs that
  3058. exercise the code in \code{explicate\_control}.
  3059. %
  3060. In the \code{run-tests.rkt} script, add the following entry to the
  3061. list of \code{passes} and then run the script to test your compiler.
  3062. \begin{lstlisting}
  3063. (list "explicate control" explicate_control interp_Cvar type-check-Cvar)
  3064. \end{lstlisting}
  3065. \end{exercise}
  3066. \fi}
  3067. \section{Select Instructions}
  3068. \label{sec:select-Lvar}
  3069. \index{subject}{instruction selection}
  3070. In the \code{select\_instructions} pass we begin the work of
  3071. translating \racket{from \LangCVar{}} to \LangXVar{}. The target
  3072. language of this pass is a variant of x86 that still uses variables,
  3073. so we add an AST node of the form $\VAR{\itm{var}}$ to the \Arg{}
  3074. non-terminal of the \LangXInt{} abstract syntax
  3075. (Figure~\ref{fig:x86-int-ast}).
  3076. \racket{We recommend implementing the
  3077. \code{select\_instructions} with three auxiliary functions, one for
  3078. each of the non-terminals of \LangCVar{}: $\Atm$, $\Stmt$, and
  3079. $\Tail$.}
  3080. \python{We recommend implementing an auxiliary function
  3081. named \code{select\_stmt} for the $\Stmt$ non-terminal.}
  3082. \racket{
  3083. The cases for $\Atm$ are straightforward; variables stay
  3084. the same and integer constants change to immediates:
  3085. $\INT{n}$ changes to $\IMM{n}$.}
  3086. We consider the cases for the $\Stmt$ non-terminal, starting with
  3087. arithmetic operations. For example, consider the addition operation
  3088. below, on the left side. There is an \key{addq} instruction in x86,
  3089. but it performs an in-place update. So we could move $\Arg_1$
  3090. into the left-hand side \itm{var} and then add $\Arg_2$ to
  3091. \itm{var}, where $\Arg_1$ and $\Arg_2$ are the translations of
  3092. $\Atm_1$ and $\Atm_2$ respectively.
  3093. \begin{transformation}
  3094. {\if\edition\racketEd
  3095. \begin{lstlisting}
  3096. |$\itm{var}$| = (+ |$\Atm_1$| |$\Atm_2$|);
  3097. \end{lstlisting}
  3098. \fi}
  3099. {\if\edition\pythonEd
  3100. \begin{lstlisting}
  3101. |$\itm{var}$| = |$\Atm_1$| + |$\Atm_2$|
  3102. \end{lstlisting}
  3103. \fi}
  3104. \compilesto
  3105. \begin{lstlisting}
  3106. movq |$\Arg_1$|, |$\itm{var}$|
  3107. addq |$\Arg_2$|, |$\itm{var}$|
  3108. \end{lstlisting}
  3109. \end{transformation}
  3110. There are also cases that require special care to avoid generating
  3111. needlessly complicated code. For example, if one of the arguments of
  3112. the addition is the same variable as the left-hand side of the
  3113. assignment, as shown below, then there is no need for the extra move
  3114. instruction. The assignment statement can be translated into a single
  3115. \key{addq} instruction as follows.
  3116. \begin{transformation}
  3117. {\if\edition\racketEd
  3118. \begin{lstlisting}
  3119. |$\itm{var}$| = (+ |$\Atm_1$| |$\itm{var}$|);
  3120. \end{lstlisting}
  3121. \fi}
  3122. {\if\edition\pythonEd
  3123. \begin{lstlisting}
  3124. |$\itm{var}$| = |$\Atm_1$| + |$\itm{var}$|
  3125. \end{lstlisting}
  3126. \fi}
  3127. \compilesto
  3128. \begin{lstlisting}
  3129. addq |$\Arg_1$|, |$\itm{var}$|
  3130. \end{lstlisting}
  3131. \end{transformation}
  3132. The \READOP{} operation does not have a direct counterpart in x86
  3133. assembly, so we provide this functionality with the function
  3134. \code{read\_int} in the file \code{runtime.c}, written in
  3135. C~\citep{Kernighan:1988nx}. In general, we refer to all of the
  3136. functionality in this file as the \emph{runtime system}\index{subject}{runtime
  3137. system}, or simply the \emph{runtime} for short. When compiling your
  3138. generated x86 assembly code, you need to compile \code{runtime.c} to
  3139. \code{runtime.o} (an ``object file'', using \code{gcc} with option
  3140. \code{-c}) and link it into the executable. For our purposes of code
  3141. generation, all you need to do is translate an assignment of
  3142. \READOP{} into a call to the \code{read\_int} function followed by a
  3143. move from \code{rax} to the left-hand-side variable. (Recall that the
  3144. return value of a function goes into \code{rax}.)
  3145. \begin{transformation}
  3146. {\if\edition\racketEd
  3147. \begin{lstlisting}
  3148. |$\itm{var}$| = (read);
  3149. \end{lstlisting}
  3150. \fi}
  3151. {\if\edition\pythonEd
  3152. \begin{lstlisting}
  3153. |$\itm{var}$| = input_int();
  3154. \end{lstlisting}
  3155. \fi}
  3156. \compilesto
  3157. \begin{lstlisting}
  3158. callq read_int
  3159. movq %rax, |$\itm{var}$|
  3160. \end{lstlisting}
  3161. \end{transformation}
  3162. {\if\edition\pythonEd
  3163. %
  3164. Similarly, we translate the \code{print} operation, shown below, into
  3165. a call to the \code{print\_int} function defined in \code{runtime.c}.
  3166. In x86, the first six arguments to functions are passed in registers,
  3167. with the first argument passed in register \code{rdi}. So we move the
  3168. $\Arg$ into \code{rdi} and then call \code{print\_int} using the
  3169. \code{callq} instruction.
  3170. \begin{transformation}
  3171. \begin{lstlisting}
  3172. print(|$\Atm$|)
  3173. \end{lstlisting}
  3174. \compilesto
  3175. \begin{lstlisting}
  3176. movq |$\Arg$|, %rdi
  3177. callq print_int
  3178. \end{lstlisting}
  3179. \end{transformation}
  3180. %
  3181. \fi}
  3182. {\if\edition\racketEd
  3183. There are two cases for the $\Tail$ non-terminal: \key{Return} and
  3184. \key{Seq}. Regarding \key{Return}, we recommend treating it as an
  3185. assignment to the \key{rax} register followed by a jump to the
  3186. conclusion of the program (so the conclusion needs to be labeled).
  3187. For $\SEQ{s}{t}$, you can translate the statement $s$ and tail $t$
  3188. recursively and then append the resulting instructions.
  3189. \fi}
  3190. \begin{exercise}
  3191. \normalfont
  3192. {\if\edition\racketEd
  3193. Implement the \code{select\_instructions} pass in
  3194. \code{compiler.rkt}. Create three new example programs that are
  3195. designed to exercise all of the interesting cases in this pass.
  3196. %
  3197. In the \code{run-tests.rkt} script, add the following entry to the
  3198. list of \code{passes} and then run the script to test your compiler.
  3199. \begin{lstlisting}
  3200. (list "instruction selection" select_instructions interp_pseudo-x86-0)
  3201. \end{lstlisting}
  3202. \fi}
  3203. {\if\edition\pythonEd
  3204. Implement the \key{select\_instructions} pass in
  3205. \code{compiler.py}. Create three new example programs that are
  3206. designed to exercise all of the interesting cases in this pass.
  3207. Run the \code{run-tests.py} script to to check
  3208. whether the output programs produce the same result as the input
  3209. programs.
  3210. \fi}
  3211. \end{exercise}
  3212. \section{Assign Homes}
  3213. \label{sec:assign-Lvar}
  3214. The \key{assign\_homes} pass compiles \LangXVar{} programs to
  3215. \LangXVar{} programs that no longer use program variables.
  3216. Thus, the \key{assign-homes} pass is responsible for placing all of
  3217. the program variables in registers or on the stack. For runtime
  3218. efficiency, it is better to place variables in registers, but as there
  3219. are only 16 registers, some programs must necessarily resort to
  3220. placing some variables on the stack. In this chapter we focus on the
  3221. mechanics of placing variables on the stack. We study an algorithm for
  3222. placing variables in registers in
  3223. Chapter~\ref{ch:register-allocation-Lvar}.
  3224. Consider again the following \LangVar{} program from
  3225. Section~\ref{sec:remove-complex-opera-Lvar}.
  3226. % var_test_20.rkt
  3227. {\if\edition\racketEd
  3228. \begin{lstlisting}
  3229. (let ([a 42])
  3230. (let ([b a])
  3231. b))
  3232. \end{lstlisting}
  3233. \fi}
  3234. {\if\edition\pythonEd
  3235. \begin{lstlisting}
  3236. a = 42
  3237. b = a
  3238. print(b)
  3239. \end{lstlisting}
  3240. \fi}
  3241. %
  3242. The output of \code{select\_instructions} is shown below, on the left,
  3243. and the output of \code{assign\_homes} is on the right. In this
  3244. example, we assign variable \code{a} to stack location
  3245. \code{-8(\%rbp)} and variable \code{b} to location \code{-16(\%rbp)}.
  3246. \begin{transformation}
  3247. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3248. movq $42, a
  3249. movq a, b
  3250. movq b, %rax
  3251. \end{lstlisting}
  3252. \compilesto
  3253. %stack-space: 16
  3254. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  3255. movq $42, -8(%rbp)
  3256. movq -8(%rbp), -16(%rbp)
  3257. movq -16(%rbp), %rax
  3258. \end{lstlisting}
  3259. \end{transformation}
  3260. \racket{The \code{locals-types} entry in the $\itm{info}$ of the
  3261. \code{X86Program} node is an alist mapping all the variables in the
  3262. program to their types (for now just \code{Integer}). The
  3263. \code{assign\_homes} pass should replace all uses of those variables
  3264. with stack locations. As an aside, the \code{locals-types} entry is
  3265. computed by \code{type-check-Cvar} in the support code, which
  3266. installs it in the $\itm{info}$ field of the \code{CProgram} node,
  3267. which should be propagated to the \code{X86Program} node.}
  3268. %
  3269. \python{The \code{assign\_homes} pass should replace all uses of
  3270. variables with stack locations.}
  3271. %
  3272. In the process of assigning variables to stack locations, it is
  3273. convenient for you to compute and store the size of the frame (in
  3274. bytes) in%
  3275. \racket{the $\itm{info}$ field of the \key{X86Program} node, with the key \code{stack-space}}
  3276. %
  3277. \python{the field \code{stack\_space} of the \key{X86Program} node},
  3278. which is needed later to generate the conclusion of the \code{main}
  3279. procedure. The x86-64 standard requires the frame size to be a
  3280. multiple of 16 bytes.\index{subject}{frame}
  3281. % TODO: store the number of variables instead? -Jeremy
  3282. \begin{exercise}\normalfont
  3283. Implement the \key{assign\_homes} pass in
  3284. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}, defining
  3285. auxiliary functions for each of the non-terminals in the \LangXVar{}
  3286. grammar. We recommend that the auxiliary functions take an extra
  3287. parameter that maps variable names to homes (stack locations for now).
  3288. %
  3289. {\if\edition\racketEd
  3290. In the \code{run-tests.rkt} script, add the following entry to the
  3291. list of \code{passes} and then run the script to test your compiler.
  3292. \begin{lstlisting}
  3293. (list "assign homes" assign-homes interp_x86-0)
  3294. \end{lstlisting}
  3295. \fi}
  3296. {\if\edition\pythonEd
  3297. Run the \code{run-tests.py} script to to check
  3298. whether the output programs produce the same result as the input
  3299. programs.
  3300. \fi}
  3301. \end{exercise}
  3302. \section{Patch Instructions}
  3303. \label{sec:patch-s0}
  3304. The \code{patch\_instructions} pass compiles from \LangXVar{} to
  3305. \LangXInt{} by making sure that each instruction adheres to the
  3306. restriction that at most one argument of an instruction may be a
  3307. memory reference.
  3308. We return to the following example.\\
  3309. \begin{minipage}{0.5\textwidth}
  3310. % var_test_20.rkt
  3311. {\if\edition\racketEd
  3312. \begin{lstlisting}
  3313. (let ([a 42])
  3314. (let ([b a])
  3315. b))
  3316. \end{lstlisting}
  3317. \fi}
  3318. {\if\edition\pythonEd
  3319. \begin{lstlisting}
  3320. a = 42
  3321. b = a
  3322. print(b)
  3323. \end{lstlisting}
  3324. \fi}
  3325. \end{minipage}\\
  3326. The \key{assign\_homes} pass produces the following translation. \\
  3327. \begin{minipage}{0.5\textwidth}
  3328. {\if\edition\racketEd
  3329. \begin{lstlisting}
  3330. movq $42, -8(%rbp)
  3331. movq -8(%rbp), -16(%rbp)
  3332. movq -16(%rbp), %rax
  3333. \end{lstlisting}
  3334. \fi}
  3335. {\if\edition\pythonEd
  3336. \begin{lstlisting}
  3337. movq 42, -8(%rbp)
  3338. movq -8(%rbp), -16(%rbp)
  3339. movq -16(%rbp), %rdi
  3340. callq print_int
  3341. \end{lstlisting}
  3342. \fi}
  3343. \end{minipage}\\
  3344. The second \key{movq} instruction is problematic because both
  3345. arguments are stack locations. We suggest fixing this problem by
  3346. moving from the source location to the register \key{rax} and then
  3347. from \key{rax} to the destination location, as follows.
  3348. \begin{lstlisting}
  3349. movq -8(%rbp), %rax
  3350. movq %rax, -16(%rbp)
  3351. \end{lstlisting}
  3352. \begin{exercise}
  3353. \normalfont Implement the \key{patch\_instructions} pass in
  3354. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3355. Create three new example programs that are
  3356. designed to exercise all of the interesting cases in this pass.
  3357. %
  3358. {\if\edition\racketEd
  3359. In the \code{run-tests.rkt} script, add the following entry to the
  3360. list of \code{passes} and then run the script to test your compiler.
  3361. \begin{lstlisting}
  3362. (list "patch instructions" patch_instructions interp_x86-0)
  3363. \end{lstlisting}
  3364. \fi}
  3365. {\if\edition\pythonEd
  3366. Run the \code{run-tests.py} script to to check
  3367. whether the output programs produce the same result as the input
  3368. programs.
  3369. \fi}
  3370. \end{exercise}
  3371. \section{Generate Prelude and Conclusion}
  3372. \label{sec:print-x86}
  3373. \index{subject}{prelude}\index{subject}{conclusion}
  3374. The last step of the compiler from \LangVar{} to x86 is to generate
  3375. the \code{main} function with a prelude and conclusion wrapped around
  3376. the rest of the program, as shown in Figure~\ref{fig:p1-x86} and
  3377. discussed in Section~\ref{sec:x86}.
  3378. When running on Mac OS X, your compiler should prefix an underscore to
  3379. all labels, e.g., changing \key{main} to \key{\_main}.
  3380. %
  3381. \racket{The Racket call \code{(system-type 'os)} is useful for
  3382. determining which operating system the compiler is running on. It
  3383. returns \code{'macosx}, \code{'unix}, or \code{'windows}.}
  3384. %
  3385. \python{The Python \code{platform} library includes a \code{system()}
  3386. function that returns \code{'Linux'}, \code{'Windows'}, or
  3387. \code{'Darwin'} (for Mac).}
  3388. \begin{exercise}\normalfont
  3389. %
  3390. Implement the \key{prelude\_and\_conclusion} pass in
  3391. \racket{\code{compiler.rkt}}\python{\code{compiler.py}}.
  3392. %
  3393. {\if\edition\racketEd
  3394. In the \code{run-tests.rkt} script, add the following entry to the
  3395. list of \code{passes} and then run the script to test your compiler.
  3396. \begin{lstlisting}
  3397. (list "prelude and conclusion" prelude-and-conclusion interp_x86-0)
  3398. \end{lstlisting}
  3399. %
  3400. Uncomment the call to the \key{compiler-tests} function
  3401. (Appendix~\ref{appendix:utilities}), which tests your complete
  3402. compiler by executing the generated x86 code. It translates the x86
  3403. AST that you produce into a string by invoking the \code{print-x86}
  3404. method of the \code{print-x86-class} in \code{utilities.rkt}. Compile
  3405. the provided \key{runtime.c} file to \key{runtime.o} using
  3406. \key{gcc}. Run the script to test your compiler.
  3407. %
  3408. \fi}
  3409. {\if\edition\pythonEd
  3410. %
  3411. Run the \code{run-tests.py} script to to check whether the output
  3412. programs produce the same result as the input programs. That script
  3413. translates the x86 AST that you produce into a string by invoking the
  3414. \code{repr} method that is implemented by the x86 AST classes in
  3415. \code{x86\_ast.py}.
  3416. %
  3417. \fi}
  3418. \end{exercise}
  3419. \section{Challenge: Partial Evaluator for \LangVar{}}
  3420. \label{sec:pe-Lvar}
  3421. \index{subject}{partial evaluation}
  3422. This section describes two optional challenge exercises that involve
  3423. adapting and improving the partial evaluator for \LangInt{} that was
  3424. introduced in Section~\ref{sec:partial-evaluation}.
  3425. \begin{exercise}\label{ex:pe-Lvar}
  3426. \normalfont
  3427. Adapt the partial evaluator from Section~\ref{sec:partial-evaluation}
  3428. (Figure~\ref{fig:pe-arith}) so that it applies to \LangVar{} programs
  3429. instead of \LangInt{} programs. Recall that \LangVar{} adds variables and
  3430. %
  3431. \racket{\key{let} binding}\python{assignment}
  3432. %
  3433. to the \LangInt{} language, so you will need to add cases for them in
  3434. the \code{pe\_exp}
  3435. %
  3436. \racket{function}
  3437. %
  3438. \python{and \code{pe\_stmt} functions}.
  3439. %
  3440. Once complete, add the partial evaluation pass to the front of your
  3441. compiler and make sure that your compiler still passes all of the
  3442. tests.
  3443. \end{exercise}
  3444. \begin{exercise}
  3445. \normalfont
  3446. Improve on the partial evaluator by replacing the \code{pe\_neg} and
  3447. \code{pe\_add} auxiliary functions with functions that know more about
  3448. arithmetic. For example, your partial evaluator should translate
  3449. {\if\edition\racketEd
  3450. \[
  3451. \code{(+ 1 (+ (read) 1))} \qquad \text{into} \qquad
  3452. \code{(+ 2 (read))}
  3453. \]
  3454. \fi}
  3455. {\if\edition\pythonEd
  3456. \[
  3457. \code{1 + (input\_int() + 1)} \qquad \text{into} \qquad
  3458. \code{2 + input\_int()}
  3459. \]
  3460. \fi}
  3461. To accomplish this, the \code{pe\_exp} function should produce output
  3462. in the form of the $\itm{residual}$ non-terminal of the following
  3463. grammar. The idea is that when processing an addition expression, we
  3464. can always produce either 1) an integer constant, 2) an addition
  3465. expression with an integer constant on the left-hand side but not the
  3466. right-hand side, or 3) or an addition expression in which neither
  3467. subexpression is a constant.
  3468. {\if\edition\racketEd
  3469. \[
  3470. \begin{array}{lcl}
  3471. \itm{inert} &::=& \Var
  3472. \MID \LP\key{read}\RP
  3473. \MID \LP\key{-} ~\Var\RP
  3474. \MID \LP\key{-} ~\LP\key{read}\RP\RP
  3475. \MID \LP\key{+} ~ \itm{inert} ~ \itm{inert}\RP\\
  3476. &\MID& \LP\key{let}~\LP\LS\Var~\itm{residual}\RS\RP~ \itm{residual} \RP \\
  3477. \itm{residual} &::=& \Int
  3478. \MID \LP\key{+}~ \Int~ \itm{inert}\RP
  3479. \MID \itm{inert}
  3480. \end{array}
  3481. \]
  3482. \fi}
  3483. {\if\edition\pythonEd
  3484. \[
  3485. \begin{array}{lcl}
  3486. \itm{inert} &::=& \Var
  3487. \MID \key{input\_int}\LP\RP
  3488. \MID \key{-} \Var
  3489. \MID \key{-} \key{input\_int}\LP\RP
  3490. \MID \itm{inert} ~ \key{+} ~ \itm{inert}\\
  3491. \itm{residual} &::=& \Int
  3492. \MID \Int ~ \key{+} ~ \itm{inert}
  3493. \MID \itm{inert}
  3494. \end{array}
  3495. \]
  3496. \fi}
  3497. The \code{pe\_add} and \code{pe\_neg} functions may assume that their
  3498. inputs are $\itm{residual}$ expressions and they should return
  3499. $\itm{residual}$ expressions. Once the improvements are complete,
  3500. make sure that your compiler still passes all of the tests. After
  3501. all, fast code is useless if it produces incorrect results!
  3502. \end{exercise}
  3503. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  3504. \chapter{Register Allocation}
  3505. \label{ch:register-allocation-Lvar}
  3506. \index{subject}{register allocation}
  3507. In Chapter~\ref{ch:Lvar} we learned how to store variables on the
  3508. stack. In this chapter we learn how to improve the performance of the
  3509. generated code by assigning some variables to registers. The CPU can
  3510. access a register in a single cycle, whereas accessing the stack can
  3511. take 10s to 100s of cycles. The program in Figure~\ref{fig:reg-eg}
  3512. serves as a running example. The source program is on the left and the
  3513. output of instruction selection is on the right. The program is almost
  3514. in the x86 assembly language but it still uses variables.
  3515. \begin{figure}
  3516. \begin{minipage}{0.45\textwidth}
  3517. Example \LangVar{} program:
  3518. % var_test_28.rkt
  3519. {\if\edition\racketEd
  3520. \begin{lstlisting}
  3521. (let ([v 1])
  3522. (let ([w 42])
  3523. (let ([x (+ v 7)])
  3524. (let ([y x])
  3525. (let ([z (+ x w)])
  3526. (+ z (- y)))))))
  3527. \end{lstlisting}
  3528. \fi}
  3529. {\if\edition\pythonEd
  3530. \begin{lstlisting}
  3531. v = 1
  3532. w = 42
  3533. x = v + 7
  3534. y = x
  3535. z = x + w
  3536. print(z + (- y))
  3537. \end{lstlisting}
  3538. \fi}
  3539. \end{minipage}
  3540. \begin{minipage}{0.45\textwidth}
  3541. After instruction selection:
  3542. {\if\edition\racketEd
  3543. \begin{lstlisting}
  3544. locals-types:
  3545. x : Integer, y : Integer,
  3546. z : Integer, t : Integer,
  3547. v : Integer, w : Integer
  3548. start:
  3549. movq $1, v
  3550. movq $42, w
  3551. movq v, x
  3552. addq $7, x
  3553. movq x, y
  3554. movq x, z
  3555. addq w, z
  3556. movq y, t
  3557. negq t
  3558. movq z, %rax
  3559. addq t, %rax
  3560. jmp conclusion
  3561. \end{lstlisting}
  3562. \fi}
  3563. {\if\edition\pythonEd
  3564. \begin{lstlisting}
  3565. movq $1, v
  3566. movq $42, w
  3567. movq v, x
  3568. addq $7, x
  3569. movq x, y
  3570. movq x, z
  3571. addq w, z
  3572. movq y, tmp_0
  3573. negq tmp_0
  3574. movq z, tmp_1
  3575. addq tmp_0, tmp_1
  3576. movq tmp_1, %rdi
  3577. callq print_int
  3578. \end{lstlisting}
  3579. \fi}
  3580. \end{minipage}
  3581. \caption{A running example for register allocation.}
  3582. \label{fig:reg-eg}
  3583. \end{figure}
  3584. The goal of register allocation is to fit as many variables into
  3585. registers as possible. Some programs have more variables than
  3586. registers so we cannot always map each variable to a different
  3587. register. Fortunately, it is common for different variables to be
  3588. needed during different periods of time during program execution, and
  3589. in such cases several variables can be mapped to the same register.
  3590. Consider variables \code{x} and \code{z} in Figure~\ref{fig:reg-eg}.
  3591. After the variable \code{x} is moved to \code{z} it is no longer
  3592. needed. Variable \code{z}, on the other hand, is used only after this
  3593. point, so \code{x} and \code{z} could share the same register. The
  3594. topic of Section~\ref{sec:liveness-analysis-Lvar} is how to compute
  3595. where a variable is needed. Once we have that information, we compute
  3596. which variables are needed at the same time, i.e., which ones
  3597. \emph{interfere} with each other, and represent this relation as an
  3598. undirected graph whose vertices are variables and edges indicate when
  3599. two variables interfere (Section~\ref{sec:build-interference}). We
  3600. then model register allocation as a graph coloring problem
  3601. (Section~\ref{sec:graph-coloring}).
  3602. If we run out of registers despite these efforts, we place the
  3603. remaining variables on the stack, similar to what we did in
  3604. Chapter~\ref{ch:Lvar}. It is common to use the verb \emph{spill} for
  3605. assigning a variable to a stack location. The decision to spill a
  3606. variable is handled as part of the graph coloring process.
  3607. We make the simplifying assumption that each variable is assigned to
  3608. one location (a register or stack address). A more sophisticated
  3609. approach is to assign a variable to one or more locations in different
  3610. regions of the program. For example, if a variable is used many times
  3611. in short sequence and then only used again after many other
  3612. instructions, it could be more efficient to assign the variable to a
  3613. register during the initial sequence and then move it to the stack for
  3614. the rest of its lifetime. We refer the interested reader to
  3615. \citet{Cooper:2011aa} Chapter 13 for more information about that
  3616. approach.
  3617. % discuss prioritizing variables based on how much they are used.
  3618. \section{Registers and Calling Conventions}
  3619. \label{sec:calling-conventions}
  3620. \index{subject}{calling conventions}
  3621. As we perform register allocation, we need to be aware of the
  3622. \emph{calling conventions} \index{subject}{calling conventions} that govern how
  3623. functions calls are performed in x86.
  3624. %
  3625. Even though \LangVar{} does not include programmer-defined functions,
  3626. our generated code includes a \code{main} function that is called by
  3627. the operating system and our generated code contains calls to the
  3628. \code{read\_int} function.
  3629. Function calls require coordination between two pieces of code that
  3630. may be written by different programmers or generated by different
  3631. compilers. Here we follow the System V calling conventions that are
  3632. used by the GNU C compiler on Linux and
  3633. MacOS~\citep{Bryant:2005aa,Matz:2013aa}.
  3634. %
  3635. The calling conventions include rules about how functions share the
  3636. use of registers. In particular, the caller is responsible for freeing
  3637. up some registers prior to the function call for use by the callee.
  3638. These are called the \emph{caller-saved registers}
  3639. \index{subject}{caller-saved registers}
  3640. and they are
  3641. \begin{lstlisting}
  3642. rax rcx rdx rsi rdi r8 r9 r10 r11
  3643. \end{lstlisting}
  3644. On the other hand, the callee is responsible for preserving the values
  3645. of the \emph{callee-saved registers}, \index{subject}{callee-saved registers}
  3646. which are
  3647. \begin{lstlisting}
  3648. rsp rbp rbx r12 r13 r14 r15
  3649. \end{lstlisting}
  3650. We can think about this caller/callee convention from two points of
  3651. view, the caller view and the callee view:
  3652. \begin{itemize}
  3653. \item The caller should assume that all the caller-saved registers get
  3654. overwritten with arbitrary values by the callee. On the other hand,
  3655. the caller can safely assume that all the callee-saved registers
  3656. contain the same values after the call that they did before the
  3657. call.
  3658. \item The callee can freely use any of the caller-saved registers.
  3659. However, if the callee wants to use a callee-saved register, the
  3660. callee must arrange to put the original value back in the register
  3661. prior to returning to the caller. This can be accomplished by saving
  3662. the value to the stack in the prelude of the function and restoring
  3663. the value in the conclusion of the function.
  3664. \end{itemize}
  3665. In x86, registers are also used for passing arguments to a function
  3666. and for the return value. In particular, the first six arguments to a
  3667. function are passed in the following six registers, in this order.
  3668. \begin{lstlisting}
  3669. rdi rsi rdx rcx r8 r9
  3670. \end{lstlisting}
  3671. If there are more than six arguments, then the convention is to use
  3672. space on the frame of the caller for the rest of the
  3673. arguments. However, in Chapter~\ref{ch:Rfun} we arrange never to
  3674. need more than six arguments.
  3675. %
  3676. \racket{For now, the only function we care about is \code{read\_int}
  3677. and it takes zero arguments.}
  3678. %
  3679. \python{For now, the only functions we care about are \code{read\_int}
  3680. and \code{print\_int}, which take zero and one argument, respectively.}
  3681. %
  3682. The register \code{rax} is used for the return value of a function.
  3683. The next question is how these calling conventions impact register
  3684. allocation. Consider the \LangVar{} program in
  3685. Figure~\ref{fig:example-calling-conventions}. We first analyze this
  3686. example from the caller point of view and then from the callee point
  3687. of view.
  3688. The program makes two calls to \READOP{}. Also, the variable \code{x}
  3689. is in use during the second call to \READOP{}, so we need to make sure
  3690. that the value in \code{x} does not get accidentally wiped out by the
  3691. call to \READOP{}. One obvious approach is to save all the values in
  3692. caller-saved registers to the stack prior to each function call, and
  3693. restore them after each call. That way, if the register allocator
  3694. chooses to assign \code{x} to a caller-saved register, its value will
  3695. be preserved across the call to \READOP{}. However, saving and
  3696. restoring to the stack is relatively slow. If \code{x} is not used
  3697. many times, it may be better to assign \code{x} to a stack location in
  3698. the first place. Or better yet, if we can arrange for \code{x} to be
  3699. placed in a callee-saved register, then it won't need to be saved and
  3700. restored during function calls.
  3701. The approach that we recommend for variables that are in use during a
  3702. function call is to either assign them to callee-saved registers or to
  3703. spill them to the stack. On the other hand, for variables that are not
  3704. in use during a function call, we try the following alternatives in
  3705. order 1) look for an available caller-saved register (to leave room
  3706. for other variables in the callee-saved register), 2) look for a
  3707. callee-saved register, and 3) spill the variable to the stack.
  3708. It is straightforward to implement this approach in a graph coloring
  3709. register allocator. First, we know which variables are in use during
  3710. every function call because we compute that information for every
  3711. instruction (Section~\ref{sec:liveness-analysis-Lvar}). Second, when
  3712. we build the interference graph
  3713. (Section~\ref{sec:build-interference}), we can place an edge between
  3714. each of these call-live variables and the caller-saved registers in
  3715. the interference graph. This will prevent the graph coloring algorithm
  3716. from assigning them to caller-saved registers.
  3717. Returning to the example in
  3718. Figure~\ref{fig:example-calling-conventions}, let us analyze the
  3719. generated x86 code on the right-hand side. Notice that variable
  3720. \code{x} is assigned to \code{rbx}, a callee-saved register. Thus, it
  3721. is already in a safe place during the second call to
  3722. \code{read\_int}. Next, notice that variable \code{y} is assigned to
  3723. \code{rcx}, a caller-saved register, because \code{y} is not in the
  3724. live-after set of a \code{callq} instruction.
  3725. Next we analyze the example from the callee point of view, focusing on
  3726. the prelude and conclusion of the \code{main} function. As usual the
  3727. prelude begins with saving the \code{rbp} register to the stack and
  3728. setting the \code{rbp} to the current stack pointer. We now know why
  3729. it is necessary to save the \code{rbp}: it is a callee-saved register.
  3730. The prelude then pushes \code{rbx} to the stack because 1) \code{rbx}
  3731. is a callee-saved register and 2) \code{rbx} is assigned to a variable
  3732. (\code{x}). The other callee-saved registers are not saved in the
  3733. prelude because they are not used. The prelude subtracts 8 bytes from
  3734. the \code{rsp} to make it 16-byte aligned. Shifting attention to the
  3735. conclusion, we see that \code{rbx} is restored from the stack with a
  3736. \code{popq} instruction.
  3737. \index{subject}{prelude}\index{subject}{conclusion}
  3738. \begin{figure}[tp]
  3739. \begin{minipage}{0.45\textwidth}
  3740. Example \LangVar{} program:
  3741. %var_test_14.rkt
  3742. {\if\edition\racketEd
  3743. \begin{lstlisting}
  3744. (let ([x (read)])
  3745. (let ([y (read)])
  3746. (+ (+ x y) 42)))
  3747. \end{lstlisting}
  3748. \fi}
  3749. {\if\edition\pythonEd
  3750. \begin{lstlisting}
  3751. x = input_int()
  3752. y = input_int()
  3753. print((x + y) + 42)
  3754. \end{lstlisting}
  3755. \fi}
  3756. \end{minipage}
  3757. \begin{minipage}{0.45\textwidth}
  3758. Generated x86 assembly:
  3759. {\if\edition\racketEd
  3760. \begin{lstlisting}
  3761. start:
  3762. callq read_int
  3763. movq %rax, %rbx
  3764. callq read_int
  3765. movq %rax, %rcx
  3766. addq %rcx, %rbx
  3767. movq %rbx, %rax
  3768. addq $42, %rax
  3769. jmp _conclusion
  3770. .globl main
  3771. main:
  3772. pushq %rbp
  3773. movq %rsp, %rbp
  3774. pushq %rbx
  3775. subq $8, %rsp
  3776. jmp start
  3777. conclusion:
  3778. addq $8, %rsp
  3779. popq %rbx
  3780. popq %rbp
  3781. retq
  3782. \end{lstlisting}
  3783. \fi}
  3784. {\if\edition\pythonEd
  3785. \begin{lstlisting}
  3786. .globl main
  3787. main:
  3788. pushq %rbp
  3789. movq %rsp, %rbp
  3790. pushq %rbx
  3791. subq $8, %rsp
  3792. callq read_int
  3793. movq %rax, %rbx
  3794. callq read_int
  3795. movq %rax, %rcx
  3796. movq %rbx, %rdx
  3797. addq %rcx, %rdx
  3798. movq %rdx, %rcx
  3799. addq $42, %rcx
  3800. movq %rcx, %rdi
  3801. callq print_int
  3802. addq $8, %rsp
  3803. popq %rbx
  3804. popq %rbp
  3805. retq
  3806. \end{lstlisting}
  3807. \fi}
  3808. \end{minipage}
  3809. \caption{An example with function calls.}
  3810. \label{fig:example-calling-conventions}
  3811. \end{figure}
  3812. %\clearpage
  3813. \section{Liveness Analysis}
  3814. \label{sec:liveness-analysis-Lvar}
  3815. \index{subject}{liveness analysis}
  3816. The \code{uncover\_live} \racket{pass}\python{function}
  3817. performs \emph{liveness analysis}, that
  3818. is, it discovers which variables are in-use in different regions of a
  3819. program.
  3820. %
  3821. A variable or register is \emph{live} at a program point if its
  3822. current value is used at some later point in the program. We refer to
  3823. variables, stack locations, and registers collectively as
  3824. \emph{locations}.
  3825. %
  3826. Consider the following code fragment in which there are two writes to
  3827. \code{b}. Are \code{a} and \code{b} both live at the same time?
  3828. \begin{center}
  3829. \begin{minipage}{0.96\textwidth}
  3830. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3831. movq $5, a
  3832. movq $30, b
  3833. movq a, c
  3834. movq $10, b
  3835. addq b, c
  3836. \end{lstlisting}
  3837. \end{minipage}
  3838. \end{center}
  3839. The answer is no because \code{a} is live from line 1 to 3 and
  3840. \code{b} is live from line 4 to 5. The integer written to \code{b} on
  3841. line 2 is never used because it is overwritten (line 4) before the
  3842. next read (line 5).
  3843. The live locations can be computed by traversing the instruction
  3844. sequence back to front (i.e., backwards in execution order). Let
  3845. $I_1,\ldots, I_n$ be the instruction sequence. We write
  3846. $L_{\mathsf{after}}(k)$ for the set of live locations after
  3847. instruction $I_k$ and $L_{\mathsf{before}}(k)$ for the set of live
  3848. locations before instruction $I_k$.
  3849. \racket{We recommend representing these
  3850. sets with the Racket \code{set} data structure described in
  3851. Figure~\ref{fig:set}.}
  3852. \python{We recommend representing these sets with the Python
  3853. \href{https://docs.python.org/3.10/library/stdtypes.html\#set-types-set-frozenset}{\code{set}}
  3854. data structure.}
  3855. {\if\edition\racketEd
  3856. \begin{figure}[tp]
  3857. %\begin{wrapfigure}[19]{l}[0.75in]{0.55\textwidth}
  3858. \small
  3859. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/reference/sets.html}{The Racket Set Package}]
  3860. A \emph{set} is an unordered collection of elements without duplicates.
  3861. Here are some of the operations defined on sets.
  3862. \index{subject}{set}
  3863. \begin{description}
  3864. \item[$\LP\code{set}~v~\ldots\RP$] constructs a set containing the specified elements.
  3865. \item[$\LP\code{set-union}~set_1~set_2\RP$] returns the union of the two sets.
  3866. \item[$\LP\code{set-subtract}~set_1~set_2\RP$] returns the set
  3867. difference of the two sets.
  3868. \item[$\LP\code{set-member?}~set~v\RP$] answers whether element $v$ is in $set$.
  3869. \item[$\LP\code{set-count}~set\RP$] returns the number of unique elements in $set$.
  3870. \item[$\LP\code{set->list}~set\RP$] converts $set$ to a list.
  3871. \end{description}
  3872. \end{tcolorbox}
  3873. %\end{wrapfigure}
  3874. \caption{The \code{set} data structure.}
  3875. \label{fig:set}
  3876. \end{figure}
  3877. \fi}
  3878. The live locations after an instruction are always the same as the
  3879. live locations before the next instruction.
  3880. \index{subject}{live-after} \index{subject}{live-before}
  3881. \begin{equation} \label{eq:live-after-before-next}
  3882. L_{\mathsf{after}}(k) = L_{\mathsf{before}}(k+1)
  3883. \end{equation}
  3884. To start things off, there are no live locations after the last
  3885. instruction, so
  3886. \begin{equation}\label{eq:live-last-empty}
  3887. L_{\mathsf{after}}(n) = \emptyset
  3888. \end{equation}
  3889. We then apply the following rule repeatedly, traversing the
  3890. instruction sequence back to front.
  3891. \begin{equation}\label{eq:live-before-after-minus-writes-plus-reads}
  3892. L_{\mathtt{before}}(k) = (L_{\mathtt{after}}(k) - W(k)) \cup R(k),
  3893. \end{equation}
  3894. where $W(k)$ are the locations written to by instruction $I_k$ and
  3895. $R(k)$ are the locations read by instruction $I_k$.
  3896. {\if\edition\racketEd
  3897. There is a special case for \code{jmp} instructions. The locations
  3898. that are live before a \code{jmp} should be the locations in
  3899. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  3900. maintaining an alist named \code{label->live} that maps each label to
  3901. the $L_{\mathtt{before}}$ for the first instruction in its block. For
  3902. now the only \code{jmp} in a \LangXVar{} program is the one at the
  3903. end, to the conclusion. (For example, see Figure~\ref{fig:reg-eg}.)
  3904. The conclusion reads from \ttm{rax} and \ttm{rsp}, so the alist should
  3905. map \code{conclusion} to the set $\{\ttm{rax},\ttm{rsp}\}$.
  3906. \fi}
  3907. Let us walk through the above example, applying these formulas
  3908. starting with the instruction on line 5. We collect the answers in
  3909. Figure~\ref{fig:liveness-example-0}. The $L_{\mathsf{after}}$ for the
  3910. \code{addq b, c} instruction is $\emptyset$ because it is the last
  3911. instruction (formula~\ref{eq:live-last-empty}). The
  3912. $L_{\mathsf{before}}$ for this instruction is $\{\ttm{b},\ttm{c}\}$
  3913. because it reads from variables \code{b} and \code{c}
  3914. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}), that is
  3915. \[
  3916. L_{\mathsf{before}}(5) = (\emptyset - \{\ttm{c}\}) \cup \{ \ttm{b}, \ttm{c} \} = \{ \ttm{b}, \ttm{c} \}
  3917. \]
  3918. Moving on the the instruction \code{movq \$10, b} at line 4, we copy
  3919. the live-before set from line 5 to be the live-after set for this
  3920. instruction (formula~\ref{eq:live-after-before-next}).
  3921. \[
  3922. L_{\mathsf{after}}(4) = \{ \ttm{b}, \ttm{c} \}
  3923. \]
  3924. This move instruction writes to \code{b} and does not read from any
  3925. variables, so we have the following live-before set
  3926. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}).
  3927. \[
  3928. L_{\mathsf{before}}(4) = (\{\ttm{b},\ttm{c}\} - \{\ttm{b}\}) \cup \emptyset = \{ \ttm{c} \}
  3929. \]
  3930. The live-before for instruction \code{movq a, c}
  3931. is $\{\ttm{a}\}$ because it writes to $\{\ttm{c}\}$ and reads from $\{\ttm{a}\}$
  3932. (formula~\ref{eq:live-before-after-minus-writes-plus-reads}). The
  3933. live-before for \code{movq \$30, b} is $\{\ttm{a}\}$ because it writes to a
  3934. variable that is not live and does not read from a variable.
  3935. Finally, the live-before for \code{movq \$5, a} is $\emptyset$
  3936. because it writes to variable \code{a}.
  3937. \begin{figure}[tbp]
  3938. \begin{minipage}{0.45\textwidth}
  3939. \begin{lstlisting}[numbers=left,numberstyle=\tiny]
  3940. movq $5, a
  3941. movq $30, b
  3942. movq a, c
  3943. movq $10, b
  3944. addq b, c
  3945. \end{lstlisting}
  3946. \end{minipage}
  3947. \vrule\hspace{10pt}
  3948. \begin{minipage}{0.45\textwidth}
  3949. \begin{align*}
  3950. L_{\mathsf{before}}(1)= \emptyset,
  3951. L_{\mathsf{after}}(1)= \{\ttm{a}\}\\
  3952. L_{\mathsf{before}}(2)= \{\ttm{a}\},
  3953. L_{\mathsf{after}}(2)= \{\ttm{a}\}\\
  3954. L_{\mathsf{before}}(3)= \{\ttm{a}\},
  3955. L_{\mathsf{after}}(2)= \{\ttm{c}\}\\
  3956. L_{\mathsf{before}}(4)= \{\ttm{c}\},
  3957. L_{\mathsf{after}}(4)= \{\ttm{b},\ttm{c}\}\\
  3958. L_{\mathsf{before}}(5)= \{\ttm{b},\ttm{c}\},
  3959. L_{\mathsf{after}}(5)= \emptyset
  3960. \end{align*}
  3961. \end{minipage}
  3962. \caption{Example output of liveness analysis on a short example.}
  3963. \label{fig:liveness-example-0}
  3964. \end{figure}
  3965. \begin{exercise}\normalfont
  3966. Perform liveness analysis on the running example in
  3967. Figure~\ref{fig:reg-eg}, computing the live-before and live-after
  3968. sets for each instruction. Compare your answers to the solution
  3969. shown in Figure~\ref{fig:live-eg}.
  3970. \end{exercise}
  3971. \begin{figure}[tp]
  3972. \hspace{20pt}
  3973. \begin{minipage}{0.45\textwidth}
  3974. {\if\edition\racketEd
  3975. \begin{lstlisting}
  3976. |$\{\ttm{rsp}\}$|
  3977. movq $1, v
  3978. |$\{\ttm{v},\ttm{rsp}\}$|
  3979. movq $42, w
  3980. |$\{\ttm{v},\ttm{w},\ttm{rsp}\}$|
  3981. movq v, x
  3982. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3983. addq $7, x
  3984. |$\{\ttm{w},\ttm{x},\ttm{rsp}\}$|
  3985. movq x, y
  3986. |$\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$|
  3987. movq x, z
  3988. |$\{\ttm{w},\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3989. addq w, z
  3990. |$\{\ttm{y},\ttm{z},\ttm{rsp}\}$|
  3991. movq y, t
  3992. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3993. negq t
  3994. |$\{\ttm{t},\ttm{z},\ttm{rsp}\}$|
  3995. movq z, %rax
  3996. |$\{\ttm{rax},\ttm{t},\ttm{rsp}\}$|
  3997. addq t, %rax
  3998. |$\{\ttm{rax},\ttm{rsp}\}$|
  3999. jmp conclusion
  4000. \end{lstlisting}
  4001. \fi}
  4002. {\if\edition\pythonEd
  4003. \begin{lstlisting}
  4004. movq $1, v
  4005. |$\{\ttm{v}\}$|
  4006. movq $42, w
  4007. |$\{\ttm{w}, \ttm{v}\}$|
  4008. movq v, x
  4009. |$\{\ttm{w}, \ttm{x}\}$|
  4010. addq $7, x
  4011. |$\{\ttm{w}, \ttm{x}\}$|
  4012. movq x, y
  4013. |$\{\ttm{w}, \ttm{x}, \ttm{y}\}$|
  4014. movq x, z
  4015. |$\{\ttm{w}, \ttm{y}, \ttm{z}\}$|
  4016. addq w, z
  4017. |$\{\ttm{y}, \ttm{z}\}$|
  4018. movq y, tmp_0
  4019. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4020. negq tmp_0
  4021. |$\{\ttm{tmp\_0}, \ttm{z}\}$|
  4022. movq z, tmp_1
  4023. |$\{\ttm{tmp\_0}, \ttm{tmp\_1}\}$|
  4024. addq tmp_0, tmp_1
  4025. |$\{\ttm{tmp\_1}\}$|
  4026. movq tmp_1, %rdi
  4027. |$\{\ttm{rdi}\}$|
  4028. callq print_int
  4029. |$\{\}$|
  4030. \end{lstlisting}
  4031. \fi}
  4032. \end{minipage}
  4033. \caption{The running example annotated with live-after sets.}
  4034. \label{fig:live-eg}
  4035. \end{figure}
  4036. \begin{exercise}\normalfont
  4037. Implement the \code{uncover\_live} \racket{pass}\python{function}.
  4038. %
  4039. \racket{Store the sequence of live-after sets in the $\itm{info}$
  4040. field of the \code{Block} structure.}
  4041. %
  4042. \python{Return a dictionary that maps each instruction to its
  4043. live-after set.}
  4044. %
  4045. \racket{We recommend creating an auxiliary function that takes a list
  4046. of instructions and an initial live-after set (typically empty) and
  4047. returns the list of live-after sets.}
  4048. %
  4049. We recommend creating auxiliary functions to 1) compute the set
  4050. of locations that appear in an \Arg{}, 2) compute the locations read
  4051. by an instruction (the $R$ function), and 3) the locations written by
  4052. an instruction (the $W$ function). The \code{callq} instruction should
  4053. include all of the caller-saved registers in its write-set $W$ because
  4054. the calling convention says that those registers may be written to
  4055. during the function call. Likewise, the \code{callq} instruction
  4056. should include the appropriate argument-passing registers in its
  4057. read-set $R$, depending on the arity of the function being
  4058. called. (This is why the abstract syntax for \code{callq} includes the
  4059. arity.)
  4060. \end{exercise}
  4061. %\clearpage
  4062. \section{Build the Interference Graph}
  4063. \label{sec:build-interference}
  4064. {\if\edition\racketEd
  4065. \begin{figure}[tp]
  4066. %\begin{wrapfigure}[23]{r}[0.75in]{0.55\textwidth}
  4067. \small
  4068. \begin{tcolorbox}[title=\href{https://docs.racket-lang.org/graph/index.html}{The Racket Graph Library}]
  4069. A \emph{graph} is a collection of vertices and edges where each
  4070. edge connects two vertices. A graph is \emph{directed} if each
  4071. edge points from a source to a target. Otherwise the graph is
  4072. \emph{undirected}.
  4073. \index{subject}{graph}\index{subject}{directed graph}\index{subject}{undirected graph}
  4074. \begin{description}
  4075. %% We currently don't use directed graphs. We instead use
  4076. %% directed multi-graphs. -Jeremy
  4077. \item[$\LP\code{directed-graph}\,\itm{edges}\RP$] constructs a
  4078. directed graph from a list of edges. Each edge is a list
  4079. containing the source and target vertex.
  4080. \item[$\LP\code{undirected-graph}\,\itm{edges}\RP$] constructs a
  4081. undirected graph from a list of edges. Each edge is represented by
  4082. a list containing two vertices.
  4083. \item[$\LP\code{add-vertex!}\,\itm{graph}\,\itm{vertex}\RP$]
  4084. inserts a vertex into the graph.
  4085. \item[$\LP\code{add-edge!}\,\itm{graph}\,\itm{source}\,\itm{target}\RP$]
  4086. inserts an edge between the two vertices.
  4087. \item[$\LP\code{in-neighbors}\,\itm{graph}\,\itm{vertex}\RP$]
  4088. returns a sequence of vertices adjacent to the vertex.
  4089. \item[$\LP\code{in-vertices}\,\itm{graph}\RP$]
  4090. returns a sequence of all vertices in the graph.
  4091. \end{description}
  4092. \end{tcolorbox}
  4093. %\end{wrapfigure}
  4094. \caption{The Racket \code{graph} package.}
  4095. \label{fig:graph}
  4096. \end{figure}
  4097. \fi}
  4098. Based on the liveness analysis, we know where each location is live.
  4099. However, during register allocation, we need to answer questions of
  4100. the specific form: are locations $u$ and $v$ live at the same time?
  4101. (And therefore cannot be assigned to the same register.) To make this
  4102. question more efficient to answer, we create an explicit data
  4103. structure, an \emph{interference graph}\index{subject}{interference
  4104. graph}. An interference graph is an undirected graph that has an
  4105. edge between two locations if they are live at the same time, that is,
  4106. if they interfere with each other.
  4107. %
  4108. \racket{We recommend using the Racket \code{graph} package
  4109. (Figure~\ref{fig:graph}) to represent the interference graph.}
  4110. %
  4111. \python{We provide implementations of directed and undirected graph
  4112. data structures in the file \code{graph.py} of the support code.}
  4113. A straightforward way to compute the interference graph is to look at
  4114. the set of live locations between each instruction and add an edge to
  4115. the graph for every pair of variables in the same set. This approach
  4116. is less than ideal for two reasons. First, it can be expensive because
  4117. it takes $O(n^2)$ time to consider at every pair in a set of $n$ live
  4118. locations. Second, in the special case where two locations hold the
  4119. same value (because one was assigned to the other), they can be live
  4120. at the same time without interfering with each other.
  4121. A better way to compute the interference graph is to focus on
  4122. writes~\citep{Appel:2003fk}. The writes performed by an instruction
  4123. must not overwrite something in a live location. So for each
  4124. instruction, we create an edge between the locations being written to
  4125. and the live locations. (Except that one should not create self
  4126. edges.) Note that for the \key{callq} instruction, we consider all of
  4127. the caller-saved registers as being written to, so an edge is added
  4128. between every live variable and every caller-saved register. Also, for
  4129. \key{movq} there is the above-mentioned special case to deal with. If
  4130. a live variable $v$ is the same as the source of the \key{movq}, then
  4131. there is no need to add an edge between $v$ and the destination,
  4132. because they both hold the same value.
  4133. %
  4134. So we have the following two rules.
  4135. \begin{enumerate}
  4136. \item If instruction $I_k$ is a move instruction of the form
  4137. \key{movq} $s$\key{,} $d$, then for every $v \in
  4138. L_{\mathsf{after}}(k)$, if $v \neq d$ and $v \neq s$, add the edge
  4139. $(d,v)$.
  4140. \item For any other instruction $I_k$, for every $d \in W(k)$ and
  4141. every $v \in L_{\mathsf{after}}(k)$, if $v \neq d$, add the edge
  4142. $(d,v)$.
  4143. \end{enumerate}
  4144. Working from the top to bottom of Figure~\ref{fig:live-eg}, we apply
  4145. the above rules to each instruction. We highlight a few of the
  4146. instructions. \racket{The first instruction is \lstinline{movq $1, v}
  4147. and the live-after set is $\{\ttm{v},\ttm{rsp}\}$. Rule 1 applies,
  4148. so \code{v} interferes with \code{rsp}.}
  4149. %
  4150. \python{The first instruction is \lstinline{movq $1, v} and the
  4151. live-after set is $\{\ttm{v}\}$. Rule 1 applies but there is
  4152. no interference because $\ttm{v}$ is the destination of the move.}
  4153. %
  4154. \racket{The fourth instruction is \lstinline{addq $7, x} and the
  4155. live-after set is $\{\ttm{w},\ttm{x},\ttm{rsp}\}$. Rule 2 applies so
  4156. $\ttm{x}$ interferes with \ttm{w} and \ttm{rsp}.}
  4157. %
  4158. \python{The fourth instruction is \lstinline{addq $7, x} and the
  4159. live-after set is $\{\ttm{w},\ttm{x}\}$. Rule 2 applies so
  4160. $\ttm{x}$ interferes with \ttm{w}.}
  4161. %
  4162. \racket{The next instruction is \lstinline{movq x, y} and the
  4163. live-after set is $\{\ttm{w},\ttm{x},\ttm{y},\ttm{rsp}\}$. Rule 1
  4164. applies, so \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not
  4165. \ttm{x} because \ttm{x} is the source of the move and therefore
  4166. \ttm{x} and \ttm{y} hold the same value.}
  4167. %
  4168. \python{The next instruction is \lstinline{movq x, y} and the
  4169. live-after set is $\{\ttm{w},\ttm{x},\ttm{y}\}$. Rule 1
  4170. applies, so \ttm{y} interferes with \ttm{w} but not
  4171. \ttm{x} because \ttm{x} is the source of the move and therefore
  4172. \ttm{x} and \ttm{y} hold the same value.}
  4173. %
  4174. Figure~\ref{fig:interference-results} lists the interference results
  4175. for all of the instructions and the resulting interference graph is
  4176. shown in Figure~\ref{fig:interfere}.
  4177. \begin{figure}[tbp]
  4178. \begin{quote}
  4179. {\if\edition\racketEd
  4180. \begin{tabular}{ll}
  4181. \lstinline!movq $1, v!& \ttm{v} interferes with \ttm{rsp},\\
  4182. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v} and \ttm{rsp},\\
  4183. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4184. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w} and \ttm{rsp},\\
  4185. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} and \ttm{rsp} but not \ttm{x},\\
  4186. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w}, \ttm{y}, and \ttm{rsp},\\
  4187. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} and \ttm{rsp}, \\
  4188. \lstinline!movq y, t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4189. \lstinline!negq t!& \ttm{t} interferes with \ttm{z} and \ttm{rsp}, \\
  4190. \lstinline!movq z, %rax! & \ttm{rax} interferes with \ttm{t} and \ttm{rsp}, \\
  4191. \lstinline!addq t, %rax! & \ttm{rax} interferes with \ttm{rsp}. \\
  4192. \lstinline!jmp conclusion!& no interference.
  4193. \end{tabular}
  4194. \fi}
  4195. {\if\edition\pythonEd
  4196. \begin{tabular}{ll}
  4197. \lstinline!movq $1, v!& no interference\\
  4198. \lstinline!movq $42, w!& \ttm{w} interferes with \ttm{v}\\
  4199. \lstinline!movq v, x!& \ttm{x} interferes with \ttm{w}\\
  4200. \lstinline!addq $7, x!& \ttm{x} interferes with \ttm{w}\\
  4201. \lstinline!movq x, y!& \ttm{y} interferes with \ttm{w} but not \ttm{x}\\
  4202. \lstinline!movq x, z!& \ttm{z} interferes with \ttm{w} and \ttm{y}\\
  4203. \lstinline!addq w, z!& \ttm{z} interferes with \ttm{y} \\
  4204. \lstinline!movq y, tmp_0!& \ttm{t} interferes with \ttm{z} \\
  4205. \lstinline!negq tmp_0!& \ttm{t} interferes with \ttm{z} \\
  4206. \lstinline!movq z, tmp_1! & \ttm{tmp\_0} interferes with \ttm{tmp\_1} \\
  4207. \lstinline!addq tmp_0, tmp_1! & no interference\\
  4208. \lstinline!movq tmp_1, %rdi! & no interference \\
  4209. \lstinline!callq print_int!& no interference.
  4210. \end{tabular}
  4211. \fi}
  4212. \end{quote}
  4213. \caption{Interference results for the running example.}
  4214. \label{fig:interference-results}
  4215. \end{figure}
  4216. \begin{figure}[tbp]
  4217. \large
  4218. {\if\edition\racketEd
  4219. \[
  4220. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4221. \node (rax) at (0,0) {$\ttm{rax}$};
  4222. \node (rsp) at (9,2) {$\ttm{rsp}$};
  4223. \node (t1) at (0,2) {$\ttm{t}$};
  4224. \node (z) at (3,2) {$\ttm{z}$};
  4225. \node (x) at (6,2) {$\ttm{x}$};
  4226. \node (y) at (3,0) {$\ttm{y}$};
  4227. \node (w) at (6,0) {$\ttm{w}$};
  4228. \node (v) at (9,0) {$\ttm{v}$};
  4229. \draw (t1) to (rax);
  4230. \draw (t1) to (z);
  4231. \draw (z) to (y);
  4232. \draw (z) to (w);
  4233. \draw (x) to (w);
  4234. \draw (y) to (w);
  4235. \draw (v) to (w);
  4236. \draw (v) to (rsp);
  4237. \draw (w) to (rsp);
  4238. \draw (x) to (rsp);
  4239. \draw (y) to (rsp);
  4240. \path[-.,bend left=15] (z) edge node {} (rsp);
  4241. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4242. \draw (rax) to (rsp);
  4243. \end{tikzpicture}
  4244. \]
  4245. \fi}
  4246. {\if\edition\pythonEd
  4247. \[
  4248. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4249. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  4250. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  4251. \node (z) at (3,2) {$\ttm{z}$};
  4252. \node (x) at (6,2) {$\ttm{x}$};
  4253. \node (y) at (3,0) {$\ttm{y}$};
  4254. \node (w) at (6,0) {$\ttm{w}$};
  4255. \node (v) at (9,0) {$\ttm{v}$};
  4256. \draw (t0) to (t1);
  4257. \draw (t0) to (z);
  4258. \draw (z) to (y);
  4259. \draw (z) to (w);
  4260. \draw (x) to (w);
  4261. \draw (y) to (w);
  4262. \draw (v) to (w);
  4263. \end{tikzpicture}
  4264. \]
  4265. \fi}
  4266. \caption{The interference graph of the example program.}
  4267. \label{fig:interfere}
  4268. \end{figure}
  4269. %% Our next concern is to choose a data structure for representing the
  4270. %% interference graph. There are many choices for how to represent a
  4271. %% graph, for example, \emph{adjacency matrix}, \emph{adjacency list},
  4272. %% and \emph{edge set}~\citep{Cormen:2001uq}. The right way to choose a
  4273. %% data structure is to study the algorithm that uses the data structure,
  4274. %% determine what operations need to be performed, and then choose the
  4275. %% data structure that provide the most efficient implementations of
  4276. %% those operations. Often times the choice of data structure can have an
  4277. %% effect on the time complexity of the algorithm, as it does here. If
  4278. %% you skim the next section, you will see that the register allocation
  4279. %% algorithm needs to ask the graph for all of its vertices and, given a
  4280. %% vertex, it needs to known all of the adjacent vertices. Thus, the
  4281. %% correct choice of graph representation is that of an adjacency
  4282. %% list. There are helper functions in \code{utilities.rkt} for
  4283. %% representing graphs using the adjacency list representation:
  4284. %% \code{make-graph}, \code{add-edge}, and \code{adjacent}
  4285. %% (Appendix~\ref{appendix:utilities}).
  4286. %% %
  4287. %% \margincomment{\footnotesize To do: change to use the
  4288. %% Racket graph library. \\ --Jeremy}
  4289. %% %
  4290. %% In particular, those functions use a hash table to map each vertex to
  4291. %% the set of adjacent vertices, and the sets are represented using
  4292. %% Racket's \key{set}, which is also a hash table.
  4293. \begin{exercise}\normalfont
  4294. \racket{Implement the compiler pass named \code{build\_interference} according
  4295. to the algorithm suggested above. We recommend using the Racket
  4296. \code{graph} package to create and inspect the interference graph.
  4297. The output graph of this pass should be stored in the $\itm{info}$ field of
  4298. the program, under the key \code{conflicts}.}
  4299. %
  4300. \python{Implement a function named \code{build\_interference}
  4301. according to the algorithm suggested above that
  4302. returns the interference graph.}
  4303. \end{exercise}
  4304. \section{Graph Coloring via Sudoku}
  4305. \label{sec:graph-coloring}
  4306. \index{subject}{graph coloring}
  4307. \index{subject}{Sudoku}
  4308. \index{subject}{color}
  4309. We come to the main event, mapping variables to registers and stack
  4310. locations. Variables that interfere with each other must be mapped to
  4311. different locations. In terms of the interference graph, this means
  4312. that adjacent vertices must be mapped to different locations. If we
  4313. think of locations as colors, the register allocation problem becomes
  4314. the graph coloring problem~\citep{Balakrishnan:1996ve,Rosen:2002bh}.
  4315. The reader may be more familiar with the graph coloring problem than he
  4316. or she realizes; the popular game of Sudoku is an instance of the
  4317. graph coloring problem. The following describes how to build a graph
  4318. out of an initial Sudoku board.
  4319. \begin{itemize}
  4320. \item There is one vertex in the graph for each Sudoku square.
  4321. \item There is an edge between two vertices if the corresponding squares
  4322. are in the same row, in the same column, or if the squares are in
  4323. the same $3\times 3$ region.
  4324. \item Choose nine colors to correspond to the numbers $1$ to $9$.
  4325. \item Based on the initial assignment of numbers to squares in the
  4326. Sudoku board, assign the corresponding colors to the corresponding
  4327. vertices in the graph.
  4328. \end{itemize}
  4329. If you can color the remaining vertices in the graph with the nine
  4330. colors, then you have also solved the corresponding game of Sudoku.
  4331. Figure~\ref{fig:sudoku-graph} shows an initial Sudoku game board and
  4332. the corresponding graph with colored vertices. We map the Sudoku
  4333. number 1 to black, 2 to white, and 3 to gray. We only show edges for a
  4334. sampling of the vertices (the colored ones) because showing edges for
  4335. all of the vertices would make the graph unreadable.
  4336. \begin{figure}[tbp]
  4337. \includegraphics[width=0.45\textwidth]{figs/sudoku}
  4338. \includegraphics[width=0.5\textwidth]{figs/sudoku-graph-bw}
  4339. \caption{A Sudoku game board and the corresponding colored graph.}
  4340. \label{fig:sudoku-graph}
  4341. \end{figure}
  4342. Some techniques for playing Sudoku correspond to heuristics used in
  4343. graph coloring algorithms. For example, one of the basic techniques
  4344. for Sudoku is called Pencil Marks. The idea is to use a process of
  4345. elimination to determine what numbers are no longer available for a
  4346. square and write down those numbers in the square (writing very
  4347. small). For example, if the number $1$ is assigned to a square, then
  4348. write the pencil mark $1$ in all the squares in the same row, column,
  4349. and region to indicate that $1$ is no longer an option for those other
  4350. squares.
  4351. %
  4352. The Pencil Marks technique corresponds to the notion of
  4353. \emph{saturation}\index{subject}{saturation} due to \cite{Brelaz:1979eu}. The
  4354. saturation of a vertex, in Sudoku terms, is the set of numbers that
  4355. are no longer available. In graph terminology, we have the following
  4356. definition:
  4357. \begin{equation*}
  4358. \mathrm{saturation}(u) = \{ c \;|\; \exists v. v \in \mathrm{adjacent}(u)
  4359. \text{ and } \mathrm{color}(v) = c \}
  4360. \end{equation*}
  4361. where $\mathrm{adjacent}(u)$ is the set of vertices that share an
  4362. edge with $u$.
  4363. The Pencil Marks technique leads to a simple strategy for filling in
  4364. numbers: if there is a square with only one possible number left, then
  4365. choose that number! But what if there are no squares with only one
  4366. possibility left? One brute-force approach is to try them all: choose
  4367. the first one and if that ultimately leads to a solution, great. If
  4368. not, backtrack and choose the next possibility. One good thing about
  4369. Pencil Marks is that it reduces the degree of branching in the search
  4370. tree. Nevertheless, backtracking can be terribly time consuming. One
  4371. way to reduce the amount of backtracking is to use the
  4372. most-constrained-first heuristic (aka. minimum remaining
  4373. values)~\citep{Russell2003}. That is, when choosing a square, always
  4374. choose one with the fewest possibilities left (the vertex with the
  4375. highest saturation). The idea is that choosing highly constrained
  4376. squares earlier rather than later is better because later on there may
  4377. not be any possibilities left in the highly saturated squares.
  4378. However, register allocation is easier than Sudoku because the
  4379. register allocator can fall back to assigning variables to stack
  4380. locations when the registers run out. Thus, it makes sense to replace
  4381. backtracking with greedy search: make the best choice at the time and
  4382. keep going. We still wish to minimize the number of colors needed, so
  4383. we use the most-constrained-first heuristic in the greedy search.
  4384. Figure~\ref{fig:satur-algo} gives the pseudo-code for a simple greedy
  4385. algorithm for register allocation based on saturation and the
  4386. most-constrained-first heuristic. It is roughly equivalent to the
  4387. DSATUR graph coloring algorithm~\citep{Brelaz:1979eu}.
  4388. %,Gebremedhin:1999fk,Omari:2006uq
  4389. Just as in Sudoku, the algorithm represents colors with integers. The
  4390. integers $0$ through $k-1$ correspond to the $k$ registers that we use
  4391. for register allocation. The integers $k$ and larger correspond to
  4392. stack locations. The registers that are not used for register
  4393. allocation, such as \code{rax}, are assigned to negative integers. In
  4394. particular, we assign $-1$ to \code{rax} and $-2$ to \code{rsp}.
  4395. %% One might wonder why we include registers at all in the liveness
  4396. %% analysis and interference graph. For example, we never allocate a
  4397. %% variable to \code{rax} and \code{rsp}, so it would be harmless to
  4398. %% leave them out. As we see in Chapter~\ref{ch:Lvec}, when we begin
  4399. %% to use register for passing arguments to functions, it will be
  4400. %% necessary for those registers to appear in the interference graph
  4401. %% because those registers will also be assigned to variables, and we
  4402. %% don't want those two uses to encroach on each other. Regarding
  4403. %% registers such as \code{rax} and \code{rsp} that are not used for
  4404. %% variables, we could omit them from the interference graph but that
  4405. %% would require adding special cases to our algorithm, which would
  4406. %% complicate the logic for little gain.
  4407. \begin{figure}[btp]
  4408. \centering
  4409. \begin{lstlisting}[basicstyle=\rmfamily,deletekeywords={for,from,with,is,not,in,find},morekeywords={while},columns=fullflexible]
  4410. Algorithm: DSATUR
  4411. Input: a graph |$G$|
  4412. Output: an assignment |$\mathrm{color}[v]$| for each vertex |$v \in G$|
  4413. |$W \gets \mathrm{vertices}(G)$|
  4414. while |$W \neq \emptyset$| do
  4415. pick a vertex |$u$| from |$W$| with the highest saturation,
  4416. breaking ties randomly
  4417. find the lowest color |$c$| that is not in |$\{ \mathrm{color}[v] \;:\; v \in \mathrm{adjacent}(u)\}$|
  4418. |$\mathrm{color}[u] \gets c$|
  4419. |$W \gets W - \{u\}$|
  4420. \end{lstlisting}
  4421. \caption{The saturation-based greedy graph coloring algorithm.}
  4422. \label{fig:satur-algo}
  4423. \end{figure}
  4424. {\if\edition\racketEd
  4425. With the DSATUR algorithm in hand, let us return to the running
  4426. example and consider how to color the interference graph in
  4427. Figure~\ref{fig:interfere}.
  4428. %
  4429. We start by assigning the register nodes to their own color. For
  4430. example, \code{rax} is assigned the color $-1$ and \code{rsp} is
  4431. assigned $-2$. The variables are not yet colored, so they are
  4432. annotated with a dash. We then update the saturation for vertices that
  4433. are adjacent to a register, obtaining the following annotated
  4434. graph. For example, the saturation for \code{t} is $\{-1,-2\}$ because
  4435. it interferes with both \code{rax} and \code{rsp}.
  4436. \[
  4437. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4438. \node (rax) at (0,0) {$\ttm{rax}:-1,\{-2\}$};
  4439. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1\}$};
  4440. \node (t1) at (0,2) {$\ttm{t}:-,\{-1,-2\}$};
  4441. \node (z) at (3,2) {$\ttm{z}:-,\{-2\}$};
  4442. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4443. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4444. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4445. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4446. \draw (t1) to (rax);
  4447. \draw (t1) to (z);
  4448. \draw (z) to (y);
  4449. \draw (z) to (w);
  4450. \draw (x) to (w);
  4451. \draw (y) to (w);
  4452. \draw (v) to (w);
  4453. \draw (v) to (rsp);
  4454. \draw (w) to (rsp);
  4455. \draw (x) to (rsp);
  4456. \draw (y) to (rsp);
  4457. \path[-.,bend left=15] (z) edge node {} (rsp);
  4458. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4459. \draw (rax) to (rsp);
  4460. \end{tikzpicture}
  4461. \]
  4462. The algorithm says to select a maximally saturated vertex. So we pick
  4463. $\ttm{t}$ and color it with the first available integer, which is
  4464. $0$. We mark $0$ as no longer available for $\ttm{z}$, $\ttm{rax}$,
  4465. and \ttm{rsp} because they interfere with $\ttm{t}$.
  4466. \[
  4467. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4468. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4469. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0\}$};
  4470. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,-2\}$};
  4471. \node (z) at (3,2) {$\ttm{z}:-,\{0,-2\}$};
  4472. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4473. \node (y) at (3,0) {$\ttm{y}:-,\{-2\}$};
  4474. \node (w) at (6,0) {$\ttm{w}:-,\{-2\}$};
  4475. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4476. \draw (t1) to (rax);
  4477. \draw (t1) to (z);
  4478. \draw (z) to (y);
  4479. \draw (z) to (w);
  4480. \draw (x) to (w);
  4481. \draw (y) to (w);
  4482. \draw (v) to (w);
  4483. \draw (v) to (rsp);
  4484. \draw (w) to (rsp);
  4485. \draw (x) to (rsp);
  4486. \draw (y) to (rsp);
  4487. \path[-.,bend left=15] (z) edge node {} (rsp);
  4488. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4489. \draw (rax) to (rsp);
  4490. \end{tikzpicture}
  4491. \]
  4492. We repeat the process, selecting a maximally saturated vertex,
  4493. choosing is \code{z}, and color it with the first available number, which
  4494. is $1$. We add $1$ to the saturation for the neighboring vertices
  4495. \code{t}, \code{y}, \code{w}, and \code{rsp}.
  4496. \[
  4497. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4498. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4499. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4500. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4501. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4502. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  4503. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  4504. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  4505. \node (v) at (10,0) {$\ttm{v}:-,\{-2\}$};
  4506. \draw (t1) to (rax);
  4507. \draw (t1) to (z);
  4508. \draw (z) to (y);
  4509. \draw (z) to (w);
  4510. \draw (x) to (w);
  4511. \draw (y) to (w);
  4512. \draw (v) to (w);
  4513. \draw (v) to (rsp);
  4514. \draw (w) to (rsp);
  4515. \draw (x) to (rsp);
  4516. \draw (y) to (rsp);
  4517. \path[-.,bend left=15] (z) edge node {} (rsp);
  4518. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4519. \draw (rax) to (rsp);
  4520. \end{tikzpicture}
  4521. \]
  4522. The most saturated vertices are now \code{w} and \code{y}. We color
  4523. \code{w} with the first available color, which is $0$.
  4524. \[
  4525. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4526. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4527. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1\}$};
  4528. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4529. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  4530. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4531. \node (y) at (3,0) {$\ttm{y}:-,\{0,1,-2\}$};
  4532. \node (w) at (6,0) {$\ttm{w}:0,\{1,-2\}$};
  4533. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4534. \draw (t1) to (rax);
  4535. \draw (t1) to (z);
  4536. \draw (z) to (y);
  4537. \draw (z) to (w);
  4538. \draw (x) to (w);
  4539. \draw (y) to (w);
  4540. \draw (v) to (w);
  4541. \draw (v) to (rsp);
  4542. \draw (w) to (rsp);
  4543. \draw (x) to (rsp);
  4544. \draw (y) to (rsp);
  4545. \path[-.,bend left=15] (z) edge node {} (rsp);
  4546. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4547. \draw (rax) to (rsp);
  4548. \end{tikzpicture}
  4549. \]
  4550. Vertex \code{y} is now the most highly saturated, so we color \code{y}
  4551. with $2$. We cannot choose $0$ or $1$ because those numbers are in
  4552. \code{y}'s saturation set. Indeed, \code{y} interferes with \code{w}
  4553. and \code{z}, whose colors are $0$ and $1$ respectively.
  4554. \[
  4555. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4556. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4557. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4558. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4559. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4560. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4561. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4562. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4563. \node (v) at (10,0) {$\ttm{v}:-,\{0,-2\}$};
  4564. \draw (t1) to (rax);
  4565. \draw (t1) to (z);
  4566. \draw (z) to (y);
  4567. \draw (z) to (w);
  4568. \draw (x) to (w);
  4569. \draw (y) to (w);
  4570. \draw (v) to (w);
  4571. \draw (v) to (rsp);
  4572. \draw (w) to (rsp);
  4573. \draw (x) to (rsp);
  4574. \draw (y) to (rsp);
  4575. \path[-.,bend left=15] (z) edge node {} (rsp);
  4576. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4577. \draw (rax) to (rsp);
  4578. \end{tikzpicture}
  4579. \]
  4580. Now \code{x} and \code{v} are the most saturated, so we color \code{v} with $1$.
  4581. \[
  4582. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4583. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4584. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4585. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4586. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4587. \node (x) at (6,2) {$\ttm{x}:-,\{0,-2\}$};
  4588. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4589. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4590. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4591. \draw (t1) to (rax);
  4592. \draw (t1) to (z);
  4593. \draw (z) to (y);
  4594. \draw (z) to (w);
  4595. \draw (x) to (w);
  4596. \draw (y) to (w);
  4597. \draw (v) to (w);
  4598. \draw (v) to (rsp);
  4599. \draw (w) to (rsp);
  4600. \draw (x) to (rsp);
  4601. \draw (y) to (rsp);
  4602. \path[-.,bend left=15] (z) edge node {} (rsp);
  4603. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4604. \draw (rax) to (rsp);
  4605. \end{tikzpicture}
  4606. \]
  4607. In the last step of the algorithm, we color \code{x} with $1$.
  4608. \[
  4609. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4610. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  4611. \node (rsp) at (10,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  4612. \node (t1) at (0,2) {$\ttm{t}:0,\{-1,1,-2\}$};
  4613. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  4614. \node (x) at (6,2) {$\ttm{x}:1,\{0,-2\}$};
  4615. \node (y) at (3,0) {$\ttm{y}:2,\{0,1,-2\}$};
  4616. \node (w) at (6,0) {$\ttm{w}:0,\{1,2,-2\}$};
  4617. \node (v) at (10,0) {$\ttm{v}:1,\{0,-2\}$};
  4618. \draw (t1) to (rax);
  4619. \draw (t1) to (z);
  4620. \draw (z) to (y);
  4621. \draw (z) to (w);
  4622. \draw (x) to (w);
  4623. \draw (y) to (w);
  4624. \draw (v) to (w);
  4625. \draw (v) to (rsp);
  4626. \draw (w) to (rsp);
  4627. \draw (x) to (rsp);
  4628. \draw (y) to (rsp);
  4629. \path[-.,bend left=15] (z) edge node {} (rsp);
  4630. \path[-.,bend left=10] (t1) edge node {} (rsp);
  4631. \draw (rax) to (rsp);
  4632. \end{tikzpicture}
  4633. \]
  4634. So we obtain the following coloring:
  4635. \[
  4636. \{
  4637. \ttm{rax} \mapsto -1,
  4638. \ttm{rsp} \mapsto -2,
  4639. \ttm{t} \mapsto 0,
  4640. \ttm{z} \mapsto 1,
  4641. \ttm{x} \mapsto 1,
  4642. \ttm{y} \mapsto 2,
  4643. \ttm{w} \mapsto 0,
  4644. \ttm{v} \mapsto 1
  4645. \}
  4646. \]
  4647. \fi}
  4648. %
  4649. {\if\edition\pythonEd
  4650. %
  4651. With the DSATUR algorithm in hand, let us return to the running
  4652. example and consider how to color the interference graph in
  4653. Figure~\ref{fig:interfere}. We annotate each variable node with a dash
  4654. to indicate that it has not yet been assigned a color. The saturation
  4655. sets are also shown for each node; all of them start as the empty set.
  4656. (We do not include the register nodes in the graph below because there
  4657. were no interference edges involving registers in this program, but in
  4658. general there can be.)
  4659. %
  4660. \[
  4661. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4662. \node (t0) at (0,2) {$\ttm{tmp\_0}: -, \{\}$};
  4663. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{\}$};
  4664. \node (z) at (3,2) {$\ttm{z}: -, \{\}$};
  4665. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4666. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4667. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4668. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4669. \draw (t0) to (t1);
  4670. \draw (t0) to (z);
  4671. \draw (z) to (y);
  4672. \draw (z) to (w);
  4673. \draw (x) to (w);
  4674. \draw (y) to (w);
  4675. \draw (v) to (w);
  4676. \end{tikzpicture}
  4677. \]
  4678. The algorithm says to select a maximally saturated vertex, but they
  4679. are all equally saturated. So we flip a coin and pick $\ttm{tmp\_0}$
  4680. then color it with the first available integer, which is $0$. We mark
  4681. $0$ as no longer available for $\ttm{tmp\_1}$ and $\ttm{z}$ because
  4682. they interfere with $\ttm{tmp\_0}$.
  4683. \[
  4684. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4685. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{\}$};
  4686. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4687. \node (z) at (3,2) {$\ttm{z}: -, \{0\}$};
  4688. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4689. \node (y) at (3,0) {$\ttm{y}: -, \{\}$};
  4690. \node (w) at (6,0) {$\ttm{w}: -, \{\}$};
  4691. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4692. \draw (t0) to (t1);
  4693. \draw (t0) to (z);
  4694. \draw (z) to (y);
  4695. \draw (z) to (w);
  4696. \draw (x) to (w);
  4697. \draw (y) to (w);
  4698. \draw (v) to (w);
  4699. \end{tikzpicture}
  4700. \]
  4701. We repeat the process. The most saturated vertices are \code{z} and
  4702. \code{tmp\_1}, so we choose \code{z} and color it with the first
  4703. available number, which is $1$. We add $1$ to the saturation for the
  4704. neighboring vertices \code{tmp\_0}, \code{y}, and \code{w}.
  4705. \[
  4706. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4707. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4708. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4709. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4710. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  4711. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  4712. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  4713. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  4714. \draw (t0) to (t1);
  4715. \draw (t0) to (z);
  4716. \draw (z) to (y);
  4717. \draw (z) to (w);
  4718. \draw (x) to (w);
  4719. \draw (y) to (w);
  4720. \draw (v) to (w);
  4721. \end{tikzpicture}
  4722. \]
  4723. The most saturated vertices are now \code{tmp\_1}, \code{w}, and
  4724. \code{y}. We color \code{w} with the first available color, which
  4725. is $0$.
  4726. \[
  4727. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4728. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4729. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4730. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  4731. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4732. \node (y) at (3,0) {$\ttm{y}: -, \{0,1\}$};
  4733. \node (w) at (6,0) {$\ttm{w}: 0, \{1\}$};
  4734. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4735. \draw (t0) to (t1);
  4736. \draw (t0) to (z);
  4737. \draw (z) to (y);
  4738. \draw (z) to (w);
  4739. \draw (x) to (w);
  4740. \draw (y) to (w);
  4741. \draw (v) to (w);
  4742. \end{tikzpicture}
  4743. \]
  4744. Now \code{y} is the most saturated, so we color it with $2$.
  4745. \[
  4746. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4747. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4748. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4749. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4750. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4751. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4752. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4753. \node (v) at (9,0) {$\ttm{v}: -, \{0\}$};
  4754. \draw (t0) to (t1);
  4755. \draw (t0) to (z);
  4756. \draw (z) to (y);
  4757. \draw (z) to (w);
  4758. \draw (x) to (w);
  4759. \draw (y) to (w);
  4760. \draw (v) to (w);
  4761. \end{tikzpicture}
  4762. \]
  4763. The most saturated vertices are \code{tmp\_1}, \code{x}, and \code{v}.
  4764. We choose to color \code{v} with $1$.
  4765. \[
  4766. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4767. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4768. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  4769. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4770. \node (x) at (6,2) {$\ttm{x}: -, \{0\}$};
  4771. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4772. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4773. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4774. \draw (t0) to (t1);
  4775. \draw (t0) to (z);
  4776. \draw (z) to (y);
  4777. \draw (z) to (w);
  4778. \draw (x) to (w);
  4779. \draw (y) to (w);
  4780. \draw (v) to (w);
  4781. \end{tikzpicture}
  4782. \]
  4783. We color the remaining two variables, \code{tmp\_1} and \code{x}, with $1$.
  4784. \[
  4785. \begin{tikzpicture}[baseline=(current bounding box.center)]
  4786. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  4787. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  4788. \node (z) at (3,2) {$\ttm{z}: 1, \{0,2\}$};
  4789. \node (x) at (6,2) {$\ttm{x}: 1, \{0\}$};
  4790. \node (y) at (3,0) {$\ttm{y}: 2, \{0,1\}$};
  4791. \node (w) at (6,0) {$\ttm{w}: 0, \{1,2\}$};
  4792. \node (v) at (9,0) {$\ttm{v}: 1, \{0\}$};
  4793. \draw (t0) to (t1);
  4794. \draw (t0) to (z);
  4795. \draw (z) to (y);
  4796. \draw (z) to (w);
  4797. \draw (x) to (w);
  4798. \draw (y) to (w);
  4799. \draw (v) to (w);
  4800. \end{tikzpicture}
  4801. \]
  4802. So we obtain the following coloring:
  4803. \[
  4804. \{ \ttm{tmp\_0} \mapsto 0,
  4805. \ttm{tmp\_1} \mapsto 1,
  4806. \ttm{z} \mapsto 1,
  4807. \ttm{x} \mapsto 1,
  4808. \ttm{y} \mapsto 2,
  4809. \ttm{w} \mapsto 0,
  4810. \ttm{v} \mapsto 1 \}
  4811. \]
  4812. \fi}
  4813. We recommend creating an auxiliary function named \code{color\_graph}
  4814. that takes an interference graph and a list of all the variables in
  4815. the program. This function should return a mapping of variables to
  4816. their colors (represented as natural numbers). By creating this helper
  4817. function, you will be able to reuse it in Chapter~\ref{ch:Rfun}
  4818. when we add support for functions.
  4819. To prioritize the processing of highly saturated nodes inside the
  4820. \code{color\_graph} function, we recommend using the priority queue
  4821. data structure \racket{described in Figure~\ref{fig:priority-queue}}\python{in the file \code{priority\_queue.py} of the support code}. \racket{In
  4822. addition, you will need to maintain a mapping from variables to their
  4823. ``handles'' in the priority queue so that you can notify the priority
  4824. queue when their saturation changes.}
  4825. {\if\edition\racketEd
  4826. \begin{figure}[tp]
  4827. %\begin{wrapfigure}[25]{r}[0.75in]{0.55\textwidth}
  4828. \small
  4829. \begin{tcolorbox}[title=Priority Queue]
  4830. A \emph{priority queue} is a collection of items in which the
  4831. removal of items is governed by priority. In a ``min'' queue,
  4832. lower priority items are removed first. An implementation is in
  4833. \code{priority\_queue.rkt} of the support code. \index{subject}{priority
  4834. queue} \index{subject}{minimum priority queue}
  4835. \begin{description}
  4836. \item[$\LP\code{make-pqueue}\,\itm{cmp}\RP$] constructs an empty
  4837. priority queue that uses the $\itm{cmp}$ predicate to determine
  4838. whether its first argument has lower or equal priority to its
  4839. second argument.
  4840. \item[$\LP\code{pqueue-count}\,\itm{queue}\RP$] returns the number of
  4841. items in the queue.
  4842. \item[$\LP\code{pqueue-push!}\,\itm{queue}\,\itm{item}\RP$] inserts
  4843. the item into the queue and returns a handle for the item in the
  4844. queue.
  4845. \item[$\LP\code{pqueue-pop!}\,\itm{queue}\RP$] returns the item with
  4846. the lowest priority.
  4847. \item[$\LP\code{pqueue-decrease-key!}\,\itm{queue}\,\itm{handle}\RP$]
  4848. notifies the queue that the priority has decreased for the item
  4849. associated with the given handle.
  4850. \end{description}
  4851. \end{tcolorbox}
  4852. %\end{wrapfigure}
  4853. \caption{The priority queue data structure.}
  4854. \label{fig:priority-queue}
  4855. \end{figure}
  4856. \fi}
  4857. With the coloring complete, we finalize the assignment of variables to
  4858. registers and stack locations. We map the first $k$ colors to the $k$
  4859. registers and the rest of the colors to stack locations. Suppose for
  4860. the moment that we have just one register to use for register
  4861. allocation, \key{rcx}. Then we have the following map from colors to
  4862. locations.
  4863. \[
  4864. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{-8(\%rbp)}, \; 2 \mapsto \key{-16(\%rbp)} \}
  4865. \]
  4866. Composing this mapping with the coloring, we arrive at the following
  4867. assignment of variables to locations.
  4868. {\if\edition\racketEd
  4869. \begin{gather*}
  4870. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4871. \ttm{w} \mapsto \key{\%rcx}, \,
  4872. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4873. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4874. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4875. \ttm{t} \mapsto \key{\%rcx} \}
  4876. \end{gather*}
  4877. \fi}
  4878. {\if\edition\pythonEd
  4879. \begin{gather*}
  4880. \{ \ttm{v} \mapsto \key{-8(\%rbp)}, \,
  4881. \ttm{w} \mapsto \key{\%rcx}, \,
  4882. \ttm{x} \mapsto \key{-8(\%rbp)}, \,
  4883. \ttm{y} \mapsto \key{-16(\%rbp)}, \\
  4884. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  4885. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  4886. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  4887. \end{gather*}
  4888. \fi}
  4889. Adapt the code from the \code{assign\_homes} pass
  4890. (Section~\ref{sec:assign-Lvar}) to replace the variables with their
  4891. assigned location. Applying the above assignment to our running
  4892. example, on the left, yields the program on the right.
  4893. % why frame size of 32? -JGS
  4894. \begin{center}
  4895. {\if\edition\racketEd
  4896. \begin{minipage}{0.3\textwidth}
  4897. \begin{lstlisting}
  4898. movq $1, v
  4899. movq $42, w
  4900. movq v, x
  4901. addq $7, x
  4902. movq x, y
  4903. movq x, z
  4904. addq w, z
  4905. movq y, t
  4906. negq t
  4907. movq z, %rax
  4908. addq t, %rax
  4909. jmp conclusion
  4910. \end{lstlisting}
  4911. \end{minipage}
  4912. $\Rightarrow\qquad$
  4913. \begin{minipage}{0.45\textwidth}
  4914. \begin{lstlisting}
  4915. movq $1, -8(%rbp)
  4916. movq $42, %rcx
  4917. movq -8(%rbp), -8(%rbp)
  4918. addq $7, -8(%rbp)
  4919. movq -8(%rbp), -16(%rbp)
  4920. movq -8(%rbp), -8(%rbp)
  4921. addq %rcx, -8(%rbp)
  4922. movq -16(%rbp), %rcx
  4923. negq %rcx
  4924. movq -8(%rbp), %rax
  4925. addq %rcx, %rax
  4926. jmp conclusion
  4927. \end{lstlisting}
  4928. \end{minipage}
  4929. \fi}
  4930. {\if\edition\pythonEd
  4931. \begin{minipage}{0.3\textwidth}
  4932. \begin{lstlisting}
  4933. movq $1, v
  4934. movq $42, w
  4935. movq v, x
  4936. addq $7, x
  4937. movq x, y
  4938. movq x, z
  4939. addq w, z
  4940. movq y, tmp_0
  4941. negq tmp_0
  4942. movq z, tmp_1
  4943. addq tmp_0, tmp_1
  4944. movq tmp_1, %rdi
  4945. callq print_int
  4946. \end{lstlisting}
  4947. \end{minipage}
  4948. $\Rightarrow\qquad$
  4949. \begin{minipage}{0.45\textwidth}
  4950. \begin{lstlisting}
  4951. movq $1, -8(%rbp)
  4952. movq $42, %rcx
  4953. movq -8(%rbp), -8(%rbp)
  4954. addq $7, -8(%rbp)
  4955. movq -8(%rbp), -16(%rbp)
  4956. movq -8(%rbp), -8(%rbp)
  4957. addq %rcx, -8(%rbp)
  4958. movq -16(%rbp), %rcx
  4959. negq %rcx
  4960. movq -8(%rbp), -8(%rbp)
  4961. addq %rcx, -8(%rbp)
  4962. movq -8(%rbp), %rdi
  4963. callq print_int
  4964. \end{lstlisting}
  4965. \end{minipage}
  4966. \fi}
  4967. \end{center}
  4968. \begin{exercise}\normalfont
  4969. %
  4970. Implement the compiler pass \code{allocate\_registers}.
  4971. %
  4972. Create five programs that exercise all aspects of the register
  4973. allocation algorithm, including spilling variables to the stack.
  4974. %
  4975. \racket{Replace \code{assign\_homes} in the list of \code{passes} in the
  4976. \code{run-tests.rkt} script with the three new passes:
  4977. \code{uncover\_live}, \code{build\_interference}, and
  4978. \code{allocate\_registers}.
  4979. %
  4980. Temporarily remove the \code{print\_x86} pass from the list of passes
  4981. and the call to \code{compiler-tests}.
  4982. Run the script to test the register allocator.
  4983. }
  4984. %
  4985. \python{Run the \code{run-tests.py} script to to check whether the
  4986. output programs produce the same result as the input programs.}
  4987. \end{exercise}
  4988. \section{Patch Instructions}
  4989. \label{sec:patch-instructions}
  4990. The remaining step in the compilation to x86 is to ensure that the
  4991. instructions have at most one argument that is a memory access.
  4992. %
  4993. In the running example, the instruction \code{movq -8(\%rbp),
  4994. -16(\%rbp)} is problematic. Recall from Section~\ref{sec:patch-s0}
  4995. that the fix is to first move \code{-8(\%rbp)} into \code{rax} and
  4996. then move \code{rax} into \code{-16(\%rbp)}.
  4997. %
  4998. The moves from \code{-8(\%rbp)} to \code{-8(\%rbp)} are also
  4999. problematic, but they can simply be deleted. In general, we recommend
  5000. deleting all the trivial moves whose source and destination are the
  5001. same location.
  5002. %
  5003. The following is the output of \code{patch\_instructions} on the
  5004. running example.
  5005. \begin{center}
  5006. {\if\edition\racketEd
  5007. \begin{minipage}{0.4\textwidth}
  5008. \begin{lstlisting}
  5009. movq $1, -8(%rbp)
  5010. movq $42, %rcx
  5011. movq -8(%rbp), -8(%rbp)
  5012. addq $7, -8(%rbp)
  5013. movq -8(%rbp), -16(%rbp)
  5014. movq -8(%rbp), -8(%rbp)
  5015. addq %rcx, -8(%rbp)
  5016. movq -16(%rbp), %rcx
  5017. negq %rcx
  5018. movq -8(%rbp), %rax
  5019. addq %rcx, %rax
  5020. jmp conclusion
  5021. \end{lstlisting}
  5022. \end{minipage}
  5023. $\Rightarrow\qquad$
  5024. \begin{minipage}{0.45\textwidth}
  5025. \begin{lstlisting}
  5026. movq $1, -8(%rbp)
  5027. movq $42, %rcx
  5028. addq $7, -8(%rbp)
  5029. movq -8(%rbp), %rax
  5030. movq %rax, -16(%rbp)
  5031. addq %rcx, -8(%rbp)
  5032. movq -16(%rbp), %rcx
  5033. negq %rcx
  5034. movq -8(%rbp), %rax
  5035. addq %rcx, %rax
  5036. jmp conclusion
  5037. \end{lstlisting}
  5038. \end{minipage}
  5039. \fi}
  5040. {\if\edition\pythonEd
  5041. \begin{minipage}{0.4\textwidth}
  5042. \begin{lstlisting}
  5043. movq $1, -8(%rbp)
  5044. movq $42, %rcx
  5045. movq -8(%rbp), -8(%rbp)
  5046. addq $7, -8(%rbp)
  5047. movq -8(%rbp), -16(%rbp)
  5048. movq -8(%rbp), -8(%rbp)
  5049. addq %rcx, -8(%rbp)
  5050. movq -16(%rbp), %rcx
  5051. negq %rcx
  5052. movq -8(%rbp), -8(%rbp)
  5053. addq %rcx, -8(%rbp)
  5054. movq -8(%rbp), %rdi
  5055. callq print_int
  5056. \end{lstlisting}
  5057. \end{minipage}
  5058. $\Rightarrow\qquad$
  5059. \begin{minipage}{0.45\textwidth}
  5060. \begin{lstlisting}
  5061. movq $1, -8(%rbp)
  5062. movq $42, %rcx
  5063. addq $7, -8(%rbp)
  5064. movq -8(%rbp), %rax
  5065. movq %rax, -16(%rbp)
  5066. addq %rcx, -8(%rbp)
  5067. movq -16(%rbp), %rcx
  5068. negq %rcx
  5069. addq %rcx, -8(%rbp)
  5070. movq -8(%rbp), %rdi
  5071. callq print_int
  5072. \end{lstlisting}
  5073. \end{minipage}
  5074. \fi}
  5075. \end{center}
  5076. \begin{exercise}\normalfont
  5077. %
  5078. Update the \code{patch\_instructions} compiler pass to delete trivial moves.
  5079. %
  5080. %Insert it after \code{allocate\_registers} in the list of \code{passes}
  5081. %in the \code{run-tests.rkt} script.
  5082. %
  5083. Run the script to test the \code{patch\_instructions} pass.
  5084. \end{exercise}
  5085. \section{Prelude and Conclusion}
  5086. \label{sec:print-x86-reg-alloc}
  5087. \index{subject}{calling conventions}
  5088. \index{subject}{prelude}\index{subject}{conclusion}
  5089. Recall that this pass generates the prelude and conclusion
  5090. instructions to satisfy the x86 calling conventions
  5091. (Section~\ref{sec:calling-conventions}). With the addition of the
  5092. register allocator, the callee-saved registers used by the register
  5093. allocator must be saved in the prelude and restored in the conclusion.
  5094. In the \code{allocate\_registers} pass,
  5095. %
  5096. \racket{add an entry to the \itm{info}
  5097. of \code{X86Program} named \code{used\_callee}}
  5098. %
  5099. \python{add a field named \code{used\_callee} to the \code{X86Program} AST node}
  5100. %
  5101. that stores the set of callee-saved registers that were assigned to
  5102. variables. The \code{prelude\_and\_conclusion} pass can then access
  5103. this information to decide which callee-saved registers need to be
  5104. saved and restored.
  5105. %
  5106. When calculating the size of the frame to adjust the \code{rsp} in the
  5107. prelude, make sure to take into account the space used for saving the
  5108. callee-saved registers. Also, don't forget that the frame needs to be
  5109. a multiple of 16 bytes!
  5110. \racket{An overview of all of the passes involved in register
  5111. allocation is shown in Figure~\ref{fig:reg-alloc-passes}.}
  5112. {\if\edition\racketEd
  5113. \begin{figure}[tbp]
  5114. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5115. \node (Lvar) at (0,2) {\large \LangVar{}};
  5116. \node (Lvar-2) at (3,2) {\large \LangVar{}};
  5117. \node (Lvar-3) at (6,2) {\large \LangVarANF{}};
  5118. \node (Cvar-1) at (3,0) {\large \LangCVar{}};
  5119. \node (x86-2) at (3,-2) {\large \LangXVar{}};
  5120. \node (x86-3) at (6,-2) {\large \LangXVar{}};
  5121. \node (x86-4) at (9,-2) {\large \LangXInt{}};
  5122. \node (x86-5) at (9,-4) {\large \LangXInt{}};
  5123. \node (x86-2-1) at (3,-4) {\large \LangXVar{}};
  5124. \node (x86-2-2) at (6,-4) {\large \LangXVar{}};
  5125. \path[->,bend left=15] (Lvar) edge [above] node {\ttfamily\footnotesize uniquify} (Lvar-2);
  5126. \path[->,bend left=15] (Lvar-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvar-3);
  5127. \path[->,bend left=15] (Lvar-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (Cvar-1);
  5128. \path[->,bend right=15] (Cvar-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  5129. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  5130. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  5131. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  5132. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  5133. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  5134. \end{tikzpicture}
  5135. \caption{Diagram of the passes for \LangVar{} with register allocation.}
  5136. \label{fig:reg-alloc-passes}
  5137. \end{figure}
  5138. \fi}
  5139. Figure~\ref{fig:running-example-x86} shows the x86 code generated for
  5140. the running example (Figure~\ref{fig:reg-eg}). To demonstrate both the
  5141. use of registers and the stack, we limit the register allocator for
  5142. this example to use just two registers: \code{rbx} and \code{rcx}. In
  5143. the prelude\index{subject}{prelude} of the \code{main} function, we
  5144. push \code{rbx} onto the stack because it is a callee-saved register
  5145. and it was assigned to variable by the register allocator. We
  5146. subtract \code{8} from the \code{rsp} at the end of the prelude to
  5147. reserve space for the one spilled variable. After that subtraction,
  5148. the \code{rsp} is aligned to 16 bytes.
  5149. Moving on to the program proper, we see how the registers were
  5150. allocated.
  5151. %
  5152. \racket{Variables \code{v}, \code{x}, and \code{y} were assigned to
  5153. \code{rbx} and variable \code{z} was assigned to \code{rcx}.}
  5154. %
  5155. \python{Variables \code{v}, \code{x}, \code{y}, and \code{tmp\_0}
  5156. were assigned to \code{rcx} and variables \code{w} and \code{tmp\_1}
  5157. were assigned to \code{rbx}.}
  5158. %
  5159. Variable \racket{\code{w}}\python{\code{z}} was spilled to the stack
  5160. location \code{-16(\%rbp)}. Recall that the prelude saved the
  5161. callee-save register \code{rbx} onto the stack. The spilled variables
  5162. must be placed lower on the stack than the saved callee-save
  5163. registers, so in this case \racket{\code{w}}\python{z} is placed at
  5164. \code{-16(\%rbp)}.
  5165. In the conclusion\index{subject}{conclusion}, we undo the work that was
  5166. done in the prelude. We move the stack pointer up by \code{8} bytes
  5167. (the room for spilled variables), then we pop the old values of
  5168. \code{rbx} and \code{rbp} (callee-saved registers), and finish with
  5169. \code{retq} to return control to the operating system.
  5170. \begin{figure}[tbp]
  5171. % var_test_28.rkt
  5172. % (use-minimal-set-of-registers! #t)
  5173. % and only rbx rcx
  5174. % tmp 0 rbx
  5175. % z 1 rcx
  5176. % y 0 rbx
  5177. % w 2 16(%rbp)
  5178. % v 0 rbx
  5179. % x 0 rbx
  5180. {\if\edition\racketEd
  5181. \begin{lstlisting}
  5182. start:
  5183. movq $1, %rbx
  5184. movq $42, -16(%rbp)
  5185. addq $7, %rbx
  5186. movq %rbx, %rcx
  5187. addq -16(%rbp), %rcx
  5188. negq %rbx
  5189. movq %rcx, %rax
  5190. addq %rbx, %rax
  5191. jmp conclusion
  5192. .globl main
  5193. main:
  5194. pushq %rbp
  5195. movq %rsp, %rbp
  5196. pushq %rbx
  5197. subq $8, %rsp
  5198. jmp start
  5199. conclusion:
  5200. addq $8, %rsp
  5201. popq %rbx
  5202. popq %rbp
  5203. retq
  5204. \end{lstlisting}
  5205. \fi}
  5206. {\if\edition\pythonEd
  5207. %{v: %rcx, x: %rcx, z: -16(%rbp), w: %rbx, tmp_1: %rbx, y: %rcx, tmp_0: %rcx}
  5208. \begin{lstlisting}
  5209. .globl main
  5210. main:
  5211. pushq %rbp
  5212. movq %rsp, %rbp
  5213. pushq %rbx
  5214. subq $8, %rsp
  5215. movq $1, %rcx
  5216. movq $42, %rbx
  5217. addq $7, %rcx
  5218. movq %rcx, -16(%rbp)
  5219. addq %rbx, -16(%rbp)
  5220. negq %rcx
  5221. movq -16(%rbp), %rbx
  5222. addq %rcx, %rbx
  5223. movq %rbx, %rdi
  5224. callq print_int
  5225. addq $8, %rsp
  5226. popq %rbx
  5227. popq %rbp
  5228. retq
  5229. \end{lstlisting}
  5230. \fi}
  5231. \caption{The x86 output from the running example
  5232. (Figure~\ref{fig:reg-eg}), limiting allocation to just \code{rbx}
  5233. and \code{rcx}.}
  5234. \label{fig:running-example-x86}
  5235. \end{figure}
  5236. \begin{exercise}\normalfont
  5237. Update the \code{prelude\_and\_conclusion} pass as described in this section.
  5238. %
  5239. \racket{
  5240. In the \code{run-tests.rkt} script, add \code{prelude\_and\_conclusion} to the
  5241. list of passes and the call to \code{compiler-tests}.}
  5242. %
  5243. Run the script to test the complete compiler for \LangVar{} that
  5244. performs register allocation.
  5245. \end{exercise}
  5246. \section{Challenge: Move Biasing}
  5247. \label{sec:move-biasing}
  5248. \index{subject}{move biasing}
  5249. This section describes an enhancement to the register allocator,
  5250. called move biasing, for students who are looking for an extra
  5251. challenge.
  5252. {\if\edition\racketEd
  5253. To motivate the need for move biasing we return to the running example
  5254. but this time use all of the general purpose registers. So we have
  5255. the following mapping of color numbers to registers.
  5256. \[
  5257. \{ 0 \mapsto \key{\%rcx}, \; 1 \mapsto \key{\%rdx}, \; 2 \mapsto \key{\%rsi} \}
  5258. \]
  5259. Using the same assignment of variables to color numbers that was
  5260. produced by the register allocator described in the last section, we
  5261. get the following program.
  5262. \begin{center}
  5263. \begin{minipage}{0.3\textwidth}
  5264. \begin{lstlisting}
  5265. movq $1, v
  5266. movq $42, w
  5267. movq v, x
  5268. addq $7, x
  5269. movq x, y
  5270. movq x, z
  5271. addq w, z
  5272. movq y, t
  5273. negq t
  5274. movq z, %rax
  5275. addq t, %rax
  5276. jmp conclusion
  5277. \end{lstlisting}
  5278. \end{minipage}
  5279. $\Rightarrow\qquad$
  5280. \begin{minipage}{0.45\textwidth}
  5281. \begin{lstlisting}
  5282. movq $1, %rdx
  5283. movq $42, %rcx
  5284. movq %rdx, %rdx
  5285. addq $7, %rdx
  5286. movq %rdx, %rsi
  5287. movq %rdx, %rdx
  5288. addq %rcx, %rdx
  5289. movq %rsi, %rcx
  5290. negq %rcx
  5291. movq %rdx, %rax
  5292. addq %rcx, %rax
  5293. jmp conclusion
  5294. \end{lstlisting}
  5295. \end{minipage}
  5296. \end{center}
  5297. In the above output code there are two \key{movq} instructions that
  5298. can be removed because their source and target are the same. However,
  5299. if we had put \key{t}, \key{v}, \key{x}, and \key{y} into the same
  5300. register, we could instead remove three \key{movq} instructions. We
  5301. can accomplish this by taking into account which variables appear in
  5302. \key{movq} instructions with which other variables.
  5303. \fi}
  5304. {\if\edition\pythonEd
  5305. %
  5306. To motivate the need for move biasing we return to the running example
  5307. and recall that in Section~\ref{sec:patch-instructions} we were able to
  5308. remove three trivial move instructions from the running
  5309. example. However, we could remove another trivial move if we were able
  5310. to allocate \code{y} and \code{tmp\_0} to the same register. \fi}
  5311. We say that two variables $p$ and $q$ are \emph{move
  5312. related}\index{subject}{move related} if they participate together in
  5313. a \key{movq} instruction, that is, \key{movq} $p$\key{,} $q$ or
  5314. \key{movq} $q$\key{,} $p$. When deciding which variable to color next,
  5315. when there are multiple variables with the same saturation, prefer
  5316. variables that can be assigned to a color that is the same as the
  5317. color of a move related variable. Furthermore, when the register
  5318. allocator chooses a color for a variable, it should prefer a color
  5319. that has already been used for a move-related variable (assuming that
  5320. they do not interfere). Of course, this preference should not override
  5321. the preference for registers over stack locations. So this preference
  5322. should be used as a tie breaker when choosing between registers or
  5323. when choosing between stack locations.
  5324. We recommend representing the move relationships in a graph, similar
  5325. to how we represented interference. The following is the \emph{move
  5326. graph} for our running example.
  5327. {\if\edition\racketEd
  5328. \[
  5329. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5330. \node (rax) at (0,0) {$\ttm{rax}$};
  5331. \node (rsp) at (9,2) {$\ttm{rsp}$};
  5332. \node (t) at (0,2) {$\ttm{t}$};
  5333. \node (z) at (3,2) {$\ttm{z}$};
  5334. \node (x) at (6,2) {$\ttm{x}$};
  5335. \node (y) at (3,0) {$\ttm{y}$};
  5336. \node (w) at (6,0) {$\ttm{w}$};
  5337. \node (v) at (9,0) {$\ttm{v}$};
  5338. \draw (v) to (x);
  5339. \draw (x) to (y);
  5340. \draw (x) to (z);
  5341. \draw (y) to (t);
  5342. \end{tikzpicture}
  5343. \]
  5344. \fi}
  5345. %
  5346. {\if\edition\pythonEd
  5347. \[
  5348. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5349. \node (t0) at (0,2) {$\ttm{tmp\_0}$};
  5350. \node (t1) at (0,0) {$\ttm{tmp\_1}$};
  5351. \node (z) at (3,2) {$\ttm{z}$};
  5352. \node (x) at (6,2) {$\ttm{x}$};
  5353. \node (y) at (3,0) {$\ttm{y}$};
  5354. \node (w) at (6,0) {$\ttm{w}$};
  5355. \node (v) at (9,0) {$\ttm{v}$};
  5356. \draw (y) to (t0);
  5357. \draw (z) to (x);
  5358. \draw (z) to (t1);
  5359. \draw (x) to (y);
  5360. \draw (x) to (v);
  5361. \end{tikzpicture}
  5362. \]
  5363. \fi}
  5364. {\if\edition\racketEd
  5365. Now we replay the graph coloring, pausing to see the coloring of
  5366. \code{y}. Recall the following configuration. The most saturated vertices
  5367. were \code{w} and \code{y}.
  5368. \[
  5369. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5370. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5371. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5372. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5373. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5374. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5375. \node (y) at (3,0) {$\ttm{y}:-,\{1,-2\}$};
  5376. \node (w) at (6,0) {$\ttm{w}:-,\{1,-2\}$};
  5377. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5378. \draw (t1) to (rax);
  5379. \draw (t1) to (z);
  5380. \draw (z) to (y);
  5381. \draw (z) to (w);
  5382. \draw (x) to (w);
  5383. \draw (y) to (w);
  5384. \draw (v) to (w);
  5385. \draw (v) to (rsp);
  5386. \draw (w) to (rsp);
  5387. \draw (x) to (rsp);
  5388. \draw (y) to (rsp);
  5389. \path[-.,bend left=15] (z) edge node {} (rsp);
  5390. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5391. \draw (rax) to (rsp);
  5392. \end{tikzpicture}
  5393. \]
  5394. %
  5395. Last time we chose to color \code{w} with $0$. But this time we see
  5396. that \code{w} is not move related to any vertex, but \code{y} is move
  5397. related to \code{t}. So we choose to color \code{y} the same color as
  5398. \code{t}, $0$.
  5399. \[
  5400. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5401. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5402. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5403. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5404. \node (z) at (3,2) {$\ttm{z}:1,\{0,-2\}$};
  5405. \node (x) at (6,2) {$\ttm{x}:-,\{-2\}$};
  5406. \node (y) at (3,0) {$\ttm{y}:0,\{1,-2\}$};
  5407. \node (w) at (6,0) {$\ttm{w}:-,\{0,1,-2\}$};
  5408. \node (v) at (9,0) {$\ttm{v}:-,\{-2\}$};
  5409. \draw (t1) to (rax);
  5410. \draw (t1) to (z);
  5411. \draw (z) to (y);
  5412. \draw (z) to (w);
  5413. \draw (x) to (w);
  5414. \draw (y) to (w);
  5415. \draw (v) to (w);
  5416. \draw (v) to (rsp);
  5417. \draw (w) to (rsp);
  5418. \draw (x) to (rsp);
  5419. \draw (y) to (rsp);
  5420. \path[-.,bend left=15] (z) edge node {} (rsp);
  5421. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5422. \draw (rax) to (rsp);
  5423. \end{tikzpicture}
  5424. \]
  5425. Now \code{w} is the most saturated, so we color it $2$.
  5426. \[
  5427. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5428. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5429. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5430. \node (t1) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5431. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5432. \node (x) at (6,2) {$\ttm{x}:-,\{2,-2\}$};
  5433. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5434. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5435. \node (v) at (9,0) {$\ttm{v}:-,\{2,-2\}$};
  5436. \draw (t1) to (rax);
  5437. \draw (t1) to (z);
  5438. \draw (z) to (y);
  5439. \draw (z) to (w);
  5440. \draw (x) to (w);
  5441. \draw (y) to (w);
  5442. \draw (v) to (w);
  5443. \draw (v) to (rsp);
  5444. \draw (w) to (rsp);
  5445. \draw (x) to (rsp);
  5446. \draw (y) to (rsp);
  5447. \path[-.,bend left=15] (z) edge node {} (rsp);
  5448. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5449. \draw (rax) to (rsp);
  5450. \end{tikzpicture}
  5451. \]
  5452. At this point, vertices \code{x} and \code{v} are most saturated, but
  5453. \code{x} is move related to \code{y} and \code{z}, so we color
  5454. \code{x} to $0$ to match \code{y}. Finally, we color \code{v} to $0$.
  5455. \[
  5456. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5457. \node (rax) at (0,0) {$\ttm{rax}:-1,\{0,-2\}$};
  5458. \node (rsp) at (9,2) {$\ttm{rsp}:-2,\{-1,0,1,2\}$};
  5459. \node (t) at (0,2) {$\ttm{t}:0,\{1,-2\}$};
  5460. \node (z) at (3,2) {$\ttm{z}:1,\{0,2,-2\}$};
  5461. \node (x) at (6,2) {$\ttm{x}:0,\{2,-2\}$};
  5462. \node (y) at (3,0) {$\ttm{y}:0,\{1,2,-2\}$};
  5463. \node (w) at (6,0) {$\ttm{w}:2,\{0,1,-2\}$};
  5464. \node (v) at (9,0) {$\ttm{v}:0,\{2,-2\}$};
  5465. \draw (t1) to (rax);
  5466. \draw (t) to (z);
  5467. \draw (z) to (y);
  5468. \draw (z) to (w);
  5469. \draw (x) to (w);
  5470. \draw (y) to (w);
  5471. \draw (v) to (w);
  5472. \draw (v) to (rsp);
  5473. \draw (w) to (rsp);
  5474. \draw (x) to (rsp);
  5475. \draw (y) to (rsp);
  5476. \path[-.,bend left=15] (z) edge node {} (rsp);
  5477. \path[-.,bend left=10] (t1) edge node {} (rsp);
  5478. \draw (rax) to (rsp);
  5479. \end{tikzpicture}
  5480. \]
  5481. \fi}
  5482. %
  5483. {\if\edition\pythonEd
  5484. Now we replay the graph coloring, pausing before the coloring of
  5485. \code{w}. Recall the following configuration. The most saturated vertices
  5486. were \code{tmp\_1}, \code{w}, and \code{y}.
  5487. \[
  5488. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5489. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5490. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5491. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5492. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5493. \node (y) at (3,0) {$\ttm{y}: -, \{1\}$};
  5494. \node (w) at (6,0) {$\ttm{w}: -, \{1\}$};
  5495. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5496. \draw (t0) to (t1);
  5497. \draw (t0) to (z);
  5498. \draw (z) to (y);
  5499. \draw (z) to (w);
  5500. \draw (x) to (w);
  5501. \draw (y) to (w);
  5502. \draw (v) to (w);
  5503. \end{tikzpicture}
  5504. \]
  5505. We have arbitrarily chosen to color \code{w} instead of \code{tmp\_1}
  5506. or \code{y}, but note that \code{w} is not move related to any
  5507. variables, whereas \code{y} and \code{tmp\_1} are move related to
  5508. \code{tmp\_0} and \code{z}, respectively. If we instead choose
  5509. \code{y} and color it $0$, we can delete another move instruction.
  5510. \[
  5511. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5512. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5513. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5514. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5515. \node (x) at (6,2) {$\ttm{x}: -, \{\}$};
  5516. \node (y) at (3,0) {$\ttm{y}: 0, \{1\}$};
  5517. \node (w) at (6,0) {$\ttm{w}: -, \{0,1\}$};
  5518. \node (v) at (9,0) {$\ttm{v}: -, \{\}$};
  5519. \draw (t0) to (t1);
  5520. \draw (t0) to (z);
  5521. \draw (z) to (y);
  5522. \draw (z) to (w);
  5523. \draw (x) to (w);
  5524. \draw (y) to (w);
  5525. \draw (v) to (w);
  5526. \end{tikzpicture}
  5527. \]
  5528. Now \code{w} is the most saturated, so we color it $2$.
  5529. \[
  5530. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5531. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5532. \node (t1) at (0,0) {$\ttm{tmp\_1}: -, \{0\}$};
  5533. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5534. \node (x) at (6,2) {$\ttm{x}: -, \{2\}$};
  5535. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5536. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5537. \node (v) at (9,0) {$\ttm{v}: -, \{2\}$};
  5538. \draw (t0) to (t1);
  5539. \draw (t0) to (z);
  5540. \draw (z) to (y);
  5541. \draw (z) to (w);
  5542. \draw (x) to (w);
  5543. \draw (y) to (w);
  5544. \draw (v) to (w);
  5545. \end{tikzpicture}
  5546. \]
  5547. To finish the coloring, \code{x} and \code{v} get $0$ and
  5548. \code{tmp\_1} gets $1$.
  5549. \[
  5550. \begin{tikzpicture}[baseline=(current bounding box.center)]
  5551. \node (t0) at (0,2) {$\ttm{tmp\_0}: 0, \{1\}$};
  5552. \node (t1) at (0,0) {$\ttm{tmp\_1}: 1, \{0\}$};
  5553. \node (z) at (3,2) {$\ttm{z}: 1, \{0\}$};
  5554. \node (x) at (6,2) {$\ttm{x}: 0, \{2\}$};
  5555. \node (y) at (3,0) {$\ttm{y}: 0, \{1,2\}$};
  5556. \node (w) at (6,0) {$\ttm{w}: 2, \{0,1\}$};
  5557. \node (v) at (9,0) {$\ttm{v}: 0, \{2\}$};
  5558. \draw (t0) to (t1);
  5559. \draw (t0) to (z);
  5560. \draw (z) to (y);
  5561. \draw (z) to (w);
  5562. \draw (x) to (w);
  5563. \draw (y) to (w);
  5564. \draw (v) to (w);
  5565. \end{tikzpicture}
  5566. \]
  5567. \fi}
  5568. So we have the following assignment of variables to registers.
  5569. {\if\edition\racketEd
  5570. \begin{gather*}
  5571. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5572. \ttm{w} \mapsto \key{\%rsi}, \,
  5573. \ttm{x} \mapsto \key{\%rcx}, \,
  5574. \ttm{y} \mapsto \key{\%rcx}, \,
  5575. \ttm{z} \mapsto \key{\%rdx}, \,
  5576. \ttm{t} \mapsto \key{\%rcx} \}
  5577. \end{gather*}
  5578. \fi}
  5579. {\if\edition\pythonEd
  5580. \begin{gather*}
  5581. \{ \ttm{v} \mapsto \key{\%rcx}, \,
  5582. \ttm{w} \mapsto \key{-16(\%rbp)}, \,
  5583. \ttm{x} \mapsto \key{\%rcx}, \,
  5584. \ttm{y} \mapsto \key{\%rcx}, \\
  5585. \ttm{z} \mapsto \key{-8(\%rbp)}, \,
  5586. \ttm{tmp\_0} \mapsto \key{\%rcx}, \,
  5587. \ttm{tmp\_1} \mapsto \key{-8(\%rbp)} \}
  5588. \end{gather*}
  5589. \fi}
  5590. We apply this register assignment to the running example, on the left,
  5591. to obtain the code in the middle. The \code{patch\_instructions} then
  5592. deletes the trivial moves to obtain the code on the right.
  5593. {\if\edition\racketEd
  5594. \begin{minipage}{0.25\textwidth}
  5595. \begin{lstlisting}
  5596. movq $1, v
  5597. movq $42, w
  5598. movq v, x
  5599. addq $7, x
  5600. movq x, y
  5601. movq x, z
  5602. addq w, z
  5603. movq y, t
  5604. negq t
  5605. movq z, %rax
  5606. addq t, %rax
  5607. jmp conclusion
  5608. \end{lstlisting}
  5609. \end{minipage}
  5610. $\Rightarrow\qquad$
  5611. \begin{minipage}{0.25\textwidth}
  5612. \begin{lstlisting}
  5613. movq $1, %rcx
  5614. movq $42, %rsi
  5615. movq %rcx, %rcx
  5616. addq $7, %rcx
  5617. movq %rcx, %rcx
  5618. movq %rcx, %rdx
  5619. addq %rsi, %rdx
  5620. movq %rcx, %rcx
  5621. negq %rcx
  5622. movq %rdx, %rax
  5623. addq %rcx, %rax
  5624. jmp conclusion
  5625. \end{lstlisting}
  5626. \end{minipage}
  5627. $\Rightarrow\qquad$
  5628. \begin{minipage}{0.25\textwidth}
  5629. \begin{lstlisting}
  5630. movq $1, %rcx
  5631. movq $42, %rsi
  5632. addq $7, %rcx
  5633. movq %rcx, %rdx
  5634. addq %rsi, %rdx
  5635. negq %rcx
  5636. movq %rdx, %rax
  5637. addq %rcx, %rax
  5638. jmp conclusion
  5639. \end{lstlisting}
  5640. \end{minipage}
  5641. \fi}
  5642. {\if\edition\pythonEd
  5643. \begin{minipage}{0.20\textwidth}
  5644. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5645. movq $1, v
  5646. movq $42, w
  5647. movq v, x
  5648. addq $7, x
  5649. movq x, y
  5650. movq x, z
  5651. addq w, z
  5652. movq y, tmp_0
  5653. negq tmp_0
  5654. movq z, tmp_1
  5655. addq tmp_0, tmp_1
  5656. movq tmp_1, %rdi
  5657. callq _print_int
  5658. \end{lstlisting}
  5659. \end{minipage}
  5660. ${\Rightarrow\qquad}$
  5661. \begin{minipage}{0.30\textwidth}
  5662. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5663. movq $1, %rcx
  5664. movq $42, -16(%rbp)
  5665. movq %rcx, %rcx
  5666. addq $7, %rcx
  5667. movq %rcx, %rcx
  5668. movq %rcx, -8(%rbp)
  5669. addq -16(%rbp), -8(%rbp)
  5670. movq %rcx, %rcx
  5671. negq %rcx
  5672. movq -8(%rbp), -8(%rbp)
  5673. addq %rcx, -8(%rbp)
  5674. movq -8(%rbp), %rdi
  5675. callq _print_int
  5676. \end{lstlisting}
  5677. \end{minipage}
  5678. ${\Rightarrow\qquad}$
  5679. \begin{minipage}{0.20\textwidth}
  5680. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  5681. movq $1, %rcx
  5682. movq $42, -16(%rbp)
  5683. addq $7, %rcx
  5684. movq %rcx, -8(%rbp)
  5685. movq -16(%rbp), %rax
  5686. addq %rax, -8(%rbp)
  5687. negq %rcx
  5688. addq %rcx, -8(%rbp)
  5689. movq -8(%rbp), %rdi
  5690. callq print_int
  5691. \end{lstlisting}
  5692. \end{minipage}
  5693. \fi}
  5694. \begin{exercise}\normalfont
  5695. Change your implementation of \code{allocate\_registers} to take move
  5696. biasing into account. Create two new tests that include at least one
  5697. opportunity for move biasing and visually inspect the output x86
  5698. programs to make sure that your move biasing is working properly. Make
  5699. sure that your compiler still passes all of the tests.
  5700. \end{exercise}
  5701. %To do: another neat challenge would be to do
  5702. % live range splitting~\citep{Cooper:1998ly}. \\ --Jeremy
  5703. %% \subsection{Output of the Running Example}
  5704. %% \label{sec:reg-alloc-output}
  5705. % challenge: prioritize variables based on execution frequencies
  5706. % and the number of uses of a variable
  5707. % challenge: enhance the coloring algorithm using Chaitin's
  5708. % approach of prioritizing high-degree variables
  5709. % by removing low-degree variables (coloring them later)
  5710. % from the interference graph
  5711. \section{Further Reading}
  5712. \label{sec:register-allocation-further-reading}
  5713. Early register allocation algorithms were developed for Fortran
  5714. compilers in the 1950s~\citep{Horwitz:1966aa,Backus:1978aa}. The use
  5715. of graph coloring began in the late 1970s and early 1980s with the
  5716. work of \citet{Chaitin:1981vl} on an optimizing compiler for PL/I. The
  5717. algorithm is based on the following observation of
  5718. \citet{Kempe:1879aa}. If a graph $G$ has a vertex $v$ with degree
  5719. lower than $k$, then $G$ is $k$ colorable if the subgraph of $G$ with
  5720. $v$ removed is also $k$ colorable. To see why, suppose that the
  5721. subgraph is $k$ colorable. At worst the neighbors of $v$ are assigned
  5722. different colors, but since there are less than $k$ neighbors, there
  5723. will be one or more colors left over to use for coloring $v$ in $G$.
  5724. The algorithm of \citet{Chaitin:1981vl} removes a vertex $v$ of degree
  5725. less than $k$ from the graph and recursively colors the rest of the
  5726. graph. Upon returning from the recursion, it colors $v$ with one of
  5727. the available colors and returns. \citet{Chaitin:1982vn} augments
  5728. this algorithm to handle spilling as follows. If there are no vertices
  5729. of degree lower than $k$ then pick a vertex at random, spill it,
  5730. remove it from the graph, and proceed recursively to color the rest of
  5731. the graph.
  5732. Prior to coloring, \citet{Chaitin:1981vl} merge variables that are
  5733. move-related and that don't interfere with each other, a process
  5734. called \emph{coalescing}. While coalescing decreases the number of
  5735. moves, it can make the graph more difficult to
  5736. color. \citet{Briggs:1994kx} propose \emph{conservative coalescing} in
  5737. which two variables are merged only if they have fewer than $k$
  5738. neighbors of high degree. \citet{George:1996aa} observe that
  5739. conservative coalescing is sometimes too conservative and make it more
  5740. aggressive by iterating the coalescing with the removal of low-degree
  5741. vertices.
  5742. %
  5743. Attacking the problem from a different angle, \citet{Briggs:1994kx}
  5744. also propose \emph{biased coloring} in which a variable is assigned to
  5745. the same color as another move-related variable if possible, as
  5746. discussed in Section~\ref{sec:move-biasing}.
  5747. %
  5748. The algorithm of \citet{Chaitin:1981vl} and its successors iteratively
  5749. performs coalescing, graph coloring, and spill code insertion until
  5750. all variables have been assigned a location.
  5751. \citet{Briggs:1994kx} observes that \citet{Chaitin:1982vn} sometimes
  5752. spills variables that don't have to be: a high-degree variable can be
  5753. colorable if many of its neighbors are assigned the same color.
  5754. \citet{Briggs:1994kx} propose \emph{optimistic coloring}, in which a
  5755. high-degree vertex is not immediately spilled. Instead the decision is
  5756. deferred until after the recursive call, at which point it is apparent
  5757. whether there is actually an available color or not. We observe that
  5758. this algorithm is equivalent to the smallest-last ordering
  5759. algorithm~\citep{Matula:1972aa} if one takes the first $k$ colors to
  5760. be registers and the rest to be stack locations.
  5761. %% biased coloring
  5762. Earlier editions of the compiler course at Indiana University
  5763. \citep{Dybvig:2010aa} were based on the algorithm of
  5764. \citet{Briggs:1994kx}.
  5765. The smallest-last ordering algorithm is one of many \emph{greedy}
  5766. coloring algorithms. A greedy coloring algorithm visits all the
  5767. vertices in a particular order and assigns each one the first
  5768. available color. An \emph{offline} greedy algorithm chooses the
  5769. ordering up-front, prior to assigning colors. The algorithm of
  5770. \citet{Chaitin:1981vl} should be considered offline because the vertex
  5771. ordering does not depend on the colors assigned. Other orderings are
  5772. possible. For example, \citet{Chow:1984ys} order variables according
  5773. to an estimate of runtime cost.
  5774. An \emph{online} greedy coloring algorithm uses information about the
  5775. current assignment of colors to influence the order in which the
  5776. remaining vertices are colored. The saturation-based algorithm
  5777. described in this chapter is one such algorithm. We choose to use
  5778. saturation-based coloring because it is fun to introduce graph
  5779. coloring via Sudoku!
  5780. A register allocator may choose to map each variable to just one
  5781. location, as in \citet{Chaitin:1981vl}, or it may choose to map a
  5782. variable to one or more locations. The later can be achieved by
  5783. \emph{live range splitting}, where a variable is replaced by several
  5784. variables that each handle part of its live
  5785. range~\citep{Chow:1984ys,Briggs:1994kx,Cooper:1998ly}.
  5786. %% 1950s, Sheldon Best, Fortran \cite{Backus:1978aa}, Belady's page
  5787. %% replacement algorithm, bottom-up local
  5788. %% \citep{Horwitz:1966aa} straight-line programs, single basic block,
  5789. %% Cooper: top-down (priority bassed), bottom-up
  5790. %% top-down
  5791. %% order variables by priority (estimated cost)
  5792. %% caveat: split variables into two groups:
  5793. %% constrained (>k neighbors) and unconstrained (<k neighbors)
  5794. %% color the constrained ones first
  5795. %% \citet{Schwartz:1975aa} graph-coloring, no spill
  5796. %% cite J. Cocke for an algorithm that colors variables
  5797. %% in a high-degree first ordering
  5798. %Register Allocation via Usage Counts, Freiburghouse CACM
  5799. \citet{Palsberg:2007si} observe that many of the interference graphs
  5800. that arise from Java programs in the JoeQ compiler are \emph{chordal},
  5801. that is, every cycle with four or more edges has an edge which is not
  5802. part of the cycle but which connects two vertices on the cycle. Such
  5803. graphs can be optimally colored by the greedy algorithm with a vertex
  5804. ordering determined by maximum cardinality search.
  5805. In situations where compile time is of utmost importance, such as in
  5806. just-in-time compilers, graph coloring algorithms can be too expensive
  5807. and the linear scan algorithm of \citet{Poletto:1999uq} may be more
  5808. appropriate.
  5809. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  5810. \chapter{Booleans and Conditionals}
  5811. \label{ch:Lif}
  5812. \index{subject}{Boolean}
  5813. \index{subject}{control flow}
  5814. \index{subject}{conditional expression}
  5815. The \LangInt{} and \LangVar{} languages only have a single kind of
  5816. value, the integers. In this chapter we add a second kind of value,
  5817. the Booleans, to create the \LangIf{} language. The Boolean values
  5818. \emph{true} and \emph{false} are written \TRUE{} and \FALSE{}
  5819. respectively in \racket{Racket}\python{Python}. The \LangIf{}
  5820. language includes several operations that involve Booleans (\key{and},
  5821. \key{not}, \racket{\key{eq?}}\python{==}, \key{<}, etc.) and the
  5822. \key{if} expression \python{and statement}. With the addition of
  5823. \key{if}, programs can have non-trivial control flow which
  5824. %
  5825. \racket{impacts \code{explicate\_control} and liveness analysis}
  5826. %
  5827. \python{impacts liveness analysis and motivates a new pass named
  5828. \code{explicate\_control}}.
  5829. %
  5830. Also, because we now have two kinds of values, we need to handle
  5831. programs that apply an operation to the wrong kind of value, such as
  5832. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5833. There are two language design options for such situations. One option
  5834. is to signal an error and the other is to provide a wider
  5835. interpretation of the operation. \racket{The Racket
  5836. language}\python{Python} uses a mixture of these two options,
  5837. depending on the operation and the kind of value. For example, the
  5838. result of \racket{\code{(not 1)}}\python{\code{not 1}} is
  5839. \racket{\code{\#f}}\python{False} because \racket{Racket}\python{Python}
  5840. treats non-zero integers as if they were \racket{\code{\#t}}\python{\code{True}}.
  5841. %
  5842. \racket{On the other hand, \code{(car 1)} results in a run-time error
  5843. in Racket because \code{car} expects a pair.}
  5844. %
  5845. \python{On the other hand, \code{1[0]} results in a run-time error
  5846. in Python because an ``\code{int} object is not subscriptable''.}
  5847. \racket{Typed Racket}\python{The MyPy type checker} makes similar
  5848. design choices as \racket{Racket}\python{Python}, except much of the
  5849. error detection happens at compile time instead of run
  5850. time\python{~\citep{Lehtosalo2021:MyPy}}. \racket{Typed Racket}\python{MyPy}
  5851. accepts \racket{\code{(not 1)}}\python{\code{not 1}}. But in the case
  5852. of \racket{\code{(car 1)}}\python{\code{1[0]}}, \racket{Typed
  5853. Racket}\python{MyPy} reports a compile-time error
  5854. %
  5855. \racket{because Racket expects the type of the argument to be of the form
  5856. \code{(Listof T)} or \code{(Pairof T1 T2)}.}
  5857. %
  5858. \python{stating that a ``value of type \code{int} is not indexable''.}
  5859. The \LangIf{} language performs type checking during compilation like
  5860. \racket{Typed Racket}\python{MyPy}. In Chapter~\ref{ch:Rdyn} we study the
  5861. alternative choice, that is, a dynamically typed language like
  5862. \racket{Racket}\python{Python}.
  5863. The \LangIf{} language is a subset of \racket{Typed Racket}\python{MyPy};
  5864. for some operations we are more restrictive, for example, rejecting
  5865. \racket{\code{(not 1)}}\python{\code{not 1}}.
  5866. This chapter is organized as follows. We begin by defining the syntax
  5867. and interpreter for the \LangIf{} language
  5868. (Section~\ref{sec:lang-if}). We then introduce the idea of type
  5869. checking and define a type checker for \LangIf{}
  5870. (Section~\ref{sec:type-check-Lif}).
  5871. %
  5872. \racket{To compile \LangIf{} we need to enlarge the intermediate
  5873. language \LangCVar{} into \LangCIf{} (Section~\ref{sec:Cif}) and
  5874. \LangXInt{} into \LangXIf{} (Section~\ref{sec:x86-if}).}
  5875. %
  5876. The remaining sections of this chapter discuss how the addition of
  5877. Booleans and conditional control flow to the language requires changes
  5878. to the existing compiler passes and the addition of new ones. In
  5879. particular, we introduce the \code{shrink} pass to translates some
  5880. operators into others, thereby reducing the number of operators that
  5881. need to be handled in later passes.
  5882. %
  5883. The main event of this chapter is the \code{explicate\_control} pass
  5884. that is responsible for translating \code{if}'s into conditional
  5885. \code{goto}'s (Section~\ref{sec:explicate-control-Lif}).
  5886. %
  5887. Regarding register allocation, there is the interesting question of
  5888. how to handle conditional \code{goto}'s during liveness analysis.
  5889. \section{The \LangIf{} Language}
  5890. \label{sec:lang-if}
  5891. The concrete syntax of the \LangIf{} language is defined in
  5892. Figure~\ref{fig:Lif-concrete-syntax} and the abstract syntax is defined
  5893. in Figure~\ref{fig:Lif-syntax}. The \LangIf{} language includes all of
  5894. \LangVar{}\racket{(shown in gray)}, the Boolean literals \TRUE{} and
  5895. \FALSE{}, and the \code{if} expression \python{and statement}. We expand the
  5896. operators to include
  5897. \begin{enumerate}
  5898. \item subtraction on integers,
  5899. \item the logical operators \key{and}, \key{or}, and \key{not},
  5900. \item the \racket{\key{eq?} operation}\python{\key{==} and \key{!=} operations}
  5901. for comparing integers or Booleans for equality, and
  5902. \item the \key{<}, \key{<=}, \key{>}, and \key{>=} operations for
  5903. comparing integers.
  5904. \end{enumerate}
  5905. \racket{We reorganize the abstract syntax for the primitive
  5906. operations in Figure~\ref{fig:Lif-syntax}, using only one grammar
  5907. rule for all of them. This means that the grammar no longer checks
  5908. whether the arity of an operators matches the number of
  5909. arguments. That responsibility is moved to the type checker for
  5910. \LangIf{}, which we introduce in Section~\ref{sec:type-check-Lif}.}
  5911. \begin{figure}[tp]
  5912. \centering
  5913. \fbox{
  5914. \begin{minipage}{0.96\textwidth}
  5915. {\if\edition\racketEd
  5916. \[
  5917. \begin{array}{lcl}
  5918. \itm{bool} &::=& \TRUE \MID \FALSE \\
  5919. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  5920. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} } \MID \CSUB{\Exp}{\Exp} \\
  5921. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} } \\
  5922. &\MID& \itm{bool}
  5923. \MID (\key{and}\;\Exp\;\Exp) \MID (\key{or}\;\Exp\;\Exp)
  5924. \MID (\key{not}\;\Exp) \\
  5925. &\MID& (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} \\
  5926. \LangIfM{} &::=& \Exp
  5927. \end{array}
  5928. \]
  5929. \fi}
  5930. {\if\edition\pythonEd
  5931. \[
  5932. \begin{array}{rcl}
  5933. \itm{binop} &::= & \key{+} \MID \key{-} \MID \key{and} \MID \key{or} \MID \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  5934. \itm{uniop} &::= & \key{-} \MID \key{not} \\
  5935. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \CUNIOP{\itm{uniop}}{\Exp} \MID \CBINOP{\itm{binop}}{\Exp}{\Exp} \MID \Var{} \\
  5936. &\MID& \TRUE \MID \FALSE \MID \CIF{\Exp}{\Exp}{\Exp} \\
  5937. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp \MID \CASSIGN{\Var}{\Exp}
  5938. \MID \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}\\
  5939. \LangIfM{} &::=& \Stmt^{*}
  5940. \end{array}
  5941. \]
  5942. \fi}
  5943. \end{minipage}
  5944. }
  5945. \caption{The concrete syntax of \LangIf{}, extending \LangVar{}
  5946. (Figure~\ref{fig:Lvar-concrete-syntax}) with Booleans and conditionals.}
  5947. \label{fig:Lif-concrete-syntax}
  5948. \end{figure}
  5949. \begin{figure}[tp]
  5950. \centering
  5951. \fbox{
  5952. \begin{minipage}{0.96\textwidth}
  5953. {\if\edition\racketEd
  5954. \[
  5955. \begin{array}{lcl}
  5956. \itm{bool} &::=& \code{\#t} \MID \code{\#f} \\
  5957. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  5958. \itm{op} &::= & \itm{cmp} \MID \code{read} \MID \code{+} \MID \code{-}
  5959. \MID \code{and} \MID \code{or} \MID \code{not} \\
  5960. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  5961. &\MID& \PRIM{\itm{op}}{\Exp\ldots}\\
  5962. &\MID& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp} \\
  5963. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Exp}
  5964. \end{array}
  5965. \]
  5966. \fi}
  5967. {\if\edition\pythonEd
  5968. \[
  5969. \begin{array}{lcl}
  5970. \itm{binop} &::=& \code{Add()} \MID \code{Sub()} \\
  5971. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  5972. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  5973. \itm{uniop} &::=& \code{USub()} \MID \code{Not()} \\
  5974. \itm{bool} &::=& \code{True} \MID \code{False} \\
  5975. \Exp &::=& \INT{\Int} \MID \READ{} \MID \VAR{\Var} \\
  5976. &\MID& \BINOP{\Exp}{\itm{binop}}{\Exp}
  5977. \MID \UNIOP{\itm{uniop}}{\Exp}\\
  5978. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp}
  5979. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  5980. &\MID& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp} \\
  5981. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  5982. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  5983. \LangIfM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  5984. \end{array}
  5985. \]
  5986. \fi}
  5987. \end{minipage}
  5988. }
  5989. \caption{The abstract syntax of \LangIf{}.}
  5990. \label{fig:Lif-syntax}
  5991. \end{figure}
  5992. Figure~\ref{fig:interp-Lif} defines the interpreter for \LangIf{},
  5993. which inherits from the interpreter for \LangVar{}
  5994. (Figure~\ref{fig:interp-Lvar}). The literals \TRUE{} and \FALSE{}
  5995. evaluate to the corresponding Boolean values. The conditional
  5996. expression $\CIF{e_1}{e_2}{\itm{e_3}}$ evaluates expression $e_1$
  5997. and then either evaluates $e_2$ or $e_3$ depending on whether
  5998. $e_1$ produced \TRUE{} or \FALSE{}. The logical operations
  5999. \code{and}, \code{or}, and \code{not} behave according to propositional logic,
  6000. but note that the \code{and} and \code{or} operations are
  6001. short-circuiting.
  6002. %
  6003. That is, given the expression $\CAND{e_1}{e_2}$, the expression $e_2$
  6004. is not evaluated if $e_1$ evaluates to \FALSE{}.
  6005. %
  6006. Similarly, given $\COR{e_1}{e_2}$, the expression $e_2$ is not
  6007. evaluated if $e_1$ evaluates to \TRUE{}.
  6008. \racket{With the increase in the number of primitive operations, the
  6009. interpreter would become repetitive without some care. We refactor
  6010. the case for \code{Prim}, moving the code that differs with each
  6011. operation into the \code{interp\_op} method shown in in
  6012. Figure~\ref{fig:interp-op-Lif}. We handle the \code{and} and
  6013. \code{or} operations separately because of their short-circuiting
  6014. behavior.}
  6015. \begin{figure}[tbp]
  6016. {\if\edition\racketEd
  6017. \begin{lstlisting}
  6018. (define interp_Lif_class
  6019. (class interp_Lvar_class
  6020. (super-new)
  6021. (define/public (interp_op op) ...)
  6022. (define/override ((interp_exp env) e)
  6023. (define recur (interp_exp env))
  6024. (match e
  6025. [(Bool b) b]
  6026. [(If cnd thn els)
  6027. (match (recur cnd)
  6028. [#t (recur thn)]
  6029. [#f (recur els)])]
  6030. [(Prim 'and (list e1 e2))
  6031. (match (recur e1)
  6032. [#t (match (recur e2) [#t #t] [#f #f])]
  6033. [#f #f])]
  6034. [(Prim 'or (list e1 e2))
  6035. (define v1 (recur e1))
  6036. (match v1
  6037. [#t #t]
  6038. [#f (match (recur e2) [#t #t] [#f #f])])]
  6039. [(Prim op args)
  6040. (apply (interp_op op) (for/list ([e args]) (recur e)))]
  6041. [else ((super interp_exp env) e)]))
  6042. ))
  6043. (define (interp_Lif p)
  6044. (send (new interp_Lif_class) interp_program p))
  6045. \end{lstlisting}
  6046. \fi}
  6047. {\if\edition\pythonEd
  6048. \begin{lstlisting}
  6049. class InterpLif(InterpLvar):
  6050. def interp_exp(self, e, env):
  6051. match e:
  6052. case IfExp(test, body, orelse):
  6053. if self.interp_exp(test, env):
  6054. return self.interp_exp(body, env)
  6055. else:
  6056. return self.interp_exp(orelse, env)
  6057. case BinOp(left, Sub(), right):
  6058. return self.interp_exp(left, env) - self.interp_exp(right, env)
  6059. case UnaryOp(Not(), v):
  6060. return not self.interp_exp(v, env)
  6061. case BoolOp(And(), values):
  6062. if self.interp_exp(values[0], env):
  6063. return self.interp_exp(values[1], env)
  6064. else:
  6065. return False
  6066. case BoolOp(Or(), values):
  6067. if self.interp_exp(values[0], env):
  6068. return True
  6069. else:
  6070. return self.interp_exp(values[1], env)
  6071. case Compare(left, [cmp], [right]):
  6072. l = self.interp_exp(left, env)
  6073. r = self.interp_exp(right, env)
  6074. return self.interp_cmp(cmp)(l, r)
  6075. case _:
  6076. return super().interp_exp(e, env)
  6077. def interp_stmts(self, ss, env):
  6078. if len(ss) == 0:
  6079. return
  6080. match ss[0]:
  6081. case If(test, body, orelse):
  6082. if self.interp_exp(test, env):
  6083. return self.interp_stmts(body + ss[1:], env)
  6084. else:
  6085. return self.interp_stmts(orelse + ss[1:], env)
  6086. case _:
  6087. return super().interp_stmts(ss, env)
  6088. ...
  6089. \end{lstlisting}
  6090. \fi}
  6091. \caption{Interpreter for the \LangIf{} language. \racket{(See
  6092. Figure~\ref{fig:interp-op-Lif} for \code{interp-op}.)}
  6093. \python{(See Figure~\ref{fig:interp-cmp-Lif} for \code{interp\_cmp}.)}}
  6094. \label{fig:interp-Lif}
  6095. \end{figure}
  6096. {\if\edition\racketEd
  6097. \begin{figure}[tbp]
  6098. \begin{lstlisting}
  6099. (define/public (interp_op op)
  6100. (match op
  6101. ['+ fx+]
  6102. ['- fx-]
  6103. ['read read-fixnum]
  6104. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  6105. ['eq? (lambda (v1 v2)
  6106. (cond [(or (and (fixnum? v1) (fixnum? v2))
  6107. (and (boolean? v1) (boolean? v2))
  6108. (and (vector? v1) (vector? v2)))
  6109. (eq? v1 v2)]))]
  6110. ['< (lambda (v1 v2)
  6111. (cond [(and (fixnum? v1) (fixnum? v2))
  6112. (< v1 v2)]))]
  6113. ['<= (lambda (v1 v2)
  6114. (cond [(and (fixnum? v1) (fixnum? v2))
  6115. (<= v1 v2)]))]
  6116. ['> (lambda (v1 v2)
  6117. (cond [(and (fixnum? v1) (fixnum? v2))
  6118. (> v1 v2)]))]
  6119. ['>= (lambda (v1 v2)
  6120. (cond [(and (fixnum? v1) (fixnum? v2))
  6121. (>= v1 v2)]))]
  6122. [else (error 'interp_op "unknown operator")]))
  6123. \end{lstlisting}
  6124. \caption{Interpreter for the primitive operators in the \LangIf{} language.}
  6125. \label{fig:interp-op-Lif}
  6126. \end{figure}
  6127. \fi}
  6128. {\if\edition\pythonEd
  6129. \begin{figure}
  6130. \begin{lstlisting}
  6131. class InterpLif(InterpLvar):
  6132. ...
  6133. def interp_cmp(self, cmp):
  6134. match cmp:
  6135. case Lt():
  6136. return lambda x, y: x < y
  6137. case LtE():
  6138. return lambda x, y: x <= y
  6139. case Gt():
  6140. return lambda x, y: x > y
  6141. case GtE():
  6142. return lambda x, y: x >= y
  6143. case Eq():
  6144. return lambda x, y: x == y
  6145. case NotEq():
  6146. return lambda x, y: x != y
  6147. \end{lstlisting}
  6148. \caption{Interpreter for the comparison operators in the \LangIf{} language.}
  6149. \label{fig:interp-cmp-Lif}
  6150. \end{figure}
  6151. \fi}
  6152. \section{Type Checking \LangIf{} Programs}
  6153. \label{sec:type-check-Lif}
  6154. \index{subject}{type checking}
  6155. \index{subject}{semantic analysis}
  6156. It is helpful to think about type checking in two complementary
  6157. ways. A type checker predicts the type of value that will be produced
  6158. by each expression in the program. For \LangIf{}, we have just two types,
  6159. \INTTY{} and \BOOLTY{}. So a type checker should predict that
  6160. {\if\edition\racketEd
  6161. \begin{lstlisting}
  6162. (+ 10 (- (+ 12 20)))
  6163. \end{lstlisting}
  6164. \fi}
  6165. {\if\edition\pythonEd
  6166. \begin{lstlisting}
  6167. 10 + -(12 + 20)
  6168. \end{lstlisting}
  6169. \fi}
  6170. \noindent produces a value of type \INTTY{} while
  6171. {\if\edition\racketEd
  6172. \begin{lstlisting}
  6173. (and (not #f) #t)
  6174. \end{lstlisting}
  6175. \fi}
  6176. {\if\edition\pythonEd
  6177. \begin{lstlisting}
  6178. (not False) and True
  6179. \end{lstlisting}
  6180. \fi}
  6181. \noindent produces a value of type \BOOLTY{}.
  6182. A second way to think about type checking is that it enforces a set of
  6183. rules about which operators can be applied to which kinds of
  6184. values. For example, our type checker for \LangIf{} signals an error
  6185. for the below expression {\if\edition\racketEd
  6186. \begin{lstlisting}
  6187. (not (+ 10 (- (+ 12 20))))
  6188. \end{lstlisting}
  6189. \fi}
  6190. {\if\edition\pythonEd
  6191. \begin{lstlisting}
  6192. not (10 + -(12 + 20))
  6193. \end{lstlisting}
  6194. \fi}
  6195. The subexpression
  6196. \racket{\code{(+ 10 (- (+ 12 20)))}}\python{\code{(10 + -(12 + 20))}}
  6197. has type \INTTY{} but the type checker enforces the rule that the argument of
  6198. \code{not} must be an expression of type \BOOLTY{}.
  6199. We implement type checking using classes and methods because they
  6200. provide the open recursion needed to reuse code as we extend the type
  6201. checker in later chapters, analogous to the use of classes and methods
  6202. for the interpreters (Section~\ref{sec:extensible-interp}).
  6203. We separate the type checker for the \LangVar{} subset into its own
  6204. class, shown in Figure~\ref{fig:type-check-Lvar}. The type checker for
  6205. \LangIf{} is shown in Figure~\ref{fig:type-check-Lif} and it inherits
  6206. from the type checker for \LangVar{}. These type checkers are in the
  6207. files
  6208. \racket{\code{type-check-Lvar.rkt}}\python{\code{type\_check\_Lvar.py}}
  6209. and
  6210. \racket{\code{type-check-Lif.rkt}}\python{\code{type\_check\_Lif.py}}
  6211. of the support code.
  6212. %
  6213. Each type checker is a structurally recursive function over the AST.
  6214. Given an input expression \code{e}, the type checker either signals an
  6215. error or returns \racket{an expression and} its type (\INTTY{} or
  6216. \BOOLTY{}).
  6217. %
  6218. \racket{It returns an expression because there are situations in which
  6219. we want to change or update the expression.}
  6220. Next we discuss the \code{type\_check\_exp} function of \LangVar{} in
  6221. Figure~\ref{fig:type-check-Lvar}. The type of an integer constant is
  6222. \INTTY{}. To handle variables, the type checker uses the environment
  6223. \code{env} to map variables to types.
  6224. %
  6225. \racket{Consider the case for \key{let}. We type check the
  6226. initializing expression to obtain its type \key{T} and then
  6227. associate type \code{T} with the variable \code{x} in the
  6228. environment used to type check the body of the \key{let}. Thus,
  6229. when the type checker encounters a use of variable \code{x}, it can
  6230. find its type in the environment.}
  6231. %
  6232. \python{Consider the case for assignment. We type check the
  6233. initializing expression to obtain its type \key{t}. If the variable
  6234. \code{lhs.id} is already in the environment because there was a
  6235. prior assignment, we check that this initializer has the same type
  6236. as the prior one. If this is the first assignment to the variable,
  6237. we associate type \code{t} with the variable \code{lhs.id} in the
  6238. environment. Thus, when the type checker encounters a use of
  6239. variable \code{x}, it can find its type in the environment.}
  6240. %
  6241. \racket{Regarding primitive operators, we recursively analyze the
  6242. arguments and then invoke \code{type\_check\_op} to check whether
  6243. the argument types are allowed.}
  6244. %
  6245. \python{Regarding addition and negation, we recursively analyze the
  6246. arguments, check that they have type \INT{}, and return \INT{}.}
  6247. \racket{Several auxiliary methods are used in the type checker. The
  6248. method \code{operator-types} defines a dictionary that maps the
  6249. operator names to their parameter and return types. The
  6250. \code{type-equal?} method determines whether two types are equal,
  6251. which for now simply dispatches to \code{equal?} (deep
  6252. equality). The \code{check-type-equal?} method triggers an error if
  6253. the two types are not equal. The \code{type-check-op} method looks
  6254. up the operator in the \code{operator-types} dictionary and then
  6255. checks whether the argument types are equal to the parameter types.
  6256. The result is the return type of the operator.}
  6257. %
  6258. \python{The auxiliary method \code{check\_type\_equal} method triggers
  6259. an error if the two types are not equal.}
  6260. \begin{figure}[tbp]
  6261. {\if\edition\racketEd
  6262. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6263. (define type-check-Lvar_class
  6264. (class object%
  6265. (super-new)
  6266. (define/public (operator-types)
  6267. '((+ . ((Integer Integer) . Integer))
  6268. (- . ((Integer) . Integer))
  6269. (read . (() . Integer))))
  6270. (define/public (type-equal? t1 t2) (equal? t1 t2))
  6271. (define/public (check-type-equal? t1 t2 e)
  6272. (unless (type-equal? t1 t2)
  6273. (error 'type-check "~a != ~a\nin ~v" t1 t2 e)))
  6274. (define/public (type-check-op op arg-types e)
  6275. (match (dict-ref (operator-types) op)
  6276. [`(,param-types . ,return-type)
  6277. (for ([at arg-types] [pt param-types])
  6278. (check-type-equal? at pt e))
  6279. return-type]
  6280. [else (error 'type-check-op "unrecognized ~a" op)]))
  6281. (define/public (type-check-exp env)
  6282. (lambda (e)
  6283. (match e
  6284. [(Int n) (values (Int n) 'Integer)]
  6285. [(Var x) (values (Var x) (dict-ref env x))]
  6286. [(Let x e body)
  6287. (define-values (e^ Te) ((type-check-exp env) e))
  6288. (define-values (b Tb) ((type-check-exp (dict-set env x Te)) body))
  6289. (values (Let x e^ b) Tb)]
  6290. [(Prim op es)
  6291. (define-values (new-es ts)
  6292. (for/lists (exprs types) ([e es]) ((type-check-exp env) e)))
  6293. (values (Prim op new-es) (type-check-op op ts e))]
  6294. [else (error 'type-check-exp "couldn't match" e)])))
  6295. (define/public (type-check-program e)
  6296. (match e
  6297. [(Program info body)
  6298. (define-values (body^ Tb) ((type-check-exp '()) body))
  6299. (check-type-equal? Tb 'Integer body)
  6300. (Program info body^)]
  6301. [else (error 'type-check-Lvar "couldn't match ~a" e)]))
  6302. ))
  6303. (define (type-check-Lvar p)
  6304. (send (new type-check-Lvar_class) type-check-program p))
  6305. \end{lstlisting}
  6306. \fi}
  6307. {\if\edition\pythonEd
  6308. \begin{lstlisting}
  6309. class TypeCheckLvar:
  6310. def check_type_equal(self, t1, t2, e):
  6311. if t1 != t2:
  6312. msg = 'error: ' + repr(t1) + ' != ' + repr(t2) + ' in ' + repr(e)
  6313. raise Exception(msg)
  6314. def type_check_exp(self, e, env):
  6315. match e:
  6316. case BinOp(left, Add(), right):
  6317. l = self.type_check_exp(left, env)
  6318. check_type_equal(l, int, left)
  6319. r = self.type_check_exp(right, env)
  6320. check_type_equal(r, int, right)
  6321. return int
  6322. case UnaryOp(USub(), v):
  6323. t = self.type_check_exp(v, env)
  6324. check_type_equal(t, int, v)
  6325. return int
  6326. case Name(id):
  6327. return env[id]
  6328. case Constant(value) if isinstance(value, int):
  6329. return int
  6330. case Call(Name('input_int'), []):
  6331. return int
  6332. def type_check_stmts(self, ss, env):
  6333. if len(ss) == 0:
  6334. return
  6335. match ss[0]:
  6336. case Assign([lhs], value):
  6337. t = self.type_check_exp(value, env)
  6338. if lhs.id in env:
  6339. check_type_equal(env[lhs.id], t, value)
  6340. else:
  6341. env[lhs.id] = t
  6342. return self.type_check_stmts(ss[1:], env)
  6343. case Expr(Call(Name('print'), [arg])):
  6344. t = self.type_check_exp(arg, env)
  6345. check_type_equal(t, int, arg)
  6346. return self.type_check_stmts(ss[1:], env)
  6347. case Expr(value):
  6348. self.type_check_exp(value, env)
  6349. return self.type_check_stmts(ss[1:], env)
  6350. def type_check_P(self, p):
  6351. match p:
  6352. case Module(body):
  6353. self.type_check_stmts(body, {})
  6354. \end{lstlisting}
  6355. \fi}
  6356. \caption{Type checker for the \LangVar{} language.}
  6357. \label{fig:type-check-Lvar}
  6358. \end{figure}
  6359. \begin{figure}[tbp]
  6360. {\if\edition\racketEd
  6361. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  6362. (define type-check-Lif_class
  6363. (class type-check-Lvar_class
  6364. (super-new)
  6365. (inherit check-type-equal?)
  6366. (define/override (operator-types)
  6367. (append '((- . ((Integer Integer) . Integer))
  6368. (and . ((Boolean Boolean) . Boolean))
  6369. (or . ((Boolean Boolean) . Boolean))
  6370. (< . ((Integer Integer) . Boolean))
  6371. (<= . ((Integer Integer) . Boolean))
  6372. (> . ((Integer Integer) . Boolean))
  6373. (>= . ((Integer Integer) . Boolean))
  6374. (not . ((Boolean) . Boolean))
  6375. )
  6376. (super operator-types)))
  6377. (define/override (type-check-exp env)
  6378. (lambda (e)
  6379. (match e
  6380. [(Bool b) (values (Bool b) 'Boolean)]
  6381. [(Prim 'eq? (list e1 e2))
  6382. (define-values (e1^ T1) ((type-check-exp env) e1))
  6383. (define-values (e2^ T2) ((type-check-exp env) e2))
  6384. (check-type-equal? T1 T2 e)
  6385. (values (Prim 'eq? (list e1^ e2^)) 'Boolean)]
  6386. [(If cnd thn els)
  6387. (define-values (cnd^ Tc) ((type-check-exp env) cnd))
  6388. (define-values (thn^ Tt) ((type-check-exp env) thn))
  6389. (define-values (els^ Te) ((type-check-exp env) els))
  6390. (check-type-equal? Tc 'Boolean e)
  6391. (check-type-equal? Tt Te e)
  6392. (values (If cnd^ thn^ els^) Te)]
  6393. [else ((super type-check-exp env) e)])))
  6394. ))
  6395. (define (type-check-Lif p)
  6396. (send (new type-check-Lif_class) type-check-program p))
  6397. \end{lstlisting}
  6398. \fi}
  6399. {\if\edition\pythonEd
  6400. \begin{lstlisting}
  6401. class TypeCheckLif(TypeCheckLvar):
  6402. def type_check_exp(self, e, env):
  6403. match e:
  6404. case Constant(value) if isinstance(value, bool):
  6405. return bool
  6406. case BinOp(left, Sub(), right):
  6407. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6408. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6409. return int
  6410. case UnaryOp(Not(), v):
  6411. t = self.type_check_exp(v, env); check_type_equal(t, bool, v)
  6412. return bool
  6413. case BoolOp(op, values):
  6414. left = values[0] ; right = values[1]
  6415. l = self.type_check_exp(left, env); check_type_equal(l, bool, left)
  6416. r = self.type_check_exp(right, env); check_type_equal(r, bool, right)
  6417. return bool
  6418. case Compare(left, [cmp], [right]) if isinstance(cmp, Eq) \
  6419. or isinstance(cmp, NotEq):
  6420. l = self.type_check_exp(left, env)
  6421. r = self.type_check_exp(right, env)
  6422. check_type_equal(l, r, e)
  6423. return bool
  6424. case Compare(left, [cmp], [right]):
  6425. l = self.type_check_exp(left, env); check_type_equal(l, int, left)
  6426. r = self.type_check_exp(right, env); check_type_equal(r, int, right)
  6427. return bool
  6428. case IfExp(test, body, orelse):
  6429. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6430. b = self.type_check_exp(body, env)
  6431. o = self.type_check_exp(orelse, env)
  6432. check_type_equal(b, o, e)
  6433. return b
  6434. case _:
  6435. return super().type_check_exp(e, env)
  6436. def type_check_stmts(self, ss, env):
  6437. if len(ss) == 0:
  6438. return
  6439. match ss[0]:
  6440. case If(test, body, orelse):
  6441. t = self.type_check_exp(test, env); check_type_equal(bool, t, test)
  6442. b = self.type_check_stmts(body, env)
  6443. o = self.type_check_stmts(orelse, env)
  6444. check_type_equal(b, o, ss[0])
  6445. return self.type_check_stmts(ss[1:], env)
  6446. case _:
  6447. return super().type_check_stmts(ss, env)
  6448. \end{lstlisting}
  6449. \fi}
  6450. \caption{Type checker for the \LangIf{} language.}
  6451. \label{fig:type-check-Lif}
  6452. \end{figure}
  6453. We shift our focus to Figure~\ref{fig:type-check-Lif}, the type
  6454. checker for \LangIf{}.
  6455. %
  6456. The type of a Boolean constant is \BOOLTY{}.
  6457. %
  6458. \racket{The \code{operator-types} function adds dictionary entries for
  6459. the other new operators.}
  6460. %
  6461. \python{Subtraction requires its arguments to be of type \INTTY{} and produces
  6462. an \INTTY{}. Negation requires its argument to be a \BOOLTY{} and
  6463. produces a \BOOLTY{}. Similarly for logical and and logical or. }
  6464. %
  6465. The equality operators requires the two arguments to have the same
  6466. type.
  6467. %
  6468. \python{The other comparisons (less-than, etc.) require their
  6469. arguments to be of type \INTTY{} and they produce a \BOOLTY{}.}
  6470. %
  6471. The condition of an \code{if} must
  6472. be of \BOOLTY{} type and the two branches must have the same type.
  6473. \begin{exercise}\normalfont
  6474. Create 10 new test programs in \LangIf{}. Half of the programs should
  6475. have a type error. For those programs, create an empty file with the
  6476. same base name but with file extension \code{.tyerr}. For example, if
  6477. the test
  6478. \racket{\code{cond\_test\_14.rkt}}\python{\code{cond\_test\_14.py}}
  6479. is expected to error, then create
  6480. an empty file named \code{cond\_test\_14.tyerr}.
  6481. %
  6482. \racket{This indicates to \code{interp-tests} and
  6483. \code{compiler-tests} that a type error is expected. }
  6484. %
  6485. \racket{This indicates to the \code{run-tests.rkt} scripts that a type
  6486. error is expected.}
  6487. %
  6488. The other half of the test programs should not have type errors.
  6489. %
  6490. \racket{In the \code{run-tests.rkt} script, change the second argument
  6491. of \code{interp-tests} and \code{compiler-tests} to
  6492. \code{type-check-Lif}, which causes the type checker to run prior to
  6493. the compiler passes. Temporarily change the \code{passes} to an
  6494. empty list and run the script, thereby checking that the new test
  6495. programs either type check or not as intended.}
  6496. %
  6497. Run the test script to check that these test programs type check as
  6498. expected.
  6499. \end{exercise}
  6500. \clearpage
  6501. \section{The \LangCIf{} Intermediate Language}
  6502. \label{sec:Cif}
  6503. {\if\edition\racketEd
  6504. %
  6505. Figure~\ref{fig:c1-concrete-syntax} defines the concrete syntax of the
  6506. \LangCIf{} intermediate language and Figure~\ref{fig:c1-syntax}
  6507. defines its abstract syntax. Compared to \LangCVar{}, the \LangCIf{}
  6508. language adds logical and comparison operators to the \Exp{}
  6509. non-terminal and the literals \TRUE{} and \FALSE{} to the \Arg{}
  6510. non-terminal.
  6511. Regarding control flow, \LangCIf{} adds \key{goto} and \code{if}
  6512. statements to the \Tail{} non-terminal. The condition of an \code{if}
  6513. statement is a comparison operation and the branches are \code{goto}
  6514. statements, making it straightforward to compile \code{if} statements
  6515. to x86.
  6516. %
  6517. \fi}
  6518. %
  6519. {\if\edition\pythonEd
  6520. %
  6521. The output of \key{explicate\_control} is a language similar to the
  6522. $C$ language~\citep{Kernighan:1988nx} in that it has labels and
  6523. \code{goto} statements, so we name it \LangCIf{}. The
  6524. concrete syntax for \LangCIf{} is defined in
  6525. Figure~\ref{fig:c1-concrete-syntax}
  6526. and the abstract syntax is defined in Figure~\ref{fig:c1-syntax}.
  6527. %
  6528. The \LangCIf{} language supports the same operators as \LangIf{} but
  6529. the arguments of operators are restricted to atomic expressions. The
  6530. \LangCIf{} language does not include \code{if} expressions but it does
  6531. include a restricted form of \code{if} statment. The condition must be
  6532. a comparison and the two branches may only contain \code{goto}
  6533. statements. These restrictions make it easier to translate \code{if}
  6534. statements to x86.
  6535. %
  6536. \fi}
  6537. %
  6538. The \key{CProgram} construct contains
  6539. %
  6540. \racket{an alist}\python{a dictionary}
  6541. %
  6542. mapping labels to $\Tail$ expressions, which can be return statements,
  6543. an assignment statement followed by a $\Tail$ expression, a
  6544. \code{goto}, or a conditional \code{goto}.
  6545. \begin{figure}[tbp]
  6546. \fbox{
  6547. \begin{minipage}{0.96\textwidth}
  6548. \small
  6549. \[
  6550. \begin{array}{lcl}
  6551. \Atm &::=& \gray{ \Int \MID \Var } \MID \itm{bool} \\
  6552. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6553. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} \MID \key{(-}~\Atm~\Atm\key{)} } \\
  6554. &\MID& \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP \\
  6555. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \\
  6556. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  6557. \MID \key{goto}~\itm{label}\key{;}\\
  6558. &\MID& \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} \\
  6559. \LangCIfM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  6560. \end{array}
  6561. \]
  6562. \end{minipage}
  6563. }
  6564. \caption{The concrete syntax of the \LangCIf{} intermediate language.}
  6565. \label{fig:c1-concrete-syntax}
  6566. \end{figure}
  6567. \begin{figure}[tp]
  6568. \fbox{
  6569. \begin{minipage}{0.96\textwidth}
  6570. \small
  6571. {\if\edition\racketEd
  6572. \[
  6573. \begin{array}{lcl}
  6574. \Atm &::=& \gray{\INT{\Int} \MID \VAR{\Var}} \MID \BOOL{\itm{bool}} \\
  6575. \itm{cmp} &::= & \code{eq?} \MID \code{<} \MID \code{<=} \MID \code{>} \MID \code{>=} \\
  6576. \Exp &::= & \gray{ \Atm \MID \READ{} }\\
  6577. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  6578. &\MID& \UNIOP{\key{'not}}{\Atm}
  6579. \MID \BINOP{\key{'}\itm{cmp}}{\Atm}{\Atm} \\
  6580. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} } \\
  6581. \Tail &::= & \gray{\RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail} }
  6582. \MID \GOTO{\itm{label}} \\
  6583. &\MID& \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} \\
  6584. \LangCIfM{} & ::= & \gray{\CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}}
  6585. \end{array}
  6586. \]
  6587. \fi}
  6588. {\if\edition\pythonEd
  6589. \[
  6590. \begin{array}{lcl}
  6591. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  6592. \Exp &::= & \Atm \MID \READ{} \\
  6593. &\MID& \BINOP{\Atm}{\itm{binop}}{\Atm}
  6594. \MID \UNIOP{\itm{uniop}}{\Atm} \\
  6595. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm}
  6596. \MID \BOOLOP{\itm{boolop}}{\Atm}{\Atm} \\
  6597. \Stmt &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  6598. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  6599. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  6600. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS} \\
  6601. \LangCIfM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\,\key{:}\,\Stmt^{*}, \ldots \RC}
  6602. \end{array}
  6603. \]
  6604. \fi}
  6605. \end{minipage}
  6606. }
  6607. \caption{The abstract syntax of \LangCIf{}\racket{, an extension of \LangCVar{}
  6608. (Figure~\ref{fig:c0-syntax})}.}
  6609. \label{fig:c1-syntax}
  6610. \end{figure}
  6611. \section{The \LangXIf{} Language}
  6612. \label{sec:x86-if}
  6613. \index{subject}{x86} To implement the new logical operations, the comparison
  6614. operations, and the \key{if} expression, we need to delve further into
  6615. the x86 language. Figures~\ref{fig:x86-1-concrete} and \ref{fig:x86-1}
  6616. define the concrete and abstract syntax for the \LangXIf{} subset
  6617. of x86, which includes instructions for logical operations,
  6618. comparisons, and \racket{conditional} jumps.
  6619. One challenge is that x86 does not provide an instruction that
  6620. directly implements logical negation (\code{not} in \LangIf{} and
  6621. \LangCIf{}). However, the \code{xorq} instruction can be used to
  6622. encode \code{not}. The \key{xorq} instruction takes two arguments,
  6623. performs a pairwise exclusive-or ($\mathrm{XOR}$) operation on each
  6624. bit of its arguments, and writes the results into its second argument.
  6625. Recall the truth table for exclusive-or:
  6626. \begin{center}
  6627. \begin{tabular}{l|cc}
  6628. & 0 & 1 \\ \hline
  6629. 0 & 0 & 1 \\
  6630. 1 & 1 & 0
  6631. \end{tabular}
  6632. \end{center}
  6633. For example, applying $\mathrm{XOR}$ to each bit of the binary numbers
  6634. $0011$ and $0101$ yields $0110$. Notice that in the row of the table
  6635. for the bit $1$, the result is the opposite of the second bit. Thus,
  6636. the \code{not} operation can be implemented by \code{xorq} with $1$ as
  6637. the first argument as follows, where $\Arg$ is the translation of
  6638. $\Atm$.
  6639. \[
  6640. \CASSIGN{\Var}{\CUNIOP{\key{not}}{\Atm}}
  6641. \qquad\Rightarrow\qquad
  6642. \begin{array}{l}
  6643. \key{movq}~ \Arg\key{,} \Var\\
  6644. \key{xorq}~ \key{\$1,} \Var
  6645. \end{array}
  6646. \]
  6647. \begin{figure}[tp]
  6648. \fbox{
  6649. \begin{minipage}{0.96\textwidth}
  6650. \[
  6651. \begin{array}{lcl}
  6652. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6653. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6654. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} } \MID \key{\%}\itm{bytereg}\\
  6655. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6656. \Instr &::=& \gray{ \key{addq} \; \Arg\key{,} \Arg \MID
  6657. \key{subq} \; \Arg\key{,} \Arg \MID
  6658. \key{negq} \; \Arg \MID \key{movq} \; \Arg\key{,} \Arg \MID } \\
  6659. && \gray{ \key{callq} \; \itm{label} \MID
  6660. \key{pushq}\;\Arg \MID \key{popq}\;\Arg \MID \key{retq} \MID \racket{\key{jmp}\,\itm{label} \MID} } \python{\key{jmp}\,\itm{label} \MID} \\
  6661. && \racket{\gray{ \itm{label}\key{:}\; \Instr }}\python{\itm{label}\key{:}\; \Instr}
  6662. \MID \key{xorq}~\Arg\key{,}~\Arg
  6663. \MID \key{cmpq}~\Arg\key{,}~\Arg \MID \\
  6664. && \key{set}cc~\Arg
  6665. \MID \key{movzbq}~\Arg\key{,}~\Arg
  6666. \MID \key{j}cc~\itm{label}
  6667. \\
  6668. \LangXIfM{} &::= & \gray{ \key{.globl main} }\\
  6669. & & \gray{ \key{main:} \; \Instr\ldots }
  6670. \end{array}
  6671. \]
  6672. \end{minipage}
  6673. }
  6674. \caption{The concrete syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-concrete}).}
  6675. \label{fig:x86-1-concrete}
  6676. \end{figure}
  6677. \begin{figure}[tp]
  6678. \fbox{
  6679. \begin{minipage}{0.98\textwidth}
  6680. \small
  6681. {\if\edition\racketEd
  6682. \[
  6683. \begin{array}{lcl}
  6684. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6685. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6686. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6687. \MID \BYTEREG{\itm{bytereg}} \\
  6688. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6689. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6690. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6691. &\MID& \gray{ \BININSTR{\code{'movq}}{\Arg}{\Arg}
  6692. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6693. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6694. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \JMP{\itm{label}} } \\
  6695. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6696. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6697. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6698. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6699. &\MID& \JMPIF{'\itm{cc}'}{\itm{label}} \\
  6700. \Block &::= & \gray{\BLOCK{\itm{info}}{\LP\Instr\ldots\RP}} \\
  6701. \LangXIfM{} &::= & \gray{\XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP}}
  6702. \end{array}
  6703. \]
  6704. \fi}
  6705. %
  6706. {\if\edition\pythonEd
  6707. \[
  6708. \begin{array}{lcl}
  6709. \itm{bytereg} &::=& \key{ah} \MID \key{al} \MID \key{bh} \MID \key{bl}
  6710. \MID \key{ch} \MID \key{cl} \MID \key{dh} \MID \key{dl} \\
  6711. \Arg &::=& \gray{\IMM{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}}
  6712. \MID \BYTEREG{\itm{bytereg}} \\
  6713. \itm{cc} & ::= & \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} \\
  6714. \Instr &::=& \gray{ \BININSTR{\code{addq}}{\Arg}{\Arg}
  6715. \MID \BININSTR{\code{subq}}{\Arg}{\Arg} } \\
  6716. &\MID& \gray{ \BININSTR{\code{movq}}{\Arg}{\Arg}
  6717. \MID \UNIINSTR{\code{negq}}{\Arg} } \\
  6718. &\MID& \gray{ \CALLQ{\itm{label}}{\itm{int}} \MID \RETQ{}
  6719. \MID \PUSHQ{\Arg} \MID \POPQ{\Arg} \MID \racket{\JMP{\itm{label}}} } \python{\JMP{\itm{label}}}\\
  6720. &\MID& \BININSTR{\code{xorq}}{\Arg}{\Arg}
  6721. \MID \BININSTR{\code{cmpq}}{\Arg}{\Arg}\\
  6722. &\MID& \BININSTR{\code{set}}{\itm{cc}}{\Arg}
  6723. \MID \BININSTR{\code{movzbq}}{\Arg}{\Arg}\\
  6724. &\MID& \JMPIF{\key{'}\itm{cc}\key{'}}{\itm{label}} \\
  6725. \LangXIfM{} &::= & \XPROGRAM{\itm{info}}{\LC\itm{label} \,\key{:}\, \Instr^{*} \key{,} \ldots \RC }
  6726. \end{array}
  6727. \]
  6728. \fi}
  6729. \end{minipage}
  6730. }
  6731. \caption{The abstract syntax of \LangXIf{} (extends \LangXInt{} of Figure~\ref{fig:x86-int-ast}).}
  6732. \label{fig:x86-1}
  6733. \end{figure}
  6734. Next we consider the x86 instructions that are relevant for compiling
  6735. the comparison operations. The \key{cmpq} instruction compares its two
  6736. arguments to determine whether one argument is less than, equal, or
  6737. greater than the other argument. The \key{cmpq} instruction is unusual
  6738. regarding the order of its arguments and where the result is
  6739. placed. The argument order is backwards: if you want to test whether
  6740. $x < y$, then write \code{cmpq} $y$\code{,} $x$. The result of
  6741. \key{cmpq} is placed in the special EFLAGS register. This register
  6742. cannot be accessed directly but it can be queried by a number of
  6743. instructions, including the \key{set} instruction. The instruction
  6744. $\key{set}cc~d$ puts a \key{1} or \key{0} into the destination $d$
  6745. depending on whether the comparison comes out according to the
  6746. condition code \itm{cc} (\key{e} for equal, \key{l} for less, \key{le}
  6747. for less-or-equal, \key{g} for greater, \key{ge} for
  6748. greater-or-equal). The \key{set} instruction has a quirk in
  6749. that its destination argument must be single byte register, such as
  6750. \code{al} (L for lower bits) or \code{ah} (H for higher bits), which
  6751. are part of the \code{rax} register. Thankfully, the \key{movzbq}
  6752. instruction can be used to move from a single byte register to a
  6753. normal 64-bit register. The abstract syntax for the \code{set}
  6754. instruction differs from the concrete syntax in that it separates the
  6755. instruction name from the condition code.
  6756. \python{The x86 instructions for jumping are relevant to the
  6757. compilation of \key{if} expressions.}
  6758. %
  6759. \python{The instruction $\key{jmp}\,\itm{label}$ updates the program
  6760. counter to the address of the instruction after the specified
  6761. label.}
  6762. %
  6763. \racket{The x86 instruction for conditional jump is relevant to the
  6764. compilation of \key{if} expressions.}
  6765. %
  6766. The instruction $\key{j}\itm{cc}~\itm{label}$ updates the program
  6767. counter to point to the instruction after \itm{label} depending on
  6768. whether the result in the EFLAGS register matches the condition code
  6769. \itm{cc}, otherwise the jump instruction falls through to the next
  6770. instruction. Like the abstract syntax for \code{set}, the abstract
  6771. syntax for conditional jump separates the instruction name from the
  6772. condition code. For example, \JMPIF{\key{'le'}}{\key{foo}} corresponds
  6773. to \code{jle foo}. Because the conditional jump instruction relies on
  6774. the EFLAGS register, it is common for it to be immediately preceded by
  6775. a \key{cmpq} instruction to set the EFLAGS register.
  6776. \section{Shrink the \LangIf{} Language}
  6777. \label{sec:shrink-Lif}
  6778. The \LangIf{} language includes several features that are easily
  6779. expressible with other features. For example, \code{and} and \code{or}
  6780. are expressible using \code{if} as follows.
  6781. \begin{align*}
  6782. \CAND{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{e_2}{\FALSE{}}\\
  6783. \COR{e_1}{e_2} & \quad \Rightarrow \quad \CIF{e_1}{\TRUE{}}{e_2}
  6784. \end{align*}
  6785. By performing these translations in the front-end of the compiler, the
  6786. later passes of the compiler do not need to deal with these features,
  6787. making the passes shorter.
  6788. %% For example, subtraction is
  6789. %% expressible using addition and negation.
  6790. %% \[
  6791. %% \key{(-}\; e_1 \; e_2\key{)} \quad \Rightarrow \quad \LP\key{+} \; e_1 \; \LP\key{-} \; e_2\RP\RP
  6792. %% \]
  6793. %% Several of the comparison operations are expressible using less-than
  6794. %% and logical negation.
  6795. %% \[
  6796. %% \LP\key{<=}\; e_1 \; e_2\RP \quad \Rightarrow \quad
  6797. %% \LP\key{let}~\LP\LS\key{tmp.1}~e_1\RS\RP~\LP\key{not}\;\LP\key{<}\;e_2\;\key{tmp.1})\RP\RP
  6798. %% \]
  6799. %% The \key{let} is needed in the above translation to ensure that
  6800. %% expression $e_1$ is evaluated before $e_2$.
  6801. On the other hand, sometimes translations reduce the efficiency of the
  6802. generated code by increasing the number of instructions. For example,
  6803. expressing subtraction in terms of negation
  6804. \[
  6805. \CBINOP{\key{-}}{e_1}{e_2} \quad \Rightarrow \quad
  6806. \CBINOP{\key{+}}{e_1}{ \CUNIOP{\key{-}}{e_2} }
  6807. \]
  6808. produces code with two x86 instructions (\code{negq} and \code{addq})
  6809. instead of just one (\code{subq}).
  6810. %% However,
  6811. %% these differences typically do not affect the number of accesses to
  6812. %% memory, which is the primary factor that determines execution time on
  6813. %% modern computer architectures.
  6814. \begin{exercise}\normalfont
  6815. %
  6816. Implement the pass \code{shrink} to remove \key{and} and \key{or} from
  6817. the language by translating them to \code{if} expressions in \LangIf{}.
  6818. %
  6819. Create four test programs that involve these operators.
  6820. %
  6821. {\if\edition\racketEd
  6822. In the \code{run-tests.rkt} script, add the following entry for
  6823. \code{shrink} to the list of passes (it should be the only pass at
  6824. this point).
  6825. \begin{lstlisting}
  6826. (list "shrink" shrink interp_Lif type-check-Lif)
  6827. \end{lstlisting}
  6828. This instructs \code{interp-tests} to run the intepreter
  6829. \code{interp\_Lif} and the type checker \code{type-check-Lif} on the
  6830. output of \code{shrink}.
  6831. \fi}
  6832. %
  6833. Run the script to test your compiler on all the test programs.
  6834. \end{exercise}
  6835. {\if\edition\racketEd
  6836. \section{Uniquify Variables}
  6837. \label{sec:uniquify-Lif}
  6838. Add cases to \code{uniquify-exp} to handle Boolean constants and
  6839. \code{if} expressions.
  6840. \begin{exercise}\normalfont
  6841. Update the \code{uniquify\_exp} for \LangIf{} and add the following
  6842. entry to the list of \code{passes} in the \code{run-tests.rkt} script.
  6843. \begin{lstlisting}
  6844. (list "uniquify" uniquify interp_Lif type_check_Lif)
  6845. \end{lstlisting}
  6846. Run the script to test your compiler.
  6847. \end{exercise}
  6848. \fi}
  6849. \section{Remove Complex Operands}
  6850. \label{sec:remove-complex-opera-Lif}
  6851. The output language of \code{remove\_complex\_operands} is
  6852. \LangIfANF{} (Figure~\ref{fig:Lif-anf-syntax}), the administrative
  6853. normal form of \LangIf{}. A Boolean constant is an atomic expressions
  6854. but the \code{if} expression is not. All three sub-expressions of an
  6855. \code{if} are allowed to be complex expressions but the operands of
  6856. \code{not} and the comparisons must be atomic.
  6857. %
  6858. \python{We add a new language form, the \code{Let} expression, to aid
  6859. in the translation of \code{if} expressions. When we recursively
  6860. process the two branches of the \code{if}, we generate temporary
  6861. variables and their initializing expressions. However, these
  6862. expressions may contain side effects and should only be executed
  6863. when the condition of the \code{if} is true (for the ``then''
  6864. branch) or false (for the ``else'' branch). The \code{Let} provides
  6865. a way to initialize the temporary variables within the two branches
  6866. of the \code{if} expression. In general, the $\LET{x}{e_1}{e_2}$
  6867. form assigns the result of $e_1$ to the variable $x$, an then
  6868. evaluates $e_2$, which may reference $x$.}
  6869. Add cases for Boolean constants, \python{comparisons,} and \code{if}
  6870. expressions to the \code{rco\_exp} and \code{rco\_atom} functions
  6871. according to whether the output needs to be \Exp{} or \Atm{} as
  6872. specified in the grammar for \LangIfANF{}. Regarding \code{if}, it is
  6873. particularly important to \textbf{not} replace its condition with a
  6874. temporary variable because that would interfere with the generation of
  6875. high-quality output in the \code{explicate\_control} pass.
  6876. \begin{figure}[tp]
  6877. \centering
  6878. \fbox{
  6879. \begin{minipage}{0.96\textwidth}
  6880. {\if\edition\racketEd
  6881. \[
  6882. \begin{array}{rcl}
  6883. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} } \MID \BOOL{\itm{bool}}\\
  6884. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  6885. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  6886. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  6887. &\MID& \UNIOP{\key{not}}{\Atm} \\
  6888. &\MID& \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6889. R^{\mathsf{ANF}}_{\mathsf{if}} &::=& \PROGRAM{\code{()}}{\Exp}
  6890. \end{array}
  6891. \]
  6892. \fi}
  6893. {\if\edition\pythonEd
  6894. \[
  6895. \begin{array}{rcl}
  6896. \itm{binop} &::=& \code{Add()} \MID \code{Sub()} \\
  6897. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  6898. \itm{uniop} &::=& \code{USub()} \MID \code{Not()} \\
  6899. \itm{bool} &::=& \code{True} \MID \code{False} \\
  6900. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  6901. \Exp &::=& \Atm \MID \READ{} \\
  6902. &\MID& \BINOP{\itm{binop}}{\Atm}{\Atm} \MID \UNIOP{\key{uniop}}{\Atm} \\
  6903. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  6904. &\MID& \LET{\Var}{\Exp}{\Exp}\\
  6905. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  6906. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{*}}{\Stmt^{*}}\\
  6907. \LangIfANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  6908. \end{array}
  6909. \]
  6910. \fi}
  6911. \end{minipage}
  6912. }
  6913. \caption{\LangIfANF{} is \LangIf{} in monadic normal form.}
  6914. \label{fig:Lif-anf-syntax}
  6915. \end{figure}
  6916. \begin{exercise}\normalfont
  6917. %
  6918. Add cases for Boolean constants and \code{if} to the \code{rco\_atom}
  6919. and \code{rco\_exp} functions in \code{compiler.rkt}.
  6920. %
  6921. Create three new \LangIf{} programs that exercise the interesting
  6922. code in this pass.
  6923. %
  6924. {\if\edition\racketEd
  6925. In the \code{run-tests.rkt} script, add the following entry to the
  6926. list of \code{passes} and then run the script to test your compiler.
  6927. \begin{lstlisting}
  6928. (list "remove-complex" remove-complex-opera* interp-Lif type-check-Lif)
  6929. \end{lstlisting}
  6930. \fi}
  6931. \end{exercise}
  6932. \section{Explicate Control}
  6933. \label{sec:explicate-control-Lif}
  6934. \racket{Recall that the purpose of \code{explicate\_control} is to
  6935. make the order of evaluation explicit in the syntax of the program.
  6936. With the addition of \key{if} this get more interesting.}
  6937. %
  6938. The \code{explicate\_control} pass translates from \LangIf{} to \LangCIf{}.
  6939. %
  6940. The main challenge to overcome is that the condition of an \key{if}
  6941. can be an arbitrary expression in \LangIf{} whereas in \LangCIf{} the
  6942. condition must be a comparison.
  6943. As a motivating example, consider the following program that has an
  6944. \key{if} expression nested in the condition of another \key{if}.%
  6945. \python{\footnote{Programmers rarely write nested \code{if}
  6946. expressions, but it is not uncommon for the condition of an
  6947. \code{if} statement to be a call of a function that also contains an
  6948. \code{if} statement. When such a function is inlined, the result is
  6949. a nested \code{if} that requires the techniques discussed in this
  6950. section.}}
  6951. % cond_test_41.rkt, if_lt_eq.py
  6952. \begin{center}
  6953. \begin{minipage}{0.96\textwidth}
  6954. {\if\edition\racketEd
  6955. \begin{lstlisting}
  6956. (let ([x (read)])
  6957. (let ([y (read)])
  6958. (if (if (< x 1) (eq? x 0) (eq? x 2))
  6959. (+ y 2)
  6960. (+ y 10))))
  6961. \end{lstlisting}
  6962. \fi}
  6963. {\if\edition\pythonEd
  6964. \begin{lstlisting}
  6965. x = input_int()
  6966. y = input_int()
  6967. print(y + 2 if (x == 0 if x < 1 else x == 2) else y + 10)
  6968. \end{lstlisting}
  6969. \fi}
  6970. \end{minipage}
  6971. \end{center}
  6972. %
  6973. The naive way to compile \key{if} and the comparison operations would
  6974. be to handle each of them in isolation, regardless of their context.
  6975. Each comparison would be translated into a \key{cmpq} instruction
  6976. followed by a couple instructions to move the result from the EFLAGS
  6977. register into a general purpose register or stack location. Each
  6978. \key{if} would be translated into a \key{cmpq} instruction followed by
  6979. a conditional jump. The generated code for the inner \key{if} in the
  6980. above example would be as follows.
  6981. \begin{center}
  6982. \begin{minipage}{0.96\textwidth}
  6983. \begin{lstlisting}
  6984. cmpq $1, x
  6985. setl %al
  6986. movzbq %al, tmp
  6987. cmpq $1, tmp
  6988. je then_branch_1
  6989. jmp else_branch_1
  6990. \end{lstlisting}
  6991. \end{minipage}
  6992. \end{center}
  6993. However, if we take context into account we can do better and reduce
  6994. the use of \key{cmpq} instructions for accessing the EFLAG register.
  6995. Our goal will be to compile \key{if} expressions so that the relevant
  6996. comparison instruction appears directly before the conditional jump.
  6997. For example, we want to generate the following code for the inner
  6998. \code{if}.
  6999. \begin{center}
  7000. \begin{minipage}{0.96\textwidth}
  7001. \begin{lstlisting}
  7002. cmpq $1, x
  7003. jl then_branch_1
  7004. jmp else_branch_1
  7005. \end{lstlisting}
  7006. \end{minipage}
  7007. \end{center}
  7008. One way to achieve this is to reorganize the code at the level of
  7009. \LangIf{}, pushing the outer \key{if} inside the inner one, yielding
  7010. the following code.
  7011. \begin{center}
  7012. \begin{minipage}{0.96\textwidth}
  7013. {\if\edition\racketEd
  7014. \begin{lstlisting}
  7015. (let ([x (read)])
  7016. (let ([y (read)])
  7017. (if (< x 1)
  7018. (if (eq? x 0)
  7019. (+ y 2)
  7020. (+ y 10))
  7021. (if (eq? x 2)
  7022. (+ y 2)
  7023. (+ y 10)))))
  7024. \end{lstlisting}
  7025. \fi}
  7026. {\if\edition\pythonEd
  7027. \begin{lstlisting}
  7028. x = input_int()
  7029. y = intput_int()
  7030. print(((y + 2) if x == 0 else (y + 10)) \
  7031. if (x < 1) \
  7032. else ((y + 2) if (x == 2) else (y + 10)))
  7033. \end{lstlisting}
  7034. \fi}
  7035. \end{minipage}
  7036. \end{center}
  7037. Unfortunately, this approach duplicates the two branches from the
  7038. outer \code{if} and a compiler must never duplicate code! After all,
  7039. the two branches could have been very large expressions.
  7040. We need a way to perform the above transformation but without
  7041. duplicating code. That is, we need a way for different parts of a
  7042. program to refer to the same piece of code.
  7043. %
  7044. Put another way, we need to move away from abstract syntax
  7045. \emph{trees} and instead use \emph{graphs}.
  7046. %
  7047. At the level of x86 assembly this is straightforward because we can
  7048. label the code for each branch and insert jumps in all the places that
  7049. need to execute the branch.
  7050. %
  7051. Likewise, our language \LangCIf{} provides the ability to label a
  7052. sequence of code and to jump to a label via \code{goto}.
  7053. %
  7054. %% In particular, we use a standard program representation called a
  7055. %% \emph{control flow graph} (CFG), due to Frances Elizabeth
  7056. %% \citet{Allen:1970uq}. \index{subject}{control-flow graph} Each vertex
  7057. %% is a labeled sequence of code, called a \emph{basic block}, and each
  7058. %% edge represents a jump to another block.
  7059. %
  7060. %% The nice thing about the output of \code{explicate\_control} is that
  7061. %% there are no unnecessary comparisons and every comparison is part of a
  7062. %% conditional jump.
  7063. %% The down-side of this output is that it includes
  7064. %% trivial blocks, such as the blocks labeled \code{block92} through
  7065. %% \code{block95}, that only jump to another block. We discuss a solution
  7066. %% to this problem in Section~\ref{sec:opt-jumps}.
  7067. {\if\edition\racketEd
  7068. %
  7069. Recall that in Section~\ref{sec:explicate-control-Lvar} we implement
  7070. \code{explicate\_control} for \LangVar{} using two mutually recursive
  7071. functions, \code{explicate\_tail} and \code{explicate\_assign}. The
  7072. former function translates expressions in tail position whereas the
  7073. later function translates expressions on the right-hand-side of a
  7074. \key{let}. With the addition of \key{if} expression in \LangIf{} we
  7075. have a new kind of position to deal with: the predicate position of
  7076. the \key{if}. We need another function, \code{explicate\_pred}, that
  7077. decides how to compile an \key{if} by analyzing its predicate. So
  7078. \code{explicate\_pred} takes an \LangIf{} expression and two \LangCIf{}
  7079. tails for the then-branch and else-branch and outputs a tail. In the
  7080. following paragraphs we discuss specific cases in the
  7081. \code{explicate\_tail}, \code{explicate\_assign}, and
  7082. \code{explicate\_pred} functions.
  7083. %
  7084. \fi}
  7085. %
  7086. {\if\edition\pythonEd
  7087. %
  7088. We recommend implementing \code{explicate\_control} using the
  7089. following four auxiliary functions.
  7090. \begin{description}
  7091. \item[\code{explicate\_effect}] generates code for expressions as
  7092. statements, so their result is ignored and only their side effects
  7093. matter.
  7094. \item[\code{explicate\_assign}] generates code for expressions
  7095. on the right-hand side of an assignment.
  7096. \item[\code{explicate\_pred}] generates code for an \code{if}
  7097. expression or statement by analyzing the condition expression.
  7098. \item[\code{explicate\_stmt}] generates code for statements.
  7099. \end{description}
  7100. These four functions should build the dictionary of basic blocks. The
  7101. following auxiliary function can be used to create a new basic block
  7102. from a list of statements. It returns a \code{goto} statement that
  7103. jumps to the new basic block.
  7104. \begin{center}
  7105. \begin{minipage}{\textwidth}
  7106. \begin{lstlisting}
  7107. def create_block(stmts, basic_blocks):
  7108. label = label_name(generate_name('block'))
  7109. basic_blocks[label] = stmts
  7110. return Goto(label)
  7111. \end{lstlisting}
  7112. \end{minipage}
  7113. \end{center}
  7114. Figure~\ref{fig:explicate-control-Lif} provides a skeleton for the
  7115. \code{explicate\_control} pass.
  7116. The \code{explicate\_effect} function has three parameters: 1) the
  7117. expression to be compiled, 2) the already-compiled code for this
  7118. expression's \emph{continuation}, that is, the list of statements that
  7119. should execute after this expression, and 3) the dictionary of
  7120. generated basic blocks. The \code{explicate\_effect} function returns
  7121. a list of \LangCIf{} statements and it may add to the dictionary of
  7122. basic blocks.
  7123. %
  7124. Let's consider a few of the cases for the expression to be compiled.
  7125. If the expression to be compiled is a constant, then it can be
  7126. discarded because it has no side effects. If it's a \CREAD{}, then it
  7127. has a side-effect and should be preserved. So the exprssion should be
  7128. translated into a statement using the \code{Expr} AST class. If the
  7129. expression to be compiled is an \code{if} expression, we translate the
  7130. two branches using \code{explicate\_effect} and then translate the
  7131. condition expression using \code{explicate\_pred}, which generates
  7132. code for the entire \code{if}.
  7133. The \code{explicate\_assign} function has four parameters: 1) the
  7134. right-hand-side of the assignment, 2) the left-hand-side of the
  7135. assignment (the variable), 3) the continuation, and 4) the dictionary
  7136. of basic blocks. The \code{explicate\_assign} function returns a list
  7137. of \LangCIf{} statements and it may add to the dictionary of basic
  7138. blocks.
  7139. When the right-hand-side is an \code{if} expression, there is some
  7140. work to do. In particular, the two branches should be translated using
  7141. \code{explicate\_assign} and the condition expression should be
  7142. translated using \code{explicate\_pred}. Otherwise we can simply
  7143. generate an assignment statement, with the given left and right-hand
  7144. sides, concatenated with its continuation.
  7145. \begin{figure}[tbp]
  7146. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  7147. def explicate_effect(e, cont, basic_blocks):
  7148. match e:
  7149. case IfExp(test, body, orelse):
  7150. ...
  7151. case Call(func, args):
  7152. ...
  7153. case Let(var, rhs, body):
  7154. ...
  7155. case _:
  7156. ...
  7157. def explicate_assign(rhs, lhs, cont, basic_blocks):
  7158. match rhs:
  7159. case IfExp(test, body, orelse):
  7160. ...
  7161. case Let(var, rhs, body):
  7162. ...
  7163. case _:
  7164. return [Assign([lhs], rhs)] + cont
  7165. def explicate_pred(cnd, thn, els, basic_blocks):
  7166. match cnd:
  7167. case Compare(left, [op], [right]):
  7168. goto_thn = create_block(thn, basic_blocks)
  7169. goto_els = create_block(els, basic_blocks)
  7170. return [If(cnd, [goto_thn], [goto_els])]
  7171. case Constant(True):
  7172. return thn;
  7173. case Constant(False):
  7174. return els;
  7175. case UnaryOp(Not(), operand):
  7176. ...
  7177. case IfExp(test, body, orelse):
  7178. ...
  7179. case Let(var, rhs, body):
  7180. ...
  7181. case _:
  7182. return [If(Compare(cnd, [Eq()], [Constant(False)]),
  7183. [create_block(els, basic_blocks)],
  7184. [create_block(thn, basic_blocks)])]
  7185. def explicate_stmt(s, cont, basic_blocks):
  7186. match s:
  7187. case Assign([lhs], rhs):
  7188. return explicate_assign(rhs, lhs, cont, basic_blocks)
  7189. case Expr(value):
  7190. return explicate_effect(value, cont, basic_blocks)
  7191. case If(test, body, orelse):
  7192. ...
  7193. def explicate_control(p):
  7194. match p:
  7195. case Module(body):
  7196. new_body = [Return(Constant(0))]
  7197. basic_blocks = {}
  7198. for s in reversed(body):
  7199. new_body = explicate_stmt(s, new_body, basic_blocks)
  7200. basic_blocks[label_name('start')] = new_body
  7201. return CProgram(basic_blocks)
  7202. \end{lstlisting}
  7203. \caption{Skeleton for the \code{explicate\_control} pass.}
  7204. \label{fig:explicate-control-Lif}
  7205. \end{figure}
  7206. \fi}
  7207. {\if\edition\racketEd
  7208. %
  7209. The \code{explicate\_tail} and \code{explicate\_assign} functions need
  7210. additional cases for Boolean constants and \key{if}. The cases for
  7211. \code{if} should recursively compile the two branches using either
  7212. \code{explicate\_tail} or \code{explicate\_assign}, respectively. The
  7213. cases should then invoke \code{explicate\_pred} on the condition
  7214. expression, passing in the generated code for the two branches. For
  7215. example, consider the following program with an \code{if} in tail
  7216. position.
  7217. \begin{lstlisting}
  7218. (let ([x (read)])
  7219. (if (eq? x 0) 42 777))
  7220. \end{lstlisting}
  7221. The two branches are recursively compiled to \code{return 42;} and
  7222. \code{return 777;}. We then delegate to \code{explicate\_pred},
  7223. passing the condition \code{(eq? x 0)} and the two return statements, which is
  7224. used as the result for \code{explicate\_tail}.
  7225. Next let us consider a program with an \code{if} on the right-hand
  7226. side of a \code{let}.
  7227. \begin{lstlisting}
  7228. (let ([y (read)])
  7229. (let ([x (if (eq? y 0) 40 777)])
  7230. (+ x 2)))
  7231. \end{lstlisting}
  7232. Note that the body of the inner \code{let} will have already been
  7233. compiled to \code{return (+ x 2);} and passed as the \code{cont}
  7234. parameter of \code{explicate\_assign}. We'll need to use \code{cont}
  7235. to recursively process both branches of the \code{if}, so we generate
  7236. the following block using an auxiliary function named \code{create\_block}.
  7237. \begin{lstlisting}
  7238. block_6:
  7239. return (+ x 2)
  7240. \end{lstlisting}
  7241. and use \code{goto block\_6;} as the \code{cont} argument for
  7242. compiling the branches. So the two branches compile to
  7243. \begin{lstlisting}
  7244. x = 40;
  7245. goto block_6;
  7246. \end{lstlisting}
  7247. and
  7248. \begin{lstlisting}
  7249. x = 777;
  7250. goto block_6;
  7251. \end{lstlisting}
  7252. We then delegate to \code{explicate\_pred}, passing the condition \code{(eq? y
  7253. 0)} and the above code for the branches.
  7254. \fi}
  7255. {\if\edition\racketEd
  7256. \begin{figure}[tbp]
  7257. \begin{lstlisting}
  7258. (define (explicate_pred cnd thn els)
  7259. (match cnd
  7260. [(Var x) ___]
  7261. [(Let x rhs body) ___]
  7262. [(Prim 'not (list e)) ___]
  7263. [(Prim op es) #:when (or (eq? op 'eq?) (eq? op '<))
  7264. (IfStmt (Prim op es) (create_block thn)
  7265. (create_block els))]
  7266. [(Bool b) (if b thn els)]
  7267. [(If cnd^ thn^ els^) ___]
  7268. [else (error "explicate_pred unhandled case" cnd)]))
  7269. \end{lstlisting}
  7270. \caption{Skeleton for the \key{explicate\_pred} auxiliary function.}
  7271. \label{fig:explicate-pred}
  7272. \end{figure}
  7273. \fi}
  7274. \racket{The skeleton for the \code{explicate\_pred} function is given
  7275. in Figure~\ref{fig:explicate-pred}. It takes three parameters:
  7276. 1) \code{cnd}, the condition expression of the \code{if},
  7277. 2) \code{thn}, the code generated by explicate for the ``then'' branch,
  7278. and 3) \code{els}, the code generated by
  7279. explicate for the ``else'' branch. The \code{explicate\_pred}
  7280. function should match on \code{cnd} with a case for
  7281. every kind of expression that can have type \code{Boolean}.}
  7282. %
  7283. \python{The \code{explicate\_pred} function has four parameters: 1)
  7284. the condition expession, 2) the generated statements for the
  7285. ``then'' branch, 3) the generated statements for the ``else''
  7286. branch, and 4) the dictionary of basic blocks. The
  7287. \code{explicate\_pred} function returns a list of \LangCIf{}
  7288. statements and it may add to the dictionary of basic blocks.}
  7289. Consider the case for comparison operators. We translate the
  7290. comparison to an \code{if} statement whose branches are \code{goto}
  7291. statements created by applying \code{create\_block} to the code
  7292. generated for the \code{thn} and \code{els} branches. Let us
  7293. illustrate this translation with an example. Returning
  7294. to the program with an \code{if} expression in tail position,
  7295. we invoke \code{explicate\_pred} on its condition \code{(eq? x 0)}
  7296. which happens to be a comparison operator.
  7297. \begin{lstlisting}
  7298. (let ([x (read)])
  7299. (if (eq? x 0) 42 777))
  7300. \end{lstlisting}
  7301. The two branches \code{42} and \code{777} were already compiled to \code{return}
  7302. statements, from which we now create the following blocks.
  7303. \begin{center}
  7304. \begin{minipage}{\textwidth}
  7305. \begin{lstlisting}
  7306. block_1:
  7307. return 42;
  7308. block_2:
  7309. return 777;
  7310. \end{lstlisting}
  7311. \end{minipage}
  7312. \end{center}
  7313. %
  7314. So \code{explicate\_pred} compiles the comparison \code{(eq? x 0)}
  7315. to the following \code{if} statement.
  7316. %
  7317. \begin{center}
  7318. \begin{minipage}{\textwidth}
  7319. \begin{lstlisting}
  7320. if (eq? x 0)
  7321. goto block_1;
  7322. else
  7323. goto block_2;
  7324. \end{lstlisting}
  7325. \end{minipage}
  7326. \end{center}
  7327. Next consider the case for Boolean constants. We perform a kind of
  7328. partial evaluation\index{subject}{partial evaluation} and output
  7329. either the \code{thn} or \code{els} branch depending on whether the
  7330. constant is \TRUE{} or \FALSE{}. Let us illustrate this with the
  7331. following program.
  7332. \begin{center}
  7333. \begin{minipage}{\textwidth}
  7334. \begin{lstlisting}
  7335. (if #t 42 777)
  7336. \end{lstlisting}
  7337. \end{minipage}
  7338. \end{center}
  7339. %
  7340. Again, the two branches \code{42} and \code{777} were compiled to
  7341. \code{return} statements, so \code{explicate\_pred} compiles the
  7342. constant \code{\#t} to the code for the ``then'' branch.
  7343. \begin{center}
  7344. \begin{minipage}{\textwidth}
  7345. \begin{lstlisting}
  7346. return 42;
  7347. \end{lstlisting}
  7348. \end{minipage}
  7349. \end{center}
  7350. %
  7351. This case demonstrates that we sometimes discard the \code{thn} or
  7352. \code{els} blocks that are input to \code{explicate\_pred}.
  7353. The case for \key{if} expressions in \code{explicate\_pred} is
  7354. particularly illuminating because it deals with the challenges we
  7355. discussed above regarding nested \key{if} expressions
  7356. (Figure~\ref{fig:explicate-control-s1-38}). The
  7357. \racket{\lstinline{thn^}}\python{\code{body}} and
  7358. \racket{\lstinline{els^}}\python{\code{orlese}} branches of the
  7359. \key{if} inherit their context from the current one, that is,
  7360. predicate context. So you should recursively apply
  7361. \code{explicate\_pred} to the
  7362. \racket{\lstinline{thn^}}\python{\code{body}} and
  7363. \racket{\lstinline{els^}}\python{\code{orelse}} branches. For both of
  7364. those recursive calls, pass \code{thn} and \code{els} as the extra
  7365. parameters. Thus, \code{thn} and \code{els} may get used twice, once
  7366. inside each recursive call. As discussed above, to avoid duplicating
  7367. code, we need to add them to the dictionary of basic blocks so that we
  7368. can instead refer to them by name and execute them with a \key{goto}.
  7369. {\if\edition\pythonEd
  7370. %
  7371. The last of the auxiliary functions is \code{explicate\_stmt}. It has
  7372. three parameters: 1) the statement to be compiled, 2) the code for its
  7373. continuation, and 3) the dictionary of basic blocks. The
  7374. \code{explicate\_stmt} returns a list of statements and it may add to
  7375. the dictionary of basic blocks. The cases for assignment and an
  7376. expression-statement are given in full in the skeleton code: they
  7377. simply dispatch to \code{explicate\_assign} and
  7378. \code{explicate\_effect}, respectively. The case for \code{if}
  7379. statements is not given, and is similar to the case for \code{if}
  7380. expressions.
  7381. The \code{explicate\_control} function itself is given in
  7382. Figure~\ref{fig:explicate-control-Lif}. It applies
  7383. \code{explicate\_stmt} to each statement in the program, from back to
  7384. front. Thus, the result so-far, stored in \code{new\_body}, can be
  7385. used as the continuation parameter in the next call to
  7386. \code{explicate\_stmt}. The \code{new\_body} is initialized to a
  7387. \code{Return} statement. Once complete, we add the \code{new\_body} to
  7388. the dictionary of basic blocks, labeling it as the ``start'' block.
  7389. %
  7390. \fi}
  7391. %% Getting back to the case for \code{if} in \code{explicate\_pred}, we
  7392. %% make the recursive calls to \code{explicate\_pred} on the ``then'' and
  7393. %% ``else'' branches with the arguments \code{(create_block} $B_1$\code{)}
  7394. %% and \code{(create_block} $B_2$\code{)}. Let $B_3$ and $B_4$ be the
  7395. %% results from the two recursive calls. We complete the case for
  7396. %% \code{if} by recursively apply \code{explicate\_pred} to the condition
  7397. %% of the \code{if} with the promised blocks $B_3$ and $B_4$ to obtain
  7398. %% the result $B_5$.
  7399. %% \[
  7400. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els})
  7401. %% \quad\Rightarrow\quad
  7402. %% B_5
  7403. %% \]
  7404. %% In the case for \code{if} in \code{explicate\_tail}, the two branches
  7405. %% inherit the current context, so they are in tail position. Thus, the
  7406. %% recursive calls on the ``then'' and ``else'' branch should be calls to
  7407. %% \code{explicate\_tail}.
  7408. %% %
  7409. %% We need to pass $B_0$ as the accumulator argument for both of these
  7410. %% recursive calls, but we need to be careful not to duplicate $B_0$.
  7411. %% Thus, we first apply \code{create_block} to $B_0$ so that it gets added
  7412. %% to the control-flow graph and obtain a promised goto $G_0$.
  7413. %% %
  7414. %% Let $B_1$ be the result of \code{explicate\_tail} on the ``then''
  7415. %% branch and $G_0$ and let $B_2$ be the result of \code{explicate\_tail}
  7416. %% on the ``else'' branch and $G_0$. Let $B_3$ be the result of applying
  7417. %% \code{explicate\_pred} to the condition of the \key{if}, $B_1$, and
  7418. %% $B_2$. Then the \key{if} as a whole translates to promise $B_3$.
  7419. %% \[
  7420. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_3
  7421. %% \]
  7422. %% In the above discussion, we use the metavariables $B_1$, $B_2$, and
  7423. %% $B_3$ to refer to blocks for the purposes of our discussion, but they
  7424. %% should not be confused with the labels for the blocks that appear in
  7425. %% the generated code. We initially construct unlabeled blocks; we only
  7426. %% attach labels to blocks when we add them to the control-flow graph, as
  7427. %% we see in the next case.
  7428. %% Next consider the case for \key{if} in the \code{explicate\_assign}
  7429. %% function. The context of the \key{if} is an assignment to some
  7430. %% variable $x$ and then the control continues to some promised block
  7431. %% $B_1$. The code that we generate for both the ``then'' and ``else''
  7432. %% branches needs to continue to $B_1$, so to avoid duplicating $B_1$ we
  7433. %% apply \code{create_block} to it and obtain a promised goto $G_1$. The
  7434. %% branches of the \key{if} inherit the current context, so they are in
  7435. %% assignment positions. Let $B_2$ be the result of applying
  7436. %% \code{explicate\_assign} to the ``then'' branch, variable $x$, and
  7437. %% $G_1$. Let $B_3$ be the result of applying \code{explicate\_assign} to
  7438. %% the ``else'' branch, variable $x$, and $G_1$. Finally, let $B_4$ be
  7439. %% the result of applying \code{explicate\_pred} to the predicate
  7440. %% $\itm{cnd}$ and the promises $B_2$ and $B_3$. The \key{if} as a whole
  7441. %% translates to the promise $B_4$.
  7442. %% \[
  7443. %% (\key{if}\; \itm{cnd}\; \itm{thn}\; \itm{els}) \quad\Rightarrow\quad B_4
  7444. %% \]
  7445. %% This completes the description of \code{explicate\_control} for \LangIf{}.
  7446. Figure~\ref{fig:explicate-control-s1-38} shows the output of the
  7447. \code{remove\_complex\_operands} pass and then the
  7448. \code{explicate\_control} pass on the example program. We walk through
  7449. the output program.
  7450. %
  7451. Following the order of evaluation in the output of
  7452. \code{remove\_complex\_operands}, we first have two calls to \CREAD{}
  7453. and then the comparison \racket{\code{(< x 1)}}\python{\code{x < 1}}
  7454. in the predicate of the inner \key{if}. In the output of
  7455. \code{explicate\_control}, in the
  7456. block labeled \code{start}, are two assignment statements followed by a
  7457. \code{if} statement that branches to \code{block\_8} or
  7458. \code{block\_9}. The blocks associated with those labels contain the
  7459. translations of the code
  7460. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7461. and
  7462. \racket{\code{(eq? x 2)}}\python{\code{x == 2}},
  7463. respectively. In particular, we start \code{block\_8} with the
  7464. comparison
  7465. \racket{\code{(eq? x 0)}}\python{\code{x == 0}}
  7466. and then branch to \code{block\_4} or \code{block\_5}.
  7467. Here was see that our algorithm sometimes inserts unnecessary blocks:
  7468. \code{block\_4} is just a \code{goto} to \code{block\_2}
  7469. and \code{block\_5} is just a \code{goto} to \code{block\_3}.
  7470. It would be better to skip blocks \code{block\_4} and \code{block\_5}
  7471. and go directly to \code{block\_2} and \code{block\_3},
  7472. which we investigate in Section~\ref{sec:opt-jumps}.
  7473. Getting back to the example, \code{block\_2} and \code{block\_3},
  7474. corresponds to the two branches of the outer \key{if}, i.e.,
  7475. \racket{\code{(+ y 2)}}\python{\code{y + 2}} and
  7476. \racket{\code{(+ y 10)}}\python{\code{y + 10}}.
  7477. %
  7478. The story for \code{block\_9} is similar to that of \code{block\_8}.
  7479. %
  7480. \python{The \code{block\_1} corresponds to the \code{print} statment
  7481. at the end of the program.}
  7482. \begin{figure}[tbp]
  7483. {\if\edition\racketEd
  7484. \begin{tabular}{lll}
  7485. \begin{minipage}{0.4\textwidth}
  7486. % cond_test_41.rkt
  7487. \begin{lstlisting}
  7488. (let ([x (read)])
  7489. (let ([y (read)])
  7490. (if (if (< x 1)
  7491. (eq? x 0)
  7492. (eq? x 2))
  7493. (+ y 2)
  7494. (+ y 10))))
  7495. \end{lstlisting}
  7496. \end{minipage}
  7497. &
  7498. $\Rightarrow$
  7499. &
  7500. \begin{minipage}{0.55\textwidth}
  7501. \begin{lstlisting}
  7502. start:
  7503. x = (read);
  7504. y = (read);
  7505. if (< x 1)
  7506. goto block_8;
  7507. else
  7508. goto block_9;
  7509. block_8:
  7510. if (eq? x 0)
  7511. goto block_4;
  7512. else
  7513. goto block_5;
  7514. block_9:
  7515. if (eq? x 2)
  7516. goto block_6;
  7517. else
  7518. goto block_7;
  7519. block_4:
  7520. goto block_2;
  7521. block_5:
  7522. goto block_3;
  7523. block_6:
  7524. goto block_2;
  7525. block_7:
  7526. goto block_3;
  7527. block_2:
  7528. return (+ y 2);
  7529. block_3:
  7530. return (+ y 10);
  7531. \end{lstlisting}
  7532. \end{minipage}
  7533. \end{tabular}
  7534. \fi}
  7535. {\if\edition\pythonEd
  7536. \begin{tabular}{lll}
  7537. \begin{minipage}{0.4\textwidth}
  7538. % cond_test_41.rkt
  7539. \begin{lstlisting}
  7540. x = input_int()
  7541. y = input_int()
  7542. print(y + 2 \
  7543. if (x == 0 \
  7544. if x < 1 \
  7545. else x == 2) \
  7546. else y + 10)
  7547. \end{lstlisting}
  7548. \end{minipage}
  7549. &
  7550. $\Rightarrow$
  7551. &
  7552. \begin{minipage}{0.55\textwidth}
  7553. \begin{lstlisting}
  7554. start:
  7555. x = input_int()
  7556. y = input_int()
  7557. if x < 1:
  7558. goto block_8
  7559. else:
  7560. goto block_9
  7561. block_8:
  7562. if x == 0:
  7563. goto block_4
  7564. else:
  7565. goto block_5
  7566. block_9:
  7567. if x == 2:
  7568. goto block_6
  7569. else:
  7570. goto block_7
  7571. block_4:
  7572. goto block_2
  7573. block_5:
  7574. goto block_3
  7575. block_6:
  7576. goto block_2
  7577. block_7:
  7578. goto block_3
  7579. block_2:
  7580. tmp_0 = y + 2
  7581. goto block_1
  7582. block_3:
  7583. tmp_0 = y + 10
  7584. goto block_1
  7585. block_1:
  7586. print(tmp_0)
  7587. return 0
  7588. \end{lstlisting}
  7589. \end{minipage}
  7590. \end{tabular}
  7591. \fi}
  7592. \caption{Translation from \LangIf{} to \LangCIf{}
  7593. via the \code{explicate\_control}.}
  7594. \label{fig:explicate-control-s1-38}
  7595. \end{figure}
  7596. {\if\edition\racketEd
  7597. The way in which the \code{shrink} pass transforms logical operations
  7598. such as \code{and} and \code{or} can impact the quality of code
  7599. generated by \code{explicate\_control}. For example, consider the
  7600. following program.
  7601. % cond_test_21.rkt, and_eq_input.py
  7602. \begin{lstlisting}
  7603. (if (and (eq? (read) 0) (eq? (read) 1))
  7604. 0
  7605. 42)
  7606. \end{lstlisting}
  7607. The \code{and} operation should transform into something that the
  7608. \code{explicate\_pred} function can still analyze and descend through to
  7609. reach the underlying \code{eq?} conditions. Ideally, your
  7610. \code{explicate\_control} pass should generate code similar to the
  7611. following for the above program.
  7612. \begin{center}
  7613. \begin{lstlisting}
  7614. start:
  7615. tmp1 = (read);
  7616. if (eq? tmp1 0) goto block40;
  7617. else goto block39;
  7618. block40:
  7619. tmp2 = (read);
  7620. if (eq? tmp2 1) goto block38;
  7621. else goto block39;
  7622. block38:
  7623. return 0;
  7624. block39:
  7625. return 42;
  7626. \end{lstlisting}
  7627. \end{center}
  7628. \fi}
  7629. \begin{exercise}\normalfont
  7630. \racket{
  7631. Implement the pass \code{explicate\_control} by adding the cases for
  7632. Boolean constants and \key{if} to the \code{explicate\_tail} and
  7633. \code{explicate\_assign} functions. Implement the auxiliary function
  7634. \code{explicate\_pred} for predicate contexts.}
  7635. \python{Implement \code{explicate\_control} pass with its
  7636. four auxiliary functions.}
  7637. %
  7638. Create test cases that exercise all of the new cases in the code for
  7639. this pass.
  7640. %
  7641. {\if\edition\racketEd
  7642. Add the following entry to the list of \code{passes} in
  7643. \code{run-tests.rkt} and then run this script to test your compiler.
  7644. \begin{lstlisting}
  7645. (list "explicate_control" explicate_control interp-Cif type-check-Cif)
  7646. \end{lstlisting}
  7647. \fi}
  7648. \end{exercise}
  7649. \clearpage
  7650. \section{Select Instructions}
  7651. \label{sec:select-Lif}
  7652. \index{subject}{instruction selection}
  7653. The \code{select\_instructions} pass translates \LangCIf{} to
  7654. \LangXIfVar{}.
  7655. %
  7656. \racket{Recall that we implement this pass using three auxiliary
  7657. functions, one for each of the non-terminals $\Atm$, $\Stmt$, and
  7658. $\Tail$.}
  7659. %
  7660. \racket{For $\Atm$, we have new cases for the Booleans.}
  7661. %
  7662. \python{We begin with the Boolean constants.}
  7663. We take the usual approach of encoding them as integers.
  7664. \[
  7665. \TRUE{} \quad\Rightarrow\quad \key{1}
  7666. \qquad\qquad
  7667. \FALSE{} \quad\Rightarrow\quad \key{0}
  7668. \]
  7669. For translating statements, we discuss a couple cases. The \code{not}
  7670. operation can be implemented in terms of \code{xorq} as we discussed
  7671. at the beginning of this section. Given an assignment, if the
  7672. left-hand side variable is the same as the argument of \code{not},
  7673. then just the \code{xorq} instruction suffices.
  7674. \[
  7675. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Var} }
  7676. \quad\Rightarrow\quad
  7677. \key{xorq}~\key{\$}1\key{,}~\Var
  7678. \]
  7679. Otherwise, a \key{movq} is needed to adapt to the update-in-place
  7680. semantics of x86. In the following translation, let $\Arg$ be the
  7681. result of translating $\Atm$ to x86.
  7682. \[
  7683. \CASSIGN{\Var}{ \CUNIOP{\key{not}}{\Atm} }
  7684. \quad\Rightarrow\quad
  7685. \begin{array}{l}
  7686. \key{movq}~\Arg\key{,}~\Var\\
  7687. \key{xorq}~\key{\$}1\key{,}~\Var
  7688. \end{array}
  7689. \]
  7690. Next consider the cases for equality. Translating this operation to
  7691. x86 is slightly involved due to the unusual nature of the \key{cmpq}
  7692. instruction discussed above. We recommend translating an assignment
  7693. with an equality on the right-hand side into a sequence of three
  7694. instructions. \\
  7695. \begin{tabular}{lll}
  7696. \begin{minipage}{0.4\textwidth}
  7697. \begin{lstlisting}
  7698. |$\CASSIGN{\Var}{ \LP\CEQ{\Atm_1}{\Atm_2} \RP }$|
  7699. \end{lstlisting}
  7700. \end{minipage}
  7701. &
  7702. $\Rightarrow$
  7703. &
  7704. \begin{minipage}{0.4\textwidth}
  7705. \begin{lstlisting}
  7706. cmpq |$\Arg_2$|, |$\Arg_1$|
  7707. sete %al
  7708. movzbq %al, |$\Var$|
  7709. \end{lstlisting}
  7710. \end{minipage}
  7711. \end{tabular} \\
  7712. The translations for the other comparison operators are similar to the
  7713. above but use different suffixes for the \code{set} instruction.
  7714. \racket{Regarding the $\Tail$ non-terminal, we have two new cases:
  7715. \key{goto} and \key{if} statements. Both are straightforward to
  7716. translate to x86.}
  7717. %
  7718. A \key{goto} statement becomes a jump instruction.
  7719. \[
  7720. \key{goto}\; \ell\racket{\key{;}} \quad \Rightarrow \quad \key{jmp}\;\ell
  7721. \]
  7722. %
  7723. An \key{if} statement becomes a compare instruction followed by a
  7724. conditional jump (for the ``then'' branch) and the fall-through is to
  7725. a regular jump (for the ``else'' branch).\\
  7726. \begin{tabular}{lll}
  7727. \begin{minipage}{0.4\textwidth}
  7728. \begin{lstlisting}
  7729. if |$\CEQ{\Atm_1}{\Atm_2}$||$\python{\key{:}}$|
  7730. goto |$\ell_1$||$\racket{\key{;}}$|
  7731. else|$\python{\key{:}}$|
  7732. goto |$\ell_2$||$\racket{\key{;}}$|
  7733. \end{lstlisting}
  7734. \end{minipage}
  7735. &
  7736. $\Rightarrow$
  7737. &
  7738. \begin{minipage}{0.4\textwidth}
  7739. \begin{lstlisting}
  7740. cmpq |$\Arg_2$|, |$\Arg_1$|
  7741. je |$\ell_1$|
  7742. jmp |$\ell_2$|
  7743. \end{lstlisting}
  7744. \end{minipage}
  7745. \end{tabular} \\
  7746. Again, the translations for the other comparison operators are similar to the
  7747. above but use different suffixes for the conditional jump instruction.
  7748. \python{Regarding the \key{return} statement, we recommend treating it
  7749. as an assignment to the \key{rax} register followed by a jump to the
  7750. conclusion of the \code{main} function.}
  7751. \begin{exercise}\normalfont
  7752. Expand your \code{select\_instructions} pass to handle the new
  7753. features of the \LangIf{} language.
  7754. %
  7755. {\if\edition\racketEd
  7756. Add the following entry to the list of \code{passes} in
  7757. \code{run-tests.rkt}
  7758. \begin{lstlisting}
  7759. (list "select_instructions" select_instructions interp-pseudo-x86-1)
  7760. \end{lstlisting}
  7761. \fi}
  7762. %
  7763. Run the script to test your compiler on all the test programs.
  7764. \end{exercise}
  7765. \section{Register Allocation}
  7766. \label{sec:register-allocation-Lif}
  7767. \index{subject}{register allocation}
  7768. The changes required for \LangIf{} affect liveness analysis, building the
  7769. interference graph, and assigning homes, but the graph coloring
  7770. algorithm itself does not change.
  7771. \subsection{Liveness Analysis}
  7772. \label{sec:liveness-analysis-Lif}
  7773. \index{subject}{liveness analysis}
  7774. Recall that for \LangVar{} we implemented liveness analysis for a
  7775. single basic block (Section~\ref{sec:liveness-analysis-Lvar}). With
  7776. the addition of \key{if} expressions to \LangIf{},
  7777. \code{explicate\_control} produces many basic blocks.
  7778. %% We recommend that you create a new auxiliary function named
  7779. %% \code{uncover\_live\_CFG} that applies liveness analysis to a
  7780. %% control-flow graph.
  7781. The first question is: what order should we process the basic blocks?
  7782. Recall that to perform liveness analysis on a basic block we need to
  7783. know the live-after set for the last instruction in the block. If a
  7784. basic block has no successors (i.e. contains no jumps to other
  7785. blocks), then it has an empty live-after set and we can immediately
  7786. apply liveness analysis to it. If a basic block has some successors,
  7787. then we need to complete liveness analysis on those blocks
  7788. first. These ordering contraints are the reverse of a
  7789. \emph{topological order}\index{subject}{topological order} on a graph
  7790. representation of the program. In particular, the \emph{control flow
  7791. graph} (CFG)\index{subject}{control-flow graph}~\citep{Allen:1970uq}
  7792. of a program has a node for each basic block and an edge for each jump
  7793. from one block to another. It is straightforward to generate a CFG
  7794. from the dictionary of basic blocks. One then transposes the CFG and
  7795. applies the topological sort algorithm.
  7796. %
  7797. %
  7798. \racket{We recommend using the \code{tsort} and \code{transpose}
  7799. functions of the Racket \code{graph} package to accomplish this.}
  7800. %
  7801. \python{We provide implementations of \code{topological\_sort} and
  7802. \code{transpose} in the file \code{graph.py} of the support code.}
  7803. %
  7804. As an aside, a topological ordering is only guaranteed to exist if the
  7805. graph does not contain any cycles. This is the case for the
  7806. control-flow graphs that we generate from \LangIf{} programs.
  7807. However, in Chapter~\ref{ch:Lwhile} we add loops to create \LangLoop{}
  7808. and learn how to handle cycles in the control-flow graph.
  7809. \racket{You'll need to construct a directed graph to represent the
  7810. control-flow graph. Do not use the \code{directed-graph} of the
  7811. \code{graph} package because that only allows at most one edge
  7812. between each pair of vertices, but a control-flow graph may have
  7813. multiple edges between a pair of vertices. The \code{multigraph.rkt}
  7814. file in the support code implements a graph representation that
  7815. allows multiple edges between a pair of vertices.}
  7816. {\if\edition\racketEd
  7817. The next question is how to analyze jump instructions. Recall that in
  7818. Section~\ref{sec:liveness-analysis-Lvar} we maintain an alist named
  7819. \code{label->live} that maps each label to the set of live locations
  7820. at the beginning of its block. We use \code{label->live} to determine
  7821. the live-before set for each $\JMP{\itm{label}}$ instruction. Now
  7822. that we have many basic blocks, \code{label->live} needs to be updated
  7823. as we process the blocks. In particular, after performing liveness
  7824. analysis on a block, we take the live-before set of its first
  7825. instruction and associate that with the block's label in the
  7826. \code{label->live}.
  7827. \fi}
  7828. %
  7829. {\if\edition\pythonEd
  7830. %
  7831. The next question is how to analyze jump instructions. The locations
  7832. that are live before a \code{jmp} should be the locations in
  7833. $L_{\mathtt{before}}$ at the target of the jump. So we recommend
  7834. maintaining a dictionary named \code{live\_before\_block} that maps each
  7835. label to the $L_{\mathtt{before}}$ for the first instruction in its
  7836. block. After performing liveness analysis on each block, we take the
  7837. live-before set of its first instruction and associate that with the
  7838. block's label in the \code{live\_before\_block} dictionary.
  7839. %
  7840. \fi}
  7841. In \LangXIfVar{} we also have the conditional jump
  7842. $\JMPIF{\itm{cc}}{\itm{label}}$ to deal with. Liveness analysis for
  7843. this instruction is particularly interesting because, during
  7844. compilation, we do not know which way a conditional jump will go. So
  7845. we do not know whether to use the live-before set for the following
  7846. instruction or the live-before set for the block associated with the
  7847. $\itm{label}$. However, there is no harm to the correctness of the
  7848. generated code if we classify more locations as live than the ones
  7849. that are truly live during one particular execution of the
  7850. instruction. Thus, we can take the union of the live-before sets from
  7851. the following instruction and from the mapping for $\itm{label}$ in
  7852. \racket{\code{label->live}}\python{\code{live\_before\_block}}.
  7853. The auxiliary functions for computing the variables in an
  7854. instruction's argument and for computing the variables read-from ($R$)
  7855. or written-to ($W$) by an instruction need to be updated to handle the
  7856. new kinds of arguments and instructions in \LangXIfVar{}.
  7857. \begin{exercise}\normalfont
  7858. {\if\edition\racketEd
  7859. %
  7860. Update the \code{uncover\_live} pass to apply liveness analysis to
  7861. every basic block in the program.
  7862. %
  7863. Add the following entry to the list of \code{passes} in the
  7864. \code{run-tests.rkt} script.
  7865. \begin{lstlisting}
  7866. (list "uncover_live" uncover_live interp-pseudo-x86-1)
  7867. \end{lstlisting}
  7868. \fi}
  7869. {\if\edition\pythonEd
  7870. %
  7871. Update the \code{uncover\_live} function to perform liveness analysis,
  7872. in reverse topological order, on all of the basic blocks in the
  7873. program.
  7874. %
  7875. \fi}
  7876. % Check that the live-after sets that you generate for
  7877. % example X matches the following... -Jeremy
  7878. \end{exercise}
  7879. \subsection{Build the Interference Graph}
  7880. \label{sec:build-interference-Lif}
  7881. Many of the new instructions in \LangXIfVar{} can be handled in the
  7882. same way as the instructions in \LangXVar{}. Thus, if your code was
  7883. already quite general, it will not need to be changed to handle the
  7884. new instructions. If you code is not general enough, we recommend that
  7885. you change your code to be more general. For example, you can factor
  7886. out the computing of the the read and write sets for each kind of
  7887. instruction into auxiliary functions.
  7888. Note that the \key{movzbq} instruction requires some special care,
  7889. similar to the \key{movq} instruction. See rule number 1 in
  7890. Section~\ref{sec:build-interference}.
  7891. \begin{exercise}\normalfont
  7892. Update the \code{build\_interference} pass for \LangXIfVar{}.
  7893. {\if\edition\racketEd
  7894. Add the following entries to the list of \code{passes} in the
  7895. \code{run-tests.rkt} script.
  7896. \begin{lstlisting}
  7897. (list "build_interference" build_interference interp-pseudo-x86-1)
  7898. (list "allocate_registers" allocate_registers interp-x86-1)
  7899. \end{lstlisting}
  7900. \fi}
  7901. % Check that the interference graph that you generate for
  7902. % example X matches the following graph G... -Jeremy
  7903. \end{exercise}
  7904. \section{Patch Instructions}
  7905. The new instructions \key{cmpq} and \key{movzbq} have some special
  7906. restrictions that need to be handled in the \code{patch\_instructions}
  7907. pass.
  7908. %
  7909. The second argument of the \key{cmpq} instruction must not be an
  7910. immediate value (such as an integer). So if you are comparing two
  7911. immediates, we recommend inserting a \key{movq} instruction to put the
  7912. second argument in \key{rax}. As usual, \key{cmpq} may have at most
  7913. one memory reference.
  7914. %
  7915. The second argument of the \key{movzbq} must be a register.
  7916. \begin{exercise}\normalfont
  7917. %
  7918. Update \code{patch\_instructions} pass for \LangXIfVar{}.
  7919. %
  7920. {\if\edition\racketEd
  7921. Add the following entry to the list of \code{passes} in
  7922. \code{run-tests.rkt} and then run this script to test your compiler.
  7923. \begin{lstlisting}
  7924. (list "patch_instructions" patch_instructions interp-x86-1)
  7925. \end{lstlisting}
  7926. \fi}
  7927. \end{exercise}
  7928. {\if\edition\pythonEd
  7929. \section{Prelude and Conclusion}
  7930. \label{sec:prelude-conclusion-cond}
  7931. The generation of the \code{main} function with its prelude and
  7932. conclusion must change to accomodate how the program now consists of
  7933. one or more basic blocks. After the prelude in \code{main}, jump to
  7934. the \code{start} block. Place the conclusion in a basic block labelled
  7935. with \code{conclusion}.
  7936. \fi}
  7937. Figure~\ref{fig:if-example-x86} shows a simple example program in
  7938. \LangIf{} translated to x86, showing the results of
  7939. \code{explicate\_control}, \code{select\_instructions}, and the final
  7940. x86 assembly.
  7941. \begin{figure}[tbp]
  7942. {\if\edition\racketEd
  7943. \begin{tabular}{lll}
  7944. \begin{minipage}{0.4\textwidth}
  7945. % cond_test_20.rkt, eq_input.py
  7946. \begin{lstlisting}
  7947. (if (eq? (read) 1) 42 0)
  7948. \end{lstlisting}
  7949. $\Downarrow$
  7950. \begin{lstlisting}
  7951. start:
  7952. tmp7951 = (read);
  7953. if (eq? tmp7951 1)
  7954. goto block7952;
  7955. else
  7956. goto block7953;
  7957. block7952:
  7958. return 42;
  7959. block7953:
  7960. return 0;
  7961. \end{lstlisting}
  7962. $\Downarrow$
  7963. \begin{lstlisting}
  7964. start:
  7965. callq read_int
  7966. movq %rax, tmp7951
  7967. cmpq $1, tmp7951
  7968. je block7952
  7969. jmp block7953
  7970. block7953:
  7971. movq $0, %rax
  7972. jmp conclusion
  7973. block7952:
  7974. movq $42, %rax
  7975. jmp conclusion
  7976. \end{lstlisting}
  7977. \end{minipage}
  7978. &
  7979. $\Rightarrow\qquad$
  7980. \begin{minipage}{0.4\textwidth}
  7981. \begin{lstlisting}
  7982. start:
  7983. callq read_int
  7984. movq %rax, %rcx
  7985. cmpq $1, %rcx
  7986. je block7952
  7987. jmp block7953
  7988. block7953:
  7989. movq $0, %rax
  7990. jmp conclusion
  7991. block7952:
  7992. movq $42, %rax
  7993. jmp conclusion
  7994. .globl main
  7995. main:
  7996. pushq %rbp
  7997. movq %rsp, %rbp
  7998. pushq %r13
  7999. pushq %r12
  8000. pushq %rbx
  8001. pushq %r14
  8002. subq $0, %rsp
  8003. jmp start
  8004. conclusion:
  8005. addq $0, %rsp
  8006. popq %r14
  8007. popq %rbx
  8008. popq %r12
  8009. popq %r13
  8010. popq %rbp
  8011. retq
  8012. \end{lstlisting}
  8013. \end{minipage}
  8014. \end{tabular}
  8015. \fi}
  8016. {\if\edition\pythonEd
  8017. \begin{tabular}{lll}
  8018. \begin{minipage}{0.4\textwidth}
  8019. % cond_test_20.rkt, eq_input.py
  8020. \begin{lstlisting}
  8021. print(42 if input_int() == 1 else 0)
  8022. \end{lstlisting}
  8023. $\Downarrow$
  8024. \begin{lstlisting}
  8025. start:
  8026. tmp_0 = input_int()
  8027. if tmp_0 == 1:
  8028. goto block_3
  8029. else:
  8030. goto block_4
  8031. block_3:
  8032. tmp_1 = 42
  8033. goto block_2
  8034. block_4:
  8035. tmp_1 = 0
  8036. goto block_2
  8037. block_2:
  8038. print(tmp_1)
  8039. return 0
  8040. \end{lstlisting}
  8041. $\Downarrow$
  8042. \begin{lstlisting}
  8043. start:
  8044. callq read_int
  8045. movq %rax, tmp_0
  8046. cmpq 1, tmp_0
  8047. je block_3
  8048. jmp block_4
  8049. block_3:
  8050. movq 42, tmp_1
  8051. jmp block_2
  8052. block_4:
  8053. movq 0, tmp_1
  8054. jmp block_2
  8055. block_2:
  8056. movq tmp_1, %rdi
  8057. callq print_int
  8058. movq 0, %rax
  8059. jmp conclusion
  8060. \end{lstlisting}
  8061. \end{minipage}
  8062. &
  8063. $\Rightarrow\qquad$
  8064. \begin{minipage}{0.4\textwidth}
  8065. \begin{lstlisting}
  8066. .globl main
  8067. main:
  8068. pushq %rbp
  8069. movq %rsp, %rbp
  8070. subq $0, %rsp
  8071. jmp start
  8072. start:
  8073. callq read_int
  8074. movq %rax, %rcx
  8075. cmpq $1, %rcx
  8076. je block_3
  8077. jmp block_4
  8078. block_3:
  8079. movq $42, %rcx
  8080. jmp block_2
  8081. block_4:
  8082. movq $0, %rcx
  8083. jmp block_2
  8084. block_2:
  8085. movq %rcx, %rdi
  8086. callq print_int
  8087. movq $0, %rax
  8088. jmp conclusion
  8089. conclusion:
  8090. addq $0, %rsp
  8091. popq %rbp
  8092. retq
  8093. \end{lstlisting}
  8094. \end{minipage}
  8095. \end{tabular}
  8096. \fi}
  8097. \caption{Example compilation of an \key{if} expression to x86, showing
  8098. the results of \code{explicate\_control},
  8099. \code{select\_instructions}, and the final x86 assembly code. }
  8100. \label{fig:if-example-x86}
  8101. \end{figure}
  8102. \begin{figure}[tbp]
  8103. {\if\edition\racketEd
  8104. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8105. \node (Lif) at (0,2) {\large \LangIf{}};
  8106. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8107. \node (Lif-3) at (6,2) {\large \LangIf{}};
  8108. \node (Lif-4) at (9,2) {\large \LangIf{}};
  8109. \node (Lif-5) at (12,2) {\large \LangIfANF{}};
  8110. \node (C1-1) at (3,0) {\large \LangCIf{}};
  8111. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  8112. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  8113. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  8114. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  8115. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  8116. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  8117. \path[->,bend left=15] (Lif) edge [above] node {\ttfamily\footnotesize type\_check} (Lif-2);
  8118. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize shrink} (Lif-3);
  8119. \path[->,bend left=15] (Lif-3) edge [above] node {\ttfamily\footnotesize uniquify} (Lif-4);
  8120. \path[->,bend left=15] (Lif-4) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-5);
  8121. \path[->,bend left=15] (Lif-5) edge [left] node {\ttfamily\footnotesize explicate\_control} (C1-1);
  8122. \path[->,bend right=15] (C1-1) edge [left] node {\ttfamily\footnotesize select\_instructions} (x86-2);
  8123. \path[->,bend left=15] (x86-2) edge [right] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  8124. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  8125. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  8126. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  8127. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86 } (x86-5);
  8128. \end{tikzpicture}
  8129. \fi}
  8130. {\if\edition\pythonEd
  8131. \begin{tikzpicture}[baseline=(current bounding box.center)]
  8132. \node (Lif-1) at (0,2) {\large \LangIf{}};
  8133. \node (Lif-2) at (3,2) {\large \LangIf{}};
  8134. \node (Lif-3) at (6,2) {\large \LangIfANF{}};
  8135. \node (C-1) at (3,0) {\large \LangCIf{}};
  8136. \node (x86-1) at (3,-2) {\large \LangXIfVar{}};
  8137. \node (x86-2) at (6,-2) {\large \LangXIfVar{}};
  8138. \node (x86-3) at (9,-2) {\large \LangXIf{}};
  8139. \node (x86-4) at (12,-2) {\large \LangXIf{}};
  8140. \path[->,bend left=15] (Lif-1) edge [above] node {\ttfamily\footnotesize shrink} (Lif-2);
  8141. \path[->,bend left=15] (Lif-2) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lif-3);
  8142. \path[->,bend left=15] (Lif-3) edge [right] node {\ttfamily\footnotesize explicate\_control} (C-1);
  8143. \path[->,bend right=15] (C-1) edge [left] node {\ttfamily\footnotesize select\_instr.} (x86-1);
  8144. \path[->,bend right=15] (x86-1) edge [below] node {\ttfamily\footnotesize assign\_homes} (x86-2);
  8145. \path[->,bend left=15] (x86-2) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-3);
  8146. \path[->,bend right=15] (x86-3) edge [below] node {\ttfamily\footnotesize prelude\_and\_concl. } (x86-4);
  8147. \end{tikzpicture}
  8148. \fi}
  8149. \caption{Diagram of the passes for \LangIf{}, a language with conditionals.}
  8150. \label{fig:Lif-passes}
  8151. \end{figure}
  8152. Figure~\ref{fig:Lif-passes} lists all the passes needed for the
  8153. compilation of \LangIf{}.
  8154. \section{Challenge: Optimize Blocks and Remove Jumps}
  8155. \label{sec:opt-jumps}
  8156. We discuss two optional challenges that involve optimizing the
  8157. control-flow of the program.
  8158. \subsection{Optimize Blocks}
  8159. The algorithm for \code{explicate\_control} that we discussed in
  8160. Section~\ref{sec:explicate-control-Lif} sometimes generates too many
  8161. blocks. It does so in two different ways.
  8162. %
  8163. First, recall how in Figure~\ref{fig:explicate-control-s1-38},
  8164. \code{block\_4} consists of just a jump to \code{block\_2}. We created
  8165. a new basic block from a single \code{goto} statement, whereas we
  8166. could have simply returned the \code{goto} statement. We can solve
  8167. this problem by modifying the \code{create\_block} function to
  8168. recognize this situation.
  8169. Second, \code{explicate\_control} creates a basic block whenever a
  8170. continuation \emph{might} get used more than once (wheneven a
  8171. continuation is passed into two or more recursive calls). However,
  8172. just because a continuation might get used more than once, doesn't
  8173. mean it will. In fact, some continuation parameters may not be used
  8174. at all because we sometimes ignore them. For example, consider the
  8175. case for the constant \TRUE{} in \code{explicate\_pred}, where we
  8176. discard the \code{els} branch. So the question is how can we decide
  8177. whether to create a basic block?
  8178. The solution to this conundrum is to use \emph{lazy
  8179. evaluation}\index{subject}{lazy evaluation}~\citep{Friedman:1976aa}
  8180. to delay creating a basic block until the point in time where we know
  8181. it will be used.
  8182. %
  8183. {\if\edition\racketEd
  8184. %
  8185. Racket provides support for
  8186. lazy evaluation with the
  8187. \href{https://docs.racket-lang.org/reference/Delayed_Evaluation.html}{\code{racket/promise}}
  8188. package. The expression \key{(delay} $e_1 \ldots e_n$\key{)}
  8189. \index{subject}{delay} creates a
  8190. \emph{promise}\index{subject}{promise} in which the evaluation of the
  8191. expressions is postponed. When \key{(force}
  8192. $p$\key{)}\index{subject}{force} is applied to a promise $p$ for the
  8193. first time, the expressions $e_1 \ldots e_n$ are evaluated and the
  8194. result of $e_n$ is cached in the promise and returned. If \code{force}
  8195. is applied again to the same promise, then the cached result is
  8196. returned. If \code{force} is applied to an argument that is not a
  8197. promise, \code{force} simply returns the argument.
  8198. %
  8199. \fi}
  8200. %
  8201. {\if\edition\pythonEd
  8202. %
  8203. While Python does not provide direct support for lazy evaluation, it
  8204. is easy to mimic. We can \emph{delay} the evaluation of a computation
  8205. by wrapping it inside a function with no parameters. We can
  8206. \emph{force} its evaluation by calling the function. However, in some
  8207. cases of \code{explicate\_pred}, etc., we will return a list of
  8208. statements and in other cases we will return a function that computes
  8209. a list of statements. We use the term \emph{promise} to refer to a
  8210. value that may or may not be delayed. To uniformly deal with
  8211. promises, we define the following \code{force} function that checks
  8212. whether its input is delayed (i.e. whether it is a function) and then
  8213. either 1) calls the function, or 2) returns the input.
  8214. \begin{lstlisting}
  8215. def force(promise):
  8216. if isinstance(promise, types.FunctionType):
  8217. return promise()
  8218. else:
  8219. return promise
  8220. \end{lstlisting}
  8221. %
  8222. \fi}
  8223. We use promises for the input and output of the functions
  8224. \code{explicate\_pred}, \code{explicate\_assign},
  8225. %
  8226. \racket{ and \code{explicate\_tail}}\python{ \code{explicate\_effect}, and \code{explicate\_stmt}}.
  8227. %
  8228. So instead of taking and returning lists of statments, they take and
  8229. return promises. Furthermore, when we come to a situation in which a
  8230. continuation might be used more than once, as in the case for
  8231. \code{if} in \code{explicate\_pred}, we create a delayed computation
  8232. that creates a basic block for each continuation (if there is not
  8233. already one) and then returns a \code{goto} statement to that basic
  8234. block.
  8235. %
  8236. {\if\edition\racketEd
  8237. %
  8238. The following auxiliary function named \code{create\_block} accomplishes
  8239. this task. It begins with \code{delay} to create a promise. When
  8240. forced, this promise will force the original promise. If that returns
  8241. a \code{goto} (because the block was already added to the control-flow
  8242. graph), then we return the \code{goto}. Otherwise we add the block to
  8243. the control-flow graph with another auxiliary function named
  8244. \code{add-node}. That function returns the label for the new block,
  8245. which we use to create a \code{goto}.
  8246. \begin{lstlisting}
  8247. (define (create_block tail)
  8248. (delay
  8249. (define t (force tail))
  8250. (match t
  8251. [(Goto label) (Goto label)]
  8252. [else (Goto (add-node t))])))
  8253. \end{lstlisting}
  8254. \fi}
  8255. {\if\edition\pythonEd
  8256. %
  8257. Here's the new version of the \code{create\_block} auxiliary function
  8258. that works on promises and that checks whether the block consists of a
  8259. solitary \code{goto} statement.\\
  8260. \begin{minipage}{\textwidth}
  8261. \begin{lstlisting}
  8262. def create_block(promise, basic_blocks):
  8263. stmts = force(promise)
  8264. match stmts:
  8265. case [Goto(l)]:
  8266. return Goto(l)
  8267. case _:
  8268. label = label_name(generate_name('block'))
  8269. basic_blocks[label] = stmts
  8270. return Goto(label)
  8271. \end{lstlisting}
  8272. \end{minipage}
  8273. \fi}
  8274. Figure~\ref{fig:explicate-control-challenge} shows the output of
  8275. \code{explicate\_control} on the example of the nested \code{if}
  8276. expressions with the two improvements discussed above. As you can
  8277. see, the number of basic blocks has been reduced from 10 blocks (see
  8278. Figure~\ref{fig:explicate-control-s1-38}) down to 6 blocks.
  8279. \begin{figure}[tbp]
  8280. {\if\edition\racketEd
  8281. \begin{tabular}{lll}
  8282. \begin{minipage}{0.4\textwidth}
  8283. % cond_test_41.rkt
  8284. \begin{lstlisting}
  8285. (let ([x (read)])
  8286. (let ([y (read)])
  8287. (if (if (< x 1)
  8288. (eq? x 0)
  8289. (eq? x 2))
  8290. (+ y 2)
  8291. (+ y 10))))
  8292. \end{lstlisting}
  8293. \end{minipage}
  8294. &
  8295. $\Rightarrow$
  8296. &
  8297. \begin{minipage}{0.55\textwidth}
  8298. \begin{lstlisting}
  8299. start:
  8300. x = (read);
  8301. y = (read);
  8302. if (< x 1) goto block40;
  8303. else goto block41;
  8304. block40:
  8305. if (eq? x 0) goto block38;
  8306. else goto block39;
  8307. block41:
  8308. if (eq? x 2) goto block38;
  8309. else goto block39;
  8310. block38:
  8311. return (+ y 2);
  8312. block39:
  8313. return (+ y 10);
  8314. \end{lstlisting}
  8315. \end{minipage}
  8316. \end{tabular}
  8317. \fi}
  8318. {\if\edition\pythonEd
  8319. \begin{tabular}{lll}
  8320. \begin{minipage}{0.4\textwidth}
  8321. % cond_test_41.rkt
  8322. \begin{lstlisting}
  8323. x = input_int()
  8324. y = input_int()
  8325. print(y + 2 \
  8326. if (x == 0 \
  8327. if x < 1 \
  8328. else x == 2) \
  8329. else y + 10)
  8330. \end{lstlisting}
  8331. \end{minipage}
  8332. &
  8333. $\Rightarrow$
  8334. &
  8335. \begin{minipage}{0.55\textwidth}
  8336. \begin{lstlisting}
  8337. start:
  8338. x = input_int()
  8339. y = input_int()
  8340. if x < 1:
  8341. goto block_4
  8342. else:
  8343. goto block_5
  8344. block_4:
  8345. if x == 0:
  8346. goto block_2
  8347. else:
  8348. goto block_3
  8349. block_5:
  8350. if x == 2:
  8351. goto block_2
  8352. else:
  8353. goto block_3
  8354. block_2:
  8355. tmp_0 = y + 2
  8356. goto block_1
  8357. block_3:
  8358. tmp_0 = y + 10
  8359. goto block_1
  8360. block_1:
  8361. print(tmp_0)
  8362. return 0
  8363. \end{lstlisting}
  8364. \end{minipage}
  8365. \end{tabular}
  8366. \fi}
  8367. \caption{Translation from \LangIf{} to \LangCIf{}
  8368. via the improved \code{explicate\_control}.}
  8369. \label{fig:explicate-control-challenge}
  8370. \end{figure}
  8371. %% Recall that in the example output of \code{explicate\_control} in
  8372. %% Figure~\ref{fig:explicate-control-s1-38}, \code{block57} through
  8373. %% \code{block60} are trivial blocks, they do nothing but jump to another
  8374. %% block. The first goal of this challenge assignment is to remove those
  8375. %% blocks. Figure~\ref{fig:optimize-jumps} repeats the result of
  8376. %% \code{explicate\_control} on the left and shows the result of bypassing
  8377. %% the trivial blocks on the right. Let us focus on \code{block61}. The
  8378. %% \code{then} branch jumps to \code{block57}, which in turn jumps to
  8379. %% \code{block55}. The optimized code on the right of
  8380. %% Figure~\ref{fig:optimize-jumps} bypasses \code{block57}, with the
  8381. %% \code{then} branch jumping directly to \code{block55}. The story is
  8382. %% similar for the \code{else} branch, as well as for the two branches in
  8383. %% \code{block62}. After the jumps in \code{block61} and \code{block62}
  8384. %% have been optimized in this way, there are no longer any jumps to
  8385. %% blocks \code{block57} through \code{block60}, so they can be removed.
  8386. %% \begin{figure}[tbp]
  8387. %% \begin{tabular}{lll}
  8388. %% \begin{minipage}{0.4\textwidth}
  8389. %% \begin{lstlisting}
  8390. %% block62:
  8391. %% tmp54 = (read);
  8392. %% if (eq? tmp54 2) then
  8393. %% goto block59;
  8394. %% else
  8395. %% goto block60;
  8396. %% block61:
  8397. %% tmp53 = (read);
  8398. %% if (eq? tmp53 0) then
  8399. %% goto block57;
  8400. %% else
  8401. %% goto block58;
  8402. %% block60:
  8403. %% goto block56;
  8404. %% block59:
  8405. %% goto block55;
  8406. %% block58:
  8407. %% goto block56;
  8408. %% block57:
  8409. %% goto block55;
  8410. %% block56:
  8411. %% return (+ 700 77);
  8412. %% block55:
  8413. %% return (+ 10 32);
  8414. %% start:
  8415. %% tmp52 = (read);
  8416. %% if (eq? tmp52 1) then
  8417. %% goto block61;
  8418. %% else
  8419. %% goto block62;
  8420. %% \end{lstlisting}
  8421. %% \end{minipage}
  8422. %% &
  8423. %% $\Rightarrow$
  8424. %% &
  8425. %% \begin{minipage}{0.55\textwidth}
  8426. %% \begin{lstlisting}
  8427. %% block62:
  8428. %% tmp54 = (read);
  8429. %% if (eq? tmp54 2) then
  8430. %% goto block55;
  8431. %% else
  8432. %% goto block56;
  8433. %% block61:
  8434. %% tmp53 = (read);
  8435. %% if (eq? tmp53 0) then
  8436. %% goto block55;
  8437. %% else
  8438. %% goto block56;
  8439. %% block56:
  8440. %% return (+ 700 77);
  8441. %% block55:
  8442. %% return (+ 10 32);
  8443. %% start:
  8444. %% tmp52 = (read);
  8445. %% if (eq? tmp52 1) then
  8446. %% goto block61;
  8447. %% else
  8448. %% goto block62;
  8449. %% \end{lstlisting}
  8450. %% \end{minipage}
  8451. %% \end{tabular}
  8452. %% \caption{Optimize jumps by removing trivial blocks.}
  8453. %% \label{fig:optimize-jumps}
  8454. %% \end{figure}
  8455. %% The name of this pass is \code{optimize-jumps}. We recommend
  8456. %% implementing this pass in two phases. The first phrase builds a hash
  8457. %% table that maps labels to possibly improved labels. The second phase
  8458. %% changes the target of each \code{goto} to use the improved label. If
  8459. %% the label is for a trivial block, then the hash table should map the
  8460. %% label to the first non-trivial block that can be reached from this
  8461. %% label by jumping through trivial blocks. If the label is for a
  8462. %% non-trivial block, then the hash table should map the label to itself;
  8463. %% we do not want to change jumps to non-trivial blocks.
  8464. %% The first phase can be accomplished by constructing an empty hash
  8465. %% table, call it \code{short-cut}, and then iterating over the control
  8466. %% flow graph. Each time you encouter a block that is just a \code{goto},
  8467. %% then update the hash table, mapping the block's source to the target
  8468. %% of the \code{goto}. Also, the hash table may already have mapped some
  8469. %% labels to the block's source, to you must iterate through the hash
  8470. %% table and update all of those so that they instead map to the target
  8471. %% of the \code{goto}.
  8472. %% For the second phase, we recommend iterating through the $\Tail$ of
  8473. %% each block in the program, updating the target of every \code{goto}
  8474. %% according to the mapping in \code{short-cut}.
  8475. \begin{exercise}\normalfont
  8476. Implement the improvements to the \code{explicate\_control} pass.
  8477. Check that it removes trivial blocks in a few example programs. Then
  8478. check that your compiler still passes all of your tests.
  8479. \end{exercise}
  8480. \subsection{Remove Jumps}
  8481. There is an opportunity for removing jumps that is apparent in the
  8482. example of Figure~\ref{fig:if-example-x86}. The \code{start} block
  8483. ends with a jump to \code{block\_4} and there are no other jumps to
  8484. \code{block\_4} in the rest of the program. In this situation we can
  8485. avoid the runtime overhead of this jump by merging \code{block\_4}
  8486. into the preceding block, in this case the \code{start} block.
  8487. Figure~\ref{fig:remove-jumps} shows the output of
  8488. \code{select\_instructions} on the left and the result of this
  8489. optimization on the right.
  8490. \begin{figure}[tbp]
  8491. {\if\edition\racketEd
  8492. \begin{tabular}{lll}
  8493. \begin{minipage}{0.5\textwidth}
  8494. % cond_test_20.rkt
  8495. \begin{lstlisting}
  8496. start:
  8497. callq read_int
  8498. movq %rax, tmp7951
  8499. cmpq $1, tmp7951
  8500. je block7952
  8501. jmp block7953
  8502. block7953:
  8503. movq $0, %rax
  8504. jmp conclusion
  8505. block7952:
  8506. movq $42, %rax
  8507. jmp conclusion
  8508. \end{lstlisting}
  8509. \end{minipage}
  8510. &
  8511. $\Rightarrow\qquad$
  8512. \begin{minipage}{0.4\textwidth}
  8513. \begin{lstlisting}
  8514. start:
  8515. callq read_int
  8516. movq %rax, tmp7951
  8517. cmpq $1, tmp7951
  8518. je block7952
  8519. movq $0, %rax
  8520. jmp conclusion
  8521. block7952:
  8522. movq $42, %rax
  8523. jmp conclusion
  8524. \end{lstlisting}
  8525. \end{minipage}
  8526. \end{tabular}
  8527. \fi}
  8528. {\if\edition\pythonEd
  8529. \begin{tabular}{lll}
  8530. \begin{minipage}{0.5\textwidth}
  8531. % cond_test_20.rkt
  8532. \begin{lstlisting}
  8533. start:
  8534. callq read_int
  8535. movq %rax, tmp_0
  8536. cmpq 1, tmp_0
  8537. je block_3
  8538. jmp block_4
  8539. block_3:
  8540. movq 42, tmp_1
  8541. jmp block_2
  8542. block_4:
  8543. movq 0, tmp_1
  8544. jmp block_2
  8545. block_2:
  8546. movq tmp_1, %rdi
  8547. callq print_int
  8548. movq 0, %rax
  8549. jmp conclusion
  8550. \end{lstlisting}
  8551. \end{minipage}
  8552. &
  8553. $\Rightarrow\qquad$
  8554. \begin{minipage}{0.4\textwidth}
  8555. \begin{lstlisting}
  8556. start:
  8557. callq read_int
  8558. movq %rax, tmp_0
  8559. cmpq 1, tmp_0
  8560. je block_3
  8561. movq 0, tmp_1
  8562. jmp block_2
  8563. block_3:
  8564. movq 42, tmp_1
  8565. jmp block_2
  8566. block_2:
  8567. movq tmp_1, %rdi
  8568. callq print_int
  8569. movq 0, %rax
  8570. jmp conclusion
  8571. \end{lstlisting}
  8572. \end{minipage}
  8573. \end{tabular}
  8574. \fi}
  8575. \caption{Merging basic blocks by removing unnecessary jumps.}
  8576. \label{fig:remove-jumps}
  8577. \end{figure}
  8578. \begin{exercise}\normalfont
  8579. %
  8580. Implement a pass named \code{remove\_jumps} that merges basic blocks
  8581. into their preceding basic block, when there is only one preceding
  8582. block. The pass should translate from \LangXIfVar{} to \LangXIfVar{}.
  8583. %
  8584. {\if\edition\racketEd
  8585. In the \code{run-tests.rkt} script, add the following entry to the
  8586. list of \code{passes} between \code{allocate\_registers}
  8587. and \code{patch\_instructions}.
  8588. \begin{lstlisting}
  8589. (list "remove-jumps" remove-jumps interp-pseudo-x86-1)
  8590. \end{lstlisting}
  8591. \fi}
  8592. %
  8593. Run the script to test your compiler.
  8594. %
  8595. Check that \code{remove\_jumps} accomplishes the goal of merging basic
  8596. blocks on several test programs.
  8597. \end{exercise}
  8598. \section{Further Reading}
  8599. \label{sec:cond-further-reading}
  8600. The algorithm for the \code{explicate\_control} pass is based on the
  8601. the \code{explose-basic-blocks} pass in the course notes of
  8602. \citet{Dybvig:2010aa}.
  8603. %
  8604. It has similarities to the algorithms of \citet{Danvy:2003fk} and
  8605. \citet{Appel:2003fk}, and is related to translations into continuation
  8606. passing
  8607. style~\citep{Wijngaarden:1966,Fischer:1972,reynolds72:_def_interp,Plotkin:1975,Friedman:2001}.
  8608. %
  8609. The treatment of conditionals in the \code{explicate\_control} pass is
  8610. similar to short-cut boolean
  8611. evaluation~\citep{Logothetis:1981,Aho:2006wb,Clarke:1989,Danvy:2003fk}
  8612. and the case-of-case transformation of \citet{PeytonJones:1998}.
  8613. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  8614. \chapter{Loops and Dataflow Analysis}
  8615. \label{ch:Lwhile}
  8616. % TODO: define R'_8
  8617. % TODO: multi-graph
  8618. {\if\edition\racketEd
  8619. %
  8620. In this chapter we study two features that are the hallmarks of
  8621. imperative programming languages: loops and assignments to local
  8622. variables. The following example demonstrates these new features by
  8623. computing the sum of the first five positive integers.
  8624. % similar to loop_test_1.rkt
  8625. \begin{lstlisting}
  8626. (let ([sum 0])
  8627. (let ([i 5])
  8628. (begin
  8629. (while (> i 0)
  8630. (begin
  8631. (set! sum (+ sum i))
  8632. (set! i (- i 1))))
  8633. sum)))
  8634. \end{lstlisting}
  8635. The \code{while} loop consists of a condition and a
  8636. body\footnote{The \code{while} loop in particular is not a built-in
  8637. feature of the Racket language, but Racket includes many looping
  8638. constructs and it is straightforward to define \code{while} as a
  8639. macro.}. The body is evaluated repeatedly so long as the condition
  8640. remains true.
  8641. %
  8642. The \code{set!} consists of a variable and a right-hand-side
  8643. expression. The \code{set!} updates value of the variable to the
  8644. value of the right-hand-side.
  8645. %
  8646. The primary purpose of both the \code{while} loop and \code{set!} is
  8647. to cause side effects, so they do not have a meaningful result
  8648. value. Instead their result is the \code{\#<void>} value. The
  8649. expression \code{(void)} is an explicit way to create the
  8650. \code{\#<void>} value and it has type \code{Void}. The
  8651. \code{\#<void>} value can be passed around just like other values
  8652. inside an \LangLoop{} program and a \code{\#<void>} value can be
  8653. compared for equality with another \code{\#<void>} value. However,
  8654. there are no other operations specific to the the \code{\#<void>}
  8655. value in \LangLoop{}. In contrast, Racket defines the \code{void?}
  8656. predicate that returns \code{\#t} when applied to \code{\#<void>} and
  8657. \code{\#f} otherwise.
  8658. %
  8659. \footnote{Racket's \code{Void} type corresponds to what is called the
  8660. \code{Unit} type in the programming languages literature. Racket's
  8661. \code{Void} type is inhabited by a single value \code{\#<void>}
  8662. which corresponds to \code{unit} or \code{()} in the
  8663. literature~\citep{Pierce:2002hj}.}.
  8664. %
  8665. With the addition of side-effecting features such as \code{while} loop
  8666. and \code{set!}, it is helpful to also include in a language feature
  8667. for sequencing side effects: the \code{begin} expression. It consists
  8668. of one or more subexpressions that are evaluated left-to-right.
  8669. %
  8670. \fi}
  8671. {\if\edition\pythonEd
  8672. %
  8673. In this chapter we study loops, one of the hallmarks of imperative
  8674. programming languages. The following example demonstrates the
  8675. \code{while} loop by computing the sum of the first five positive
  8676. integers.
  8677. \begin{lstlisting}
  8678. sum = 0
  8679. i = 5
  8680. while i > 0:
  8681. sum = sum + i
  8682. i = i - 1
  8683. print(sum)
  8684. \end{lstlisting}
  8685. The \code{while} loop consists of a condition expression and a body (a
  8686. sequence of statements). The body is evaluated repeatedly so long as
  8687. the condition remains true.
  8688. %
  8689. \fi}
  8690. \section{The \LangLoop{} Language}
  8691. \begin{figure}[tp]
  8692. \centering
  8693. \fbox{
  8694. \begin{minipage}{0.96\textwidth}
  8695. \small
  8696. {\if\edition\racketEd
  8697. \[
  8698. \begin{array}{lcl}
  8699. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  8700. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  8701. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  8702. &\MID& \gray{\itm{bool}
  8703. \MID (\key{and}\;\Exp\;\Exp)
  8704. \MID (\key{or}\;\Exp\;\Exp)
  8705. \MID (\key{not}\;\Exp) } \\
  8706. &\MID& \gray{ (\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  8707. &\MID& \CSETBANG{\Var}{\Exp}
  8708. \MID \CBEGIN{\Exp\ldots}{\Exp}
  8709. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP \\
  8710. \LangLoopM{} &::=& \gray{\Exp}
  8711. \end{array}
  8712. \]
  8713. \fi}
  8714. {\if\edition\pythonEd
  8715. \[
  8716. \begin{array}{rcl}
  8717. \itm{binop} &::= & \key{+} \MID \key{-} \MID \key{and} \MID \key{or} \MID \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  8718. \itm{uniop} &::= & \key{-} \MID \key{not} \\
  8719. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \CUNIOP{\itm{uniop}}{\Exp} \MID \CBINOP{\itm{binop}}{\Exp}{\Exp} \MID \Var{} \\
  8720. &\MID& \TRUE \MID \FALSE \MID \CIF{\Exp}{\Exp}{\Exp} \\
  8721. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp \MID \CASSIGN{\Var}{\Exp}
  8722. \MID \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}\\
  8723. &\MID& \key{while}~ \Exp \key{:}~ \Stmt^{+}\\
  8724. \LangLoopM{} &::=& \Stmt^{*}
  8725. \end{array}
  8726. \]
  8727. \fi}
  8728. \end{minipage}
  8729. }
  8730. \caption{The concrete syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-concrete-syntax}).}
  8731. \label{fig:Lwhile-concrete-syntax}
  8732. \end{figure}
  8733. \begin{figure}[tp]
  8734. \centering
  8735. \fbox{
  8736. \begin{minipage}{0.96\textwidth}
  8737. \small
  8738. {\if\edition\racketEd
  8739. \[
  8740. \begin{array}{lcl}
  8741. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  8742. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  8743. &\MID& \gray{ \BOOL{\itm{bool}}
  8744. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  8745. &\MID& \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  8746. \MID \WHILE{\Exp}{\Exp} \\
  8747. &\MID& \VOID{} \\
  8748. \LangLoopM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  8749. \end{array}
  8750. \]
  8751. \fi}
  8752. {\if\edition\pythonEd
  8753. \[
  8754. \begin{array}{lcl}
  8755. \itm{binop} &::=& \code{Add()} \MID \code{Sub()} \\
  8756. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  8757. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \\
  8758. \itm{uniop} &::=& \code{USub()} \MID \code{Not()} \\
  8759. \itm{bool} &::=& \code{True} \MID \code{False} \\
  8760. \Exp &::=& \INT{\Int} \MID \READ{} \MID \VAR{\Var} \\
  8761. &\MID& \BINOP{\Exp}{\itm{binop}}{\Exp}
  8762. \MID \UNIOP{\itm{uniop}}{\Exp}\\
  8763. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp}
  8764. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  8765. &\MID& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp} \\
  8766. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  8767. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  8768. &\MID& \WHILESTMT{\Exp}{\Stmt^{+}}\\
  8769. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  8770. \end{array}
  8771. \]
  8772. \fi}
  8773. \end{minipage}
  8774. }
  8775. \caption{The abstract syntax of \LangLoop{}, extending \LangIf{} (Figure~\ref{fig:Lif-syntax}).}
  8776. \label{fig:Lwhile-syntax}
  8777. \end{figure}
  8778. The concrete syntax of \LangLoop{} is defined in
  8779. Figure~\ref{fig:Lwhile-concrete-syntax} and its abstract syntax is defined
  8780. in Figure~\ref{fig:Lwhile-syntax}.
  8781. %
  8782. The definitional interpreter for \LangLoop{} is shown in
  8783. Figure~\ref{fig:interp-Rwhile}.
  8784. %
  8785. {\if\edition\racketEd
  8786. %
  8787. We add new cases for \code{SetBang}, \code{WhileLoop}, \code{Begin},
  8788. and \code{Void} and we make changes to the cases for \code{Var},
  8789. \code{Let}, and \code{Apply} regarding variables. To support
  8790. assignment to variables and to make their lifetimes indefinite (see
  8791. the second example in Section~\ref{sec:assignment-scoping}), we box
  8792. the value that is bound to each variable (in \code{Let}) and function
  8793. parameter (in \code{Apply}). The case for \code{Var} unboxes the
  8794. value.
  8795. %
  8796. Now to discuss the new cases. For \code{SetBang}, we lookup the
  8797. variable in the environment to obtain a boxed value and then we change
  8798. it using \code{set-box!} to the result of evaluating the right-hand
  8799. side. The result value of a \code{SetBang} is \code{void}.
  8800. %
  8801. For the \code{WhileLoop}, we repeatedly 1) evaluate the condition, and
  8802. if the result is true, 2) evaluate the body.
  8803. The result value of a \code{while} loop is also \code{void}.
  8804. %
  8805. The $\BEGIN{\itm{es}}{\itm{body}}$ expression evaluates the
  8806. subexpressions \itm{es} for their effects and then evaluates
  8807. and returns the result from \itm{body}.
  8808. %
  8809. The $\VOID{}$ expression produces the \code{void} value.
  8810. %
  8811. \fi}
  8812. {\if\edition\pythonEd
  8813. %
  8814. We add a new case for \code{While} in the \code{interp\_stmts}
  8815. function, where we repeatedly interpret the \code{body} so long as the
  8816. \code{test} expression remains true.
  8817. %
  8818. \fi}
  8819. \begin{figure}[tbp]
  8820. {\if\edition\racketEd
  8821. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8822. (define interp-Rwhile_class
  8823. (class interp-Rany_class
  8824. (super-new)
  8825. (define/override ((interp-exp env) e)
  8826. (define recur (interp-exp env))
  8827. (match e
  8828. [(SetBang x rhs)
  8829. (set-box! (lookup x env) (recur rhs))]
  8830. [(WhileLoop cnd body)
  8831. (define (loop)
  8832. (cond [(recur cnd) (recur body) (loop)]
  8833. [else (void)]))
  8834. (loop)]
  8835. [(Begin es body)
  8836. (for ([e es]) (recur e))
  8837. (recur body)]
  8838. [(Void) (void)]
  8839. [else ((super interp-exp env) e)]))
  8840. ))
  8841. (define (interp-Rwhile p)
  8842. (send (new interp-Rwhile_class) interp-program p))
  8843. \end{lstlisting}
  8844. \fi}
  8845. {\if\edition\pythonEd
  8846. \begin{lstlisting}
  8847. class InterpLwhile(InterpLif):
  8848. def interp_stmts(self, ss, env):
  8849. if len(ss) == 0:
  8850. return
  8851. match ss[0]:
  8852. case While(test, body, []):
  8853. while self.interp_exp(test, env):
  8854. self.interp_stmts(body, env)
  8855. return self.interp_stmts(ss[1:], env)
  8856. case _:
  8857. return super().interp_stmts(ss, env)
  8858. \end{lstlisting}
  8859. \fi}
  8860. \caption{Interpreter for \LangLoop{}.}
  8861. \label{fig:interp-Rwhile}
  8862. \end{figure}
  8863. The type checker for \LangLoop{} is defined in
  8864. Figure~\ref{fig:type-check-Rwhile}.
  8865. %
  8866. {\if\edition\racketEd
  8867. %
  8868. For \LangLoop{} we add a type named \code{Void} and the only value of
  8869. this type is the \code{void} value.
  8870. %
  8871. The type checking of the \code{SetBang} expression requires the type of
  8872. the variable and the right-hand-side to agree. The result type is
  8873. \code{Void}. For \code{while}, the condition must be a
  8874. \code{Boolean}. The result type is also \code{Void}. For
  8875. \code{Begin}, the result type is the type of its last subexpression.
  8876. %
  8877. \fi}
  8878. %
  8879. {\if\edition\pythonEd
  8880. %
  8881. A \code{while} loop is well typed if the type of the \code{test}
  8882. expression is \code{bool} and the statements in the \code{body} are
  8883. well typed.
  8884. %
  8885. \fi}
  8886. \begin{figure}[tbp]
  8887. {\if\edition\racketEd
  8888. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  8889. (define type-check-Rwhile_class
  8890. (class type-check-Rany_class
  8891. (super-new)
  8892. (inherit check-type-equal?)
  8893. (define/override (type-check-exp env)
  8894. (lambda (e)
  8895. (define recur (type-check-exp env))
  8896. (match e
  8897. [(SetBang x rhs)
  8898. (define-values (rhs^ rhsT) (recur rhs))
  8899. (define varT (dict-ref env x))
  8900. (check-type-equal? rhsT varT e)
  8901. (values (SetBang x rhs^) 'Void)]
  8902. [(WhileLoop cnd body)
  8903. (define-values (cnd^ Tc) (recur cnd))
  8904. (check-type-equal? Tc 'Boolean e)
  8905. (define-values (body^ Tbody) ((type-check-exp env) body))
  8906. (values (WhileLoop cnd^ body^) 'Void)]
  8907. [(Begin es body)
  8908. (define-values (es^ ts)
  8909. (for/lists (l1 l2) ([e es]) (recur e)))
  8910. (define-values (body^ Tbody) (recur body))
  8911. (values (Begin es^ body^) Tbody)]
  8912. [else ((super type-check-exp env) e)])))
  8913. ))
  8914. (define (type-check-Rwhile p)
  8915. (send (new type-check-Rwhile_class) type-check-program p))
  8916. \end{lstlisting}
  8917. \fi}
  8918. {\if\edition\pythonEd
  8919. \begin{lstlisting}
  8920. class TypeCheckLwhile(TypeCheckLif):
  8921. def type_check_stmts(self, ss, env):
  8922. if len(ss) == 0:
  8923. return
  8924. match ss[0]:
  8925. case While(test, body, []):
  8926. test_t = self.type_check_exp(test, env)
  8927. check_type_equal(bool, test_t, test)
  8928. body_t = self.type_check_stmts(body, env)
  8929. return self.type_check_stmts(ss[1:], env)
  8930. case _:
  8931. return super().type_check_stmts(ss, env)
  8932. \end{lstlisting}
  8933. \fi}
  8934. \caption{Type checker for the \LangLoop{} language.}
  8935. \label{fig:type-check-Rwhile}
  8936. \end{figure}
  8937. {\if\edition\racketEd
  8938. %
  8939. At first glance, the translation of these language features to x86
  8940. seems straightforward because the \LangCIf{} intermediate language
  8941. already supports all of the ingredients that we need: assignment,
  8942. \code{goto}, conditional branching, and sequencing. However, there are
  8943. complications that arise which we discuss in the next section. After
  8944. that we introduce the changes necessary to the existing passes.
  8945. %
  8946. \fi}
  8947. {\if\edition\pythonEd
  8948. %
  8949. At first glance, the translation of \code{while} loops to x86 seems
  8950. straightforward because the \LangCIf{} intermediate language already
  8951. supports \code{goto} and conditional branching. However, there are
  8952. complications that arise which we discuss in the next section. After
  8953. that we introduce the changes necessary to the existing passes.
  8954. %
  8955. \fi}
  8956. \section{Cyclic Control Flow and Dataflow Analysis}
  8957. \label{sec:dataflow-analysis}
  8958. Up until this point the control-flow graphs of the programs generated
  8959. in \code{explicate\_control} were guaranteed to be acyclic. However,
  8960. each \code{while} loop introduces a cycle in the control-flow graph.
  8961. But does that matter?
  8962. %
  8963. Indeed it does. Recall that for register allocation, the compiler
  8964. performs liveness analysis to determine which variables can share the
  8965. same register. To accomplish this we analyzed the control-flow graph
  8966. in reverse topological order
  8967. (Section~\ref{sec:liveness-analysis-Lif}), but topological order is
  8968. only well-defined for acyclic graphs.
  8969. Let us return to the example of computing the sum of the first five
  8970. positive integers. Here is the program after instruction selection but
  8971. before register allocation.
  8972. \begin{center}
  8973. {\if\edition\racketEd
  8974. \begin{minipage}{0.45\textwidth}
  8975. \begin{lstlisting}
  8976. (define (main) : Integer
  8977. mainstart:
  8978. movq $0, sum
  8979. movq $5, i
  8980. jmp block5
  8981. block5:
  8982. movq i, tmp3
  8983. cmpq tmp3, $0
  8984. jl block7
  8985. jmp block8
  8986. \end{lstlisting}
  8987. \end{minipage}
  8988. \begin{minipage}{0.45\textwidth}
  8989. \begin{lstlisting}
  8990. block7:
  8991. addq i, sum
  8992. movq $1, tmp4
  8993. negq tmp4
  8994. addq tmp4, i
  8995. jmp block5
  8996. block8:
  8997. movq $27, %rax
  8998. addq sum, %rax
  8999. jmp mainconclusion
  9000. )
  9001. \end{lstlisting}
  9002. \end{minipage}
  9003. \fi}
  9004. {\if\edition\pythonEd
  9005. \begin{minipage}{0.45\textwidth}
  9006. \begin{lstlisting}
  9007. mainstart:
  9008. movq $0, sum
  9009. movq $5, i
  9010. jmp block5
  9011. block5:
  9012. cmpq $0, i
  9013. jg block7
  9014. jmp block8
  9015. \end{lstlisting}
  9016. \end{minipage}
  9017. \begin{minipage}{0.45\textwidth}
  9018. \begin{lstlisting}
  9019. block7:
  9020. addq i, sum
  9021. subq $1, i
  9022. jmp block5
  9023. block8:
  9024. movq sum, %rdi
  9025. callq print_int
  9026. movq $0, %rax
  9027. jmp mainconclusion
  9028. \end{lstlisting}
  9029. \end{minipage}
  9030. \fi}
  9031. \end{center}
  9032. Recall that liveness analysis works backwards, starting at the end
  9033. of each function. For this example we could start with \code{block8}
  9034. because we know what is live at the beginning of the conclusion,
  9035. just \code{rax} and \code{rsp}. So the live-before set
  9036. for \code{block8} is $\{\ttm{rsp},\ttm{sum}\}$.
  9037. %
  9038. Next we might try to analyze \code{block5} or \code{block7}, but
  9039. \code{block5} jumps to \code{block7} and vice versa, so it seems that
  9040. we are stuck.
  9041. The way out of this impasse is to realize that we can compute an
  9042. under-approximation of the live-before set by starting with empty
  9043. live-after sets. By \emph{under-approximation}, we mean that the set
  9044. only contains variables that are live for some execution of the
  9045. program, but the set may be missing some variables. Next, the
  9046. under-approximations for each block can be improved by 1) updating the
  9047. live-after set for each block using the approximate live-before sets
  9048. from the other blocks and 2) perform liveness analysis again on each
  9049. block. In fact, by iterating this process, the under-approximations
  9050. eventually become the correct solutions!
  9051. %
  9052. This approach of iteratively analyzing a control-flow graph is
  9053. applicable to many static analysis problems and goes by the name
  9054. \emph{dataflow analysis}\index{subject}{dataflow analysis}. It was invented by
  9055. \citet{Kildall:1973vn} in his Ph.D. thesis at the University of
  9056. Washington.
  9057. Let us apply this approach to the above example. We use the empty set
  9058. for the initial live-before set for each block. Let $m_0$ be the
  9059. following mapping from label names to sets of locations (variables and
  9060. registers).
  9061. \begin{center}
  9062. \begin{lstlisting}
  9063. mainstart: {}, block5: {}, block7: {}, block8: {}
  9064. \end{lstlisting}
  9065. \end{center}
  9066. Using the above live-before approximations, we determine the
  9067. live-after for each block and then apply liveness analysis to each
  9068. block. This produces our next approximation $m_1$ of the live-before
  9069. sets.
  9070. \begin{center}
  9071. \begin{lstlisting}
  9072. mainstart: {}, block5: {i}, block7: {i, sum}, block8: {rsp, sum}
  9073. \end{lstlisting}
  9074. \end{center}
  9075. For the second round, the live-after for \code{mainstart} is the
  9076. current live-before for \code{block5}, which is \code{\{i\}}. So the
  9077. liveness analysis for \code{mainstart} computes the empty set. The
  9078. live-after for \code{block5} is the union of the live-before sets for
  9079. \code{block7} and \code{block8}, which is \code{\{i , rsp, sum\}}.
  9080. So the liveness analysis for \code{block5} computes \code{\{i , rsp,
  9081. sum\}}. The live-after for \code{block7} is the live-before for
  9082. \code{block5} (from the previous iteration), which is \code{\{i\}}.
  9083. So the liveness analysis for \code{block7} remains \code{\{i,
  9084. sum\}}. Together these yield the following approximation $m_2$ of
  9085. the live-before sets.
  9086. \begin{center}
  9087. \begin{lstlisting}
  9088. mainstart: {}, block5: {i, rsp, sum}, block7: {i, sum}, block8: {rsp, sum}
  9089. \end{lstlisting}
  9090. \end{center}
  9091. In the preceding iteration, only \code{block5} changed, so we can
  9092. limit our attention to \code{mainstart} and \code{block7}, the two
  9093. blocks that jump to \code{block5}. As a result, the live-before sets
  9094. for \code{mainstart} and \code{block7} are updated to include
  9095. \code{rsp}, yielding the following approximation $m_3$.
  9096. \begin{center}
  9097. \begin{lstlisting}
  9098. mainstart: {rsp}, block5: {i,rsp,sum}, block7: {i,rsp,sum}, block8: {rsp,sum}
  9099. \end{lstlisting}
  9100. \end{center}
  9101. Because \code{block7} changed, we analyze \code{block5} once more, but
  9102. its live-before set remains \code{\{i,rsp,sum\}}. At this point
  9103. our approximations have converged, so $m_3$ is the solution.
  9104. This iteration process is guaranteed to converge to a solution by the
  9105. Kleene Fixed-Point Theorem, a general theorem about functions on
  9106. lattices~\citep{Kleene:1952aa}. Roughly speaking, a \emph{lattice} is
  9107. any collection that comes with a partial ordering $\sqsubseteq$ on its
  9108. elements, a least element $\bot$ (pronounced bottom), and a join
  9109. operator $\sqcup$.\index{subject}{lattice}\index{subject}{bottom}\index{subject}{partial
  9110. ordering}\index{subject}{join}\footnote{Technically speaking, we will be
  9111. working with join semi-lattices.} When two elements are ordered $m_i
  9112. \sqsubseteq m_j$, it means that $m_j$ contains at least as much
  9113. information as $m_i$, so we can think of $m_j$ as a better-or-equal
  9114. approximation than $m_i$. The bottom element $\bot$ represents the
  9115. complete lack of information, i.e., the worst approximation. The join
  9116. operator takes two lattice elements and combines their information,
  9117. i.e., it produces the least upper bound of the two.\index{subject}{least upper
  9118. bound}
  9119. A dataflow analysis typically involves two lattices: one lattice to
  9120. represent abstract states and another lattice that aggregates the
  9121. abstract states of all the blocks in the control-flow graph. For
  9122. liveness analysis, an abstract state is a set of locations. We form
  9123. the lattice $L$ by taking its elements to be sets of locations, the
  9124. ordering to be set inclusion ($\subseteq$), the bottom to be the empty
  9125. set, and the join operator to be set union.
  9126. %
  9127. We form a second lattice $M$ by taking its elements to be mappings
  9128. from the block labels to sets of locations (elements of $L$). We
  9129. order the mappings point-wise, using the ordering of $L$. So given any
  9130. two mappings $m_i$ and $m_j$, $m_i \sqsubseteq_M m_j$ when $m_i(\ell)
  9131. \subseteq m_j(\ell)$ for every block label $\ell$ in the program. The
  9132. bottom element of $M$ is the mapping $\bot_M$ that sends every label
  9133. to the empty set, i.e., $\bot_M(\ell) = \emptyset$.
  9134. We can think of one iteration of liveness analysis applied to the
  9135. whole program as being a function $f$ on the lattice $M$. It takes a
  9136. mapping as input and computes a new mapping.
  9137. \[
  9138. f(m_i) = m_{i+1}
  9139. \]
  9140. Next let us think for a moment about what a final solution $m_s$
  9141. should look like. If we perform liveness analysis using the solution
  9142. $m_s$ as input, we should get $m_s$ again as the output. That is, the
  9143. solution should be a \emph{fixed point} of the function $f$.\index{subject}{fixed point}
  9144. \[
  9145. f(m_s) = m_s
  9146. \]
  9147. Furthermore, the solution should only include locations that are
  9148. forced to be there by performing liveness analysis on the program, so
  9149. the solution should be the \emph{least} fixed point.\index{subject}{least fixed point}
  9150. The Kleene Fixed-Point Theorem states that if a function $f$ is
  9151. monotone (better inputs produce better outputs), then the least fixed
  9152. point of $f$ is the least upper bound of the \emph{ascending Kleene
  9153. chain} obtained by starting at $\bot$ and iterating $f$ as
  9154. follows.\index{subject}{Kleene Fixed-Point Theorem}
  9155. \[
  9156. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9157. \sqsubseteq f^n(\bot) \sqsubseteq \cdots
  9158. \]
  9159. When a lattice contains only finitely-long ascending chains, then
  9160. every Kleene chain tops out at some fixed point after some number of
  9161. iterations of $f$.
  9162. \[
  9163. \bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq \cdots
  9164. \sqsubseteq f^k(\bot) = f^{k+1}(\bot) = m_s
  9165. \]
  9166. The liveness analysis is indeed a monotone function and the lattice
  9167. $M$ only has finitely-long ascending chains because there are only a
  9168. finite number of variables and blocks in the program. Thus we are
  9169. guaranteed that iteratively applying liveness analysis to all blocks
  9170. in the program will eventually produce the least fixed point solution.
  9171. Next let us consider dataflow analysis in general and discuss the
  9172. generic work list algorithm (Figure~\ref{fig:generic-dataflow}).
  9173. %
  9174. The algorithm has four parameters: the control-flow graph \code{G}, a
  9175. function \code{transfer} that applies the analysis to one block, the
  9176. \code{bottom} and \code{join} operator for the lattice of abstract
  9177. states. The algorithm begins by creating the bottom mapping,
  9178. represented by a hash table. It then pushes all of the nodes in the
  9179. control-flow graph onto the work list (a queue). The algorithm repeats
  9180. the \code{while} loop as long as there are items in the work list. In
  9181. each iteration, a node is popped from the work list and processed. The
  9182. \code{input} for the node is computed by taking the join of the
  9183. abstract states of all the predecessor nodes. The \code{transfer}
  9184. function is then applied to obtain the \code{output} abstract
  9185. state. If the output differs from the previous state for this block,
  9186. the mapping for this block is updated and its successor nodes are
  9187. pushed onto the work list.
  9188. Note that the \code{analyze\_dataflow} function is formulated as a
  9189. \emph{forward} dataflow analysis, that is, the inputs to the transfer
  9190. function come from the predecessor nodes in the control-flow
  9191. graph. However, liveness analysis is a \emph{backward} dataflow
  9192. analysis, so in that case one must supply the \code{analyze\_dataflow}
  9193. function with the transpose of the control-flow graph.
  9194. \begin{figure}[tb]
  9195. {\if\edition\racketEd
  9196. \begin{lstlisting}
  9197. (define (analyze_dataflow G transfer bottom join)
  9198. (define mapping (make-hash))
  9199. (for ([v (in-vertices G)])
  9200. (dict-set! mapping v bottom))
  9201. (define worklist (make-queue))
  9202. (for ([v (in-vertices G)])
  9203. (enqueue! worklist v))
  9204. (define trans-G (transpose G))
  9205. (while (not (queue-empty? worklist))
  9206. (define node (dequeue! worklist))
  9207. (define input (for/fold ([state bottom])
  9208. ([pred (in-neighbors trans-G node)])
  9209. (join state (dict-ref mapping pred))))
  9210. (define output (transfer node input))
  9211. (cond [(not (equal? output (dict-ref mapping node)))
  9212. (dict-set! mapping node output)
  9213. (for ([v (in-neighbors G node)])
  9214. (enqueue! worklist v))]))
  9215. mapping)
  9216. \end{lstlisting}
  9217. \fi}
  9218. {\if\edition\pythonEd
  9219. \begin{lstlisting}
  9220. def analyze_dataflow(G, transfer, bottom, join):
  9221. trans_G = transpose(G)
  9222. mapping = {}
  9223. for v in G.vertices():
  9224. mapping[v] = bottom
  9225. worklist = deque()
  9226. for v in G.vertices():
  9227. worklist.append(v)
  9228. while worklist:
  9229. node = worklist.pop()
  9230. input = reduce(join, [mapping[v] for v in trans_G.adjacent(node)], bottom)
  9231. output = transfer(node, input)
  9232. if output != mapping[node]:
  9233. mapping[node] = output
  9234. for v in G.adjacent(node):
  9235. worklist.append(v)
  9236. \end{lstlisting}
  9237. \fi}
  9238. \caption{Generic work list algorithm for dataflow analysis}
  9239. \label{fig:generic-dataflow}
  9240. \end{figure}
  9241. {\if\edition\racketEd
  9242. \section{Mutable Variables \& Remove Complex Operands}
  9243. There is a subtle interaction between the addition of \code{set!}, the
  9244. \code{remove\_complex\_operands} pass, and the left-to-right order of
  9245. evaluation of Racket. Consider the following example.
  9246. \begin{lstlisting}
  9247. (let ([x 2])
  9248. (+ x (begin (set! x 40) x)))
  9249. \end{lstlisting}
  9250. The result of this program is \code{42} because the first read from
  9251. \code{x} produces \code{2} and the second produces \code{40}. However,
  9252. if we naively apply the \code{remove\_complex\_operands} pass to this
  9253. example we obtain the following program whose result is \code{80}!
  9254. \begin{lstlisting}
  9255. (let ([x 2])
  9256. (let ([tmp (begin (set! x 40) x)])
  9257. (+ x tmp)))
  9258. \end{lstlisting}
  9259. The problem is that, with mutable variables, the ordering between
  9260. reads and writes is important, and the
  9261. \code{remove\_complex\_operands} pass moved the \code{set!} to happen
  9262. before the first read of \code{x}.
  9263. We recommend solving this problem by giving special treatment to reads
  9264. from mutable variables, that is, variables that occur on the left-hand
  9265. side of a \code{set!}. We mark each read from a mutable variable with
  9266. the form \code{get!} (\code{GetBang} in abstract syntax) to indicate
  9267. that the read operation is effectful in that it can produce different
  9268. results at different points in time. Let's apply this idea to the
  9269. following variation that also involves a variable that is not mutated.
  9270. % loop_test_24.rkt
  9271. \begin{lstlisting}
  9272. (let ([x 2])
  9273. (let ([y 0])
  9274. (+ y (+ x (begin (set! x 40) x)))))
  9275. \end{lstlisting}
  9276. We analyze the above program to discover that variable \code{x} is
  9277. mutable but \code{y} is not. We then transform the program as follows,
  9278. replacing each occurence of \code{x} with \code{(get! x)}.
  9279. \begin{lstlisting}
  9280. (let ([x 2])
  9281. (let ([y 0])
  9282. (+ y (+ (get! x) (begin (set! x 40) (get! x))))))
  9283. \end{lstlisting}
  9284. Now that we have a clear distinction between reads from mutable and
  9285. immutable variables, we can apply the \code{remove\_complex\_operands}
  9286. pass, where reads from immutable variables are still classified as
  9287. atomic expressions but reads from mutable variables are classified as
  9288. complex. Thus, \code{remove\_complex\_operands} yields the following
  9289. program.
  9290. \begin{lstlisting}
  9291. (let ([x 2])
  9292. (let ([y 0])
  9293. (+ y (let ([t1 (get! x)])
  9294. (let ([t2 (begin (set! x 40) (get! x))])
  9295. (+ t1 t2))))))
  9296. \end{lstlisting}
  9297. The temporary variable \code{t1} gets the value of \code{x} before the
  9298. \code{set!}, so it is \code{2}. The temporary variable \code{t2} gets
  9299. the value of \code{x} after the \code{set!}, so it is \code{40}. We
  9300. do not generate a temporary variable for the occurence of \code{y}
  9301. because it's an immutable variable. We want to avoid such unnecessary
  9302. extra temporaries because they would needless increase the number of
  9303. variables, making it more likely for some of them to be spilled. The
  9304. result of this program is \code{42}, the same as the result prior to
  9305. \code{remove\_complex\_operands}.
  9306. The approach that we've sketched above requires only a small
  9307. modification to \code{remove\_complex\_operands} to handle
  9308. \code{get!}. However, it requires a new pass, called
  9309. \code{uncover-get!}, that we discuss in
  9310. Section~\ref{sec:uncover-get-bang}.
  9311. As an aside, this problematic interaction between \code{set!} and the
  9312. pass \code{remove\_complex\_operands} is particular to Racket and not
  9313. its predecessor, the Scheme language. The key difference is that
  9314. Scheme does not specify an order of evaluation for the arguments of an
  9315. operator or function call~\citep{SPERBER:2009aa}. Thus, a compiler for
  9316. Scheme is free to choose any ordering: both \code{42} and \code{80}
  9317. would be correct results for the example program. Interestingly,
  9318. Racket is implemented on top of the Chez Scheme
  9319. compiler~\citep{Dybvig:2006aa} and an approach similar to the one
  9320. presented in this section (using extra \code{let} bindings to control
  9321. the order of evaluation) is used in the translation from Racket to
  9322. Scheme~\citep{Flatt:2019tb}.
  9323. \fi} % racket
  9324. Having discussed the complications that arise from adding support for
  9325. assignment and loops, we turn to discussing the individual compilation
  9326. passes.
  9327. {\if\edition\racketEd
  9328. \section{Uncover \texttt{get!}}
  9329. \label{sec:uncover-get-bang}
  9330. The goal of this pass it to mark uses of mutable variables so that
  9331. \code{remove\_complex\_operands} can treat them as complex expressions
  9332. and thereby preserve their ordering relative to the side-effects in
  9333. other operands. So the first step is to collect all the mutable
  9334. variables. We recommend creating an auxilliary function for this,
  9335. named \code{collect-set!}, that recursively traverses expressions,
  9336. returning a set of all variables that occur on the left-hand side of a
  9337. \code{set!}. Here's an exerpt of its implementation.
  9338. \begin{center}
  9339. \begin{minipage}{\textwidth}
  9340. \begin{lstlisting}
  9341. (define (collect-set! e)
  9342. (match e
  9343. [(Var x) (set)]
  9344. [(Int n) (set)]
  9345. [(Let x rhs body)
  9346. (set-union (collect-set! rhs) (collect-set! body))]
  9347. [(SetBang var rhs)
  9348. (set-union (set var) (collect-set! rhs))]
  9349. ...))
  9350. \end{lstlisting}
  9351. \end{minipage}
  9352. \end{center}
  9353. By placing this pass after \code{uniquify}, we need not worry about
  9354. variable shadowing and our logic for \code{let} can remain simple, as
  9355. in the exerpt above.
  9356. The second step is to mark the occurences of the mutable variables
  9357. with the new \code{GetBang} AST node (\code{get!} in concrete
  9358. syntax). The following is an exerpt of the \code{uncover-get!-exp}
  9359. function, which takes two parameters: the set of mutable varaibles
  9360. \code{set!-vars}, and the expression \code{e} to be processed. The
  9361. case for \code{(Var x)} replaces it with \code{(GetBang x)} if it is a
  9362. mutable variable or leaves it alone if not.
  9363. \begin{center}
  9364. \begin{minipage}{\textwidth}
  9365. \begin{lstlisting}
  9366. (define ((uncover-get!-exp set!-vars) e)
  9367. (match e
  9368. [(Var x)
  9369. (if (set-member? set!-vars x)
  9370. (GetBang x)
  9371. (Var x))]
  9372. ...))
  9373. \end{lstlisting}
  9374. \end{minipage}
  9375. \end{center}
  9376. To wrap things up, define the \code{uncover-get!} function for
  9377. processing a whole program, using \code{collect-set!} to obtain the
  9378. set of mutable variables and then \code{uncover-get!-exp} to replace
  9379. their occurences with \code{GetBang}.
  9380. \fi}
  9381. \section{Remove Complex Operands}
  9382. \label{sec:rco-loop}
  9383. {\if\edition\racketEd
  9384. %
  9385. The new language forms, \code{get!}, \code{set!}, \code{begin}, and
  9386. \code{while} are all complex expressions. The subexpressions of
  9387. \code{set!}, \code{begin}, and \code{while} are allowed to be complex.
  9388. %
  9389. \fi}
  9390. {\if\edition\pythonEd
  9391. %
  9392. The change needed for this pass is to add a case for the \code{while}
  9393. statement. The condition of a \code{while} loop is allowed to be a
  9394. complex expression, just like the condition of the \code{if}
  9395. statement.
  9396. %
  9397. \fi}
  9398. %
  9399. Figure~\ref{fig:Rwhile-anf-syntax} defines the output language
  9400. \LangLoopANF{} of this pass.
  9401. \begin{figure}[tp]
  9402. \centering
  9403. \fbox{
  9404. \begin{minipage}{0.96\textwidth}
  9405. \small
  9406. {\if\edition\racketEd
  9407. \[
  9408. \begin{array}{rcl}
  9409. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  9410. \MID \VOID{} } \\
  9411. \Exp &::=& \ldots \MID \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  9412. &\MID& \GETBANG{\Var}
  9413. \MID \SETBANG{\Var}{\Exp} \\
  9414. &\MID& \BEGIN{\LP\Exp\ldots\RP}{\Exp}
  9415. \MID \WHILE{\Exp}{\Exp} \\
  9416. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  9417. \LangLoopANF &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  9418. \end{array}
  9419. \]
  9420. \fi}
  9421. {\if\edition\pythonEd
  9422. \[
  9423. \begin{array}{rcl}
  9424. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}\\
  9425. \Exp &::=& \Atm \MID \READ{} \\
  9426. &\MID& \BINOP{\itm{binop}}{\Atm}{\Atm} \MID \UNIOP{\key{uniop}}{\Atm} \\
  9427. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} \\
  9428. % &\MID& \LET{\Var}{\Exp}{\Exp}\\
  9429. \Stmt{} &::=& \PRINT{\Atm} \MID \EXPR{\Exp} \\
  9430. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  9431. &\MID& \WHILESTMT{\Exp}{\Stmt^{+}} \\
  9432. \LangLoopANF &::=& \PROGRAM{\code{()}}{\Stmt^{*}}
  9433. \end{array}
  9434. \]
  9435. \fi}
  9436. \end{minipage}
  9437. }
  9438. \caption{\LangLoopANF{} is \LangLoop{} in monadic normal form.}
  9439. \label{fig:Rwhile-anf-syntax}
  9440. \end{figure}
  9441. {\if\edition\racketEd
  9442. As usual, when a complex expression appears in a grammar position that
  9443. needs to be atomic, such as the argument of a primitive operator, we
  9444. must introduce a temporary variable and bind it to the complex
  9445. expression. This approach applies, unchanged, to handle the new
  9446. language forms. For example, in the following code there are two
  9447. \code{begin} expressions appearing as arguments to \code{+}. The
  9448. output of \code{rco\_exp} is shown below, in which the \code{begin}
  9449. expressions have been bound to temporary variables. Recall that
  9450. \code{let} expressions in \LangLoopANF{} are allowed to have
  9451. arbitrary expressions in their right-hand-side expression, so it is
  9452. fine to place \code{begin} there.
  9453. \begin{center}
  9454. \begin{minipage}{\textwidth}
  9455. \begin{lstlisting}
  9456. (let ([x0 10])
  9457. (let ([y1 0])
  9458. (+ (+ (begin (set! y1 (read)) x0)
  9459. (begin (set! x0 (read)) y1))
  9460. x0)))
  9461. |$\Rightarrow$|
  9462. (let ([x0 10])
  9463. (let ([y1 0])
  9464. (let ([tmp2 (begin (set! y1 (read)) x0)])
  9465. (let ([tmp3 (begin (set! x0 (read)) y1)])
  9466. (let ([tmp4 (+ tmp2 tmp3)])
  9467. (+ tmp4 x0))))))
  9468. \end{lstlisting}
  9469. \end{minipage}
  9470. \end{center}
  9471. \fi}
  9472. \section{Explicate Control \racket{and \LangCLoop{}}}
  9473. \label{sec:explicate-loop}
  9474. {\if\edition\racketEd
  9475. Recall that in the \code{explicate\_control} pass we define one helper
  9476. function for each kind of position in the program. For the \LangVar{}
  9477. language of integers and variables we needed kinds of positions:
  9478. assignment and tail. The \code{if} expressions of \LangIf{} introduced
  9479. predicate positions. For \LangLoop{}, the \code{begin} expression introduces
  9480. yet another kind of position: effect position. Except for the last
  9481. subexpression, the subexpressions inside a \code{begin} are evaluated
  9482. only for their effect. Their result values are discarded. We can
  9483. generate better code by taking this fact into account.
  9484. The output language of \code{explicate\_control} is \LangCLoop{}
  9485. (Figure~\ref{fig:c7-syntax}), which is nearly identical to
  9486. \LangCLam{}. The only syntactic difference is that \code{Call} and
  9487. \code{read} may also appear as statements. The most significant
  9488. difference between \LangCLam{} and \LangCLoop{} is that the
  9489. control-flow graphs of the later may contain cycles.
  9490. \begin{figure}[tp]
  9491. \fbox{
  9492. \begin{minipage}{0.96\textwidth}
  9493. \small
  9494. \[
  9495. \begin{array}{lcl}
  9496. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  9497. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  9498. &\MID& \CALL{\Atm}{\LP\Atm\ldots\RP} \MID \READ{}\\
  9499. % &\MID& \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP \\
  9500. \Def &::=& \DEF{\itm{label}}{\LP\LS\Var\key{:}\Type\RS\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  9501. \LangCLoopM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  9502. \end{array}
  9503. \]
  9504. \end{minipage}
  9505. }
  9506. \caption{The abstract syntax of \LangCLoop{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  9507. \label{fig:c7-syntax}
  9508. \end{figure}
  9509. The new auxiliary function \code{explicate\_effect} takes an
  9510. expression (in an effect position) and a continuation. The function
  9511. returns a $\Tail$ that includes the generated code for the input
  9512. expression followed by the continuation. If the expression is
  9513. obviously pure, that is, never causes side effects, then the
  9514. expression can be removed, so the result is just the continuation.
  9515. %
  9516. The $\WHILE{\itm{cnd}}{\itm{body}}$ expression is the most interesting
  9517. case. First, you will need a fresh label $\itm{loop}$ for the top of
  9518. the loop. Recursively process the \itm{body} (in effect position)
  9519. with the a \code{goto} to $\itm{loop}$ as the continuation, producing
  9520. \itm{body'}. Next, process the \itm{cnd} (in predicate position) with
  9521. \itm{body'} as the then-branch and the continuation block as the
  9522. else-branch. The result should be added to the control-flow graph with
  9523. the label \itm{loop}. The result for the whole \code{while} loop is a
  9524. \code{goto} to the \itm{loop} label.
  9525. The auxiliary functions for tail, assignment, and predicate positions
  9526. need to be updated. The three new language forms, \code{while},
  9527. \code{set!}, and \code{begin}, can appear in assignment and tail
  9528. positions. Only \code{begin} may appear in predicate positions; the
  9529. other two have result type \code{Void}.
  9530. \fi}
  9531. %
  9532. {\if\edition\pythonEd
  9533. %
  9534. The output of this pass is the language \LangCIf{}. No new language
  9535. features are needed in the output because a \code{while} loop can be
  9536. expressed in terms of \code{goto} and \code{if} statements, which are
  9537. already in \LangCIf{}.
  9538. %
  9539. Add a case for the \code{while} statement to the
  9540. \code{explicate\_stmt} method, using \code{explicate\_pred} to process
  9541. the condition expression.
  9542. %
  9543. \fi}
  9544. {\if\edition\racketEd
  9545. \section{Select Instructions}
  9546. \label{sec:select-instructions-loop}
  9547. Only three small additions are needed in the
  9548. \code{select\_instructions} pass to handle the changes to
  9549. \LangCLoop{}. That is, a \code{Call} to \code{read} may now appear as a
  9550. stand-alone statement instead of only appearing on the right-hand
  9551. side of an assignment statement. The code generation is nearly
  9552. identical; just leave off the instruction for moving the result into
  9553. the left-hand side.
  9554. \fi}
  9555. \section{Register Allocation}
  9556. \label{sec:register-allocation-loop}
  9557. As discussed in Section~\ref{sec:dataflow-analysis}, the presence of
  9558. loops in \LangLoop{} means that the control-flow graphs may contain cycles,
  9559. which complicates the liveness analysis needed for register
  9560. allocation.
  9561. \subsection{Liveness Analysis}
  9562. \label{sec:liveness-analysis-r8}
  9563. We recommend using the generic \code{analyze\_dataflow} function that
  9564. was presented at the end of Section~\ref{sec:dataflow-analysis} to
  9565. perform liveness analysis, replacing the code in
  9566. \code{uncover\_live} that processed the basic blocks in topological
  9567. order (Section~\ref{sec:liveness-analysis-Lif}).
  9568. The \code{analyze\_dataflow} function has four parameters.
  9569. \begin{enumerate}
  9570. \item The first parameter \code{G} should be a directed graph from the
  9571. \racket{
  9572. \code{racket/graph} package (see the sidebar in
  9573. Section~\ref{sec:build-interference})}
  9574. \python{\code{graph.py} file in the support code}
  9575. that represents the
  9576. control-flow graph.
  9577. \item The second parameter \code{transfer} is a function that applies
  9578. liveness analysis to a basic block. It takes two parameters: the
  9579. label for the block to analyze and the live-after set for that
  9580. block. The transfer function should return the live-before set for
  9581. the block.
  9582. %
  9583. \racket{Also, as a side-effect, it should update the block's
  9584. $\itm{info}$ with the liveness information for each instruction.}
  9585. %
  9586. \python{Also, as a side-effect, it should update the live-before and
  9587. live-after sets for each instruction.}
  9588. %
  9589. To implement the \code{transfer} function, you should be able to
  9590. reuse the code you already have for analyzing basic blocks.
  9591. \item The third and fourth parameters of \code{analyze\_dataflow} are
  9592. \code{bottom} and \code{join} for the lattice of abstract states,
  9593. i.e. sets of locations. The bottom of the lattice is the empty set
  9594. and the join operator is set union.
  9595. \end{enumerate}
  9596. \begin{figure}[p]
  9597. \begin{tikzpicture}[baseline=(current bounding box.center)]
  9598. \node (Rfun) at (0,2) {\large \LangLoop{}};
  9599. \node (Rfun-2) at (3,2) {\large \LangLoop{}};
  9600. %\node (Rfun-3) at (6,2) {\large \LangLoop{}};
  9601. %\node (Rfun-4) at (9,2) {\large \LangLoopFunRef{}};
  9602. %\node (F1-1) at (12,0) {\large \LangLoopFunRef{}};
  9603. %\node (F1-2) at (9,0) {\large \LangLoopFunRef{}};
  9604. %\node (F1-3) at (6,0) {\large \LangLoopFunRef{}};
  9605. \node (F1-4) at (6,2) {\large \LangLoop{}};
  9606. \node (F1-5) at (9,2) {\large \LangLoopANF{}};
  9607. \node (C3-2) at (3,0) {\large \racket{\LangCLoop{}}\python{\LangCIf{}}};
  9608. \node (x86-2) at (3,-2) {\large \LangXIfVar{}};
  9609. \node (x86-2-1) at (3,-4) {\large \LangXIfVar{}};
  9610. \node (x86-2-2) at (6,-4) {\large \LangXIfVar{}};
  9611. \node (x86-3) at (6,-2) {\large \LangXIfVar{}};
  9612. \node (x86-4) at (9,-2) {\large \LangXIf{}};
  9613. \node (x86-5) at (9,-4) {\large \LangXIf{}};
  9614. %% \path[->,bend left=15] (Rfun) edge [above] node
  9615. %% {\ttfamily\footnotesize type-check} (Rfun-2);
  9616. \path[->,bend left=15] (Rfun) edge [above] node
  9617. {\ttfamily\footnotesize shrink} (Rfun-2);
  9618. \path[->,bend left=15] (Rfun-2) edge [above] node
  9619. {\ttfamily\footnotesize uniquify} (F1-4);
  9620. %% \path[->,bend left=15] (Rfun-3) edge [above] node
  9621. %% {\ttfamily\footnotesize reveal\_functions} (Rfun-4);
  9622. %% \path[->,bend left=15] (Rfun-4) edge [right] node
  9623. %% {\ttfamily\footnotesize convert\_assignments} (F1-1);
  9624. %% \path[->,bend left=15] (Rfun-4) edge [right] node
  9625. %% {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  9626. %% \path[->,bend right=15] (F1-2) edge [above] node
  9627. %% {\ttfamily\footnotesize limit\_fun.} (F1-3);
  9628. %% \path[->,bend right=15] (F1-3) edge [above] node
  9629. %% {\ttfamily\footnotesize expose-alloc.} (F1-4);
  9630. \path[->,bend left=15] (F1-4) edge [above] node
  9631. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  9632. \path[->,bend left=15] (F1-5) edge [right] node
  9633. {\ttfamily\footnotesize explicate\_control} (C3-2);
  9634. \path[->,bend left=15] (C3-2) edge [left] node
  9635. {\ttfamily\footnotesize select\_instr.} (x86-2);
  9636. \path[->,bend right=15] (x86-2) edge [left] node
  9637. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  9638. \path[->,bend right=15] (x86-2-1) edge [below] node
  9639. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  9640. \path[->,bend right=15] (x86-2-2) edge [left] node
  9641. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  9642. \path[->,bend left=15] (x86-3) edge [above] node
  9643. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  9644. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize prelude\_and\_concl.} (x86-5);
  9645. \end{tikzpicture}
  9646. \caption{Diagram of the passes for \LangLoop{}.}
  9647. \label{fig:Rwhile-passes}
  9648. \end{figure}
  9649. Figure~\ref{fig:Rwhile-passes} provides an overview of all the passes needed
  9650. for the compilation of \LangLoop{}.
  9651. % Further Reading: dataflow analysis
  9652. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  9653. \chapter{Tuples and Garbage Collection}
  9654. \label{ch:Lvec}
  9655. \index{subject}{tuple}
  9656. \index{subject}{vector}
  9657. \index{subject}{allocate}
  9658. \index{subject}{heap allocate}
  9659. %% \margincomment{\scriptsize To do: Flesh out this chapter, e.g., make sure
  9660. %% all the IR grammars are spelled out! \\ --Jeremy}
  9661. %% \margincomment{\scriptsize Be more explicit about how to deal with
  9662. %% the root stack. \\ --Jeremy}
  9663. In this chapter we study the implementation of
  9664. tuples\racket{, called vectors in Racket}.
  9665. %
  9666. This language feature is the first of ours to use the computer's
  9667. \emph{heap}\index{subject}{heap} because the lifetime of a tuple is
  9668. indefinite, that is, a tuple lives forever from the programmer's
  9669. viewpoint. Of course, from an implementer's viewpoint, it is important
  9670. to reclaim the space associated with a tuple when it is no longer
  9671. needed, which is why we also study \emph{garbage collection}
  9672. \index{garbage collection} techniques in this chapter.
  9673. Section~\ref{sec:r3} introduces the \LangVec{} language including its
  9674. interpreter and type checker. The \LangVec{} language extends the \LangLoop{}
  9675. language of Chapter~\ref{ch:Lwhile} with tuples.
  9676. Section~\ref{sec:GC} describes a garbage collection algorithm based on
  9677. copying live objects back and forth between two halves of the
  9678. heap. The garbage collector requires coordination with the compiler so
  9679. that it can see all of the \emph{root} pointers, that is, pointers in
  9680. registers or on the procedure call stack.
  9681. Sections~\ref{sec:expose-allocation} through \ref{sec:print-x86-gc}
  9682. discuss all the necessary changes and additions to the compiler
  9683. passes, including a new compiler pass named \code{expose\_allocation}.
  9684. \section{The \LangVec{} Language}
  9685. \label{sec:r3}
  9686. Figure~\ref{fig:Lvec-concrete-syntax} defines the concrete syntax for
  9687. \LangVec{} and Figure~\ref{fig:Lvec-syntax} defines the abstract syntax.
  9688. %
  9689. \racket{The \LangVec{} language includes the forms: \code{vector} for
  9690. creating a tuple, \code{vector-ref} for reading an element of a
  9691. tuple, \code{vector-set!} for writing to an element of a tuple, and
  9692. \code{vector-length} for obtaining the number of elements of a
  9693. tuple.}
  9694. %
  9695. \python{The \LangVec{} language adds 1) tuple creation via a
  9696. comma-separated list of expressions, 2) accessing an element of a
  9697. tuple with the square bracket notation, i.e., \code{t[n]} returns
  9698. the nth element of the tuple \code{t}, 3) the \code{is} comparison
  9699. operator, and 4) obtaining the number of elements (the length) of a
  9700. tuple.}
  9701. %
  9702. The program below shows an example use of tuples. It creates a 3-tuple
  9703. \code{t} and a 1-tuple that is stored at index $2$ of the 3-tuple,
  9704. demonstrating that tuples are first-class values. The element at
  9705. index $1$ of \code{t} is \racket{\code{\#t}}\python{\code{True}}, so the
  9706. ``then'' branch of the \key{if} is taken. The element at index $0$ of
  9707. \code{t} is \code{40}, to which we add \code{2}, the element at index
  9708. $0$ of the 1-tuple. So the result of the program is \code{42}.
  9709. %
  9710. {\if\edition\racketEd
  9711. \begin{lstlisting}
  9712. (let ([t (vector 40 #t (vector 2))])
  9713. (if (vector-ref t 1)
  9714. (+ (vector-ref t 0)
  9715. (vector-ref (vector-ref t 2) 0))
  9716. 44))
  9717. \end{lstlisting}
  9718. \fi}
  9719. {\if\edition\pythonEd
  9720. \begin{lstlisting}
  9721. t = 40, True, (2,)
  9722. print( t[0] + t[2][0] if t[1] else 44 )
  9723. \end{lstlisting}
  9724. \fi}
  9725. \begin{figure}[tbp]
  9726. \centering
  9727. \fbox{
  9728. \begin{minipage}{0.96\textwidth}
  9729. {\if\edition\racketEd
  9730. \[
  9731. \begin{array}{lcl}
  9732. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}}
  9733. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}\\
  9734. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  9735. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  9736. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  9737. \MID \LP\key{and}\;\Exp\;\Exp\RP
  9738. \MID \LP\key{or}\;\Exp\;\Exp\RP
  9739. \MID \LP\key{not}\;\Exp\RP } \\
  9740. &\MID& \gray{ \LP\itm{cmp}\;\Exp\;\Exp\RP
  9741. \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  9742. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  9743. \MID \CBEGIN{\Exp\ldots}{\Exp}
  9744. \MID \CWHILE{\Exp}{\Exp} \MID \LP\key{void}\RP } \\
  9745. &\MID& \LP\key{vector}\;\Exp\ldots\RP
  9746. \MID \LP\key{vector-length}\;\Exp\RP \\
  9747. &\MID& \LP\key{vector-ref}\;\Exp\;\Int\RP
  9748. \MID \LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP \\
  9749. &\MID& \LP\key{has-type}~\Exp~\Type\RP\\
  9750. \LangVecM{} &::=& \Exp
  9751. \end{array}
  9752. \]
  9753. \fi}
  9754. {\if\edition\pythonEd
  9755. \[
  9756. \begin{array}{rcl}
  9757. \itm{binop} &::= & \key{+} \MID \key{-} \MID \key{and} \MID \key{or} \MID \key{==} \MID \key{!=} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \MID \key{is} \\
  9758. \itm{uniop} &::= & \key{-} \MID \key{not} \\
  9759. \Exp &::=& \Int \MID \key{input\_int}\LP\RP \MID \CUNIOP{\itm{uniop}}{\Exp} \MID \CBINOP{\itm{binop}}{\Exp}{\Exp} \MID \Var{} \\
  9760. &\MID& \TRUE \MID \FALSE \MID \CIF{\Exp}{\Exp}{\Exp} \\
  9761. &\MID& \Exp \key{,} \ldots \key{,} \Exp \MID \CGET{\Exp}{\Exp} \MID \CLEN{\Exp} \\
  9762. \Stmt &::=& \key{print}\LP \Exp \RP \MID \Exp \MID \CASSIGN{\Var}{\Exp}
  9763. \MID \key{if}~ \Exp \key{:}~ \Stmt^{+} ~\key{else:}~ \Stmt^{+}\\
  9764. &\MID& \key{while}~ \Exp \key{:}~ \Stmt^{+}\\
  9765. \LangVecM{} &::=& \Stmt^{*}
  9766. \end{array}
  9767. \]
  9768. \fi}
  9769. \end{minipage}
  9770. }
  9771. \caption{The concrete syntax of \LangVec{}, extending \LangLoop{}
  9772. (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  9773. \label{fig:Lvec-concrete-syntax}
  9774. \end{figure}
  9775. \begin{figure}[tp]
  9776. \centering
  9777. \fbox{
  9778. \begin{minipage}{0.96\textwidth}
  9779. {\if\edition\racketEd
  9780. \[
  9781. \begin{array}{lcl}
  9782. \itm{op} &::=& \ldots \MID \code{vector} \MID \code{vector-length} \\
  9783. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  9784. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots}
  9785. \MID \BOOL{\itm{bool}}
  9786. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  9787. &\MID& \VECREF{\Exp}{\INT{\Int}}\\
  9788. &\MID& \VECSET{\Exp}{\INT{\Int}}{\Exp} \\
  9789. &\MID& \LP\key{HasType}~\Exp~\Type \RP \\
  9790. \LangVecM{} &::=& \PROGRAM{\key{'()}}{\Exp}
  9791. \end{array}
  9792. \]
  9793. \fi}
  9794. {\if\edition\pythonEd
  9795. \[
  9796. \begin{array}{lcl}
  9797. \itm{binop} &::=& \code{Add()} \MID \code{Sub()} \\
  9798. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  9799. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \MID \code{Is()} \\
  9800. \itm{uniop} &::=& \code{USub()} \MID \code{Not()} \\
  9801. \itm{bool} &::=& \code{True} \MID \code{False} \\
  9802. \Exp &::=& \INT{\Int} \MID \READ{} \MID \VAR{\Var} \\
  9803. &\MID& \BINOP{\Exp}{\itm{binop}}{\Exp}
  9804. \MID \UNIOP{\itm{uniop}}{\Exp}\\
  9805. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp}
  9806. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  9807. &\MID& \BOOL{\itm{bool}} \MID \IF{\Exp}{\Exp}{\Exp} \\
  9808. &\MID& \TUPLE{\Exp^{+}} \MID \GET{\Exp}{\Exp} \\
  9809. &\MID& \LEN{\Exp}\\
  9810. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  9811. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \MID \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  9812. &\MID& \WHILESTMT{\Exp}{\Stmt^{+}}\\
  9813. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  9814. \end{array}
  9815. \]
  9816. \fi}
  9817. \end{minipage}
  9818. }
  9819. \caption{The abstract syntax of \LangVec{}.}
  9820. \label{fig:Lvec-syntax}
  9821. \end{figure}
  9822. Tuples raises several interesting new issues. First, variable binding
  9823. performs a shallow-copy when dealing with tuples, which means that
  9824. different variables can refer to the same tuple, that is, two
  9825. variables can be \emph{aliases}\index{subject}{alias} for the same
  9826. entity. Consider the following example in which both \code{t1} and
  9827. \code{t2} refer to the same tuple value but \code{t3} refers to a
  9828. different tuple value but with equal elements. The result of the
  9829. program is \code{42}.
  9830. \begin{center}
  9831. \begin{minipage}{0.96\textwidth}
  9832. {\if\edition\racketEd
  9833. \begin{lstlisting}
  9834. (let ([t1 (vector 3 7)])
  9835. (let ([t2 t1])
  9836. (let ([t3 (vector 3 7)])
  9837. (if (and (eq? t1 t2) (not (eq? t1 t3)))
  9838. 42
  9839. 0))))
  9840. \end{lstlisting}
  9841. \fi}
  9842. {\if\edition\pythonEd
  9843. \begin{lstlisting}
  9844. t1 = 3, 7
  9845. t2 = t1
  9846. t3 = 3, 7
  9847. print( 42 if (t1 is t2) and not (t1 is t3) else 0)
  9848. \end{lstlisting}
  9849. \fi}
  9850. \end{minipage}
  9851. \end{center}
  9852. {\if\edition\racketEd
  9853. Whether two variables are aliased or not affects what happens
  9854. when the underlying tuple is mutated\index{subject}{mutation}.
  9855. Consider the following example in which \code{t1} and \code{t2}
  9856. again refer to the same tuple value.
  9857. \begin{center}
  9858. \begin{minipage}{0.96\textwidth}
  9859. \begin{lstlisting}
  9860. (let ([t1 (vector 3 7)])
  9861. (let ([t2 t1])
  9862. (let ([_ (vector-set! t2 0 42)])
  9863. (vector-ref t1 0))))
  9864. \end{lstlisting}
  9865. \end{minipage}
  9866. \end{center}
  9867. The mutation through \code{t2} is visible when referencing the tuple
  9868. from \code{t1}, so the result of this program is \code{42}.
  9869. \fi}
  9870. The next issue concerns the lifetime of tuples. When does their
  9871. lifetime end? Notice that \LangVec{} does not include an operation
  9872. for deleting tuples. Furthermore, the lifetime of a tuple is not tied
  9873. to any notion of static scoping.
  9874. %
  9875. {\if\edition\racketEd
  9876. %
  9877. For example, the following program returns \code{42} even though the
  9878. variable \code{w} goes out of scope prior to the \code{vector-ref}
  9879. that reads from the vector it was bound to.
  9880. \begin{center}
  9881. \begin{minipage}{0.96\textwidth}
  9882. \begin{lstlisting}
  9883. (let ([v (vector (vector 44))])
  9884. (let ([x (let ([w (vector 42)])
  9885. (let ([_ (vector-set! v 0 w)])
  9886. 0))])
  9887. (+ x (vector-ref (vector-ref v 0) 0))))
  9888. \end{lstlisting}
  9889. \end{minipage}
  9890. \end{center}
  9891. \fi}
  9892. %
  9893. {\if\edition\pythonEd
  9894. %
  9895. For example, the following program returns \code{42} even though the
  9896. variable \code{x} goes out of scope when the function returns, prior
  9897. to reading the tuple element at index zero. (We study the compilation
  9898. of functions in Chapter~\ref{ch:Rfun}.)
  9899. %
  9900. \begin{center}
  9901. \begin{minipage}{0.96\textwidth}
  9902. \begin{lstlisting}
  9903. def f():
  9904. x = 42, 43
  9905. return x
  9906. t = f()
  9907. print( t[0] )
  9908. \end{lstlisting}
  9909. \end{minipage}
  9910. \end{center}
  9911. \fi}
  9912. %
  9913. From the perspective of programmer-observable behavior, tuples live
  9914. forever. Of course, if they really lived forever then many programs
  9915. would run out of memory. The language's runtime system must therefore
  9916. perform automatic garbage collection.
  9917. Figure~\ref{fig:interp-Lvec} shows the definitional interpreter for the
  9918. \LangVec{} language.
  9919. %
  9920. \racket{We define the \code{vector}, \code{vector-ref},
  9921. \code{vector-set!}, and \code{vector-length} operations for
  9922. \LangVec{} in terms of the corresponding operations in Racket. One
  9923. subtle point is that the \code{vector-set!} operation returns the
  9924. \code{\#<void>} value.}
  9925. %
  9926. \python{We define tuple creation, element access, and the \code{len}
  9927. operator for \LangVec{} in terms of the corresponding operations in
  9928. Python.}
  9929. \begin{figure}[tbp]
  9930. {\if\edition\racketEd
  9931. \begin{lstlisting}
  9932. (define interp-Lvec_class
  9933. (class interp-Lif_class
  9934. (super-new)
  9935. (define/override (interp-op op)
  9936. (match op
  9937. ['eq? (lambda (v1 v2)
  9938. (cond [(or (and (fixnum? v1) (fixnum? v2))
  9939. (and (boolean? v1) (boolean? v2))
  9940. (and (vector? v1) (vector? v2))
  9941. (and (void? v1) (void? v2)))
  9942. (eq? v1 v2)]))]
  9943. ['vector vector]
  9944. ['vector-length vector-length]
  9945. ['vector-ref vector-ref]
  9946. ['vector-set! vector-set!]
  9947. [else (super interp-op op)]
  9948. ))
  9949. (define/override ((interp-exp env) e)
  9950. (define recur (interp-exp env))
  9951. (match e
  9952. [(HasType e t) (recur e)]
  9953. [(Void) (void)]
  9954. [else ((super interp-exp env) e)]
  9955. ))
  9956. ))
  9957. (define (interp-Lvec p)
  9958. (send (new interp-Lvec_class) interp-program p))
  9959. \end{lstlisting}
  9960. \fi}
  9961. %
  9962. {\if\edition\pythonEd
  9963. \begin{lstlisting}
  9964. class InterpLtup(InterpLwhile):
  9965. def interp_cmp(self, cmp):
  9966. match cmp:
  9967. case Is():
  9968. return lambda x, y: x is y
  9969. case _:
  9970. return super().interp_cmp(cmp)
  9971. def interp_exp(self, e, env):
  9972. match e:
  9973. case Tuple(es, Load()):
  9974. return tuple([self.interp_exp(e, env) for e in es])
  9975. case Subscript(tup, index, Load()):
  9976. t = self.interp_exp(tup, env)
  9977. n = self.interp_exp(index, env)
  9978. return t[n]
  9979. case _:
  9980. return super().interp_exp(e, env)
  9981. \end{lstlisting}
  9982. \fi}
  9983. \caption{Interpreter for the \LangVec{} language.}
  9984. \label{fig:interp-Lvec}
  9985. \end{figure}
  9986. Figure~\ref{fig:type-check-Lvec} shows the type checker for
  9987. \LangVec{}, which deserves some explanation. When allocating a tuple,
  9988. we need to know which elements of the tuple are pointers (i.e. are
  9989. also tuple) for garbage collection purposes. We can obtain this
  9990. information during type checking. The type checker in
  9991. Figure~\ref{fig:type-check-Lvec} not only computes the type of an
  9992. expression, it also
  9993. %
  9994. \racket{wraps every tuple creation with the form $(\key{HasType}~e~T)$,
  9995. where $T$ is the vector's type.
  9996. To create the s-expression for the \code{Vector} type in
  9997. Figure~\ref{fig:type-check-Lvec}, we use the
  9998. \href{https://docs.racket-lang.org/reference/quasiquote.html}{unquote-splicing
  9999. operator} \code{,@} to insert the list \code{t*} without its usual
  10000. start and end parentheses. \index{subject}{unquote-slicing}}
  10001. %
  10002. \python{records the type of each tuple expression in a new field
  10003. named \code{has\_type}.}
  10004. \begin{figure}[tp]
  10005. {\if\edition\racketEd
  10006. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10007. (define type-check-Lvec_class
  10008. (class type-check-Lif_class
  10009. (super-new)
  10010. (inherit check-type-equal?)
  10011. (define/override (type-check-exp env)
  10012. (lambda (e)
  10013. (define recur (type-check-exp env))
  10014. (match e
  10015. [(Void) (values (Void) 'Void)]
  10016. [(Prim 'vector es)
  10017. (define-values (e* t*) (for/lists (e* t*) ([e es]) (recur e)))
  10018. (define t `(Vector ,@t*))
  10019. (values (HasType (Prim 'vector e*) t) t)]
  10020. [(Prim 'vector-ref (list e1 (Int i)))
  10021. (define-values (e1^ t) (recur e1))
  10022. (match t
  10023. [`(Vector ,ts ...)
  10024. (unless (and (0 . <= . i) (i . < . (length ts)))
  10025. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10026. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  10027. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10028. [(Prim 'vector-set! (list e1 (Int i) arg) )
  10029. (define-values (e-vec t-vec) (recur e1))
  10030. (define-values (e-arg^ t-arg) (recur arg))
  10031. (match t-vec
  10032. [`(Vector ,ts ...)
  10033. (unless (and (0 . <= . i) (i . < . (length ts)))
  10034. (error 'type-check "index ~a out of bounds\nin ~v" i e))
  10035. (check-type-equal? (list-ref ts i) t-arg e)
  10036. (values (Prim 'vector-set! (list e-vec (Int i) e-arg^)) 'Void)]
  10037. [else (error 'type-check "expect Vector, not ~a\nin ~v" t-vec e)])]
  10038. [(Prim 'vector-length (list e))
  10039. (define-values (e^ t) (recur e))
  10040. (match t
  10041. [`(Vector ,ts ...)
  10042. (values (Prim 'vector-length (list e^)) 'Integer)]
  10043. [else (error 'type-check "expect Vector, not ~a\nin ~v" t e)])]
  10044. [(Prim 'eq? (list arg1 arg2))
  10045. (define-values (e1 t1) (recur arg1))
  10046. (define-values (e2 t2) (recur arg2))
  10047. (match* (t1 t2)
  10048. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  10049. [(other wise) (check-type-equal? t1 t2 e)])
  10050. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  10051. [(HasType (Prim 'vector es) t)
  10052. ((type-check-exp env) (Prim 'vector es))]
  10053. [(HasType e1 t)
  10054. (define-values (e1^ t^) (recur e1))
  10055. (check-type-equal? t t^ e)
  10056. (values (HasType e1^ t) t)]
  10057. [else ((super type-check-exp env) e)]
  10058. )))
  10059. ))
  10060. (define (type-check-Lvec p)
  10061. (send (new type-check-Lvec_class) type-check-program p))
  10062. \end{lstlisting}
  10063. \fi}
  10064. {\if\edition\pythonEd
  10065. \begin{lstlisting}
  10066. class TypeCheckLtup(TypeCheckLwhile):
  10067. def type_check_exp(self, e, env):
  10068. match e:
  10069. case Compare(left, [cmp], [right]) if isinstance(cmp, Is):
  10070. l = self.type_check_exp(left, env)
  10071. r = self.type_check_exp(right, env)
  10072. check_type_equal(l, r, e)
  10073. return bool
  10074. case Tuple(es, Load()):
  10075. ts = [self.type_check_exp(e, env) for e in es]
  10076. e.has_type = tuple(ts)
  10077. return e.has_type
  10078. case Subscript(tup, Constant(index), Load()):
  10079. tup_ty = self.type_check_exp(tup, env)
  10080. index_ty = self.type_check_exp(Constant(index), env)
  10081. check_type_equal(index_ty, int, index)
  10082. match tup_ty:
  10083. case tuple(ts):
  10084. return ts[index]
  10085. case _:
  10086. raise Exception('error: expected a tuple, not ' + repr(tup_ty))
  10087. case _:
  10088. return super().type_check_exp(e, env)
  10089. \end{lstlisting}
  10090. \fi}
  10091. \caption{Type checker for the \LangVec{} language.}
  10092. \label{fig:type-check-Lvec}
  10093. \end{figure}
  10094. \section{Garbage Collection}
  10095. \label{sec:GC}
  10096. Here we study a relatively simple algorithm for garbage collection
  10097. that is the basis of state-of-the-art garbage
  10098. collectors~\citep{Lieberman:1983aa,Ungar:1984aa,Jones:1996aa,Detlefs:2004aa,Dybvig:2006aa,Tene:2011kx}. In
  10099. particular, we describe a two-space copying
  10100. collector~\citep{Wilson:1992fk} that uses Cheney's algorithm to
  10101. perform the
  10102. copy~\citep{Cheney:1970aa}.
  10103. \index{subject}{copying collector}
  10104. \index{subject}{two-space copying collector}
  10105. Figure~\ref{fig:copying-collector} gives a
  10106. coarse-grained depiction of what happens in a two-space collector,
  10107. showing two time steps, prior to garbage collection (on the top) and
  10108. after garbage collection (on the bottom). In a two-space collector,
  10109. the heap is divided into two parts named the FromSpace and the
  10110. ToSpace. Initially, all allocations go to the FromSpace until there is
  10111. not enough room for the next allocation request. At that point, the
  10112. garbage collector goes to work to make more room.
  10113. \index{subject}{ToSpace}
  10114. \index{subject}{FromSpace}
  10115. The garbage collector must be careful not to reclaim tuples that will
  10116. be used by the program in the future. Of course, it is impossible in
  10117. general to predict what a program will do, but we can over approximate
  10118. the will-be-used tuples by preserving all tuples that could be
  10119. accessed by \emph{any} program given the current computer state. A
  10120. program could access any tuple whose address is in a register or on
  10121. the procedure call stack. These addresses are called the \emph{root
  10122. set}\index{subject}{root set}. In addition, a program could access any tuple that is
  10123. transitively reachable from the root set. Thus, it is safe for the
  10124. garbage collector to reclaim the tuples that are not reachable in this
  10125. way.
  10126. So the goal of the garbage collector is twofold:
  10127. \begin{enumerate}
  10128. \item preserve all tuple that are reachable from the root set via a
  10129. path of pointers, that is, the \emph{live} tuples, and
  10130. \item reclaim the memory of everything else, that is, the
  10131. \emph{garbage}.
  10132. \end{enumerate}
  10133. A copying collector accomplishes this by copying all of the live
  10134. objects from the FromSpace into the ToSpace and then performs a sleight
  10135. of hand, treating the ToSpace as the new FromSpace and the old
  10136. FromSpace as the new ToSpace. In the example of
  10137. Figure~\ref{fig:copying-collector}, there are three pointers in the
  10138. root set, one in a register and two on the stack. All of the live
  10139. objects have been copied to the ToSpace (the right-hand side of
  10140. Figure~\ref{fig:copying-collector}) in a way that preserves the
  10141. pointer relationships. For example, the pointer in the register still
  10142. points to a 2-tuple whose first element is a 3-tuple and whose second
  10143. element is a 2-tuple. There are four tuples that are not reachable
  10144. from the root set and therefore do not get copied into the ToSpace.
  10145. The exact situation in Figure~\ref{fig:copying-collector} cannot be
  10146. created by a well-typed program in \LangVec{} because it contains a
  10147. cycle. However, creating cycles will be possible once we get to \LangAny{}.
  10148. We design the garbage collector to deal with cycles to begin with so
  10149. we will not need to revisit this issue.
  10150. \begin{figure}[tbp]
  10151. \centering
  10152. \includegraphics[width=\textwidth]{figs/copy-collect-1} \\[5ex]
  10153. \includegraphics[width=\textwidth]{figs/copy-collect-2}
  10154. \caption{A copying collector in action.}
  10155. \label{fig:copying-collector}
  10156. \end{figure}
  10157. There are many alternatives to copying collectors (and their bigger
  10158. siblings, the generational collectors) when its comes to garbage
  10159. collection, such as mark-and-sweep~\citep{McCarthy:1960dz} and
  10160. reference counting~\citep{Collins:1960aa}. The strengths of copying
  10161. collectors are that allocation is fast (just a comparison and pointer
  10162. increment), there is no fragmentation, cyclic garbage is collected,
  10163. and the time complexity of collection only depends on the amount of
  10164. live data, and not on the amount of garbage~\citep{Wilson:1992fk}. The
  10165. main disadvantages of a two-space copying collector is that it uses a
  10166. lot of space and takes a long time to perform the copy, though these
  10167. problems are ameliorated in generational collectors. Racket and
  10168. Scheme programs tend to allocate many small objects and generate a lot
  10169. of garbage, so copying and generational collectors are a good fit.
  10170. Garbage collection is an active research topic, especially concurrent
  10171. garbage collection~\citep{Tene:2011kx}. Researchers are continuously
  10172. developing new techniques and revisiting old
  10173. trade-offs~\citep{Blackburn:2004aa,Jones:2011aa,Shahriyar:2013aa,Cutler:2015aa,Shidal:2015aa,Osterlund:2016aa,Jacek:2019aa,Gamari:2020aa}. Researchers
  10174. meet every year at the International Symposium on Memory Management to
  10175. present these findings.
  10176. \subsection{Graph Copying via Cheney's Algorithm}
  10177. \label{sec:cheney}
  10178. \index{subject}{Cheney's algorithm}
  10179. Let us take a closer look at the copying of the live objects. The
  10180. allocated objects and pointers can be viewed as a graph and we need to
  10181. copy the part of the graph that is reachable from the root set. To
  10182. make sure we copy all of the reachable vertices in the graph, we need
  10183. an exhaustive graph traversal algorithm, such as depth-first search or
  10184. breadth-first search~\citep{Moore:1959aa,Cormen:2001uq}. Recall that
  10185. such algorithms take into account the possibility of cycles by marking
  10186. which vertices have already been visited, so as to ensure termination
  10187. of the algorithm. These search algorithms also use a data structure
  10188. such as a stack or queue as a to-do list to keep track of the vertices
  10189. that need to be visited. We use breadth-first search and a trick
  10190. due to \citet{Cheney:1970aa} for simultaneously representing the queue
  10191. and copying tuples into the ToSpace.
  10192. Figure~\ref{fig:cheney} shows several snapshots of the ToSpace as the
  10193. copy progresses. The queue is represented by a chunk of contiguous
  10194. memory at the beginning of the ToSpace, using two pointers to track
  10195. the front and the back of the queue. The algorithm starts by copying
  10196. all tuples that are immediately reachable from the root set into the
  10197. ToSpace to form the initial queue. When we copy a tuple, we mark the
  10198. old tuple to indicate that it has been visited. We discuss how this
  10199. marking is accomplish in Section~\ref{sec:data-rep-gc}. Note that any
  10200. pointers inside the copied tuples in the queue still point back to the
  10201. FromSpace. Once the initial queue has been created, the algorithm
  10202. enters a loop in which it repeatedly processes the tuple at the front
  10203. of the queue and pops it off the queue. To process a tuple, the
  10204. algorithm copies all the tuple that are directly reachable from it to
  10205. the ToSpace, placing them at the back of the queue. The algorithm then
  10206. updates the pointers in the popped tuple so they point to the newly
  10207. copied tuples.
  10208. \begin{figure}[tbp]
  10209. \centering \includegraphics[width=0.9\textwidth]{figs/cheney}
  10210. \caption{Depiction of the Cheney algorithm copying the live tuples.}
  10211. \label{fig:cheney}
  10212. \end{figure}
  10213. Getting back to Figure~\ref{fig:cheney}, in the first step we copy the
  10214. tuple whose second element is $42$ to the back of the queue. The other
  10215. pointer goes to a tuple that has already been copied, so we do not
  10216. need to copy it again, but we do need to update the pointer to the new
  10217. location. This can be accomplished by storing a \emph{forwarding
  10218. pointer} to the new location in the old tuple, back when we initially
  10219. copied the tuple into the ToSpace. This completes one step of the
  10220. algorithm. The algorithm continues in this way until the front of the
  10221. queue is empty, that is, until the front catches up with the back.
  10222. \subsection{Data Representation}
  10223. \label{sec:data-rep-gc}
  10224. The garbage collector places some requirements on the data
  10225. representations used by our compiler. First, the garbage collector
  10226. needs to distinguish between pointers and other kinds of data. There
  10227. are several ways to accomplish this.
  10228. \begin{enumerate}
  10229. \item Attached a tag to each object that identifies what type of
  10230. object it is~\citep{McCarthy:1960dz}.
  10231. \item Store different types of objects in different
  10232. regions~\citep{Steele:1977ab}.
  10233. \item Use type information from the program to either generate
  10234. type-specific code for collecting or to generate tables that can
  10235. guide the
  10236. collector~\citep{Appel:1989aa,Goldberg:1991aa,Diwan:1992aa}.
  10237. \end{enumerate}
  10238. Dynamically typed languages, such as \racket{Racket}\python{Python},
  10239. need to tag objects anyways, so option 1 is a natural choice for those
  10240. languages. However, \LangVec{} is a statically typed language, so it
  10241. would be unfortunate to require tags on every object, especially small
  10242. and pervasive objects like integers and Booleans. Option 3 is the
  10243. best-performing choice for statically typed languages, but comes with
  10244. a relatively high implementation complexity. To keep this chapter
  10245. within a 2-week time budget, we recommend a combination of options 1
  10246. and 2, using separate strategies for the stack and the heap.
  10247. Regarding the stack, we recommend using a separate stack for pointers,
  10248. which we call a \emph{root stack}\index{subject}{root stack}
  10249. (a.k.a. ``shadow
  10250. stack'')~\citep{Siebert:2001aa,Henderson:2002aa,Baker:2009aa}. That
  10251. is, when a local variable needs to be spilled and is of type
  10252. \racket{\code{Vector}}\python{\code{TupleType}}, then we put it on the
  10253. root stack instead of the normal procedure call stack. Furthermore, we
  10254. always spill tuple-typed variables if they are live during a call to
  10255. the collector, thereby ensuring that no pointers are in registers
  10256. during a collection. Figure~\ref{fig:shadow-stack} reproduces the
  10257. example from Figure~\ref{fig:copying-collector} and contrasts it with
  10258. the data layout using a root stack. The root stack contains the two
  10259. pointers from the regular stack and also the pointer in the second
  10260. register.
  10261. \begin{figure}[tbp]
  10262. \centering \includegraphics[width=0.60\textwidth]{figs/root-stack}
  10263. \caption{Maintaining a root stack to facilitate garbage collection.}
  10264. \label{fig:shadow-stack}
  10265. \end{figure}
  10266. The problem of distinguishing between pointers and other kinds of data
  10267. also arises inside of each tuple on the heap. We solve this problem by
  10268. attaching a tag, an extra 64-bits, to each
  10269. tuple. Figure~\ref{fig:tuple-rep} zooms in on the tags for two of the
  10270. tuples in the example from Figure~\ref{fig:copying-collector}. Note
  10271. that we have drawn the bits in a big-endian way, from right-to-left,
  10272. with bit location 0 (the least significant bit) on the far right,
  10273. which corresponds to the direction of the x86 shifting instructions
  10274. \key{salq} (shift left) and \key{sarq} (shift right). Part of each tag
  10275. is dedicated to specifying which elements of the tuple are pointers,
  10276. the part labeled ``pointer mask''. Within the pointer mask, a 1 bit
  10277. indicates there is a pointer and a 0 bit indicates some other kind of
  10278. data. The pointer mask starts at bit location 7. We have limited
  10279. tuples to a maximum size of 50 elements, so we just need 50 bits for
  10280. the pointer mask. The tag also contains two other pieces of
  10281. information. The length of the tuple (number of elements) is stored in
  10282. bits location 1 through 6. Finally, the bit at location 0 indicates
  10283. whether the tuple has yet to be copied to the ToSpace. If the bit has
  10284. value 1, then this tuple has not yet been copied. If the bit has
  10285. value 0 then the entire tag is a forwarding pointer. (The lower 3 bits
  10286. of a pointer are always zero anyways because our tuples are 8-byte
  10287. aligned.)
  10288. \begin{figure}[tbp]
  10289. \centering \includegraphics[width=0.8\textwidth]{figs/tuple-rep}
  10290. \caption{Representation of tuples in the heap.}
  10291. \label{fig:tuple-rep}
  10292. \end{figure}
  10293. \subsection{Implementation of the Garbage Collector}
  10294. \label{sec:organize-gz}
  10295. \index{subject}{prelude}
  10296. An implementation of the copying collector is provided in the
  10297. \code{runtime.c} file. Figure~\ref{fig:gc-header} defines the
  10298. interface to the garbage collector that is used by the compiler. The
  10299. \code{initialize} function creates the FromSpace, ToSpace, and root
  10300. stack and should be called in the prelude of the \code{main}
  10301. function. The arguments of \code{initialize} are the root stack size
  10302. and the heap size. Both need to be multiples of $64$ and $16384$ is a
  10303. good choice for both. The \code{initialize} function puts the address
  10304. of the beginning of the FromSpace into the global variable
  10305. \code{free\_ptr}. The global variable \code{fromspace\_end} points to
  10306. the address that is 1-past the last element of the FromSpace. (We use
  10307. half-open intervals to represent chunks of
  10308. memory~\citep{Dijkstra:1982aa}.) The \code{rootstack\_begin} variable
  10309. points to the first element of the root stack.
  10310. As long as there is room left in the FromSpace, your generated code
  10311. can allocate tuples simply by moving the \code{free\_ptr} forward.
  10312. %
  10313. The amount of room left in FromSpace is the difference between the
  10314. \code{fromspace\_end} and the \code{free\_ptr}. The \code{collect}
  10315. function should be called when there is not enough room left in the
  10316. FromSpace for the next allocation. The \code{collect} function takes
  10317. a pointer to the current top of the root stack (one past the last item
  10318. that was pushed) and the number of bytes that need to be
  10319. allocated. The \code{collect} function performs the copying collection
  10320. and leaves the heap in a state such that the next allocation will
  10321. succeed.
  10322. \begin{figure}[tbp]
  10323. \begin{lstlisting}
  10324. void initialize(uint64_t rootstack_size, uint64_t heap_size);
  10325. void collect(int64_t** rootstack_ptr, uint64_t bytes_requested);
  10326. int64_t* free_ptr;
  10327. int64_t* fromspace_begin;
  10328. int64_t* fromspace_end;
  10329. int64_t** rootstack_begin;
  10330. \end{lstlisting}
  10331. \caption{The compiler's interface to the garbage collector.}
  10332. \label{fig:gc-header}
  10333. \end{figure}
  10334. %% \begin{exercise}
  10335. %% In the file \code{runtime.c} you will find the implementation of
  10336. %% \code{initialize} and a partial implementation of \code{collect}.
  10337. %% The \code{collect} function calls another function, \code{cheney},
  10338. %% to perform the actual copy, and that function is left to the reader
  10339. %% to implement. The following is the prototype for \code{cheney}.
  10340. %% \begin{lstlisting}
  10341. %% static void cheney(int64_t** rootstack_ptr);
  10342. %% \end{lstlisting}
  10343. %% The parameter \code{rootstack\_ptr} is a pointer to the top of the
  10344. %% rootstack (which is an array of pointers). The \code{cheney} function
  10345. %% also communicates with \code{collect} through the global
  10346. %% variables \code{fromspace\_begin} and \code{fromspace\_end}
  10347. %% mentioned in Figure~\ref{fig:gc-header} as well as the pointers for
  10348. %% the ToSpace:
  10349. %% \begin{lstlisting}
  10350. %% static int64_t* tospace_begin;
  10351. %% static int64_t* tospace_end;
  10352. %% \end{lstlisting}
  10353. %% The job of the \code{cheney} function is to copy all the live
  10354. %% objects (reachable from the root stack) into the ToSpace, update
  10355. %% \code{free\_ptr} to point to the next unused spot in the ToSpace,
  10356. %% update the root stack so that it points to the objects in the
  10357. %% ToSpace, and finally to swap the global pointers for the FromSpace
  10358. %% and ToSpace.
  10359. %% \end{exercise}
  10360. %% \section{Compiler Passes}
  10361. %% \label{sec:code-generation-gc}
  10362. The introduction of garbage collection has a non-trivial impact on our
  10363. compiler passes. We introduce a new compiler pass named
  10364. \code{expose\_allocation}. We make significant changes to
  10365. \code{select\_instructions}, \code{build\_interference},
  10366. \code{allocate\_registers}, and \code{prelude\_and\_conclusion} and
  10367. make minor changes in several more passes. The following program will
  10368. serve as our running example. It creates two tuples, one nested
  10369. inside the other. Both tuples have length one. The program accesses
  10370. the element in the inner tuple tuple.
  10371. % tests/vectors_test_17.rkt
  10372. {\if\edition\racketEd
  10373. \begin{lstlisting}
  10374. (vector-ref (vector-ref (vector (vector 42)) 0) 0)
  10375. \end{lstlisting}
  10376. \fi}
  10377. {\if\edition\pythonEd
  10378. \begin{lstlisting}
  10379. print( ((42,),)[0][0] )
  10380. \end{lstlisting}
  10381. \fi}
  10382. {\if\edition\racketEd
  10383. \section{Shrink}
  10384. \label{sec:shrink-Lvec}
  10385. Recall that the \code{shrink} pass translates the primitives operators
  10386. into a smaller set of primitives.
  10387. %
  10388. This pass comes after type checking and the type checker adds a
  10389. \code{HasType} AST node around each \code{vector} AST node, so you'll
  10390. need to add a case for \code{HasType} to the \code{shrink} pass.
  10391. \fi}
  10392. \section{Expose Allocation}
  10393. \label{sec:expose-allocation}
  10394. The pass \code{expose\_allocation} lowers tuple creation into a
  10395. conditional call to the collector followed by allocating the
  10396. appropriate amount of memory and initializing it. We choose to place
  10397. the \code{expose\_allocation} pass before
  10398. \code{remove\_complex\_operands} because the code generated by
  10399. \code{expose\_allocation} contains complex operands.
  10400. The output of \code{expose\_allocation} is a language \LangAlloc{}
  10401. that extends \LangVec{} with new forms that we use in the translation
  10402. of tuple creation.
  10403. %
  10404. {\if\edition\racketEd
  10405. \[
  10406. \begin{array}{lcl}
  10407. \Exp &::=& \cdots
  10408. \MID (\key{collect} \,\itm{int})
  10409. \MID (\key{allocate} \,\itm{int}\,\itm{type})
  10410. \MID (\key{global-value} \,\itm{name})
  10411. \end{array}
  10412. \]
  10413. \fi}
  10414. {\if\edition\pythonEd
  10415. \[
  10416. \begin{array}{lcl}
  10417. \Exp &::=& \cdots\\
  10418. &\MID& \key{collect}(\itm{int})
  10419. \MID \key{allocate}(\itm{int},\itm{type})
  10420. \MID \key{global\_value}(\itm{name}) \\
  10421. &\MID& \key{begin:} ~ \Stmt^{*} ~ \Exp
  10422. \end{array}
  10423. \]
  10424. \fi}
  10425. The \CCOLLECT{$n$} form runs the garbage collector, requesting that it
  10426. make sure that there are $n$ bytes ready to be allocated. During
  10427. instruction selection, the \CCOLLECT{$n$} form will become a call to
  10428. the \code{collect} function in \code{runtime.c}.
  10429. %
  10430. The \CALLOCATE{$n$}{$T$} form obtains memory for $n$ elements (and
  10431. space at the front for the 64 bit tag), but the elements are not
  10432. initialized. \index{subject}{allocate} The $T$ parameter is the type
  10433. of the tuple:
  10434. %
  10435. \VECTY{\racket{$\Type_1 \ldots \Type_n$}\python{$\Type_1, \ldots, \Type_n$}}
  10436. %
  10437. where $\Type_i$ is the type of the $i$th element in the tuple. The
  10438. \CGLOBAL{\itm{name}} form reads the value of a global variable, such
  10439. as \code{free\_ptr}.
  10440. %
  10441. \python{The \code{begin} form is an expression that executes a
  10442. sequence of statements and then produces the value of the expression
  10443. at the end.}
  10444. The following shows the transformation of tuple creation into 1) a
  10445. sequence of temporary variables bindings for the initializing
  10446. expressions, 2) a conditional call to \code{collect}, 3) a call to
  10447. \code{allocate}, and 4) the initialization of the tuple. The
  10448. \itm{len} placeholder refers to the length of the tuple and
  10449. \itm{bytes} is how many total bytes need to be allocated for the
  10450. tuple, which is 8 for the tag plus \itm{len} times 8.
  10451. %
  10452. \python{The \itm{type} needed for the second argument of the
  10453. \code{allocate} form can be obtained from the \code{has\_type} field
  10454. of the tuple AST node, which is stored there by running the type
  10455. checker for \LangVec{} immediately before this pass.}
  10456. %
  10457. {\if\edition\racketEd
  10458. \begin{lstlisting}
  10459. (has-type (vector |$e_0 \ldots e_{n-1}$|) |\itm{type}|)
  10460. |$\Longrightarrow$|
  10461. (let ([|$x_0$| |$e_0$|]) ... (let ([|$x_{n-1}$| |$e_{n-1}$|])
  10462. (let ([_ (if (< (+ (global-value free_ptr) |\itm{bytes}|)
  10463. (global-value fromspace_end))
  10464. (void)
  10465. (collect |\itm{bytes}|))])
  10466. (let ([|$v$| (allocate |\itm{len}| |\itm{type}|)])
  10467. (let ([_ (vector-set! |$v$| |$0$| |$x_0$|)]) ...
  10468. (let ([_ (vector-set! |$v$| |$n-1$| |$x_{n-1}$|)])
  10469. |$v$|) ... )))) ...)
  10470. \end{lstlisting}
  10471. \fi}
  10472. {\if\edition\pythonEd
  10473. \begin{lstlisting}
  10474. (|$e_0$|, |$\ldots$|, |$e_{n-1}$|)
  10475. |$\Longrightarrow$|
  10476. begin:
  10477. |$x_0$| = |$e_0$|
  10478. |$\vdots$|
  10479. |$x_{n-1}$| = |$e_{n-1}$|
  10480. if global_value(free_ptr) + |\itm{bytes}| < global_value(fromspace_end):
  10481. 0
  10482. else:
  10483. collect(|\itm{bytes}|)
  10484. |$v$| = allocate(|\itm{len}|, |\itm{type}|)
  10485. |$v$|[0] = |$x_0$|
  10486. |$\vdots$|
  10487. |$v$|[|$n-1$|] = |$x_{n-1}$|
  10488. |$v$|
  10489. \end{lstlisting}
  10490. \fi}
  10491. %
  10492. \noindent The sequencing of the initializing expressions
  10493. $e_0,\ldots,e_{n-1}$ prior to the \code{allocate} is important, as
  10494. they may trigger garbage collection and we cannot have an allocated
  10495. but uninitialized tuple on the heap during a collection.
  10496. Figure~\ref{fig:expose-alloc-output} shows the output of the
  10497. \code{expose\_allocation} pass on our running example.
  10498. \begin{figure}[tbp]
  10499. % tests/s2_17.rkt
  10500. {\if\edition\racketEd
  10501. \begin{lstlisting}
  10502. (vector-ref
  10503. (vector-ref
  10504. (let ([vecinit7976
  10505. (let ([vecinit7972 42])
  10506. (let ([collectret7974
  10507. (if (< (+ (global-value free_ptr) 16)
  10508. (global-value fromspace_end))
  10509. (void)
  10510. (collect 16)
  10511. )])
  10512. (let ([alloc7971 (allocate 1 (Vector Integer))])
  10513. (let ([initret7973 (vector-set! alloc7971 0 vecinit7972)])
  10514. alloc7971))))])
  10515. (let ([collectret7978
  10516. (if (< (+ (global-value free_ptr) 16)
  10517. (global-value fromspace_end))
  10518. (void)
  10519. (collect 16)
  10520. )])
  10521. (let ([alloc7975 (allocate 1 (Vector (Vector Integer)))])
  10522. (let ([initret7977 (vector-set! alloc7975 0 vecinit7976)])
  10523. alloc7975))))
  10524. 0)
  10525. 0)
  10526. \end{lstlisting}
  10527. \fi}
  10528. {\if\edition\pythonEd
  10529. \begin{lstlisting}
  10530. print( |$T_1$|[0][0] )
  10531. \end{lstlisting}
  10532. where $T_1$ is
  10533. \begin{lstlisting}
  10534. begin:
  10535. tmp.1 = |$T_2$|
  10536. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  10537. 0
  10538. else:
  10539. collect(16)
  10540. tmp.2 = allocate(1, TupleType(TupleType([int])))
  10541. tmp.2[0] = tmp.1
  10542. tmp.2
  10543. \end{lstlisting}
  10544. and $T_2$ is
  10545. \begin{lstlisting}
  10546. begin:
  10547. tmp.3 = 42
  10548. if global_value(free_ptr) + 16 < global_value(fromspace_end):
  10549. 0
  10550. else:
  10551. collect(16)
  10552. tmp.4 = allocate(1, TupleType([int]))
  10553. tmp.4[0] = tmp.3
  10554. tmp.4
  10555. \end{lstlisting}
  10556. \fi}
  10557. \caption{Output of the \code{expose\_allocation} pass.}
  10558. \label{fig:expose-alloc-output}
  10559. \end{figure}
  10560. \section{Remove Complex Operands}
  10561. \label{sec:remove-complex-opera-Lvec}
  10562. {\if\edition\racketEd
  10563. %
  10564. The forms \code{collect}, \code{allocate}, and \code{global\_value}
  10565. should be treated as complex operands.
  10566. %
  10567. \fi}
  10568. %
  10569. {\if\edition\pythonEd
  10570. %
  10571. The expressions \code{allocate}, \code{global\_value}, \code{begin},
  10572. and tuple access should be treated as complex operands. The
  10573. sub-expressions of tuple access must be atomic.
  10574. %
  10575. \fi}
  10576. %% A new case for
  10577. %% \code{HasType} is needed and the case for \code{Prim} needs to be
  10578. %% handled carefully to prevent the \code{Prim} node from being separated
  10579. %% from its enclosing \code{HasType}.
  10580. Figure~\ref{fig:Lvec-anf-syntax}
  10581. shows the grammar for the output language \LangVecANF{} of this
  10582. pass, which is \LangVec{} in monadic normal form.
  10583. \begin{figure}[tp]
  10584. \centering
  10585. \fbox{
  10586. \begin{minipage}{0.96\textwidth}
  10587. \small
  10588. {\if\edition\racketEd
  10589. \[
  10590. \begin{array}{rcl}
  10591. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  10592. \MID \VOID{} } \\
  10593. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  10594. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  10595. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  10596. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  10597. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  10598. &\MID& \COLLECT{\Int} \RP \MID \ALLOCATE{\Int}{\Type}
  10599. \MID \GLOBALVALUE{\Var}\\
  10600. % &\MID& \LP\key{HasType}~\Exp~\Type\RP \\
  10601. \LangVecANFM{} &::=& \gray{ \PROGRAM{\code{'()}}{\Exp} }
  10602. \end{array}
  10603. \]
  10604. \fi}
  10605. {\if\edition\pythonEd
  10606. \[
  10607. \begin{array}{lcl}
  10608. \itm{binop} &::=& \code{Add()} \MID \code{Sub()} \\
  10609. \itm{boolop} &::=& \code{And()} \MID \code{Or()} \\
  10610. \itm{cmp} &::= & \code{Eq()} \MID \code{NotEq()} \MID \code{Lt()} \MID \code{LtE()} \MID \code{Gt()} \MID \code{GtE()} \MID \code{Is()} \\
  10611. \itm{uniop} &::=& \code{USub()} \MID \code{Not()} \\
  10612. \itm{bool} &::=& \code{True} \MID \code{False} \\
  10613. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  10614. \Exp &::=& \Atm \MID \READ{} \MID \\
  10615. &\MID& \BINOP{\Exp}{\itm{binop}}{\Exp}
  10616. \MID \UNIOP{\itm{uniop}}{\Exp}\\
  10617. &\MID& \CMP{\Exp}{\itm{cmp}}{\Exp}
  10618. \MID \BOOLOP{\itm{boolop}}{\Exp}{\Exp}\\
  10619. &\MID& \IF{\Exp}{\Exp}{\Exp} \\
  10620. &\MID& \GET{\Atm}{\Atm} \\
  10621. &\MID& \LEN{\Exp}\\
  10622. &\MID& \ALLOCATE{\Int}{\Type}
  10623. \MID \GLOBALVALUE{\Var}\RP\\
  10624. &\MID& \BEGIN{\Stmt^{*}}{\Exp} \\
  10625. \Stmt{} &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  10626. &\MID& \ASSIGN{\VAR{\Var}}{\Exp} \\
  10627. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Exp} \\
  10628. &\MID& \IFSTMT{\Exp}{\Stmt^{+}}{\Stmt^{+}}\\
  10629. &\MID& \WHILESTMT{\Exp}{\Stmt^{+}}
  10630. \MID \COLLECT{\Int} \\
  10631. \LangLoopM{} &::=& \PROGRAM{\code{'()}}{\Stmt^{*}}
  10632. \end{array}
  10633. \]
  10634. \fi}
  10635. \end{minipage}
  10636. }
  10637. \caption{\LangVecANF{} is \LangVec{} in monadic normal form.}
  10638. \label{fig:Lvec-anf-syntax}
  10639. \end{figure}
  10640. \section{Explicate Control and the \LangCVec{} language}
  10641. \label{sec:explicate-control-r3}
  10642. \begin{figure}[tp]
  10643. \fbox{
  10644. \begin{minipage}{0.96\textwidth}
  10645. \small
  10646. {\if\edition\racketEd
  10647. \[
  10648. \begin{array}{lcl}
  10649. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  10650. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  10651. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  10652. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  10653. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  10654. &\MID& \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP \\
  10655. &\MID& \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} \\
  10656. &\MID& \LP\key{Prim}~\key{'vector-set!}\,\LP\Atm\,\INT{\Int}\,\Atm\RP\RP\\
  10657. &\MID& \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP\\
  10658. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp} }
  10659. \MID \LP\key{Collect} \,\itm{int}\RP \\
  10660. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  10661. \MID \GOTO{\itm{label}} } \\
  10662. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  10663. \LangCVecM{} & ::= & \gray{ \CPROGRAM{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }
  10664. \end{array}
  10665. \]
  10666. \fi}
  10667. {\if\edition\pythonEd
  10668. \[
  10669. \begin{array}{lcl}
  10670. \Atm &::=& \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} \\
  10671. \Exp &::= & \Atm \MID \READ{} \\
  10672. &\MID& \BINOP{\Atm}{\itm{binop}}{\Atm}
  10673. \MID \UNIOP{\itm{uniop}}{\Atm} \\
  10674. &\MID& \CMP{\Atm}{\itm{cmp}}{\Atm}
  10675. \MID \BOOLOP{\itm{boolop}}{\Atm}{\Atm} \\
  10676. &\MID& \GET{\Atm}{\Atm}
  10677. \MID \ALLOCATE{\Int}{\Type} \MID \GLOBALVALUE{\Var}\RP\\
  10678. &\MID& \LEN{\Atm} \\
  10679. \Stmt &::=& \PRINT{\Exp} \MID \EXPR{\Exp} \\
  10680. &\MID& \ASSIGN{\VAR{\Var}}{\Exp}
  10681. \MID \RETURN{\Exp} \MID \GOTO{\itm{label}} \\
  10682. &\MID& \IFSTMT{\CMP{\Atm}{\itm{cmp}}{\Atm}}{\LS\GOTO{\itm{label}}\RS}{\LS\GOTO{\itm{label}}\RS} \\
  10683. &\MID& \COLLECT{\Int} \\
  10684. &\MID& \ASSIGN{\PUT{\Atm}{\Atm}}{\Atm} \\
  10685. \LangCVecM{} & ::= & \CPROGRAM{\itm{info}}{\LC\itm{label}\,\key{:}\,\Stmt^{*}, \ldots \RC}
  10686. \end{array}
  10687. \]
  10688. \fi}
  10689. \end{minipage}
  10690. }
  10691. \caption{The abstract syntax of \LangCVec{}, extending \LangCIf{}
  10692. (Figure~\ref{fig:c1-syntax}).}
  10693. \label{fig:c2-syntax}
  10694. \end{figure}
  10695. The output of \code{explicate\_control} is a program in the
  10696. intermediate language \LangCVec{}, whose abstract syntax is defined in
  10697. Figure~\ref{fig:c2-syntax}. \racket{(The concrete syntax is defined
  10698. in Figure~\ref{fig:c2-concrete-syntax} of the Appendix.)} The new
  10699. expressions of \LangCVec{} include \key{allocate},
  10700. %
  10701. \racket{\key{vector-ref}, and \key{vector-set!},}
  10702. %
  10703. \python{accessing tuple elements,}
  10704. %
  10705. and \key{global\_value}.
  10706. %
  10707. \python{\LangCVec{} also includes the \code{collect} statement and
  10708. assignment to a tuple element.}
  10709. %
  10710. \racket{\LangCVec{} also includes the new \code{collect} statement.}
  10711. %
  10712. The \code{explicate\_control} pass can treat these new forms much like
  10713. the other forms that we've already encoutered.
  10714. \section{Select Instructions and the \LangXGlobal{} Language}
  10715. \label{sec:select-instructions-gc}
  10716. \index{subject}{instruction selection}
  10717. %% void (rep as zero)
  10718. %% allocate
  10719. %% collect (callq collect)
  10720. %% vector-ref
  10721. %% vector-set!
  10722. %% global (postpone)
  10723. In this pass we generate x86 code for most of the new operations that
  10724. were needed to compile tuples, including \code{Allocate},
  10725. \code{Collect}, and accessing tuple elements.
  10726. %
  10727. We compile \code{GlobalValue} to \code{Global} because the later has a
  10728. different concrete syntax (see Figures~\ref{fig:x86-2-concrete} and
  10729. \ref{fig:x86-2}). \index{subject}{x86}
  10730. The tuple read and write forms translate into \code{movq}
  10731. instructions. (The plus one in the offset is to get past the tag at
  10732. the beginning of the tuple representation.)
  10733. %
  10734. \begin{center}
  10735. \begin{minipage}{\textwidth}
  10736. {\if\edition\racketEd
  10737. \begin{lstlisting}
  10738. |$\itm{lhs}$| = (vector-ref |$\itm{tup}$| |$n$|);
  10739. |$\Longrightarrow$|
  10740. movq |$\itm{tup}'$|, %r11
  10741. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  10742. |$\itm{lhs}$| = (vector-set! |$\itm{tup}$| |$n$| |$\itm{rhs}$|);
  10743. |$\Longrightarrow$|
  10744. movq |$\itm{tup}'$|, %r11
  10745. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  10746. movq $0, |$\itm{lhs'}$|
  10747. \end{lstlisting}
  10748. \fi}
  10749. {\if\edition\pythonEd
  10750. \begin{lstlisting}
  10751. |$\itm{lhs}$| = |$\itm{tup}$|[|$n$|]
  10752. |$\Longrightarrow$|
  10753. movq |$\itm{tup}'$|, %r11
  10754. movq |$8(n+1)$|(%r11), |$\itm{lhs'}$|
  10755. |$\itm{tup}$|[|$n$|] = |$\itm{rhs}$|
  10756. |$\Longrightarrow$|
  10757. movq |$\itm{tup}'$|, %r11
  10758. movq |$\itm{rhs}'$|, |$8(n+1)$|(%r11)
  10759. movq $0, |$\itm{lhs'}$|
  10760. \end{lstlisting}
  10761. \fi}
  10762. \end{minipage}
  10763. \end{center}
  10764. The $\itm{lhs}'$, $\itm{tup}'$, and $\itm{rhs}'$ are obtained by
  10765. translating $\itm{tup}$ and $\itm{rhs}$ to x86. The move of $\itm{tup}'$ to
  10766. register \code{r11} ensures that offset expression
  10767. \code{$-8(n+1)$(\%r11)} contains a register operand. This requires
  10768. removing \code{r11} from consideration by the register allocating.
  10769. Why not use \code{rax} instead of \code{r11}? Suppose we instead used
  10770. \code{rax}. Then the generated code for tuple assignment would be
  10771. \begin{lstlisting}
  10772. movq |$\itm{tup}'$|, %rax
  10773. movq |$\itm{rhs}'$|, |$8(n+1)$|(%rax)
  10774. movq $0, |$\itm{lhs}'$|
  10775. \end{lstlisting}
  10776. Next, suppose that $\itm{rhs}'$ ends up as a stack location, so
  10777. \code{patch\_instructions} would insert a move through \code{rax}
  10778. as follows.
  10779. \begin{lstlisting}
  10780. movq |$\itm{tup}'$|, %rax
  10781. movq |$\itm{rhs}'$|, %rax
  10782. movq %rax, |$8(n+1)$|(%rax)
  10783. movq $0, |$\itm{lhs}'$|
  10784. \end{lstlisting}
  10785. But the above sequence of instructions does not work because we're
  10786. trying to use \code{rax} for two different values ($\itm{tup}'$ and
  10787. $\itm{rhs}'$) at the same time!
  10788. We compile the \code{allocate} form to operations on the
  10789. \code{free\_ptr}, as shown below. The address in the \code{free\_ptr}
  10790. is the next free address in the FromSpace, so we copy it into
  10791. \code{r11} and then move it forward by enough space for the tuple
  10792. being allocated, which is $8(\itm{len}+1)$ bytes because each element
  10793. is 8 bytes (64 bits) and we use 8 bytes for the tag. We then
  10794. initialize the \itm{tag} and finally copy the address in \code{r11} to
  10795. the left-hand-side. Refer to Figure~\ref{fig:tuple-rep} to see how the
  10796. tag is organized.
  10797. %
  10798. \racket{We recommend using the Racket operations
  10799. \code{bitwise-ior} and \code{arithmetic-shift} to compute the tag
  10800. during compilation.}
  10801. %
  10802. The type annotation in the \code{allocate} form is used to determine
  10803. the pointer mask region of the tag.
  10804. %
  10805. {\if\edition\racketEd
  10806. \begin{lstlisting}
  10807. |$\itm{lhs}$| = (allocate |$\itm{len}$| (Vector |$\itm{type} \ldots$|));
  10808. |$\Longrightarrow$|
  10809. movq free_ptr(%rip), %r11
  10810. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  10811. movq $|$\itm{tag}$|, 0(%r11)
  10812. movq %r11, |$\itm{lhs}'$|
  10813. \end{lstlisting}
  10814. \fi}
  10815. {\if\edition\pythonEd
  10816. \begin{lstlisting}
  10817. |$\itm{lhs}$| = allocate(|$\itm{len}$|, TupleType([|$\itm{type}, \ldots$])|);
  10818. |$\Longrightarrow$|
  10819. movq free_ptr(%rip), %r11
  10820. addq |$8(\itm{len}+1)$|, free_ptr(%rip)
  10821. movq $|$\itm{tag}$|, 0(%r11)
  10822. movq %r11, |$\itm{lhs}'$|
  10823. \end{lstlisting}
  10824. \fi}
  10825. The \code{collect} form is compiled to a call to the \code{collect}
  10826. function in the runtime. The arguments to \code{collect} are 1) the
  10827. top of the root stack and 2) the number of bytes that need to be
  10828. allocated. We use another dedicated register, \code{r15}, to
  10829. store the pointer to the top of the root stack. So \code{r15} is not
  10830. available for use by the register allocator.
  10831. {\if\edition\racketEd
  10832. \begin{lstlisting}
  10833. (collect |$\itm{bytes}$|)
  10834. |$\Longrightarrow$|
  10835. movq %r15, %rdi
  10836. movq $|\itm{bytes}|, %rsi
  10837. callq collect
  10838. \end{lstlisting}
  10839. \fi}
  10840. {\if\edition\pythonEd
  10841. \begin{lstlisting}
  10842. collect(|$\itm{bytes}$|)
  10843. |$\Longrightarrow$|
  10844. movq %r15, %rdi
  10845. movq $|\itm{bytes}|, %rsi
  10846. callq collect
  10847. \end{lstlisting}
  10848. \fi}
  10849. \begin{figure}[tp]
  10850. \fbox{
  10851. \begin{minipage}{0.96\textwidth}
  10852. \[
  10853. \begin{array}{lcl}
  10854. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)} \\
  10855. \LangXGlobalM{} &::= & \gray{ \key{.globl main} }\\
  10856. & & \gray{ \key{main:} \; \Instr\ldots }
  10857. \end{array}
  10858. \]
  10859. \end{minipage}
  10860. }
  10861. \caption{The concrete syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1-concrete}).}
  10862. \label{fig:x86-2-concrete}
  10863. \end{figure}
  10864. \begin{figure}[tp]
  10865. \fbox{
  10866. \begin{minipage}{0.96\textwidth}
  10867. \small
  10868. \[
  10869. \begin{array}{lcl}
  10870. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  10871. \MID \BYTEREG{\Reg}} \\
  10872. &\MID& \GLOBAL{\Var} \\
  10873. \LangXGlobalM{} &::= & \gray{ \XPROGRAM{\itm{info}}{\LP\LP\itm{label} \,\key{.}\, \Block \RP\ldots\RP} }
  10874. \end{array}
  10875. \]
  10876. \end{minipage}
  10877. }
  10878. \caption{The abstract syntax of \LangXGlobal{} (extends \LangXIf{} of Figure~\ref{fig:x86-1}).}
  10879. \label{fig:x86-2}
  10880. \end{figure}
  10881. The concrete and abstract syntax of the \LangXGlobal{} language is
  10882. defined in Figures~\ref{fig:x86-2-concrete} and \ref{fig:x86-2}. It
  10883. differs from \LangXIf{} just in the addition of global variables.
  10884. %
  10885. Figure~\ref{fig:select-instr-output-gc} shows the output of the
  10886. \code{select\_instructions} pass on the running example.
  10887. \begin{figure}[tbp]
  10888. \centering
  10889. % tests/s2_17.rkt
  10890. \begin{minipage}[t]{0.5\textwidth}
  10891. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10892. block35:
  10893. movq free_ptr(%rip), alloc9024
  10894. addq $16, free_ptr(%rip)
  10895. movq alloc9024, %r11
  10896. movq $131, 0(%r11)
  10897. movq alloc9024, %r11
  10898. movq vecinit9025, 8(%r11)
  10899. movq $0, initret9026
  10900. movq alloc9024, %r11
  10901. movq 8(%r11), tmp9034
  10902. movq tmp9034, %r11
  10903. movq 8(%r11), %rax
  10904. jmp conclusion
  10905. block36:
  10906. movq $0, collectret9027
  10907. jmp block35
  10908. block38:
  10909. movq free_ptr(%rip), alloc9020
  10910. addq $16, free_ptr(%rip)
  10911. movq alloc9020, %r11
  10912. movq $3, 0(%r11)
  10913. movq alloc9020, %r11
  10914. movq vecinit9021, 8(%r11)
  10915. movq $0, initret9022
  10916. movq alloc9020, vecinit9025
  10917. movq free_ptr(%rip), tmp9031
  10918. movq tmp9031, tmp9032
  10919. addq $16, tmp9032
  10920. movq fromspace_end(%rip), tmp9033
  10921. cmpq tmp9033, tmp9032
  10922. jl block36
  10923. jmp block37
  10924. block37:
  10925. movq %r15, %rdi
  10926. movq $16, %rsi
  10927. callq 'collect
  10928. jmp block35
  10929. block39:
  10930. movq $0, collectret9023
  10931. jmp block38
  10932. \end{lstlisting}
  10933. \end{minipage}
  10934. \begin{minipage}[t]{0.45\textwidth}
  10935. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  10936. start:
  10937. movq $42, vecinit9021
  10938. movq free_ptr(%rip), tmp9028
  10939. movq tmp9028, tmp9029
  10940. addq $16, tmp9029
  10941. movq fromspace_end(%rip), tmp9030
  10942. cmpq tmp9030, tmp9029
  10943. jl block39
  10944. jmp block40
  10945. block40:
  10946. movq %r15, %rdi
  10947. movq $16, %rsi
  10948. callq 'collect
  10949. jmp block38
  10950. \end{lstlisting}
  10951. \end{minipage}
  10952. \caption{Output of the \code{select\_instructions} pass.}
  10953. \label{fig:select-instr-output-gc}
  10954. \end{figure}
  10955. \clearpage
  10956. \section{Register Allocation}
  10957. \label{sec:reg-alloc-gc}
  10958. \index{subject}{register allocation}
  10959. As discussed earlier in this chapter, the garbage collector needs to
  10960. access all the pointers in the root set, that is, all variables that
  10961. are tuples. It will be the responsibility of the register allocator
  10962. to make sure that:
  10963. \begin{enumerate}
  10964. \item the root stack is used for spilling tuple-typed variables, and
  10965. \item if a tuple-typed variable is live during a call to the
  10966. collector, it must be spilled to ensure it is visible to the
  10967. collector.
  10968. \end{enumerate}
  10969. The later responsibility can be handled during construction of the
  10970. interference graph, by adding interference edges between the call-live
  10971. tuple-typed variables and all the callee-saved registers. (They
  10972. already interfere with the caller-saved registers.)
  10973. %
  10974. \racket{The type information for variables is in the \code{Program}
  10975. form, so we recommend adding another parameter to the
  10976. \code{build\_interference} function to communicate this alist.}
  10977. %
  10978. \python{The type information for variables is generated by the type
  10979. checker for \LangCVec{}, stored a field named \code{var\_types} in
  10980. the \code{CProgram} AST mode. You'll need to propagate that
  10981. information so that it is available in this pass.}
  10982. The spilling of tuple-typed variables to the root stack can be handled
  10983. after graph coloring, when choosing how to assign the colors
  10984. (integers) to registers and stack locations. The
  10985. \racket{\code{Program}}\python{\code{CProgram}} output of this pass
  10986. changes to also record the number of spills to the root stack.
  10987. % build-interference
  10988. %
  10989. % callq
  10990. % extra parameter for var->type assoc. list
  10991. % update 'program' and 'if'
  10992. % allocate-registers
  10993. % allocate spilled vectors to the rootstack
  10994. % don't change color-graph
  10995. \section{Prelude and Conclusion}
  10996. \label{sec:print-x86-gc}
  10997. \label{sec:prelude-conclusion-x86-gc}
  10998. \index{subject}{prelude}\index{subject}{conclusion}
  10999. Figure~\ref{fig:print-x86-output-gc} shows the output of the
  11000. \code{prelude\_and\_conclusion} pass on the running example. In the
  11001. prelude and conclusion of the \code{main} function, we treat the root
  11002. stack very much like the regular stack in that we move the root stack
  11003. pointer (\code{r15}) to make room for the spills to the root stack,
  11004. except that the root stack grows up instead of down. For the running
  11005. example, there was just one spill so we increment \code{r15} by 8
  11006. bytes. In the conclusion we decrement \code{r15} by 8 bytes.
  11007. One issue that deserves special care is that there may be a call to
  11008. \code{collect} prior to the initializing assignments for all the
  11009. variables in the root stack. We do not want the garbage collector to
  11010. accidentally think that some uninitialized variable is a pointer that
  11011. needs to be followed. Thus, we zero-out all locations on the root
  11012. stack in the prelude of \code{main}. In
  11013. Figure~\ref{fig:print-x86-output-gc}, the instruction
  11014. %
  11015. \lstinline{movq $0, (%r15)}
  11016. %
  11017. accomplishes this task. The garbage collector tests each root to see
  11018. if it is null prior to dereferencing it.
  11019. \begin{figure}[htbp]
  11020. % TODO: Python Version -Jeremy
  11021. \begin{minipage}[t]{0.5\textwidth}
  11022. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11023. block35:
  11024. movq free_ptr(%rip), %rcx
  11025. addq $16, free_ptr(%rip)
  11026. movq %rcx, %r11
  11027. movq $131, 0(%r11)
  11028. movq %rcx, %r11
  11029. movq -8(%r15), %rax
  11030. movq %rax, 8(%r11)
  11031. movq $0, %rdx
  11032. movq %rcx, %r11
  11033. movq 8(%r11), %rcx
  11034. movq %rcx, %r11
  11035. movq 8(%r11), %rax
  11036. jmp conclusion
  11037. block36:
  11038. movq $0, %rcx
  11039. jmp block35
  11040. block38:
  11041. movq free_ptr(%rip), %rcx
  11042. addq $16, free_ptr(%rip)
  11043. movq %rcx, %r11
  11044. movq $3, 0(%r11)
  11045. movq %rcx, %r11
  11046. movq %rbx, 8(%r11)
  11047. movq $0, %rdx
  11048. movq %rcx, -8(%r15)
  11049. movq free_ptr(%rip), %rcx
  11050. addq $16, %rcx
  11051. movq fromspace_end(%rip), %rdx
  11052. cmpq %rdx, %rcx
  11053. jl block36
  11054. movq %r15, %rdi
  11055. movq $16, %rsi
  11056. callq collect
  11057. jmp block35
  11058. block39:
  11059. movq $0, %rcx
  11060. jmp block38
  11061. \end{lstlisting}
  11062. \end{minipage}
  11063. \begin{minipage}[t]{0.45\textwidth}
  11064. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  11065. start:
  11066. movq $42, %rbx
  11067. movq free_ptr(%rip), %rdx
  11068. addq $16, %rdx
  11069. movq fromspace_end(%rip), %rcx
  11070. cmpq %rcx, %rdx
  11071. jl block39
  11072. movq %r15, %rdi
  11073. movq $16, %rsi
  11074. callq collect
  11075. jmp block38
  11076. .globl main
  11077. main:
  11078. pushq %rbp
  11079. movq %rsp, %rbp
  11080. pushq %r13
  11081. pushq %r12
  11082. pushq %rbx
  11083. pushq %r14
  11084. subq $0, %rsp
  11085. movq $16384, %rdi
  11086. movq $16384, %rsi
  11087. callq initialize
  11088. movq rootstack_begin(%rip), %r15
  11089. movq $0, (%r15)
  11090. addq $8, %r15
  11091. jmp start
  11092. conclusion:
  11093. subq $8, %r15
  11094. addq $0, %rsp
  11095. popq %r14
  11096. popq %rbx
  11097. popq %r12
  11098. popq %r13
  11099. popq %rbp
  11100. retq
  11101. \end{lstlisting}
  11102. \end{minipage}
  11103. \caption{Output of the \code{prelude\_and\_conclusion} pass.}
  11104. \label{fig:print-x86-output-gc}
  11105. \end{figure}
  11106. \begin{figure}[p]
  11107. \begin{tikzpicture}[baseline=(current bounding box.center)]
  11108. \node (Lvec) at (0,2) {\large \LangVec{}};
  11109. \node (Lvec-2) at (3,2) {\large \LangVec{}};
  11110. \node (Lvec-3) at (6,2) {\large \LangVec{}};
  11111. \node (Lvec-4) at (9,2) {\large \LangVec{}};
  11112. \node (Lvec-5) at (12,2) {\large \LangAllocANF{}};
  11113. \node (C2-4) at (3,0) {\large \LangCVec{}};
  11114. \node (x86-2) at (3,-2) {\large \LangXGlobalVar{}};
  11115. \node (x86-2-1) at (3,-4) {\large \LangXGlobalVar{}};
  11116. \node (x86-2-2) at (6,-4) {\large \LangXGlobalVar{}};
  11117. \node (x86-3) at (6,-2) {\large \LangXGlobalVar{}};
  11118. \node (x86-4) at (9,-2) {\large \LangXGlobal{}};
  11119. \node (x86-5) at (9,-4) {\large \LangXGlobal{}};
  11120. %\path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize type-check} (Lvec-2);
  11121. \path[->,bend left=15] (Lvec) edge [above] node {\ttfamily\footnotesize shrink} (Lvec-2);
  11122. \path[->,bend left=15] (Lvec-2) edge [above] node {\ttfamily\footnotesize uniquify} (Lvec-3);
  11123. \path[->,bend left=15] (Lvec-3) edge [above] node {\ttfamily\footnotesize expose\_alloc.} (Lvec-4);
  11124. \path[->,bend left=15] (Lvec-4) edge [above] node {\ttfamily\footnotesize remove\_complex.} (Lvec-5);
  11125. \path[->,bend left=20] (Lvec-5) edge [left] node {\ttfamily\footnotesize explicate\_control} (C2-4);
  11126. \path[->,bend left=15] (C2-4) edge [right] node {\ttfamily\footnotesize select\_instr.} (x86-2);
  11127. \path[->,bend right=15] (x86-2) edge [left] node {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  11128. \path[->,bend right=15] (x86-2-1) edge [below] node {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  11129. \path[->,bend right=15] (x86-2-2) edge [right] node {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  11130. \path[->,bend left=15] (x86-3) edge [above] node {\ttfamily\footnotesize patch\_instr.} (x86-4);
  11131. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  11132. \end{tikzpicture}
  11133. \caption{Diagram of the passes for \LangVec{}, a language with tuples.}
  11134. \label{fig:Lvec-passes}
  11135. \end{figure}
  11136. Figure~\ref{fig:Lvec-passes} gives an overview of all the passes needed
  11137. for the compilation of \LangVec{}.
  11138. {\if\edition\racketEd
  11139. \section{Challenge: Simple Structures}
  11140. \label{sec:simple-structures}
  11141. \index{subject}{struct}
  11142. \index{subject}{structure}
  11143. Figure~\ref{fig:r3s-concrete-syntax} defines the concrete syntax for
  11144. \LangStruct{}, which extends \LangVec{} with support for simple structures.
  11145. Recall that a \code{struct} in Typed Racket is a user-defined data
  11146. type that contains named fields and that is heap allocated, similar to
  11147. a vector. The following is an example of a structure definition, in
  11148. this case the definition of a \code{point} type.
  11149. \begin{lstlisting}
  11150. (struct point ([x : Integer] [y : Integer]) #:mutable)
  11151. \end{lstlisting}
  11152. \begin{figure}[tbp]
  11153. \centering
  11154. \fbox{
  11155. \begin{minipage}{0.96\textwidth}
  11156. \[
  11157. \begin{array}{lcl}
  11158. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  11159. \MID (\key{Vector}\;\Type \ldots) \MID \key{Void} } \MID \Var \\
  11160. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} } \\
  11161. \Exp &::=& \gray{ \Int \MID (\key{read}) \MID (\key{-}\;\Exp) \MID (\key{+} \; \Exp\;\Exp) \MID (\key{-}\;\Exp\;\Exp) } \\
  11162. &\MID& \gray{ \Var \MID (\key{let}~([\Var~\Exp])~\Exp) }\\
  11163. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  11164. \MID (\key{and}\;\Exp\;\Exp)
  11165. \MID (\key{or}\;\Exp\;\Exp)
  11166. \MID (\key{not}\;\Exp) } \\
  11167. &\MID& \gray{ (\itm{cmp}\;\Exp\;\Exp)
  11168. \MID (\key{if}~\Exp~\Exp~\Exp) } \\
  11169. &\MID& \gray{ (\key{vector}\;\Exp \ldots)
  11170. \MID (\key{vector-ref}\;\Exp\;\Int) } \\
  11171. &\MID& \gray{ (\key{vector-set!}\;\Exp\;\Int\;\Exp) }\\
  11172. &\MID& \gray{ (\key{void}) } \MID (\Var\;\Exp \ldots)\\
  11173. \Def &::=& (\key{struct}\; \Var \; ([\Var \,\key{:}\, \Type] \ldots)\; \code{\#:mutable})\\
  11174. \LangStruct{} &::=& \Def \ldots \; \Exp
  11175. \end{array}
  11176. \]
  11177. \end{minipage}
  11178. }
  11179. \caption{The concrete syntax of \LangStruct{}, extending \LangVec{}
  11180. (Figure~\ref{fig:Lvec-concrete-syntax}).}
  11181. \label{fig:r3s-concrete-syntax}
  11182. \end{figure}
  11183. An instance of a structure is created using function call syntax, with
  11184. the name of the structure in the function position:
  11185. \begin{lstlisting}
  11186. (point 7 12)
  11187. \end{lstlisting}
  11188. Function-call syntax is also used to read the value in a field of a
  11189. structure. The function name is formed by the structure name, a dash,
  11190. and the field name. The following example uses \code{point-x} and
  11191. \code{point-y} to access the \code{x} and \code{y} fields of two point
  11192. instances.
  11193. \begin{center}
  11194. \begin{lstlisting}
  11195. (let ([pt1 (point 7 12)])
  11196. (let ([pt2 (point 4 3)])
  11197. (+ (- (point-x pt1) (point-x pt2))
  11198. (- (point-y pt1) (point-y pt2)))))
  11199. \end{lstlisting}
  11200. \end{center}
  11201. Similarly, to write to a field of a structure, use its set function,
  11202. whose name starts with \code{set-}, followed by the structure name,
  11203. then a dash, then the field name, and concluded with an exclamation
  11204. mark. The following example uses \code{set-point-x!} to change the
  11205. \code{x} field from \code{7} to \code{42}.
  11206. \begin{center}
  11207. \begin{lstlisting}
  11208. (let ([pt (point 7 12)])
  11209. (let ([_ (set-point-x! pt 42)])
  11210. (point-x pt)))
  11211. \end{lstlisting}
  11212. \end{center}
  11213. \begin{exercise}\normalfont
  11214. Extend your compiler with support for simple structures, compiling
  11215. \LangStruct{} to x86 assembly code. Create five new test cases that use
  11216. structures and test your compiler.
  11217. \end{exercise}
  11218. \section{Challenge: Arrays}
  11219. \label{sec:arrays}
  11220. In Chapter~\ref{ch:Lvec} we studied tuples, that is, sequences of
  11221. elements whose length is determined at compile-time and where each
  11222. element of a tuple may have a different type (they are
  11223. heterogeous). This challenge is also about sequences, but this time
  11224. the length is determined at run-time and all the elements have the same
  11225. type (they are homogeneous). We use the term ``array'' for this later
  11226. kind of sequence.
  11227. The Racket language does not distinguish between tuples and arrays,
  11228. they are both represented by vectors. However, Typed Racket
  11229. distinguishes between tuples and arrays: the \code{Vector} type is for
  11230. tuples and the \code{Vectorof} type is for arrays.
  11231. %
  11232. Figure~\ref{fig:Lvecof-concrete-syntax} defines the concrete syntax
  11233. for \LangArray{}, extending \LangLoop{} with the \code{Vectorof} type
  11234. and the \code{make-vector} primitive operator for creating an array,
  11235. whose arguments are the length of the array and an initial value for
  11236. all the elements in the array. The \code{vector-length},
  11237. \code{vector-ref}, and \code{vector-ref!} operators that we defined
  11238. for tuples become overloaded for use with arrays.
  11239. %
  11240. We also include integer multiplication in \LangArray{}, as it is
  11241. useful in many examples involving arrays such as computing the
  11242. inner-product of two arrays (Figure~\ref{fig:inner-product}).
  11243. \begin{figure}[tp]
  11244. \centering
  11245. \fbox{
  11246. \begin{minipage}{0.96\textwidth}
  11247. \small
  11248. \[
  11249. \begin{array}{lcl}
  11250. \Type &::=& \ldots \MID \LP \key{Vectorof}~\Type \RP \\
  11251. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  11252. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \MID \CMUL{\Exp}{\Exp}\\
  11253. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  11254. &\MID& \gray{\key{\#t} \MID \key{\#f}
  11255. \MID \LP\key{and}\;\Exp\;\Exp\RP
  11256. \MID \LP\key{or}\;\Exp\;\Exp\RP
  11257. \MID \LP\key{not}\;\Exp\RP } \\
  11258. &\MID& \gray{ \LP\key{eq?}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  11259. &\MID& \gray{ \LP\key{vector}\;\Exp\ldots\RP \MID
  11260. \LP\key{vector-ref}\;\Exp\;\Int\RP} \\
  11261. &\MID& \gray{\LP\key{vector-set!}\;\Exp\;\Int\;\Exp\RP\MID \LP\key{void}\RP
  11262. \MID \LP\Exp \; \Exp\ldots\RP } \\
  11263. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP
  11264. \MID \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} } \\
  11265. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  11266. \MID \CBEGIN{\Exp\ldots}{\Exp}
  11267. \MID \CWHILE{\Exp}{\Exp} } \\
  11268. &\MID& \CMAKEVEC{\Exp}{\Exp} \\
  11269. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  11270. \LangArray{} &::=& \gray{\Def\ldots \; \Exp}
  11271. \end{array}
  11272. \]
  11273. \end{minipage}
  11274. }
  11275. \caption{The concrete syntax of \LangArray{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  11276. \label{fig:Lvecof-concrete-syntax}
  11277. \end{figure}
  11278. \begin{figure}[tp]
  11279. \begin{lstlisting}
  11280. (define (inner-product [A : (Vectorof Integer)] [B : (Vectorof Integer)]
  11281. [n : Integer]) : Integer
  11282. (let ([i 0])
  11283. (let ([prod 0])
  11284. (begin
  11285. (while (< i n)
  11286. (begin
  11287. (set! prod (+ prod (* (vector-ref A i)
  11288. (vector-ref B i))))
  11289. (set! i (+ i 1))
  11290. ))
  11291. prod))))
  11292. (let ([A (make-vector 2 2)])
  11293. (let ([B (make-vector 2 3)])
  11294. (+ (inner-product A B 2)
  11295. 30)))
  11296. \end{lstlisting}
  11297. \caption{Example program that computes the inner-product.}
  11298. \label{fig:inner-product}
  11299. \end{figure}
  11300. The type checker for \LangArray{} is define in
  11301. Figure~\ref{fig:type-check-Lvecof}. The result type of
  11302. \code{make-vector} is \code{(Vectorof T)} where \code{T} is the type
  11303. of the intializing expression. The length expression is required to
  11304. have type \code{Integer}. The type checking of the operators
  11305. \code{vector-length}, \code{vector-ref}, and \code{vector-set!} is
  11306. updated to handle the situation where the vector has type
  11307. \code{Vectorof}. In these cases we translate the operators to their
  11308. \code{vectorof} form so that later passes can easily distinguish
  11309. between operations on tuples versus arrays. We override the
  11310. \code{operator-types} method to provide the type signature for
  11311. multiplication: it takes two integers and returns an integer. To
  11312. support injection and projection of arrays to the \code{Any} type
  11313. (Section~\ref{sec:Rany-lang}), we also override the \code{flat-ty?}
  11314. predicate.
  11315. \begin{figure}[tbp]
  11316. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11317. (define type-check-Lvecof_class
  11318. (class type-check-Rwhile_class
  11319. (super-new)
  11320. (inherit check-type-equal?)
  11321. (define/override (flat-ty? ty)
  11322. (match ty
  11323. ['(Vectorof Any) #t]
  11324. [else (super flat-ty? ty)]))
  11325. (define/override (operator-types)
  11326. (append '((* . ((Integer Integer) . Integer)))
  11327. (super operator-types)))
  11328. (define/override (type-check-exp env)
  11329. (lambda (e)
  11330. (define recur (type-check-exp env))
  11331. (match e
  11332. [(Prim 'make-vector (list e1 e2))
  11333. (define-values (e1^ t1) (recur e1))
  11334. (define-values (e2^ elt-type) (recur e2))
  11335. (define vec-type `(Vectorof ,elt-type))
  11336. (values (HasType (Prim 'make-vector (list e1^ e2^)) vec-type)
  11337. vec-type)]
  11338. [(Prim 'vector-ref (list e1 e2))
  11339. (define-values (e1^ t1) (recur e1))
  11340. (define-values (e2^ t2) (recur e2))
  11341. (match* (t1 t2)
  11342. [(`(Vectorof ,elt-type) 'Integer)
  11343. (values (Prim 'vectorof-ref (list e1^ e2^)) elt-type)]
  11344. [(other wise) ((super type-check-exp env) e)])]
  11345. [(Prim 'vector-set! (list e1 e2 e3) )
  11346. (define-values (e-vec t-vec) (recur e1))
  11347. (define-values (e2^ t2) (recur e2))
  11348. (define-values (e-arg^ t-arg) (recur e3))
  11349. (match t-vec
  11350. [`(Vectorof ,elt-type)
  11351. (check-type-equal? elt-type t-arg e)
  11352. (values (Prim 'vectorof-set! (list e-vec e2^ e-arg^)) 'Void)]
  11353. [else ((super type-check-exp env) e)])]
  11354. [(Prim 'vector-length (list e1))
  11355. (define-values (e1^ t1) (recur e1))
  11356. (match t1
  11357. [`(Vectorof ,t)
  11358. (values (Prim 'vectorof-length (list e1^)) 'Integer)]
  11359. [else ((super type-check-exp env) e)])]
  11360. [else ((super type-check-exp env) e)])))
  11361. ))
  11362. (define (type-check-Lvecof p)
  11363. (send (new type-check-Lvecof_class) type-check-program p))
  11364. \end{lstlisting}
  11365. \caption{Type checker for the \LangArray{} language.}
  11366. \label{fig:type-check-Lvecof}
  11367. \end{figure}
  11368. The interpreter for \LangArray{} is defined in
  11369. Figure~\ref{fig:interp-Lvecof}. The \code{make-vector} operator is
  11370. implemented with Racket's \code{make-vector} function and
  11371. multiplication is \code{fx*}, multiplication for \code{fixnum}
  11372. integers.
  11373. \begin{figure}[tbp]
  11374. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11375. (define interp-Lvecof_class
  11376. (class interp-Rwhile_class
  11377. (super-new)
  11378. (define/override (interp-op op)
  11379. (verbose "Lvecof/interp-op" op)
  11380. (match op
  11381. ['make-vector make-vector]
  11382. ['* fx*]
  11383. [else (super interp-op op)]))
  11384. ))
  11385. (define (interp-Lvecof p)
  11386. (send (new interp-Lvecof_class) interp-program p))
  11387. \end{lstlisting}
  11388. \caption{Interpreter for \LangArray{}.}
  11389. \label{fig:interp-Lvecof}
  11390. \end{figure}
  11391. \subsection{Data Representation}
  11392. \label{sec:array-rep}
  11393. Just like tuples, we store arrays on the heap which means that the
  11394. garbage collector will need to inspect arrays. An immediate thought is
  11395. to use the same representation for arrays that we use for tuples.
  11396. However, we limit tuples to a length of $50$ so that their length and
  11397. pointer mask can fit into the 64-bit tag at the beginning of each
  11398. tuple (Section~\ref{sec:data-rep-gc}). We intend arrays to allow
  11399. millions of elements, so we need more bits to store the length.
  11400. However, because arrays are homogeneous, we only need $1$ bit for the
  11401. pointer mask instead of one bit per array elements. Finally, the
  11402. garbage collector will need to be able to distinguish between tuples
  11403. and arrays, so we need to reserve $1$ bit for that purpose. So we
  11404. arrive at the following layout for the 64-bit tag at the beginning of
  11405. an array:
  11406. \begin{itemize}
  11407. \item The right-most bit is the forwarding bit, just like in a tuple.
  11408. A $0$ indicates it is a forwarding pointer and a $1$ indicates
  11409. it is not.
  11410. \item The next bit to the left is the pointer mask. A $0$ indicates
  11411. that none of the elements are pointers to the heap and a $1$
  11412. indicates that all of the elements are pointers.
  11413. \item The next $61$ bits store the length of the array.
  11414. \item The left-most bit distinguishes between a tuple ($0$) versus an
  11415. array ($1$).
  11416. \end{itemize}
  11417. Recall that in Chapter~\ref{ch:Rdyn}, we use a $3$-bit tag to
  11418. differentiate the kinds of values that have been injected into the
  11419. \code{Any} type. We use the bit pattern \code{110} (or $6$ in decimal)
  11420. to indicate that the value is an array.
  11421. In the following subsections we provide hints regarding how to update
  11422. the passes to handle arrays.
  11423. \subsection{Reveal Casts}
  11424. The array-access operators \code{vectorof-ref} and
  11425. \code{vectorof-set!} are similar to the \code{any-vector-ref} and
  11426. \code{any-vector-set!} operators of Chapter~\ref{ch:Rdyn} in
  11427. that the type checker cannot tell whether the index will be in bounds,
  11428. so the bounds check must be performed at run time. Recall that the
  11429. \code{reveal-casts} pass (Section~\ref{sec:reveal-casts-Rany}) wraps
  11430. an \code{If} arround a vector reference for update to check whether
  11431. the index is less than the length. You should do the same for
  11432. \code{vectorof-ref} and \code{vectorof-set!} .
  11433. In addition, the handling of the \code{any-vector} operators in
  11434. \code{reveal-casts} needs to be updated to account for arrays that are
  11435. injected to \code{Any}. For the \code{any-vector-length} operator, the
  11436. generated code should test whether the tag is for tuples (\code{010})
  11437. or arrays (\code{110}) and then dispatch to either
  11438. \code{any-vector-length} or \code{any-vectorof-length}. For the later
  11439. we add a case in \code{select\_instructions} to generate the
  11440. appropriate instructions for accessing the array length from the
  11441. header of an array.
  11442. For the \code{any-vector-ref} and \code{any-vector-set!} operators,
  11443. the generated code needs to check that the index is less than the
  11444. vector length, so like the code for \code{any-vector-length}, check
  11445. the tag to determine whether to use \code{any-vector-length} or
  11446. \code{any-vectorof-length} for this purpose. Once the bounds checking
  11447. is complete, the generated code can use \code{any-vector-ref} and
  11448. \code{any-vector-set!} for both tuples and arrays because the
  11449. instructions used for those operators do not look at the tag at the
  11450. front of the tuple or array.
  11451. \subsection{Expose Allocation}
  11452. This pass should translate the \code{make-vector} operator into
  11453. lower-level operations. In particular, the new AST node
  11454. $\LP\key{AllocateArray}~\Exp~\Type\RP$ allocates an array of the
  11455. length specified by the $\Exp$, but does not initialize the elements
  11456. of the array. (Analogous to the \code{Allocate} AST node for tuples.)
  11457. The $\Type$ argument must be $\LP\key{Vectorof}~T\RP$ where $T$ is the
  11458. element type for the array. Regarding the initialization of the array,
  11459. we recommend generated a \code{while} loop that uses
  11460. \code{vector-set!} to put the initializing value into every element of
  11461. the array.
  11462. \subsection{Remove Complex Operands}
  11463. Add cases in the \code{rco\_atom} and \code{rco\_exp} for
  11464. \code{AllocateArray}. In particular, an \code{AllocateArray} node is
  11465. complex and its subexpression must be atomic.
  11466. \subsection{Explicate Control}
  11467. Add cases for \code{AllocateArray} to \code{explicate\_tail} and
  11468. \code{explicate\_assign}.
  11469. \subsection{Select Instructions}
  11470. Generate instructions for \code{AllocateArray} similar to those for
  11471. \code{Allocate} in Section~\ref{sec:select-instructions-gc} except
  11472. that the tag at the front of the array should instead use the
  11473. representation discussed in Section~\ref{sec:array-rep}.
  11474. Regarding \code{vectorof-length}, extract the length from the tag
  11475. according to the representation discussed in
  11476. Section~\ref{sec:array-rep}.
  11477. The instructions generated for \code{vectorof-ref} differ from those
  11478. for \code{vector-ref} (Section~\ref{sec:select-instructions-gc}) in
  11479. that the index is not a constant so the offset must be computed at
  11480. runtime, similar to the instructions generated for
  11481. \code{any-vector-of-ref} (Section~\ref{sec:select-Rany}). The same is
  11482. true for \code{vectorof-set!}. Also, the \code{vectorof-set!} may
  11483. appear in an assignment and as a stand-alone statement, so make sure
  11484. to handle both situations in this pass.
  11485. Finally, the instructions for \code{any-vectorof-length} should be
  11486. similar to those for \code{vectorof-length}, except that one must
  11487. first project the array by writing zeroes into the $3$-bit tag
  11488. \begin{exercise}\normalfont
  11489. Implement a compiler for the \LangArray{} language by extending your
  11490. compiler for \LangLoop{}. Test your compiler on a half dozen new
  11491. programs, including the one in Figure~\ref{fig:inner-product} and also
  11492. a program that multiplies two matrices. Note that matrices are
  11493. 2-dimensional arrays, but those can be encoded into 1-dimensional
  11494. arrays by laying out each row in the array, one after the next.
  11495. \end{exercise}
  11496. \section{Challenge: Generational Collection}
  11497. The copying collector described in Section~\ref{sec:GC} can incur
  11498. significant runtime overhead because the call to \code{collect} takes
  11499. time proportional to all of the live data. One way to reduce this
  11500. overhead is to reduce how much data is inspected in each call to
  11501. \code{collect}. In particular, researchers have observed that recently
  11502. allocated data is more likely to become garbage then data that has
  11503. survived one or more previous calls to \code{collect}. This insight
  11504. motivated the creation of \emph{generational garbage collectors}
  11505. \index{subject}{generational garbage collector} that
  11506. 1) segregates data according to its age into two or more generations,
  11507. 2) allocates less space for younger generations, so collecting them is
  11508. faster, and more space for the older generations, and 3) performs
  11509. collection on the younger generations more frequently then for older
  11510. generations~\citep{Wilson:1992fk}.
  11511. For this challenge assignment, the goal is to adapt the copying
  11512. collector implemented in \code{runtime.c} to use two generations, one
  11513. for young data and one for old data. Each generation consists of a
  11514. FromSpace and a ToSpace. The following is a sketch of how to adapt the
  11515. \code{collect} function to use the two generations.
  11516. \begin{enumerate}
  11517. \item Copy the young generation's FromSpace to its ToSpace then switch
  11518. the role of the ToSpace and FromSpace
  11519. \item If there is enough space for the requested number of bytes in
  11520. the young FromSpace, then return from \code{collect}.
  11521. \item If there is not enough space in the young FromSpace for the
  11522. requested bytes, then move the data from the young generation to the
  11523. old one with the following steps:
  11524. \begin{enumerate}
  11525. \item If there is enough room in the old FromSpace, copy the young
  11526. FromSpace to the old FromSpace and then return.
  11527. \item If there is not enough room in the old FromSpace, then collect
  11528. the old generation by copying the old FromSpace to the old ToSpace
  11529. and swap the roles of the old FromSpace and ToSpace.
  11530. \item If there is enough room now, copy the young FromSpace to the
  11531. old FromSpace and return. Otherwise, allocate a larger FromSpace
  11532. and ToSpace for the old generation. Copy the young FromSpace and
  11533. the old FromSpace into the larger FromSpace for the old
  11534. generation and then return.
  11535. \end{enumerate}
  11536. \end{enumerate}
  11537. We recommend that you generalize the \code{cheney} function so that it
  11538. can be used for all the copies mentioned above: between the young
  11539. FromSpace and ToSpace, between the old FromSpace and ToSpace, and
  11540. between the young FromSpace and old FromSpace. This can be
  11541. accomplished by adding parameters to \code{cheney} that replace its
  11542. use of the global variables \code{fromspace\_begin},
  11543. \code{fromspace\_end}, \code{tospace\_begin}, and \code{tospace\_end}.
  11544. Note that the collection of the young generation does not traverse the
  11545. old generation. This introduces a potential problem: there may be
  11546. young data that is only reachable through pointers in the old
  11547. generation. If these pointers are not taken into account, the
  11548. collector could throw away young data that is live! One solution,
  11549. called \emph{pointer recording}, is to maintain a set of all the
  11550. pointers from the old generation into the new generation and consider
  11551. this set as part of the root set. To maintain this set, the compiler
  11552. must insert extra instructions around every \code{vector-set!}. If the
  11553. vector being modified is in the old generation, and if the value being
  11554. written is a pointer into the new generation, than that pointer must
  11555. be added to the set. Also, if the value being overwritten was a
  11556. pointer into the new generation, then that pointer should be removed
  11557. from the set.
  11558. \begin{exercise}\normalfont
  11559. Adapt the \code{collect} function in \code{runtime.c} to implement
  11560. generational garbage collection, as outlined in this section.
  11561. Update the code generation for \code{vector-set!} to implement
  11562. pointer recording. Make sure that your new compiler and runtime
  11563. passes your test suite.
  11564. \end{exercise}
  11565. \fi}
  11566. % Further Reading
  11567. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  11568. \chapter{Functions}
  11569. \label{ch:Rfun}
  11570. \index{subject}{function}
  11571. \if\edition\racketEd
  11572. This chapter studies the compilation of functions similar to those
  11573. found in the C language. This corresponds to a subset of Typed Racket
  11574. in which only top-level function definitions are allowed. This kind of
  11575. function is an important stepping stone to implementing
  11576. lexically-scoped functions, that is, \key{lambda} abstractions, which
  11577. is the topic of Chapter~\ref{ch:Rlam}.
  11578. \section{The \LangFun{} Language}
  11579. The concrete and abstract syntax for function definitions and function
  11580. application is shown in Figures~\ref{fig:Rfun-concrete-syntax} and
  11581. \ref{fig:Rfun-syntax}, where we define the \LangFun{} language. Programs in
  11582. \LangFun{} begin with zero or more function definitions. The function
  11583. names from these definitions are in-scope for the entire program,
  11584. including all other function definitions (so the ordering of function
  11585. definitions does not matter). The concrete syntax for function
  11586. application\index{subject}{function application} is $(\Exp \; \Exp \ldots)$
  11587. where the first expression must
  11588. evaluate to a function and the rest are the arguments.
  11589. The abstract syntax for function application is
  11590. $\APPLY{\Exp}{\Exp\ldots}$.
  11591. %% The syntax for function application does not include an explicit
  11592. %% keyword, which is error prone when using \code{match}. To alleviate
  11593. %% this problem, we translate the syntax from $(\Exp \; \Exp \ldots)$ to
  11594. %% $(\key{app}\; \Exp \; \Exp \ldots)$ during type checking.
  11595. Functions are first-class in the sense that a function pointer
  11596. \index{subject}{function pointer} is data and can be stored in memory or passed
  11597. as a parameter to another function. Thus, we introduce a function
  11598. type, written
  11599. \begin{lstlisting}
  11600. (|$\Type_1$| |$\cdots$| |$\Type_n$| -> |$\Type_r$|)
  11601. \end{lstlisting}
  11602. for a function whose $n$ parameters have the types $\Type_1$ through
  11603. $\Type_n$ and whose return type is $\Type_r$. The main limitation of
  11604. these functions (with respect to Racket functions) is that they are
  11605. not lexically scoped. That is, the only external entities that can be
  11606. referenced from inside a function body are other globally-defined
  11607. functions. The syntax of \LangFun{} prevents functions from being nested
  11608. inside each other.
  11609. \begin{figure}[tp]
  11610. \centering
  11611. \fbox{
  11612. \begin{minipage}{0.96\textwidth}
  11613. \small
  11614. \[
  11615. \begin{array}{lcl}
  11616. \Type &::=& \gray{ \key{Integer} \MID \key{Boolean}
  11617. \MID (\key{Vector}\;\Type\ldots) \MID \key{Void} } \MID (\Type \ldots \; \key{->}\; \Type) \\
  11618. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} } \\
  11619. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp} \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  11620. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  11621. &\MID& \gray{ \key{\#t} \MID \key{\#f}
  11622. \MID (\key{and}\;\Exp\;\Exp)
  11623. \MID (\key{or}\;\Exp\;\Exp)
  11624. \MID (\key{not}\;\Exp)} \\
  11625. &\MID& \gray{(\itm{cmp}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  11626. &\MID& \gray{(\key{vector}\;\Exp\ldots) \MID
  11627. (\key{vector-ref}\;\Exp\;\Int)} \\
  11628. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  11629. \MID \LP\key{has-type}~\Exp~\Type\RP } \\
  11630. &\MID& \LP\Exp \; \Exp \ldots\RP \\
  11631. \Def &::=& \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} \\
  11632. \LangFunM{} &::=& \Def \ldots \; \Exp
  11633. \end{array}
  11634. \]
  11635. \end{minipage}
  11636. }
  11637. \caption{The concrete syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-concrete-syntax}).}
  11638. \label{fig:Rfun-concrete-syntax}
  11639. \end{figure}
  11640. \begin{figure}[tp]
  11641. \centering
  11642. \fbox{
  11643. \begin{minipage}{0.96\textwidth}
  11644. \small
  11645. \[
  11646. \begin{array}{lcl}
  11647. \Exp &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  11648. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  11649. &\MID& \gray{ \BOOL{\itm{bool}}
  11650. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  11651. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP }
  11652. \MID \APPLY{\Exp}{\Exp\ldots}\\
  11653. \Def &::=& \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp}\\
  11654. \LangFunM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP)}{\Exp}
  11655. \end{array}
  11656. \]
  11657. \end{minipage}
  11658. }
  11659. \caption{The abstract syntax of \LangFun{}, extending \LangVec{} (Figure~\ref{fig:Lvec-syntax}).}
  11660. \label{fig:Rfun-syntax}
  11661. \end{figure}
  11662. The program in Figure~\ref{fig:Rfun-function-example} is a
  11663. representative example of defining and using functions in \LangFun{}. We
  11664. define a function \code{map-vec} that applies some other function
  11665. \code{f} to both elements of a vector and returns a new
  11666. vector containing the results. We also define a function \code{add1}.
  11667. The program applies
  11668. \code{map-vec} to \code{add1} and \code{(vector 0 41)}. The result is
  11669. \code{(vector 1 42)}, from which we return the \code{42}.
  11670. \begin{figure}[tbp]
  11671. \begin{lstlisting}
  11672. (define (map-vec [f : (Integer -> Integer)]
  11673. [v : (Vector Integer Integer)])
  11674. : (Vector Integer Integer)
  11675. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  11676. (define (add1 [x : Integer]) : Integer
  11677. (+ x 1))
  11678. (vector-ref (map-vec add1 (vector 0 41)) 1)
  11679. \end{lstlisting}
  11680. \caption{Example of using functions in \LangFun{}.}
  11681. \label{fig:Rfun-function-example}
  11682. \end{figure}
  11683. The definitional interpreter for \LangFun{} is in
  11684. Figure~\ref{fig:interp-Rfun}. The case for the \code{ProgramDefsExp} form is
  11685. responsible for setting up the mutual recursion between the top-level
  11686. function definitions. We use the classic back-patching \index{subject}{back-patching}
  11687. approach that uses mutable variables and makes two passes over the function
  11688. definitions~\citep{Kelsey:1998di}. In the first pass we set up the
  11689. top-level environment using a mutable cons cell for each function
  11690. definition. Note that the \code{lambda} value for each function is
  11691. incomplete; it does not yet include the environment. Once the
  11692. top-level environment is constructed, we then iterate over it and
  11693. update the \code{lambda} values to use the top-level environment.
  11694. \begin{figure}[tp]
  11695. \begin{lstlisting}
  11696. (define interp-Rfun_class
  11697. (class interp-Lvec_class
  11698. (super-new)
  11699. (define/override ((interp-exp env) e)
  11700. (define recur (interp-exp env))
  11701. (match e
  11702. [(Var x) (unbox (dict-ref env x))]
  11703. [(Let x e body)
  11704. (define new-env (dict-set env x (box (recur e))))
  11705. ((interp-exp new-env) body)]
  11706. [(Apply fun args)
  11707. (define fun-val (recur fun))
  11708. (define arg-vals (for/list ([e args]) (recur e)))
  11709. (match fun-val
  11710. [`(function (,xs ...) ,body ,fun-env)
  11711. (define params-args (for/list ([x xs] [arg arg-vals])
  11712. (cons x (box arg))))
  11713. (define new-env (append params-args fun-env))
  11714. ((interp-exp new-env) body)]
  11715. [else (error 'interp-exp "expected function, not ~a" fun-val)])]
  11716. [else ((super interp-exp env) e)]
  11717. ))
  11718. (define/public (interp-def d)
  11719. (match d
  11720. [(Def f (list `[,xs : ,ps] ...) rt _ body)
  11721. (cons f (box `(function ,xs ,body ())))]))
  11722. (define/override (interp-program p)
  11723. (match p
  11724. [(ProgramDefsExp info ds body)
  11725. (let ([top-level (for/list ([d ds]) (interp-def d))])
  11726. (for/list ([f (in-dict-values top-level)])
  11727. (set-box! f (match (unbox f)
  11728. [`(function ,xs ,body ())
  11729. `(function ,xs ,body ,top-level)])))
  11730. ((interp-exp top-level) body))]))
  11731. ))
  11732. (define (interp-Rfun p)
  11733. (send (new interp-Rfun_class) interp-program p))
  11734. \end{lstlisting}
  11735. \caption{Interpreter for the \LangFun{} language.}
  11736. \label{fig:interp-Rfun}
  11737. \end{figure}
  11738. %\margincomment{TODO: explain type checker}
  11739. The type checker for \LangFun{} is in Figure~\ref{fig:type-check-Rfun}.
  11740. \begin{figure}[tp]
  11741. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  11742. (define type-check-Rfun_class
  11743. (class type-check-Lvec_class
  11744. (super-new)
  11745. (inherit check-type-equal?)
  11746. (define/public (type-check-apply env e es)
  11747. (define-values (e^ ty) ((type-check-exp env) e))
  11748. (define-values (e* ty*) (for/lists (e* ty*) ([e (in-list es)])
  11749. ((type-check-exp env) e)))
  11750. (match ty
  11751. [`(,ty^* ... -> ,rt)
  11752. (for ([arg-ty ty*] [param-ty ty^*])
  11753. (check-type-equal? arg-ty param-ty (Apply e es)))
  11754. (values e^ e* rt)]))
  11755. (define/override (type-check-exp env)
  11756. (lambda (e)
  11757. (match e
  11758. [(FunRef f)
  11759. (values (FunRef f) (dict-ref env f))]
  11760. [(Apply e es)
  11761. (define-values (e^ es^ rt) (type-check-apply env e es))
  11762. (values (Apply e^ es^) rt)]
  11763. [(Call e es)
  11764. (define-values (e^ es^ rt) (type-check-apply env e es))
  11765. (values (Call e^ es^) rt)]
  11766. [else ((super type-check-exp env) e)])))
  11767. (define/public (type-check-def env)
  11768. (lambda (e)
  11769. (match e
  11770. [(Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body)
  11771. (define new-env (append (map cons xs ps) env))
  11772. (define-values (body^ ty^) ((type-check-exp new-env) body))
  11773. (check-type-equal? ty^ rt body)
  11774. (Def f p:t* rt info body^)])))
  11775. (define/public (fun-def-type d)
  11776. (match d
  11777. [(Def f (list `[,xs : ,ps] ...) rt info body) `(,@ps -> ,rt)]))
  11778. (define/override (type-check-program e)
  11779. (match e
  11780. [(ProgramDefsExp info ds body)
  11781. (define new-env (for/list ([d ds])
  11782. (cons (Def-name d) (fun-def-type d))))
  11783. (define ds^ (for/list ([d ds]) ((type-check-def new-env) d)))
  11784. (define-values (body^ ty) ((type-check-exp new-env) body))
  11785. (check-type-equal? ty 'Integer body)
  11786. (ProgramDefsExp info ds^ body^)]))))
  11787. (define (type-check-Rfun p)
  11788. (send (new type-check-Rfun_class) type-check-program p))
  11789. \end{lstlisting}
  11790. \caption{Type checker for the \LangFun{} language.}
  11791. \label{fig:type-check-Rfun}
  11792. \end{figure}
  11793. \section{Functions in x86}
  11794. \label{sec:fun-x86}
  11795. %% \margincomment{\tiny Make sure callee-saved registers are discussed
  11796. %% in enough depth, especially updating Fig 6.4 \\ --Jeremy }
  11797. %% \margincomment{\tiny Talk about the return address on the
  11798. %% stack and what callq and retq does.\\ --Jeremy }
  11799. The x86 architecture provides a few features to support the
  11800. implementation of functions. We have already seen that x86 provides
  11801. labels so that one can refer to the location of an instruction, as is
  11802. needed for jump instructions. Labels can also be used to mark the
  11803. beginning of the instructions for a function. Going further, we can
  11804. obtain the address of a label by using the \key{leaq} instruction and
  11805. PC-relative addressing. For example, the following puts the
  11806. address of the \code{add1} label into the \code{rbx} register.
  11807. \begin{lstlisting}
  11808. leaq add1(%rip), %rbx
  11809. \end{lstlisting}
  11810. The instruction pointer register \key{rip} (aka. the program counter
  11811. \index{subject}{program counter}) always points to the next instruction to be
  11812. executed. When combined with an label, as in \code{add1(\%rip)}, the
  11813. linker computes the distance $d$ between the address of \code{add1}
  11814. and where the \code{rip} would be at that moment and then changes
  11815. \code{add1(\%rip)} to \code{$d$(\%rip)}, which at runtime will compute
  11816. the address of \code{add1}.
  11817. In Section~\ref{sec:x86} we used of the \code{callq} instruction to
  11818. jump to a function whose location is given by a label. To support
  11819. function calls in this chapter we instead will be jumping to a
  11820. function whose location is given by an address in a register, that is,
  11821. we need to make an \emph{indirect function call}. The x86 syntax for
  11822. this is a \code{callq} instruction but with an asterisk before the
  11823. register name.\index{subject}{indirect function call}
  11824. \begin{lstlisting}
  11825. callq *%rbx
  11826. \end{lstlisting}
  11827. \subsection{Calling Conventions}
  11828. \index{subject}{calling conventions}
  11829. The \code{callq} instruction provides partial support for implementing
  11830. functions: it pushes the return address on the stack and it jumps to
  11831. the target. However, \code{callq} does not handle
  11832. \begin{enumerate}
  11833. \item parameter passing,
  11834. \item pushing frames on the procedure call stack and popping them off,
  11835. or
  11836. \item determining how registers are shared by different functions.
  11837. \end{enumerate}
  11838. Regarding (1) parameter passing, recall that the following six
  11839. registers are used to pass arguments to a function, in this order.
  11840. \begin{lstlisting}
  11841. rdi rsi rdx rcx r8 r9
  11842. \end{lstlisting}
  11843. If there are
  11844. more than six arguments, then the convention is to use space on the
  11845. frame of the caller for the rest of the arguments. However, to ease
  11846. the implementation of efficient tail calls
  11847. (Section~\ref{sec:tail-call}), we arrange never to need more than six
  11848. arguments.
  11849. %
  11850. Also recall that the register \code{rax} is for the return value of
  11851. the function.
  11852. \index{subject}{prelude}\index{subject}{conclusion}
  11853. Regarding (2) frames \index{subject}{frame} and the procedure call stack,
  11854. \index{subject}{procedure call stack} recall from Section~\ref{sec:x86} that
  11855. the stack grows down, with each function call using a chunk of space
  11856. called a frame. The caller sets the stack pointer, register
  11857. \code{rsp}, to the last data item in its frame. The callee must not
  11858. change anything in the caller's frame, that is, anything that is at or
  11859. above the stack pointer. The callee is free to use locations that are
  11860. below the stack pointer.
  11861. Recall that we are storing variables of vector type on the root stack.
  11862. So the prelude needs to move the root stack pointer \code{r15} up and
  11863. the conclusion needs to move the root stack pointer back down. Also,
  11864. the prelude must initialize to \code{0} this frame's slots in the root
  11865. stack to signal to the garbage collector that those slots do not yet
  11866. contain a pointer to a vector. Otherwise the garbage collector will
  11867. interpret the garbage bits in those slots as memory addresses and try
  11868. to traverse them, causing serious mayhem!
  11869. Regarding (3) the sharing of registers between different functions,
  11870. recall from Section~\ref{sec:calling-conventions} that the registers
  11871. are divided into two groups, the caller-saved registers and the
  11872. callee-saved registers. The caller should assume that all the
  11873. caller-saved registers get overwritten with arbitrary values by the
  11874. callee. That is why we recommend in
  11875. Section~\ref{sec:calling-conventions} that variables that are live
  11876. during a function call should not be assigned to caller-saved
  11877. registers.
  11878. On the flip side, if the callee wants to use a callee-saved register,
  11879. the callee must save the contents of those registers on their stack
  11880. frame and then put them back prior to returning to the caller. That
  11881. is why we recommended in Section~\ref{sec:calling-conventions} that if
  11882. the register allocator assigns a variable to a callee-saved register,
  11883. then the prelude of the \code{main} function must save that register
  11884. to the stack and the conclusion of \code{main} must restore it. This
  11885. recommendation now generalizes to all functions.
  11886. Also recall that the base pointer, register \code{rbp}, is used as a
  11887. point-of-reference within a frame, so that each local variable can be
  11888. accessed at a fixed offset from the base pointer
  11889. (Section~\ref{sec:x86}).
  11890. %
  11891. Figure~\ref{fig:call-frames} shows the general layout of the caller
  11892. and callee frames.
  11893. \begin{figure}[tbp]
  11894. \centering
  11895. \begin{tabular}{r|r|l|l} \hline
  11896. Caller View & Callee View & Contents & Frame \\ \hline
  11897. 8(\key{\%rbp}) & & return address & \multirow{5}{*}{Caller}\\
  11898. 0(\key{\%rbp}) & & old \key{rbp} \\
  11899. -8(\key{\%rbp}) & & callee-saved $1$ \\
  11900. \ldots & & \ldots \\
  11901. $-8j$(\key{\%rbp}) & & callee-saved $j$ \\
  11902. $-8(j+1)$(\key{\%rbp}) & & local variable $1$ \\
  11903. \ldots & & \ldots \\
  11904. $-8(j+k)$(\key{\%rbp}) & & local variable $k$ \\
  11905. %% & & \\
  11906. %% $8n-8$\key{(\%rsp)} & $8n+8$(\key{\%rbp})& argument $n$ \\
  11907. %% & \ldots & \ldots \\
  11908. %% 0\key{(\%rsp)} & 16(\key{\%rbp}) & argument $1$ & \\
  11909. \hline
  11910. & 8(\key{\%rbp}) & return address & \multirow{5}{*}{Callee}\\
  11911. & 0(\key{\%rbp}) & old \key{rbp} \\
  11912. & -8(\key{\%rbp}) & callee-saved $1$ \\
  11913. & \ldots & \ldots \\
  11914. & $-8n$(\key{\%rbp}) & callee-saved $n$ \\
  11915. & $-8(n+1)$(\key{\%rbp}) & local variable $1$ \\
  11916. & \ldots & \ldots \\
  11917. & $-8(n+m)$(\key{\%rsp}) & local variable $m$\\ \hline
  11918. \end{tabular}
  11919. \caption{Memory layout of caller and callee frames.}
  11920. \label{fig:call-frames}
  11921. \end{figure}
  11922. %% Recall from Section~\ref{sec:x86} that the stack is also used for
  11923. %% local variables and for storing the values of callee-saved registers
  11924. %% (we shall refer to all of these collectively as ``locals''), and that
  11925. %% at the beginning of a function we move the stack pointer \code{rsp}
  11926. %% down to make room for them.
  11927. %% We recommend storing the local variables
  11928. %% first and then the callee-saved registers, so that the local variables
  11929. %% can be accessed using \code{rbp} the same as before the addition of
  11930. %% functions.
  11931. %% To make additional room for passing arguments, we shall
  11932. %% move the stack pointer even further down. We count how many stack
  11933. %% arguments are needed for each function call that occurs inside the
  11934. %% body of the function and find their maximum. Adding this number to the
  11935. %% number of locals gives us how much the \code{rsp} should be moved at
  11936. %% the beginning of the function. In preparation for a function call, we
  11937. %% offset from \code{rsp} to set up the stack arguments. We put the first
  11938. %% stack argument in \code{0(\%rsp)}, the second in \code{8(\%rsp)}, and
  11939. %% so on.
  11940. %% Upon calling the function, the stack arguments are retrieved by the
  11941. %% callee using the base pointer \code{rbp}. The address \code{16(\%rbp)}
  11942. %% is the location of the first stack argument, \code{24(\%rbp)} is the
  11943. %% address of the second, and so on. Figure~\ref{fig:call-frames} shows
  11944. %% the layout of the caller and callee frames. Notice how important it is
  11945. %% that we correctly compute the maximum number of arguments needed for
  11946. %% function calls; if that number is too small then the arguments and
  11947. %% local variables will smash into each other!
  11948. \subsection{Efficient Tail Calls}
  11949. \label{sec:tail-call}
  11950. In general, the amount of stack space used by a program is determined
  11951. by the longest chain of nested function calls. That is, if function
  11952. $f_1$ calls $f_2$, $f_2$ calls $f_3$, $\ldots$, and $f_{n-1}$ calls
  11953. $f_n$, then the amount of stack space is bounded by $O(n)$. The depth
  11954. $n$ can grow quite large in the case of recursive or mutually
  11955. recursive functions. However, in some cases we can arrange to use only
  11956. constant space, i.e. $O(1)$, instead of $O(n)$.
  11957. If a function call is the last action in a function body, then that
  11958. call is said to be a \emph{tail call}\index{subject}{tail call}.
  11959. For example, in the following
  11960. program, the recursive call to \code{tail-sum} is a tail call.
  11961. \begin{center}
  11962. \begin{lstlisting}
  11963. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  11964. (if (eq? n 0)
  11965. r
  11966. (tail-sum (- n 1) (+ n r))))
  11967. (+ (tail-sum 5 0) 27)
  11968. \end{lstlisting}
  11969. \end{center}
  11970. At a tail call, the frame of the caller is no longer needed, so we
  11971. can pop the caller's frame before making the tail call. With this
  11972. approach, a recursive function that only makes tail calls will only
  11973. use $O(1)$ stack space. Functional languages like Racket typically
  11974. rely heavily on recursive functions, so they typically guarantee that
  11975. all tail calls will be optimized in this way.
  11976. \index{subject}{frame}
  11977. However, some care is needed with regards to argument passing in tail
  11978. calls. As mentioned above, for arguments beyond the sixth, the
  11979. convention is to use space in the caller's frame for passing
  11980. arguments. But for a tail call we pop the caller's frame and can no
  11981. longer use it. Another alternative is to use space in the callee's
  11982. frame for passing arguments. However, this option is also problematic
  11983. because the caller and callee's frame overlap in memory. As we begin
  11984. to copy the arguments from their sources in the caller's frame, the
  11985. target locations in the callee's frame might overlap with the sources
  11986. for later arguments! We solve this problem by using the heap instead
  11987. of the stack for passing more than six arguments, as we describe in
  11988. the Section~\ref{sec:limit-functions-r4}.
  11989. As mentioned above, for a tail call we pop the caller's frame prior to
  11990. making the tail call. The instructions for popping a frame are the
  11991. instructions that we usually place in the conclusion of a
  11992. function. Thus, we also need to place such code immediately before
  11993. each tail call. These instructions include restoring the callee-saved
  11994. registers, so it is good that the argument passing registers are all
  11995. caller-saved registers.
  11996. One last note regarding which instruction to use to make the tail
  11997. call. When the callee is finished, it should not return to the current
  11998. function, but it should return to the function that called the current
  11999. one. Thus, the return address that is already on the stack is the
  12000. right one, and we should not use \key{callq} to make the tail call, as
  12001. that would unnecessarily overwrite the return address. Instead we can
  12002. simply use the \key{jmp} instruction. Like the indirect function call,
  12003. we write an \emph{indirect jump}\index{subject}{indirect jump} with a register
  12004. prefixed with an asterisk. We recommend using \code{rax} to hold the
  12005. jump target because the preceding conclusion overwrites just about
  12006. everything else.
  12007. \begin{lstlisting}
  12008. jmp *%rax
  12009. \end{lstlisting}
  12010. \section{Shrink \LangFun{}}
  12011. \label{sec:shrink-r4}
  12012. The \code{shrink} pass performs a minor modification to ease the
  12013. later passes. This pass introduces an explicit \code{main} function
  12014. and changes the top \code{ProgramDefsExp} form to
  12015. \code{ProgramDefs} as follows.
  12016. \begin{lstlisting}
  12017. (ProgramDefsExp |$\itm{info}$| (|$\Def\ldots$|) |$\Exp$|)
  12018. |$\Rightarrow$| (ProgramDefs |$\itm{info}$| (|$\Def\ldots$| |$\itm{mainDef}$|))
  12019. \end{lstlisting}
  12020. where $\itm{mainDef}$ is
  12021. \begin{lstlisting}
  12022. (Def 'main '() 'Integer '() |$\Exp'$|)
  12023. \end{lstlisting}
  12024. \section{Reveal Functions and the \LangFunRef{} language}
  12025. \label{sec:reveal-functions-r4}
  12026. The syntax of \LangFun{} is inconvenient for purposes of compilation in one
  12027. respect: it conflates the use of function names and local
  12028. variables. This is a problem because we need to compile the use of a
  12029. function name differently than the use of a local variable; we need to
  12030. use \code{leaq} to convert the function name (a label in x86) to an
  12031. address in a register. Thus, it is a good idea to create a new pass
  12032. that changes function references from just a symbol $f$ to
  12033. $\FUNREF{f}$. This pass is named \code{reveal-functions} and the
  12034. output language, \LangFunRef{}, is defined in Figure~\ref{fig:f1-syntax}.
  12035. The concrete syntax for a function reference is $\CFUNREF{f}$.
  12036. \begin{figure}[tp]
  12037. \centering
  12038. \fbox{
  12039. \begin{minipage}{0.96\textwidth}
  12040. \[
  12041. \begin{array}{lcl}
  12042. \Exp &::=& \ldots \MID \FUNREF{\Var}\\
  12043. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12044. \LangFunRefM{} &::=& \PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}
  12045. \end{array}
  12046. \]
  12047. \end{minipage}
  12048. }
  12049. \caption{The abstract syntax \LangFunRef{}, an extension of \LangFun{}
  12050. (Figure~\ref{fig:Rfun-syntax}).}
  12051. \label{fig:f1-syntax}
  12052. \end{figure}
  12053. %% Distinguishing between calls in tail position and non-tail position
  12054. %% requires the pass to have some notion of context. We recommend using
  12055. %% two mutually recursive functions, one for processing expressions in
  12056. %% tail position and another for the rest.
  12057. Placing this pass after \code{uniquify} will make sure that there are
  12058. no local variables and functions that share the same name. On the
  12059. other hand, \code{reveal-functions} needs to come before the
  12060. \code{explicate\_control} pass because that pass helps us compile
  12061. \code{FunRef} forms into assignment statements.
  12062. \section{Limit Functions}
  12063. \label{sec:limit-functions-r4}
  12064. Recall that we wish to limit the number of function parameters to six
  12065. so that we do not need to use the stack for argument passing, which
  12066. makes it easier to implement efficient tail calls. However, because
  12067. the input language \LangFun{} supports arbitrary numbers of function
  12068. arguments, we have some work to do!
  12069. This pass transforms functions and function calls that involve more
  12070. than six arguments to pass the first five arguments as usual, but it
  12071. packs the rest of the arguments into a vector and passes it as the
  12072. sixth argument.
  12073. Each function definition with too many parameters is transformed as
  12074. follows.
  12075. \begin{lstlisting}
  12076. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_n$|:|$T_n$|]) |$T_r$| |$\itm{info}$| |$\itm{body}$|)
  12077. |$\Rightarrow$|
  12078. (Def |$f$| ([|$x_1$|:|$T_1$|] |$\ldots$| [|$x_5$|:|$T_5$|] [vec : (Vector |$T_6 \ldots T_n$|)]) |$T_r$| |$\itm{info}$| |$\itm{body}'$|)
  12079. \end{lstlisting}
  12080. where the $\itm{body}$ is transformed into $\itm{body}'$ by replacing
  12081. the occurrences of the later parameters with vector references.
  12082. \begin{lstlisting}
  12083. (Var |$x_i$|) |$\Rightarrow$| (Prim 'vector-ref (list vec (Int |$(i - 6)$|)))
  12084. \end{lstlisting}
  12085. For function calls with too many arguments, the \code{limit-functions}
  12086. pass transforms them in the following way.
  12087. \begin{tabular}{lll}
  12088. \begin{minipage}{0.2\textwidth}
  12089. \begin{lstlisting}
  12090. (|$e_0$| |$e_1$| |$\ldots$| |$e_n$|)
  12091. \end{lstlisting}
  12092. \end{minipage}
  12093. &
  12094. $\Rightarrow$
  12095. &
  12096. \begin{minipage}{0.4\textwidth}
  12097. \begin{lstlisting}
  12098. (|$e_0$| |$e_1 \ldots e_5$| (vector |$e_6 \ldots e_n$|))
  12099. \end{lstlisting}
  12100. \end{minipage}
  12101. \end{tabular}
  12102. \section{Remove Complex Operands}
  12103. \label{sec:rco-r4}
  12104. The primary decisions to make for this pass is whether to classify
  12105. \code{FunRef} and \code{Apply} as either atomic or complex
  12106. expressions. Recall that a simple expression will eventually end up as
  12107. just an immediate argument of an x86 instruction. Function
  12108. application will be translated to a sequence of instructions, so
  12109. \code{Apply} must be classified as complex expression.
  12110. On the other hand, the arguments of \code{Apply} should be
  12111. atomic expressions.
  12112. %
  12113. Regarding \code{FunRef}, as discussed above, the function label needs
  12114. to be converted to an address using the \code{leaq} instruction. Thus,
  12115. even though \code{FunRef} seems rather simple, it needs to be
  12116. classified as a complex expression so that we generate an assignment
  12117. statement with a left-hand side that can serve as the target of the
  12118. \code{leaq}. Figure~\ref{fig:Rfun-anf-syntax} defines the
  12119. output language \LangFunANF{} of this pass.
  12120. \begin{figure}[tp]
  12121. \centering
  12122. \fbox{
  12123. \begin{minipage}{0.96\textwidth}
  12124. \small
  12125. \[
  12126. \begin{array}{rcl}
  12127. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}}
  12128. \MID \VOID{} } \\
  12129. \Exp &::=& \gray{ \Atm \MID \READ{} } \\
  12130. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} } \\
  12131. &\MID& \gray{ \LET{\Var}{\Exp}{\Exp} } \\
  12132. &\MID& \gray{ \UNIOP{\key{'not}}{\Atm} } \\
  12133. &\MID& \gray{ \BINOP{\itm{cmp}}{\Atm}{\Atm} \MID \IF{\Exp}{\Exp}{\Exp} }\\
  12134. &\MID& \gray{ \LP\key{Collect}~\Int\RP \MID \LP\key{Allocate}~\Int~\Type\RP
  12135. \MID \LP\key{GlobalValue}~\Var\RP }\\
  12136. &\MID& \FUNREF{\Var} \MID \APPLY{\Atm}{\Atm\ldots}\\
  12137. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12138. R^{\dagger}_4 &::=& \gray{ \PROGRAMDEFS{\code{'()}}{\Def} }
  12139. \end{array}
  12140. \]
  12141. \end{minipage}
  12142. }
  12143. \caption{\LangFunANF{} is \LangFunRefAlloc{} in monadic normal form.}
  12144. \label{fig:Rfun-anf-syntax}
  12145. \end{figure}
  12146. \section{Explicate Control and the \LangCFun{} language}
  12147. \label{sec:explicate-control-r4}
  12148. Figure~\ref{fig:c3-syntax} defines the abstract syntax for \LangCFun{}, the
  12149. output of \code{explicate\_control}. (The concrete syntax is given in
  12150. Figure~\ref{fig:c3-concrete-syntax} of the Appendix.) The auxiliary
  12151. functions for assignment and tail contexts should be updated with
  12152. cases for \code{Apply} and \code{FunRef} and the function for
  12153. predicate context should be updated for \code{Apply} but not
  12154. \code{FunRef}. (A \code{FunRef} can't be a Boolean.) In assignment
  12155. and predicate contexts, \code{Apply} becomes \code{Call}, whereas in
  12156. tail position \code{Apply} becomes \code{TailCall}. We recommend
  12157. defining a new auxiliary function for processing function definitions.
  12158. This code is similar to the case for \code{Program} in \LangVec{}. The
  12159. top-level \code{explicate\_control} function that handles the
  12160. \code{ProgramDefs} form of \LangFun{} can then apply this new function to
  12161. all the function definitions.
  12162. \begin{figure}[tp]
  12163. \fbox{
  12164. \begin{minipage}{0.96\textwidth}
  12165. \small
  12166. \[
  12167. \begin{array}{lcl}
  12168. \Atm &::=& \gray{ \INT{\Int} \MID \VAR{\Var} \MID \BOOL{\itm{bool}} }\\
  12169. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  12170. \Exp &::= & \gray{ \Atm \MID \READ{} } \\
  12171. &\MID& \gray{ \NEG{\Atm} \MID \ADD{\Atm}{\Atm} }\\
  12172. &\MID& \gray{ \UNIOP{\key{not}}{\Atm} \MID \BINOP{\itm{cmp}}{\Atm}{\Atm} } \\
  12173. &\MID& \gray{ \LP\key{Allocate} \,\itm{int}\,\itm{type}\RP } \\
  12174. &\MID& \gray{ \BINOP{\key{'vector-ref}}{\Atm}{\INT{\Int}} }\\
  12175. &\MID& \gray{ \LP\key{Prim}~\key{'vector-set!}\,\LP\key{list}\,\Atm\,\INT{\Int}\,\Atm\RP\RP }\\
  12176. &\MID& \gray{ \LP\key{GlobalValue} \,\Var\RP \MID \LP\key{Void}\RP }\\
  12177. &\MID& \FUNREF{\itm{label}} \MID \CALL{\Atm}{\LP\Atm\ldots\RP} \\
  12178. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  12179. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  12180. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  12181. \MID \GOTO{\itm{label}} } \\
  12182. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  12183. &\MID& \TAILCALL{\Atm}{\Atm\ldots} \\
  12184. \Def &::=& \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP}\\
  12185. \LangCFunM{} & ::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  12186. \end{array}
  12187. \]
  12188. \end{minipage}
  12189. }
  12190. \caption{The abstract syntax of \LangCFun{}, extending \LangCVec{} (Figure~\ref{fig:c2-syntax}).}
  12191. \label{fig:c3-syntax}
  12192. \end{figure}
  12193. \section{Select Instructions and the \LangXIndCall{} Language}
  12194. \label{sec:select-r4}
  12195. \index{subject}{instruction selection}
  12196. The output of select instructions is a program in the \LangXIndCall{}
  12197. language, whose syntax is defined in Figure~\ref{fig:x86-3}.
  12198. \index{subject}{x86}
  12199. \begin{figure}[tp]
  12200. \fbox{
  12201. \begin{minipage}{0.96\textwidth}
  12202. \small
  12203. \[
  12204. \begin{array}{lcl}
  12205. \Arg &::=& \gray{ \key{\$}\Int \MID \key{\%}\Reg \MID \Int\key{(}\key{\%}\Reg\key{)} \MID \key{\%}\itm{bytereg} } \MID \Var \key{(\%rip)}
  12206. \MID \LP\key{fun-ref}\; \itm{label}\RP\\
  12207. \itm{cc} & ::= & \gray{ \key{e} \MID \key{l} \MID \key{le} \MID \key{g} \MID \key{ge} } \\
  12208. \Instr &::=& \ldots
  12209. \MID \key{callq}\;\key{*}\Arg \MID \key{tailjmp}\;\Arg
  12210. \MID \key{leaq}\;\Arg\key{,}\;\key{\%}\Reg \\
  12211. \Block &::= & \Instr\ldots \\
  12212. \Def &::= & \LP\key{define} \; \LP\itm{label}\RP \;\LP\LP\itm{label} \,\key{.}\, \Block\RP\ldots\RP\RP\\
  12213. \LangXIndCallM{} &::= & \Def\ldots
  12214. \end{array}
  12215. \]
  12216. \end{minipage}
  12217. }
  12218. \caption{The concrete syntax of \LangXIndCall{} (extends \LangXGlobal{} of Figure~\ref{fig:x86-2-concrete}).}
  12219. \label{fig:x86-3-concrete}
  12220. \end{figure}
  12221. \begin{figure}[tp]
  12222. \fbox{
  12223. \begin{minipage}{0.96\textwidth}
  12224. \small
  12225. \[
  12226. \begin{array}{lcl}
  12227. \Arg &::=& \gray{ \INT{\Int} \MID \REG{\Reg} \MID \DEREF{\Reg}{\Int}
  12228. \MID \BYTEREG{\Reg} } \\
  12229. &\MID& \gray{ (\key{Global}~\Var) } \MID \FUNREF{\itm{label}} \\
  12230. \Instr &::=& \ldots \MID \INDCALLQ{\Arg}{\itm{int}}
  12231. \MID \TAILJMP{\Arg}{\itm{int}}\\
  12232. &\MID& \BININSTR{\code{'leaq}}{\Arg}{\REG{\Reg}}\\
  12233. \Block &::= & \BLOCK{\itm{info}}{\LP\Instr\ldots\RP}\\
  12234. \Def &::= & \DEF{\itm{label}}{\code{'()}}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Block\RP\ldots\RP} \\
  12235. \LangXIndCallM{} &::= & \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP}
  12236. \end{array}
  12237. \]
  12238. \end{minipage}
  12239. }
  12240. \caption{The abstract syntax of \LangXIndCall{} (extends
  12241. \LangXGlobal{} of Figure~\ref{fig:x86-2}).}
  12242. \label{fig:x86-3}
  12243. \end{figure}
  12244. An assignment of a function reference to a variable becomes a
  12245. load-effective-address instruction as follows, where $\itm{lhs}'$
  12246. is the translation of $\itm{lhs}$ from \Atm{} in \LangCFun{}
  12247. to \Arg{} in \LangXIndCallVar{}. \\
  12248. \begin{tabular}{lcl}
  12249. \begin{minipage}{0.35\textwidth}
  12250. \begin{lstlisting}
  12251. |$\itm{lhs}$| = (fun-ref |$f$|);
  12252. \end{lstlisting}
  12253. \end{minipage}
  12254. &
  12255. $\Rightarrow$\qquad\qquad
  12256. &
  12257. \begin{minipage}{0.3\textwidth}
  12258. \begin{lstlisting}
  12259. leaq (fun-ref |$f$|), |$\itm{lhs}'$|
  12260. \end{lstlisting}
  12261. \end{minipage}
  12262. \end{tabular} \\
  12263. Regarding function definitions, we need to remove the parameters and
  12264. instead perform parameter passing using the conventions discussed in
  12265. Section~\ref{sec:fun-x86}. That is, the arguments are passed in
  12266. registers. We recommend turning the parameters into local variables
  12267. and generating instructions at the beginning of the function to move
  12268. from the argument passing registers to these local variables.
  12269. \begin{lstlisting}
  12270. (Def |$f$| '([|$x_1$| : |$T_1$|] [|$x_2$| : |$T_2$|] |$\ldots$| ) |$T_r$| |$\itm{info}$| |$G$|)
  12271. |$\Rightarrow$|
  12272. (Def |$f$| '() 'Integer |$\itm{info}'$| |$G'$|)
  12273. \end{lstlisting}
  12274. The $G'$ control-flow graph is the same as $G$ except that the
  12275. \code{start} block is modified to add the instructions for moving from
  12276. the argument registers to the parameter variables. So the \code{start}
  12277. block of $G$ shown on the left is changed to the code on the right.
  12278. \begin{center}
  12279. \begin{minipage}{0.3\textwidth}
  12280. \begin{lstlisting}
  12281. start:
  12282. |$\itm{instr}_1$|
  12283. |$\vdots$|
  12284. |$\itm{instr}_n$|
  12285. \end{lstlisting}
  12286. \end{minipage}
  12287. $\Rightarrow$
  12288. \begin{minipage}{0.3\textwidth}
  12289. \begin{lstlisting}
  12290. start:
  12291. movq %rdi, |$x_1$|
  12292. movq %rsi, |$x_2$|
  12293. |$\vdots$|
  12294. |$\itm{instr}_1$|
  12295. |$\vdots$|
  12296. |$\itm{instr}_n$|
  12297. \end{lstlisting}
  12298. \end{minipage}
  12299. \end{center}
  12300. By changing the parameters to local variables, we are giving the
  12301. register allocator control over which registers or stack locations to
  12302. use for them. If you implemented the move-biasing challenge
  12303. (Section~\ref{sec:move-biasing}), the register allocator will try to
  12304. assign the parameter variables to the corresponding argument register,
  12305. in which case the \code{patch\_instructions} pass will remove the
  12306. \code{movq} instruction. This happens in the example translation in
  12307. Figure~\ref{fig:add-fun} of Section~\ref{sec:functions-example}, in
  12308. the \code{add} function.
  12309. %
  12310. Also, note that the register allocator will perform liveness analysis
  12311. on this sequence of move instructions and build the interference
  12312. graph. So, for example, $x_1$ will be marked as interfering with
  12313. \code{rsi} and that will prevent the assignment of $x_1$ to
  12314. \code{rsi}, which is good, because that would overwrite the argument
  12315. that needs to move into $x_2$.
  12316. Next, consider the compilation of function calls. In the mirror image
  12317. of handling the parameters of function definitions, the arguments need
  12318. to be moved to the argument passing registers. The function call
  12319. itself is performed with an indirect function call. The return value
  12320. from the function is stored in \code{rax}, so it needs to be moved
  12321. into the \itm{lhs}.
  12322. \begin{lstlisting}
  12323. |\itm{lhs}| = (call |\itm{fun}| |$\itm{arg}_1~\itm{arg}_2\ldots$|));
  12324. |$\Rightarrow$|
  12325. movq |$\itm{arg}_1$|, %rdi
  12326. movq |$\itm{arg}_2$|, %rsi
  12327. |$\vdots$|
  12328. callq *|\itm{fun}|
  12329. movq %rax, |\itm{lhs}|
  12330. \end{lstlisting}
  12331. The \code{IndirectCallq} AST node includes an integer for the arity of
  12332. the function, i.e., the number of parameters. That information is
  12333. useful in the \code{uncover-live} pass for determining which
  12334. argument-passing registers are potentially read during the call.
  12335. For tail calls, the parameter passing is the same as non-tail calls:
  12336. generate instructions to move the arguments into to the argument
  12337. passing registers. After that we need to pop the frame from the
  12338. procedure call stack. However, we do not yet know how big the frame
  12339. is; that gets determined during register allocation. So instead of
  12340. generating those instructions here, we invent a new instruction that
  12341. means ``pop the frame and then do an indirect jump'', which we name
  12342. \code{TailJmp}. The abstract syntax for this instruction includes an
  12343. argument that specifies where to jump and an integer that represents
  12344. the arity of the function being called.
  12345. Recall that in Section~\ref{sec:explicate-control-Lvar} we recommended
  12346. using the label \code{start} for the initial block of a program, and
  12347. in Section~\ref{sec:select-Lvar} we recommended labeling the conclusion
  12348. of the program with \code{conclusion}, so that $(\key{Return}\;\Arg)$
  12349. can be compiled to an assignment to \code{rax} followed by a jump to
  12350. \code{conclusion}. With the addition of function definitions, we will
  12351. have a starting block and conclusion for each function, but their
  12352. labels need to be unique. We recommend prepending the function's name
  12353. to \code{start} and \code{conclusion}, respectively, to obtain unique
  12354. labels. (Alternatively, one could \code{gensym} labels for the start
  12355. and conclusion and store them in the $\itm{info}$ field of the
  12356. function definition.)
  12357. \section{Register Allocation}
  12358. \label{sec:register-allocation-r4}
  12359. \subsection{Liveness Analysis}
  12360. \label{sec:liveness-analysis-r4}
  12361. \index{subject}{liveness analysis}
  12362. %% The rest of the passes need only minor modifications to handle the new
  12363. %% kinds of AST nodes: \code{fun-ref}, \code{indirect-callq}, and
  12364. %% \code{leaq}.
  12365. The \code{IndirectCallq} instruction should be treated like
  12366. \code{Callq} regarding its written locations $W$, in that they should
  12367. include all the caller-saved registers. Recall that the reason for
  12368. that is to force call-live variables to be assigned to callee-saved
  12369. registers or to be spilled to the stack.
  12370. Regarding the set of read locations $R$ the arity field of
  12371. \code{TailJmp} and \code{IndirectCallq} determines how many of the
  12372. argument-passing registers should be considered as read by those
  12373. instructions.
  12374. \subsection{Build Interference Graph}
  12375. \label{sec:build-interference-r4}
  12376. With the addition of function definitions, we compute an interference
  12377. graph for each function (not just one for the whole program).
  12378. Recall that in Section~\ref{sec:reg-alloc-gc} we discussed the need to
  12379. spill vector-typed variables that are live during a call to the
  12380. \code{collect}. With the addition of functions to our language, we
  12381. need to revisit this issue. Many functions perform allocation and
  12382. therefore have calls to the collector inside of them. Thus, we should
  12383. not only spill a vector-typed variable when it is live during a call
  12384. to \code{collect}, but we should spill the variable if it is live
  12385. during any function call. Thus, in the \code{build\_interference} pass,
  12386. we recommend adding interference edges between call-live vector-typed
  12387. variables and the callee-saved registers (in addition to the usual
  12388. addition of edges between call-live variables and the caller-saved
  12389. registers).
  12390. \subsection{Allocate Registers}
  12391. The primary change to the \code{allocate\_registers} pass is adding an
  12392. auxiliary function for handling definitions (the \Def{} non-terminal
  12393. in Figure~\ref{fig:x86-3}) with one case for function definitions. The
  12394. logic is the same as described in
  12395. Chapter~\ref{ch:register-allocation-Lvar}, except now register
  12396. allocation is performed many times, once for each function definition,
  12397. instead of just once for the whole program.
  12398. \section{Patch Instructions}
  12399. In \code{patch\_instructions}, you should deal with the x86
  12400. idiosyncrasy that the destination argument of \code{leaq} must be a
  12401. register. Additionally, you should ensure that the argument of
  12402. \code{TailJmp} is \itm{rax}, our reserved register---this is to make
  12403. code generation more convenient, because we trample many registers
  12404. before the tail call (as explained in the next section).
  12405. \section{Print x86}
  12406. For the \code{print\_x86} pass, the cases for \code{FunRef} and
  12407. \code{IndirectCallq} are straightforward: output their concrete
  12408. syntax.
  12409. \begin{lstlisting}
  12410. (FunRef |\itm{label}|) |$\Rightarrow$| |\itm{label}|(%rip)
  12411. (IndirectCallq |\itm{arg}| |\itm{int}|) |$\Rightarrow$| callq *|\itm{arg}'|
  12412. \end{lstlisting}
  12413. The \code{TailJmp} node requires a bit work. A straightforward
  12414. translation of \code{TailJmp} would be \code{jmp *$\itm{arg}$}, but
  12415. before the jump we need to pop the current frame. This sequence of
  12416. instructions is the same as the code for the conclusion of a function,
  12417. except the \code{retq} is replaced with \code{jmp *$\itm{arg}$}.
  12418. Regarding function definitions, you will need to generate a prelude
  12419. and conclusion for each one. This code is similar to the prelude and
  12420. conclusion that you generated for the \code{main} function in
  12421. Chapter~\ref{ch:Lvec}. To review, the prelude of every function
  12422. should carry out the following steps.
  12423. \begin{enumerate}
  12424. \item Start with \code{.global} and \code{.align} directives followed
  12425. by the label for the function. (See Figure~\ref{fig:add-fun} for an
  12426. example.)
  12427. \item Push \code{rbp} to the stack and set \code{rbp} to current stack
  12428. pointer.
  12429. \item Push to the stack all of the callee-saved registers that were
  12430. used for register allocation.
  12431. \item Move the stack pointer \code{rsp} down by the size of the stack
  12432. frame for this function, which depends on the number of regular
  12433. spills. (Aligned to 16 bytes.)
  12434. \item Move the root stack pointer \code{r15} up by the size of the
  12435. root-stack frame for this function, which depends on the number of
  12436. spilled vectors. \label{root-stack-init}
  12437. \item Initialize to zero all of the entries in the root-stack frame.
  12438. \item Jump to the start block.
  12439. \end{enumerate}
  12440. The prelude of the \code{main} function has one additional task: call
  12441. the \code{initialize} function to set up the garbage collector and
  12442. move the value of the global \code{rootstack\_begin} in
  12443. \code{r15}. This should happen before step \ref{root-stack-init}
  12444. above, which depends on \code{r15}.
  12445. The conclusion of every function should do the following.
  12446. \begin{enumerate}
  12447. \item Move the stack pointer back up by the size of the stack frame
  12448. for this function.
  12449. \item Restore the callee-saved registers by popping them from the
  12450. stack.
  12451. \item Move the root stack pointer back down by the size of the
  12452. root-stack frame for this function.
  12453. \item Restore \code{rbp} by popping it from the stack.
  12454. \item Return to the caller with the \code{retq} instruction.
  12455. \end{enumerate}
  12456. \begin{exercise}\normalfont
  12457. Expand your compiler to handle \LangFun{} as outlined in this chapter.
  12458. Create 5 new programs that use functions, including examples that pass
  12459. functions and return functions from other functions, recursive
  12460. functions, functions that create vectors, and functions that make tail
  12461. calls. Test your compiler on these new programs and all of your
  12462. previously created test programs.
  12463. \end{exercise}
  12464. \begin{figure}[tbp]
  12465. \begin{tikzpicture}[baseline=(current bounding box.center)]
  12466. \node (Rfun) at (0,2) {\large \LangFun{}};
  12467. \node (Rfun-1) at (3,2) {\large \LangFun{}};
  12468. \node (Rfun-2) at (6,2) {\large \LangFun{}};
  12469. \node (F1-1) at (12,0) {\large \LangFunRef{}};
  12470. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  12471. \node (F1-3) at (6,0) {\large \LangFunRefAlloc{}};
  12472. \node (F1-4) at (3,0) {\large \LangFunANF{}};
  12473. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  12474. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  12475. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  12476. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  12477. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  12478. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  12479. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  12480. \path[->,bend left=15] (Rfun) edge [above] node
  12481. {\ttfamily\footnotesize shrink} (Rfun-1);
  12482. \path[->,bend left=15] (Rfun-1) edge [above] node
  12483. {\ttfamily\footnotesize uniquify} (Rfun-2);
  12484. \path[->,bend left=15] (Rfun-2) edge [right] node
  12485. {\ttfamily\footnotesize ~~reveal\_functions} (F1-1);
  12486. \path[->,bend left=15] (F1-1) edge [below] node
  12487. {\ttfamily\footnotesize limit\_functions} (F1-2);
  12488. \path[->,bend right=15] (F1-2) edge [above] node
  12489. {\ttfamily\footnotesize expose\_alloc.} (F1-3);
  12490. \path[->,bend right=15] (F1-3) edge [above] node
  12491. {\ttfamily\footnotesize remove\_complex.} (F1-4);
  12492. \path[->,bend left=15] (F1-4) edge [right] node
  12493. {\ttfamily\footnotesize explicate\_control} (C3-2);
  12494. \path[->,bend right=15] (C3-2) edge [left] node
  12495. {\ttfamily\footnotesize select\_instr.} (x86-2);
  12496. \path[->,bend left=15] (x86-2) edge [left] node
  12497. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  12498. \path[->,bend right=15] (x86-2-1) edge [below] node
  12499. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  12500. \path[->,bend right=15] (x86-2-2) edge [left] node
  12501. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  12502. \path[->,bend left=15] (x86-3) edge [above] node
  12503. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  12504. \path[->,bend right=15] (x86-4) edge [left] node {\ttfamily\footnotesize print-x86} (x86-5);
  12505. \end{tikzpicture}
  12506. \caption{Diagram of the passes for \LangFun{}, a language with functions.}
  12507. \label{fig:Rfun-passes}
  12508. \end{figure}
  12509. Figure~\ref{fig:Rfun-passes} gives an overview of the passes for
  12510. compiling \LangFun{} to x86.
  12511. \section{An Example Translation}
  12512. \label{sec:functions-example}
  12513. Figure~\ref{fig:add-fun} shows an example translation of a simple
  12514. function in \LangFun{} to x86. The figure also includes the results of the
  12515. \code{explicate\_control} and \code{select\_instructions} passes.
  12516. \begin{figure}[htbp]
  12517. \begin{tabular}{ll}
  12518. \begin{minipage}{0.5\textwidth}
  12519. % s3_2.rkt
  12520. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12521. (define (add [x : Integer] [y : Integer])
  12522. : Integer
  12523. (+ x y))
  12524. (add 40 2)
  12525. \end{lstlisting}
  12526. $\Downarrow$
  12527. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12528. (define (add86 [x87 : Integer]
  12529. [y88 : Integer]) : Integer
  12530. add86start:
  12531. return (+ x87 y88);
  12532. )
  12533. (define (main) : Integer ()
  12534. mainstart:
  12535. tmp89 = (fun-ref add86);
  12536. (tail-call tmp89 40 2)
  12537. )
  12538. \end{lstlisting}
  12539. \end{minipage}
  12540. &
  12541. $\Rightarrow$
  12542. \begin{minipage}{0.5\textwidth}
  12543. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12544. (define (add86) : Integer
  12545. add86start:
  12546. movq %rdi, x87
  12547. movq %rsi, y88
  12548. movq x87, %rax
  12549. addq y88, %rax
  12550. jmp add11389conclusion
  12551. )
  12552. (define (main) : Integer
  12553. mainstart:
  12554. leaq (fun-ref add86), tmp89
  12555. movq $40, %rdi
  12556. movq $2, %rsi
  12557. tail-jmp tmp89
  12558. )
  12559. \end{lstlisting}
  12560. $\Downarrow$
  12561. \end{minipage}
  12562. \end{tabular}
  12563. \begin{tabular}{ll}
  12564. \begin{minipage}{0.3\textwidth}
  12565. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12566. .globl add86
  12567. .align 16
  12568. add86:
  12569. pushq %rbp
  12570. movq %rsp, %rbp
  12571. jmp add86start
  12572. add86start:
  12573. movq %rdi, %rax
  12574. addq %rsi, %rax
  12575. jmp add86conclusion
  12576. add86conclusion:
  12577. popq %rbp
  12578. retq
  12579. \end{lstlisting}
  12580. \end{minipage}
  12581. &
  12582. \begin{minipage}{0.5\textwidth}
  12583. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  12584. .globl main
  12585. .align 16
  12586. main:
  12587. pushq %rbp
  12588. movq %rsp, %rbp
  12589. movq $16384, %rdi
  12590. movq $16384, %rsi
  12591. callq initialize
  12592. movq rootstack_begin(%rip), %r15
  12593. jmp mainstart
  12594. mainstart:
  12595. leaq add86(%rip), %rcx
  12596. movq $40, %rdi
  12597. movq $2, %rsi
  12598. movq %rcx, %rax
  12599. popq %rbp
  12600. jmp *%rax
  12601. mainconclusion:
  12602. popq %rbp
  12603. retq
  12604. \end{lstlisting}
  12605. \end{minipage}
  12606. \end{tabular}
  12607. \caption{Example compilation of a simple function to x86.}
  12608. \label{fig:add-fun}
  12609. \end{figure}
  12610. % Challenge idea: inlining! (simple version)
  12611. % Further Reading
  12612. \fi % racketEd
  12613. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  12614. \chapter{Lexically Scoped Functions}
  12615. \label{ch:Rlam}
  12616. \index{subject}{lambda}
  12617. \index{subject}{lexical scoping}
  12618. \if\edition\racketEd
  12619. This chapter studies lexically scoped functions as they appear in
  12620. functional languages such as Racket. By lexical scoping we mean that a
  12621. function's body may refer to variables whose binding site is outside
  12622. of the function, in an enclosing scope.
  12623. %
  12624. Consider the example in Figure~\ref{fig:lexical-scoping} written in
  12625. \LangLam{}, which extends \LangFun{} with anonymous functions using the
  12626. \key{lambda} form. The body of the \key{lambda}, refers to three
  12627. variables: \code{x}, \code{y}, and \code{z}. The binding sites for
  12628. \code{x} and \code{y} are outside of the \key{lambda}. Variable
  12629. \code{y} is bound by the enclosing \key{let} and \code{x} is a
  12630. parameter of function \code{f}. The \key{lambda} is returned from the
  12631. function \code{f}. The main expression of the program includes two
  12632. calls to \code{f} with different arguments for \code{x}, first
  12633. \code{5} then \code{3}. The functions returned from \code{f} are bound
  12634. to variables \code{g} and \code{h}. Even though these two functions
  12635. were created by the same \code{lambda}, they are really different
  12636. functions because they use different values for \code{x}. Applying
  12637. \code{g} to \code{11} produces \code{20} whereas applying \code{h} to
  12638. \code{15} produces \code{22}. The result of this program is \code{42}.
  12639. \begin{figure}[btp]
  12640. % s4_6.rkt
  12641. \begin{lstlisting}
  12642. (define (f [x : Integer]) : (Integer -> Integer)
  12643. (let ([y 4])
  12644. (lambda: ([z : Integer]) : Integer
  12645. (+ x (+ y z)))))
  12646. (let ([g (f 5)])
  12647. (let ([h (f 3)])
  12648. (+ (g 11) (h 15))))
  12649. \end{lstlisting}
  12650. \caption{Example of a lexically scoped function.}
  12651. \label{fig:lexical-scoping}
  12652. \end{figure}
  12653. The approach that we take for implementing lexically scoped
  12654. functions is to compile them into top-level function definitions,
  12655. translating from \LangLam{} into \LangFun{}. However, the compiler will need to
  12656. provide special treatment for variable occurrences such as \code{x}
  12657. and \code{y} in the body of the \code{lambda} of
  12658. Figure~\ref{fig:lexical-scoping}. After all, an \LangFun{} function may not
  12659. refer to variables defined outside of it. To identify such variable
  12660. occurrences, we review the standard notion of free variable.
  12661. \begin{definition}
  12662. A variable is \emph{free in expression} $e$ if the variable occurs
  12663. inside $e$ but does not have an enclosing binding in $e$.\index{subject}{free
  12664. variable}
  12665. \end{definition}
  12666. For example, in the expression \code{(+ x (+ y z))} the variables
  12667. \code{x}, \code{y}, and \code{z} are all free. On the other hand,
  12668. only \code{x} and \code{y} are free in the following expression
  12669. because \code{z} is bound by the \code{lambda}.
  12670. \begin{lstlisting}
  12671. (lambda: ([z : Integer]) : Integer
  12672. (+ x (+ y z)))
  12673. \end{lstlisting}
  12674. So the free variables of a \code{lambda} are the ones that will need
  12675. special treatment. We need to arrange for some way to transport, at
  12676. runtime, the values of those variables from the point where the
  12677. \code{lambda} was created to the point where the \code{lambda} is
  12678. applied. An efficient solution to the problem, due to
  12679. \citet{Cardelli:1983aa}, is to bundle into a vector the values of the
  12680. free variables together with the function pointer for the lambda's
  12681. code, an arrangement called a \emph{flat closure} (which we shorten to
  12682. just ``closure''). \index{subject}{closure}\index{subject}{flat closure} Fortunately,
  12683. we have all the ingredients to make closures, Chapter~\ref{ch:Lvec}
  12684. gave us vectors and Chapter~\ref{ch:Rfun} gave us function
  12685. pointers. The function pointer resides at index $0$ and the
  12686. values for the free variables will fill in the rest of the vector.
  12687. Let us revisit the example in Figure~\ref{fig:lexical-scoping} to see
  12688. how closures work. It's a three-step dance. The program first calls
  12689. function \code{f}, which creates a closure for the \code{lambda}. The
  12690. closure is a vector whose first element is a pointer to the top-level
  12691. function that we will generate for the \code{lambda}, the second
  12692. element is the value of \code{x}, which is \code{5}, and the third
  12693. element is \code{4}, the value of \code{y}. The closure does not
  12694. contain an element for \code{z} because \code{z} is not a free
  12695. variable of the \code{lambda}. Creating the closure is step 1 of the
  12696. dance. The closure is returned from \code{f} and bound to \code{g}, as
  12697. shown in Figure~\ref{fig:closures}.
  12698. %
  12699. The second call to \code{f} creates another closure, this time with
  12700. \code{3} in the second slot (for \code{x}). This closure is also
  12701. returned from \code{f} but bound to \code{h}, which is also shown in
  12702. Figure~\ref{fig:closures}.
  12703. \begin{figure}[tbp]
  12704. \centering \includegraphics[width=0.6\textwidth]{figs/closures}
  12705. \caption{Example closure representation for the \key{lambda}'s
  12706. in Figure~\ref{fig:lexical-scoping}.}
  12707. \label{fig:closures}
  12708. \end{figure}
  12709. Continuing with the example, consider the application of \code{g} to
  12710. \code{11} in Figure~\ref{fig:lexical-scoping}. To apply a closure, we
  12711. obtain the function pointer in the first element of the closure and
  12712. call it, passing in the closure itself and then the regular arguments,
  12713. in this case \code{11}. This technique for applying a closure is step
  12714. 2 of the dance.
  12715. %
  12716. But doesn't this \code{lambda} only take 1 argument, for parameter
  12717. \code{z}? The third and final step of the dance is generating a
  12718. top-level function for a \code{lambda}. We add an additional
  12719. parameter for the closure and we insert a \code{let} at the beginning
  12720. of the function for each free variable, to bind those variables to the
  12721. appropriate elements from the closure parameter.
  12722. %
  12723. This three-step dance is known as \emph{closure conversion}. We
  12724. discuss the details of closure conversion in
  12725. Section~\ref{sec:closure-conversion} and the code generated from the
  12726. example in Section~\ref{sec:example-lambda}. But first we define the
  12727. syntax and semantics of \LangLam{} in Section~\ref{sec:r5}.
  12728. \section{The \LangLam{} Language}
  12729. \label{sec:r5}
  12730. The concrete and abstract syntax for \LangLam{}, a language with anonymous
  12731. functions and lexical scoping, is defined in
  12732. Figures~\ref{fig:Rlam-concrete-syntax} and ~\ref{fig:Rlam-syntax}. It adds
  12733. the \key{lambda} form to the grammar for \LangFun{}, which already has
  12734. syntax for function application.
  12735. \begin{figure}[tp]
  12736. \centering
  12737. \fbox{
  12738. \begin{minipage}{0.96\textwidth}
  12739. \small
  12740. \[
  12741. \begin{array}{lcl}
  12742. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  12743. \MID (\key{Vector}\;\Type\ldots) \MID \key{Void}
  12744. \MID (\Type\ldots \; \key{->}\; \Type)} \\
  12745. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  12746. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  12747. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  12748. &\MID& \gray{\key{\#t} \MID \key{\#f}
  12749. \MID (\key{and}\;\Exp\;\Exp)
  12750. \MID (\key{or}\;\Exp\;\Exp)
  12751. \MID (\key{not}\;\Exp) } \\
  12752. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  12753. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  12754. (\key{vector-ref}\;\Exp\;\Int)} \\
  12755. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  12756. \MID (\Exp \; \Exp\ldots) } \\
  12757. &\MID& \LP \key{procedure-arity}~\Exp\RP \\
  12758. &\MID& \CLAMBDA{\LP\LS\Var \key{:} \Type\RS\ldots\RP}{\Type}{\Exp} \\
  12759. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  12760. \LangLamM{} &::=& \gray{\Def\ldots \; \Exp}
  12761. \end{array}
  12762. \]
  12763. \end{minipage}
  12764. }
  12765. \caption{The concrete syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-concrete-syntax})
  12766. with \key{lambda}.}
  12767. \label{fig:Rlam-concrete-syntax}
  12768. \end{figure}
  12769. \begin{figure}[tp]
  12770. \centering
  12771. \fbox{
  12772. \begin{minipage}{0.96\textwidth}
  12773. \small
  12774. \[
  12775. \begin{array}{lcl}
  12776. \itm{op} &::=& \ldots \MID \code{procedure-arity} \\
  12777. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  12778. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  12779. &\MID& \gray{ \BOOL{\itm{bool}}
  12780. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  12781. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  12782. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  12783. &\MID& \LAMBDA{\LP\LS\Var\code{:}\Type\RS\ldots\RP}{\Type}{\Exp}\\
  12784. \Def &::=& \gray{ \FUNDEF{\Var}{\LP\LS\Var \code{:} \Type\RS\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  12785. \LangLamM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  12786. \end{array}
  12787. \]
  12788. \end{minipage}
  12789. }
  12790. \caption{The abstract syntax of \LangLam{}, extending \LangFun{} (Figure~\ref{fig:Rfun-syntax}).}
  12791. \label{fig:Rlam-syntax}
  12792. \end{figure}
  12793. \index{subject}{interpreter}
  12794. \label{sec:interp-Rlambda}
  12795. Figure~\ref{fig:interp-Rlambda} shows the definitional interpreter for
  12796. \LangLam{}. The case for \key{lambda} saves the current environment
  12797. inside the returned \key{lambda}. Then the case for \key{Apply} uses
  12798. the environment from the \key{lambda}, the \code{lam-env}, when
  12799. interpreting the body of the \key{lambda}. The \code{lam-env}
  12800. environment is extended with the mapping of parameters to argument
  12801. values.
  12802. \begin{figure}[tbp]
  12803. \begin{lstlisting}
  12804. (define interp-Rlambda_class
  12805. (class interp-Rfun_class
  12806. (super-new)
  12807. (define/override (interp-op op)
  12808. (match op
  12809. ['procedure-arity
  12810. (lambda (v)
  12811. (match v
  12812. [`(function (,xs ...) ,body ,lam-env) (length xs)]
  12813. [else (error 'interp-op "expected a function, not ~a" v)]))]
  12814. [else (super interp-op op)]))
  12815. (define/override ((interp-exp env) e)
  12816. (define recur (interp-exp env))
  12817. (match e
  12818. [(Lambda (list `[,xs : ,Ts] ...) rT body)
  12819. `(function ,xs ,body ,env)]
  12820. [else ((super interp-exp env) e)]))
  12821. ))
  12822. (define (interp-Rlambda p)
  12823. (send (new interp-Rlambda_class) interp-program p))
  12824. \end{lstlisting}
  12825. \caption{Interpreter for \LangLam{}.}
  12826. \label{fig:interp-Rlambda}
  12827. \end{figure}
  12828. \label{sec:type-check-r5}
  12829. \index{subject}{type checking}
  12830. Figure~\ref{fig:type-check-Rlambda} shows how to type check the new
  12831. \key{lambda} form. The body of the \key{lambda} is checked in an
  12832. environment that includes the current environment (because it is
  12833. lexically scoped) and also includes the \key{lambda}'s parameters. We
  12834. require the body's type to match the declared return type.
  12835. \begin{figure}[tbp]
  12836. \begin{lstlisting}
  12837. (define (type-check-Rlambda env)
  12838. (lambda (e)
  12839. (match e
  12840. [(Lambda (and params `([,xs : ,Ts] ...)) rT body)
  12841. (define-values (new-body bodyT)
  12842. ((type-check-exp (append (map cons xs Ts) env)) body))
  12843. (define ty `(,@Ts -> ,rT))
  12844. (cond
  12845. [(equal? rT bodyT)
  12846. (values (HasType (Lambda params rT new-body) ty) ty)]
  12847. [else
  12848. (error "mismatch in return type" bodyT rT)])]
  12849. ...
  12850. )))
  12851. \end{lstlisting}
  12852. \caption{Type checking the \key{lambda}'s in \LangLam{}.}
  12853. \label{fig:type-check-Rlambda}
  12854. \end{figure}
  12855. \section{Assignment and Lexically Scoped Functions}
  12856. \label{sec:assignment-scoping}
  12857. [UNDER CONSTRUCTION: This section was just moved into this location
  12858. and may need to be updated. -Jeremy]
  12859. The combination of lexically-scoped functions and assignment
  12860. (i.e. \code{set!}) raises a challenge with our approach to
  12861. implementing lexically-scoped functions. Consider the following
  12862. example in which function \code{f} has a free variable \code{x} that
  12863. is changed after \code{f} is created but before the call to \code{f}.
  12864. % loop_test_11.rkt
  12865. \begin{lstlisting}
  12866. (let ([x 0])
  12867. (let ([y 0])
  12868. (let ([z 20])
  12869. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  12870. (begin
  12871. (set! x 10)
  12872. (set! y 12)
  12873. (f y))))))
  12874. \end{lstlisting}
  12875. The correct output for this example is \code{42} because the call to
  12876. \code{f} is required to use the current value of \code{x} (which is
  12877. \code{10}). Unfortunately, the closure conversion pass
  12878. (Section~\ref{sec:closure-conversion}) generates code for the
  12879. \code{lambda} that copies the old value of \code{x} into a
  12880. closure. Thus, if we naively add support for assignment to our current
  12881. compiler, the output of this program would be \code{32}.
  12882. A first attempt at solving this problem would be to save a pointer to
  12883. \code{x} in the closure and change the occurrences of \code{x} inside
  12884. the lambda to dereference the pointer. Of course, this would require
  12885. assigning \code{x} to the stack and not to a register. However, the
  12886. problem goes a bit deeper. Consider the following example in which we
  12887. create a counter abstraction by creating a pair of functions that
  12888. share the free variable \code{x}.
  12889. % similar to loop_test_10.rkt
  12890. \begin{lstlisting}
  12891. (define (f [x : Integer]) : (Vector ( -> Integer) ( -> Void))
  12892. (vector
  12893. (lambda: () : Integer x)
  12894. (lambda: () : Void (set! x (+ 1 x)))))
  12895. (let ([counter (f 0)])
  12896. (let ([get (vector-ref counter 0)])
  12897. (let ([inc (vector-ref counter 1)])
  12898. (begin
  12899. (inc)
  12900. (get)))))
  12901. \end{lstlisting}
  12902. In this example, the lifetime of \code{x} extends beyond the lifetime
  12903. of the call to \code{f}. Thus, if we were to store \code{x} on the
  12904. stack frame for the call to \code{f}, it would be gone by the time we
  12905. call \code{inc} and \code{get}, leaving us with dangling pointers for
  12906. \code{x}. This example demonstrates that when a variable occurs free
  12907. inside a \code{lambda}, its lifetime becomes indefinite. Thus, the
  12908. value of the variable needs to live on the heap. The verb ``box'' is
  12909. often used for allocating a single value on the heap, producing a
  12910. pointer, and ``unbox'' for dereferencing the pointer.
  12911. We recommend solving these problems by ``boxing'' the local variables
  12912. that are in the intersection of 1) variables that appear on the
  12913. left-hand-side of a \code{set!} and 2) variables that occur free
  12914. inside a \code{lambda}. We shall introduce a new pass named
  12915. \code{convert-assignments} in Section~\ref{sec:convert-assignments} to
  12916. perform this translation. But before diving into the compiler passes,
  12917. we one more problem to discuss.
  12918. \section{Reveal Functions and the $F_2$ language}
  12919. \label{sec:reveal-functions-r5}
  12920. To support the \code{procedure-arity} operator we need to communicate
  12921. the arity of a function to the point of closure creation. We can
  12922. accomplish this by replacing the $\FUNREF{\Var}$ struct with one that
  12923. has a second field for the arity: $\FUNREFARITY{\Var}{\Int}$. The
  12924. output of this pass is the language $F_2$, whose syntax is defined in
  12925. Figure~\ref{fig:f2-syntax}.
  12926. \begin{figure}[tp]
  12927. \centering
  12928. \fbox{
  12929. \begin{minipage}{0.96\textwidth}
  12930. \[
  12931. \begin{array}{lcl}
  12932. \Exp &::=& \ldots \MID \FUNREFARITY{\Var}{\Int}\\
  12933. \Def &::=& \gray{ \FUNDEF{\Var}{([\Var \code{:} \Type]\ldots)}{\Type}{\code{'()}}{\Exp} }\\
  12934. F_2 &::=& \gray{\PROGRAMDEFS{\code{'()}}{\LP \Def\ldots \RP}}
  12935. \end{array}
  12936. \]
  12937. \end{minipage}
  12938. }
  12939. \caption{The abstract syntax $F_2$, an extension of \LangLam{}
  12940. (Figure~\ref{fig:Rlam-syntax}).}
  12941. \label{fig:f2-syntax}
  12942. \end{figure}
  12943. \section{Convert Assignments}
  12944. \label{sec:convert-assignments}
  12945. [UNDER CONSTRUCTION: This section was just moved into this location
  12946. and may need to be updated. -Jeremy]
  12947. Recall that in Section~\ref{sec:assignment-scoping} we learned that
  12948. the combination of assignments and lexically-scoped functions requires
  12949. that we box those variables that are both assigned-to and that appear
  12950. free inside a \code{lambda}. The purpose of the
  12951. \code{convert-assignments} pass is to carry out that transformation.
  12952. We recommend placing this pass after \code{uniquify} but before
  12953. \code{reveal-functions}.
  12954. Consider again the first example from
  12955. Section~\ref{sec:assignment-scoping}:
  12956. \begin{lstlisting}
  12957. (let ([x 0])
  12958. (let ([y 0])
  12959. (let ([z 20])
  12960. (let ([f (lambda: ([a : Integer]) : Integer (+ a (+ x z)))])
  12961. (begin
  12962. (set! x 10)
  12963. (set! y 12)
  12964. (f y))))))
  12965. \end{lstlisting}
  12966. The variables \code{x} and \code{y} are assigned-to. The variables
  12967. \code{x} and \code{z} occur free inside the \code{lambda}. Thus,
  12968. variable \code{x} needs to be boxed but not \code{y} and \code{z}.
  12969. The boxing of \code{x} consists of three transformations: initialize
  12970. \code{x} with a vector, replace reads from \code{x} with
  12971. \code{vector-ref}'s, and replace each \code{set!} on \code{x} with a
  12972. \code{vector-set!}. The output of \code{convert-assignments} for this
  12973. example is as follows.
  12974. \begin{lstlisting}
  12975. (define (main) : Integer
  12976. (let ([x0 (vector 0)])
  12977. (let ([y1 0])
  12978. (let ([z2 20])
  12979. (let ([f4 (lambda: ([a3 : Integer]) : Integer
  12980. (+ a3 (+ (vector-ref x0 0) z2)))])
  12981. (begin
  12982. (vector-set! x0 0 10)
  12983. (set! y1 12)
  12984. (f4 y1)))))))
  12985. \end{lstlisting}
  12986. \paragraph{Assigned \& Free}
  12987. We recommend defining an auxiliary function named
  12988. \code{assigned\&free} that takes an expression and simultaneously
  12989. computes 1) a set of assigned variables $A$, 2) a set $F$ of variables
  12990. that occur free within lambda's, and 3) a new version of the
  12991. expression that records which bound variables occurred in the
  12992. intersection of $A$ and $F$. You can use the struct
  12993. \code{AssignedFree} to do this. Consider the case for
  12994. $\LET{x}{\itm{rhs}}{\itm{body}}$. Suppose the the recursive call on
  12995. $\itm{rhs}$ produces $\itm{rhs}'$, $A_r$, and $F_r$ and the recursive
  12996. call on the $\itm{body}$ produces $\itm{body}'$, $A_b$, and $F_b$. If
  12997. $x$ is in $A_b\cap F_b$, then transforms the \code{Let} as follows.
  12998. \begin{lstlisting}
  12999. (Let |$x$| |$rhs$| |$body$|)
  13000. |$\Rightarrow$|
  13001. (Let (AssignedFree |$x$|) |$rhs'$| |$body'$|)
  13002. \end{lstlisting}
  13003. If $x$ is not in $A_b\cap F_b$ then omit the use of \code{AssignedFree}.
  13004. The set of assigned variables for this \code{Let} is
  13005. $A_r \cup (A_b - \{x\})$
  13006. and the set of variables free in lambda's is
  13007. $F_r \cup (F_b - \{x\})$.
  13008. The case for $\SETBANG{x}{\itm{rhs}}$ is straightforward but
  13009. important. Recursively process \itm{rhs} to obtain \itm{rhs'}, $A_r$,
  13010. and $F_r$. The result is $\SETBANG{x}{\itm{rhs'}}$, $\{x\} \cup A_r$,
  13011. and $F_r$.
  13012. The case for $\LAMBDA{\itm{params}}{T}{\itm{body}}$ is a bit more
  13013. involved. Let \itm{body'}, $A_b$, and $F_b$ be the result of
  13014. recursively processing \itm{body}. Wrap each of parameter that occurs
  13015. in $A_b \cap F_b$ with \code{AssignedFree} to produce \itm{params'}.
  13016. Let $P$ be the set of parameter names in \itm{params}. The result is
  13017. $\LAMBDA{\itm{params'}}{T}{\itm{body'}}$, $A_b - P$, and $(F_b \cup
  13018. \mathrm{FV}(\itm{body})) - P$, where $\mathrm{FV}$ computes the free
  13019. variables of an expression (see Chapter~\ref{ch:Rlam}).
  13020. \paragraph{Convert Assignments}
  13021. Next we discuss the \code{convert-assignment} pass with its auxiliary
  13022. functions for expressions and definitions. The function for
  13023. expressions, \code{cnvt-assign-exp}, should take an expression and a
  13024. set of assigned-and-free variables (obtained from the result of
  13025. \code{assigned\&free}. In the case for $\VAR{x}$, if $x$ is
  13026. assigned-and-free, then unbox it by translating $\VAR{x}$ to a
  13027. \code{vector-ref}.
  13028. \begin{lstlisting}
  13029. (Var |$x$|)
  13030. |$\Rightarrow$|
  13031. (Prim 'vector-ref (list (Var |$x$|) (Int 0)))
  13032. \end{lstlisting}
  13033. %
  13034. In the case for $\LET{\LP\code{AssignedFree}\,
  13035. x\RP}{\itm{rhs}}{\itm{body}}$, recursively process \itm{rhs} to
  13036. obtain \itm{rhs'}. Next, recursively process \itm{body} to obtain
  13037. \itm{body'} but with $x$ added to the set of assigned-and-free
  13038. variables. Translate the let-expression as follows to bind $x$ to a
  13039. boxed value.
  13040. \begin{lstlisting}
  13041. (Let (AssignedFree |$x$|) |$rhs$| |$body$|)
  13042. |$\Rightarrow$|
  13043. (Let |$x$| (Prim 'vector (list |$rhs'$|)) |$body'$|)
  13044. \end{lstlisting}
  13045. %
  13046. In the case for $\SETBANG{x}{\itm{rhs}}$, recursively process
  13047. \itm{rhs} to obtain \itm{rhs'}. If $x$ is in the assigned-and-free
  13048. variables, translate the \code{set!} into a \code{vector-set!}
  13049. as follows.
  13050. \begin{lstlisting}
  13051. (SetBang |$x$| |$\itm{rhs}$|)
  13052. |$\Rightarrow$|
  13053. (Prim 'vector-set! (list (Var |$x$|) (Int 0) |$\itm{rhs'}$|))
  13054. \end{lstlisting}
  13055. %
  13056. The case for \code{Lambda} is non-trivial, but it is similar to the
  13057. case for function definitions, which we discuss next.
  13058. The auxiliary function for definitions, \code{cnvt-assign-def},
  13059. applies assignment conversion to function definitions.
  13060. We translate a function definition as follows.
  13061. \begin{lstlisting}
  13062. (Def |$f$| |$\itm{params}$| |$T$| |$\itm{info}$| |$\itm{body_1}$|)
  13063. |$\Rightarrow$|
  13064. (Def |$f$| |$\itm{params'}$| |$T$| |$\itm{info}$| |$\itm{body_4}$|)
  13065. \end{lstlisting}
  13066. So it remains to explain \itm{params'} and $\itm{body}_4$.
  13067. Let \itm{body_2}, $A_b$, and $F_b$ be the result of
  13068. \code{assigned\&free} on $\itm{body_1}$.
  13069. Let $P$ be the parameter names in \itm{params}.
  13070. We then apply \code{cnvt-assign-exp} to $\itm{body_2}$ to
  13071. obtain \itm{body_3}, passing $A_b \cap F_b \cap P$
  13072. as the set of assigned-and-free variables.
  13073. Finally, we obtain \itm{body_4} by wrapping \itm{body_3}
  13074. in a sequence of let-expressions that box the parameters
  13075. that are in $A_b \cap F_b$.
  13076. %
  13077. Regarding \itm{params'}, change the names of the parameters that are
  13078. in $A_b \cap F_b$ to maintain uniqueness (and so the let-bound
  13079. variables can retain the original names). Recall the second example in
  13080. Section~\ref{sec:assignment-scoping} involving a counter
  13081. abstraction. The following is the output of assignment version for
  13082. function \code{f}.
  13083. \begin{lstlisting}
  13084. (define (f0 [x1 : Integer]) : (Vector ( -> Integer) ( -> Void))
  13085. (vector
  13086. (lambda: () : Integer x1)
  13087. (lambda: () : Void (set! x1 (+ 1 x1)))))
  13088. |$\Rightarrow$|
  13089. (define (f0 [param_x1 : Integer]) : (Vector (-> Integer) (-> Void))
  13090. (let ([x1 (vector param_x1)])
  13091. (vector (lambda: () : Integer (vector-ref x1 0))
  13092. (lambda: () : Void
  13093. (vector-set! x1 0 (+ 1 (vector-ref x1 0)))))))
  13094. \end{lstlisting}
  13095. \section{Closure Conversion}
  13096. \label{sec:closure-conversion}
  13097. \index{subject}{closure conversion}
  13098. The compiling of lexically-scoped functions into top-level function
  13099. definitions is accomplished in the pass \code{convert-to-closures}
  13100. that comes after \code{reveal-functions} and before
  13101. \code{limit-functions}.
  13102. As usual, we implement the pass as a recursive function over the
  13103. AST. All of the action is in the cases for \key{Lambda} and
  13104. \key{Apply}. We transform a \key{Lambda} expression into an expression
  13105. that creates a closure, that is, a vector whose first element is a
  13106. function pointer and the rest of the elements are the free variables
  13107. of the \key{Lambda}. We use the struct \code{Closure} here instead of
  13108. using \code{vector} so that we can distinguish closures from vectors
  13109. in Section~\ref{sec:optimize-closures} and to record the arity. In
  13110. the generated code below, the \itm{name} is a unique symbol generated
  13111. to identify the function and the \itm{arity} is the number of
  13112. parameters (the length of \itm{ps}).
  13113. \begin{lstlisting}
  13114. (Lambda |\itm{ps}| |\itm{rt}| |\itm{body}|)
  13115. |$\Rightarrow$|
  13116. (Closure |\itm{arity}| (cons (FunRef |\itm{name}|) |\itm{fvs}|))
  13117. \end{lstlisting}
  13118. In addition to transforming each \key{Lambda} into a \key{Closure}, we
  13119. create a top-level function definition for each \key{Lambda}, as
  13120. shown below.\\
  13121. \begin{minipage}{0.8\textwidth}
  13122. \begin{lstlisting}
  13123. (Def |\itm{name}| ([clos : (Vector _ |\itm{fvts}| ...)] |\itm{ps'}| ...) |\itm{rt'}|
  13124. (Let |$\itm{fvs}_1$| (Prim 'vector-ref (list (Var clos) (Int 1)))
  13125. ...
  13126. (Let |$\itm{fvs}_n$| (Prim 'vector-ref (list (Var clos) (Int |$n$|)))
  13127. |\itm{body'}|)...))
  13128. \end{lstlisting}
  13129. \end{minipage}\\
  13130. The \code{clos} parameter refers to the closure. Translate the type
  13131. annotations in \itm{ps} and the return type \itm{rt}, as discussed in
  13132. the next paragraph, to obtain \itm{ps'} and \itm{rt'}. The types
  13133. $\itm{fvts}$ are the types of the free variables in the lambda and the
  13134. underscore \code{\_} is a dummy type that we use because it is rather
  13135. difficult to give a type to the function in the closure's
  13136. type.\footnote{To give an accurate type to a closure, we would need to
  13137. add existential types to the type checker~\citep{Minamide:1996ys}.}
  13138. The dummy type is considered to be equal to any other type during type
  13139. checking. The sequence of \key{Let} forms bind the free variables to
  13140. their values obtained from the closure.
  13141. Closure conversion turns functions into vectors, so the type
  13142. annotations in the program must also be translated. We recommend
  13143. defining a auxiliary recursive function for this purpose. Function
  13144. types should be translated as follows.
  13145. \begin{lstlisting}
  13146. (|$T_1, \ldots, T_n$| -> |$T_r$|)
  13147. |$\Rightarrow$|
  13148. (Vector ((Vector _) |$T'_1, \ldots, T'_n$| -> |$T'_r$|))
  13149. \end{lstlisting}
  13150. The above type says that the first thing in the vector is a function
  13151. pointer. The first parameter of the function pointer is a vector (a
  13152. closure) and the rest of the parameters are the ones from the original
  13153. function, with types $T'_1, \ldots, T'_n$. The \code{Vector} type for
  13154. the closure omits the types of the free variables because 1) those
  13155. types are not available in this context and 2) we do not need them in
  13156. the code that is generated for function application.
  13157. We transform function application into code that retrieves the
  13158. function pointer from the closure and then calls the function, passing
  13159. in the closure as the first argument. We bind $e'$ to a temporary
  13160. variable to avoid code duplication.
  13161. \begin{lstlisting}
  13162. (Apply |$e$| |\itm{es}|)
  13163. |$\Rightarrow$|
  13164. (Let |\itm{tmp}| |$e'$|
  13165. (Apply (Prim 'vector-ref (list (Var |\itm{tmp}|) (Int 0))) (cons |\itm{tmp}| |\itm{es'}|)))
  13166. \end{lstlisting}
  13167. There is also the question of what to do with references top-level
  13168. function definitions. To maintain a uniform translation of function
  13169. application, we turn function references into closures.
  13170. \begin{tabular}{lll}
  13171. \begin{minipage}{0.3\textwidth}
  13172. \begin{lstlisting}
  13173. (FunRefArity |$f$| |$n$|)
  13174. \end{lstlisting}
  13175. \end{minipage}
  13176. &
  13177. $\Rightarrow$
  13178. &
  13179. \begin{minipage}{0.5\textwidth}
  13180. \begin{lstlisting}
  13181. (Closure |$n$| (FunRef |$f$|) '())
  13182. \end{lstlisting}
  13183. \end{minipage}
  13184. \end{tabular} \\
  13185. %
  13186. The top-level function definitions need to be updated as well to take
  13187. an extra closure parameter.
  13188. \section{An Example Translation}
  13189. \label{sec:example-lambda}
  13190. Figure~\ref{fig:lexical-functions-example} shows the result of
  13191. \code{reveal-functions} and \code{convert-to-closures} for the example
  13192. program demonstrating lexical scoping that we discussed at the
  13193. beginning of this chapter.
  13194. \begin{figure}[tbp]
  13195. \begin{minipage}{0.8\textwidth}
  13196. % tests/lambda_test_6.rkt
  13197. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13198. (define (f6 [x7 : Integer]) : (Integer -> Integer)
  13199. (let ([y8 4])
  13200. (lambda: ([z9 : Integer]) : Integer
  13201. (+ x7 (+ y8 z9)))))
  13202. (define (main) : Integer
  13203. (let ([g0 ((fun-ref-arity f6 1) 5)])
  13204. (let ([h1 ((fun-ref-arity f6 1) 3)])
  13205. (+ (g0 11) (h1 15)))))
  13206. \end{lstlisting}
  13207. $\Rightarrow$
  13208. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13209. (define (f6 [fvs4 : _] [x7 : Integer]) : (Vector ((Vector _) Integer -> Integer))
  13210. (let ([y8 4])
  13211. (closure 1 (list (fun-ref lambda2) x7 y8))))
  13212. (define (lambda2 [fvs3 : (Vector _ Integer Integer)] [z9 : Integer]) : Integer
  13213. (let ([x7 (vector-ref fvs3 1)])
  13214. (let ([y8 (vector-ref fvs3 2)])
  13215. (+ x7 (+ y8 z9)))))
  13216. (define (main) : Integer
  13217. (let ([g0 (let ([clos5 (closure 1 (list (fun-ref f6)))])
  13218. ((vector-ref clos5 0) clos5 5))])
  13219. (let ([h1 (let ([clos6 (closure 1 (list (fun-ref f6)))])
  13220. ((vector-ref clos6 0) clos6 3))])
  13221. (+ ((vector-ref g0 0) g0 11) ((vector-ref h1 0) h1 15)))))
  13222. \end{lstlisting}
  13223. \end{minipage}
  13224. \caption{Example of closure conversion.}
  13225. \label{fig:lexical-functions-example}
  13226. \end{figure}
  13227. \begin{exercise}\normalfont
  13228. Expand your compiler to handle \LangLam{} as outlined in this chapter.
  13229. Create 5 new programs that use \key{lambda} functions and make use of
  13230. lexical scoping. Test your compiler on these new programs and all of
  13231. your previously created test programs.
  13232. \end{exercise}
  13233. \section{Expose Allocation}
  13234. \label{sec:expose-allocation-r5}
  13235. Compile the $\CLOSURE{\itm{arity}}{\LP\Exp\ldots\RP}$ form into code
  13236. that allocates and initializes a vector, similar to the translation of
  13237. the \code{vector} operator in Section~\ref{sec:expose-allocation}.
  13238. The only difference is replacing the use of
  13239. \ALLOC{\itm{len}}{\itm{type}} with
  13240. \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}}.
  13241. \section{Explicate Control and \LangCLam{}}
  13242. \label{sec:explicate-r5}
  13243. The output language of \code{explicate\_control} is \LangCLam{} whose
  13244. abstract syntax is defined in Figure~\ref{fig:c4-syntax}. The only
  13245. difference with respect to \LangCFun{} is the addition of the
  13246. \code{AllocateClosure} form to the grammar for $\Exp$. The handling
  13247. of \code{AllocateClosure} in the \code{explicate\_control} pass is
  13248. similar to the handling of other expressions such as primitive
  13249. operators.
  13250. \begin{figure}[tp]
  13251. \fbox{
  13252. \begin{minipage}{0.96\textwidth}
  13253. \small
  13254. \[
  13255. \begin{array}{lcl}
  13256. \Exp &::= & \ldots
  13257. \MID \ALLOCCLOS{\Int}{\Type}{\Int} \\
  13258. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  13259. \MID \LP\key{Collect} \,\itm{int}\RP } \\
  13260. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  13261. \MID \GOTO{\itm{label}} } \\
  13262. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  13263. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} } \\
  13264. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  13265. \LangCLamM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  13266. \end{array}
  13267. \]
  13268. \end{minipage}
  13269. }
  13270. \caption{The abstract syntax of \LangCLam{}, extending \LangCFun{} (Figure~\ref{fig:c3-syntax}).}
  13271. \label{fig:c4-syntax}
  13272. \end{figure}
  13273. \section{Select Instructions}
  13274. \label{sec:select-instructions-Rlambda}
  13275. Compile \ALLOCCLOS{\itm{len}}{\itm{type}}{\itm{arity}} in almost the
  13276. same way as the \ALLOC{\itm{len}}{\itm{type}} form
  13277. (Section~\ref{sec:select-instructions-gc}). The only difference is
  13278. that you should place the \itm{arity} in the tag that is stored at
  13279. position $0$ of the vector. Recall that in
  13280. Section~\ref{sec:select-instructions-gc} a portion of the 64-bit tag
  13281. was not used. We store the arity in the $5$ bits starting at position
  13282. $58$.
  13283. Compile the \code{procedure-arity} operator into a sequence of
  13284. instructions that access the tag from position $0$ of the vector and
  13285. extract the $5$-bits starting at position $58$ from the tag.
  13286. \begin{figure}[p]
  13287. \begin{tikzpicture}[baseline=(current bounding box.center)]
  13288. \node (Rfun) at (0,2) {\large \LangLam{}};
  13289. \node (Rfun-2) at (3,2) {\large \LangLam{}};
  13290. \node (Rfun-3) at (6,2) {\large \LangLam{}};
  13291. \node (F1-0) at (9,2) {\large \LangLamFunRef{}};
  13292. \node (F1-1) at (12,0) {\large \LangLamFunRef{}};
  13293. \node (F1-2) at (9,0) {\large \LangFunRef{}};
  13294. \node (F1-3) at (6,0) {\large \LangFunRef{}};
  13295. \node (F1-4) at (3,0) {\large \LangFunRefAlloc{}};
  13296. \node (F1-5) at (0,0) {\large \LangFunANF{}};
  13297. \node (C3-2) at (3,-2) {\large \LangCFun{}};
  13298. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  13299. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  13300. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  13301. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  13302. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  13303. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  13304. \path[->,bend left=15] (Rfun) edge [above] node
  13305. {\ttfamily\footnotesize shrink} (Rfun-2);
  13306. \path[->,bend left=15] (Rfun-2) edge [above] node
  13307. {\ttfamily\footnotesize uniquify} (Rfun-3);
  13308. \path[->,bend left=15] (Rfun-3) edge [above] node
  13309. {\ttfamily\footnotesize reveal\_functions} (F1-0);
  13310. \path[->,bend left=15] (F1-0) edge [right] node
  13311. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  13312. \path[->,bend left=15] (F1-1) edge [below] node
  13313. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  13314. \path[->,bend right=15] (F1-2) edge [above] node
  13315. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  13316. \path[->,bend right=15] (F1-3) edge [above] node
  13317. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  13318. \path[->,bend right=15] (F1-4) edge [above] node
  13319. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  13320. \path[->,bend right=15] (F1-5) edge [right] node
  13321. {\ttfamily\footnotesize explicate\_control} (C3-2);
  13322. \path[->,bend left=15] (C3-2) edge [left] node
  13323. {\ttfamily\footnotesize select\_instr.} (x86-2);
  13324. \path[->,bend right=15] (x86-2) edge [left] node
  13325. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  13326. \path[->,bend right=15] (x86-2-1) edge [below] node
  13327. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  13328. \path[->,bend right=15] (x86-2-2) edge [left] node
  13329. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  13330. \path[->,bend left=15] (x86-3) edge [above] node
  13331. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  13332. \path[->,bend left=15] (x86-4) edge [right] node
  13333. {\ttfamily\footnotesize print\_x86} (x86-5);
  13334. \end{tikzpicture}
  13335. \caption{Diagram of the passes for \LangLam{}, a language with lexically-scoped
  13336. functions.}
  13337. \label{fig:Rlambda-passes}
  13338. \end{figure}
  13339. Figure~\ref{fig:Rlambda-passes} provides an overview of all the passes needed
  13340. for the compilation of \LangLam{}.
  13341. \clearpage
  13342. \section{Challenge: Optimize Closures}
  13343. \label{sec:optimize-closures}
  13344. In this chapter we compiled lexically-scoped functions into a
  13345. relatively efficient representation: flat closures. However, even this
  13346. representation comes with some overhead. For example, consider the
  13347. following program with a function \code{tail-sum} that does not have
  13348. any free variables and where all the uses of \code{tail-sum} are in
  13349. applications where we know that only \code{tail-sum} is being applied
  13350. (and not any other functions).
  13351. \begin{center}
  13352. \begin{minipage}{0.95\textwidth}
  13353. \begin{lstlisting}
  13354. (define (tail-sum [n : Integer] [r : Integer]) : Integer
  13355. (if (eq? n 0)
  13356. r
  13357. (tail-sum (- n 1) (+ n r))))
  13358. (+ (tail-sum 5 0) 27)
  13359. \end{lstlisting}
  13360. \end{minipage}
  13361. \end{center}
  13362. As described in this chapter, we uniformly apply closure conversion to
  13363. all functions, obtaining the following output for this program.
  13364. \begin{center}
  13365. \begin{minipage}{0.95\textwidth}
  13366. \begin{lstlisting}
  13367. (define (tail_sum1 [fvs5 : _] [n2 : Integer] [r3 : Integer]) : Integer
  13368. (if (eq? n2 0)
  13369. r3
  13370. (let ([clos4 (closure (list (fun-ref tail_sum1)))])
  13371. ((vector-ref clos4 0) clos4 (+ n2 -1) (+ n2 r3)))))
  13372. (define (main) : Integer
  13373. (+ (let ([clos6 (closure (list (fun-ref tail_sum1)))])
  13374. ((vector-ref clos6 0) clos6 5 0)) 27))
  13375. \end{lstlisting}
  13376. \end{minipage}
  13377. \end{center}
  13378. In the previous Chapter, there would be no allocation in the program
  13379. and the calls to \code{tail-sum} would be direct calls. In contrast,
  13380. the above program allocates memory for each \code{closure} and the
  13381. calls to \code{tail-sum} are indirect. These two differences incur
  13382. considerable overhead in a program such as this one, where the
  13383. allocations and indirect calls occur inside a tight loop.
  13384. One might think that this problem is trivial to solve: can't we just
  13385. recognize calls of the form \code{((fun-ref $f$) $e_1 \ldots e_n$)}
  13386. and compile them to direct calls \code{((fun-ref $f$) $e'_1 \ldots
  13387. e'_n$)} instead of treating it like a call to a closure? We would
  13388. also drop the \code{fvs5} parameter of \code{tail\_sum1}.
  13389. %
  13390. However, this problem is not so trivial because a global function may
  13391. ``escape'' and become involved in applications that also involve
  13392. closures. Consider the following example in which the application
  13393. \code{(f 41)} needs to be compiled into a closure application, because
  13394. the \code{lambda} may get bound to \code{f}, but the \code{add1}
  13395. function might also get bound to \code{f}.
  13396. \begin{lstlisting}
  13397. (define (add1 [x : Integer]) : Integer
  13398. (+ x 1))
  13399. (let ([y (read)])
  13400. (let ([f (if (eq? (read) 0)
  13401. add1
  13402. (lambda: ([x : Integer]) : Integer (- x y)))])
  13403. (f 41)))
  13404. \end{lstlisting}
  13405. If a global function name is used in any way other than as the
  13406. operator in a direct call, then we say that the function
  13407. \emph{escapes}. If a global function does not escape, then we do not
  13408. need to perform closure conversion on the function.
  13409. \begin{exercise}\normalfont
  13410. Implement an auxiliary function for detecting which global
  13411. functions escape. Using that function, implement an improved version
  13412. of closure conversion that does not apply closure conversion to
  13413. global functions that do not escape but instead compiles them as
  13414. regular functions. Create several new test cases that check whether
  13415. you properly detect whether global functions escape or not.
  13416. \end{exercise}
  13417. So far we have reduced the overhead of calling global functions, but
  13418. it would also be nice to reduce the overhead of calling a
  13419. \code{lambda} when we can determine at compile time which
  13420. \code{lambda} will be called. We refer to such calls as \emph{known
  13421. calls}. Consider the following example in which a \code{lambda} is
  13422. bound to \code{f} and then applied.
  13423. \begin{lstlisting}
  13424. (let ([y (read)])
  13425. (let ([f (lambda: ([x : Integer]) : Integer
  13426. (+ x y))])
  13427. (f 21)))
  13428. \end{lstlisting}
  13429. Closure conversion compiles \code{(f 21)} into an indirect call:
  13430. \begin{lstlisting}
  13431. (define (lambda5 [fvs6 : (Vector _ Integer)] [x3 : Integer]) : Integer
  13432. (let ([y2 (vector-ref fvs6 1)])
  13433. (+ x3 y2)))
  13434. (define (main) : Integer
  13435. (let ([y2 (read)])
  13436. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  13437. ((vector-ref f4 0) f4 21))))
  13438. \end{lstlisting}
  13439. but we can instead compile the application \code{(f 21)} into a direct call
  13440. to \code{lambda5}:
  13441. \begin{lstlisting}
  13442. (define (main) : Integer
  13443. (let ([y2 (read)])
  13444. (let ([f4 (Closure 1 (list (fun-ref lambda5) y2))])
  13445. ((fun-ref lambda5) f4 21))))
  13446. \end{lstlisting}
  13447. The problem of determining which lambda will be called from a
  13448. particular application is quite challenging in general and the topic
  13449. of considerable research~\citep{Shivers:1988aa,Gilray:2016aa}. For the
  13450. following exercise we recommend that you compile an application to a
  13451. direct call when the operator is a variable and the variable is
  13452. \code{let}-bound to a closure. This can be accomplished by maintaining
  13453. an environment mapping \code{let}-bound variables to function names.
  13454. Extend the environment whenever you encounter a closure on the
  13455. right-hand side of a \code{let}, mapping the \code{let}-bound variable
  13456. to the name of the global function for the closure. This pass should
  13457. come after closure conversion.
  13458. \begin{exercise}\normalfont
  13459. Implement a compiler pass, named \code{optimize-known-calls}, that
  13460. compiles known calls into direct calls. Verify that your compiler is
  13461. successful in this regard on several example programs.
  13462. \end{exercise}
  13463. These exercises only scratches the surface of optimizing of
  13464. closures. A good next step for the interested reader is to look at the
  13465. work of \citet{Keep:2012ab}.
  13466. \section{Further Reading}
  13467. The notion of lexically scoped anonymous functions predates modern
  13468. computers by about a decade. They were invented by
  13469. \citet{Church:1932aa}, who proposed the $\lambda$ calculus as a
  13470. foundation for logic. Anonymous functions were included in the
  13471. LISP~\citep{McCarthy:1960dz} programming language but were initially
  13472. dynamically scoped. The Scheme dialect of LISP adopted lexical scoping
  13473. and \citet{Guy-L.-Steele:1978yq} demonstrated how to efficiently
  13474. compile Scheme programs. However, environments were represented as
  13475. linked lists, so variable lookup was linear in the size of the
  13476. environment. In this chapter we represent environments using flat
  13477. closures, which were invented by
  13478. \citet{Cardelli:1983aa,Cardelli:1984aa} for the purposes of compiling
  13479. the ML language~\citep{Gordon:1978aa,Milner:1990fk}. With flat
  13480. closures, variable lookup is constant time but the time to create a
  13481. closure is proportional to the number of its free variables. Flat
  13482. closures were reinvented by \citet{Dybvig:1987ab} in his Ph.D. thesis
  13483. and used in Chez Scheme version 1~\citep{Dybvig:2006aa}.
  13484. \fi
  13485. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  13486. \chapter{Dynamic Typing}
  13487. \label{ch:Rdyn}
  13488. \index{subject}{dynamic typing}
  13489. \if\edition\racketEd
  13490. In this chapter we discuss the compilation of \LangDyn{}, a dynamically
  13491. typed language that is a subset of Racket. This is in contrast to the
  13492. previous chapters, which have studied the compilation of Typed
  13493. Racket. In dynamically typed languages such as \LangDyn{}, a given
  13494. expression may produce a value of a different type each time it is
  13495. executed. Consider the following example with a conditional \code{if}
  13496. expression that may return a Boolean or an integer depending on the
  13497. input to the program.
  13498. % part of dynamic_test_25.rkt
  13499. \begin{lstlisting}
  13500. (not (if (eq? (read) 1) #f 0))
  13501. \end{lstlisting}
  13502. Languages that allow expressions to produce different kinds of values
  13503. are called \emph{polymorphic}, a word composed of the Greek roots
  13504. ``poly'', meaning ``many'', and ``morph'', meaning ``shape''. There
  13505. are several kinds of polymorphism in programming languages, such as
  13506. subtype polymorphism and parametric
  13507. polymorphism~\citep{Cardelli:1985kx}. The kind of polymorphism we
  13508. study in this chapter does not have a special name but it is the kind
  13509. that arises in dynamically typed languages.
  13510. Another characteristic of dynamically typed languages is that
  13511. primitive operations, such as \code{not}, are often defined to operate
  13512. on many different types of values. In fact, in Racket, the \code{not}
  13513. operator produces a result for any kind of value: given \code{\#f} it
  13514. returns \code{\#t} and given anything else it returns \code{\#f}.
  13515. Furthermore, even when primitive operations restrict their inputs to
  13516. values of a certain type, this restriction is enforced at runtime
  13517. instead of during compilation. For example, the following vector
  13518. reference results in a run-time contract violation because the index
  13519. must be in integer, not a Boolean such as \code{\#t}.
  13520. \begin{lstlisting}
  13521. (vector-ref (vector 42) #t)
  13522. \end{lstlisting}
  13523. \begin{figure}[tp]
  13524. \centering
  13525. \fbox{
  13526. \begin{minipage}{0.97\textwidth}
  13527. \[
  13528. \begin{array}{rcl}
  13529. \itm{cmp} &::= & \key{eq?} \MID \key{<} \MID \key{<=} \MID \key{>} \MID \key{>=} \\
  13530. \Exp &::=& \Int \MID \CREAD{} \MID \CNEG{\Exp}
  13531. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} \\
  13532. &\MID& \Var \MID \CLET{\Var}{\Exp}{\Exp} \\
  13533. &\MID& \key{\#t} \MID \key{\#f}
  13534. \MID \CBINOP{\key{and}}{\Exp}{\Exp}
  13535. \MID \CBINOP{\key{or}}{\Exp}{\Exp}
  13536. \MID \CUNIOP{\key{not}}{\Exp} \\
  13537. &\MID& \LP\itm{cmp}\;\Exp\;\Exp\RP \MID \CIF{\Exp}{\Exp}{\Exp} \\
  13538. &\MID& \LP\key{vector}\;\Exp\ldots\RP \MID
  13539. \LP\key{vector-ref}\;\Exp\;\Exp\RP \\
  13540. &\MID& \LP\key{vector-set!}\;\Exp\;\Exp\;\Exp\RP \MID \LP\key{void}\RP \\
  13541. &\MID& \LP\Exp \; \Exp\ldots\RP
  13542. \MID \LP\key{lambda}\;\LP\Var\ldots\RP\;\Exp\RP \\
  13543. & \MID & \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP\\
  13544. & \MID & \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \MID \LP\key{void?}\;\Exp\RP \\
  13545. \Def &::=& \LP\key{define}\; \LP\Var \; \Var\ldots\RP \; \Exp\RP \\
  13546. \LangDynM{} &::=& \Def\ldots\; \Exp
  13547. \end{array}
  13548. \]
  13549. \end{minipage}
  13550. }
  13551. \caption{Syntax of \LangDyn{}, an untyped language (a subset of Racket).}
  13552. \label{fig:r7-concrete-syntax}
  13553. \end{figure}
  13554. \begin{figure}[tp]
  13555. \centering
  13556. \fbox{
  13557. \begin{minipage}{0.96\textwidth}
  13558. \small
  13559. \[
  13560. \begin{array}{lcl}
  13561. \Exp &::=& \INT{\Int} \MID \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} \\
  13562. &\MID& \PRIM{\itm{op}}{\Exp\ldots} \\
  13563. &\MID& \BOOL{\itm{bool}}
  13564. \MID \IF{\Exp}{\Exp}{\Exp} \\
  13565. &\MID& \VOID{} \MID \APPLY{\Exp}{\Exp\ldots} \\
  13566. &\MID& \LAMBDA{\LP\Var\ldots\RP}{\code{'Any}}{\Exp}\\
  13567. \Def &::=& \FUNDEF{\Var}{\LP\Var\ldots\RP}{\code{'Any}}{\code{'()}}{\Exp} \\
  13568. \LangDynM{} &::=& \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp}
  13569. \end{array}
  13570. \]
  13571. \end{minipage}
  13572. }
  13573. \caption{The abstract syntax of \LangDyn{}.}
  13574. \label{fig:r7-syntax}
  13575. \end{figure}
  13576. The concrete and abstract syntax of \LangDyn{}, our subset of Racket, is
  13577. defined in Figures~\ref{fig:r7-concrete-syntax} and
  13578. \ref{fig:r7-syntax}.
  13579. %
  13580. There is no type checker for \LangDyn{} because it is not a statically
  13581. typed language (it's dynamically typed!).
  13582. The definitional interpreter for \LangDyn{} is presented in
  13583. Figure~\ref{fig:interp-Rdyn} and its auxiliary functions are defined i
  13584. Figure~\ref{fig:interp-Rdyn-aux}. Consider the match case for
  13585. \code{(Int n)}. Instead of simply returning the integer \code{n} (as
  13586. in the interpreter for \LangVar{} in Figure~\ref{fig:interp-Lvar}), the
  13587. interpreter for \LangDyn{} creates a \emph{tagged value}\index{subject}{tagged
  13588. value} that combines an underlying value with a tag that identifies
  13589. what kind of value it is. We define the following struct
  13590. to represented tagged values.
  13591. \begin{lstlisting}
  13592. (struct Tagged (value tag) #:transparent)
  13593. \end{lstlisting}
  13594. The tags are \code{Integer}, \code{Boolean}, \code{Void},
  13595. \code{Vector}, and \code{Procedure}. Tags are closely related to types
  13596. but don't always capture all the information that a type does. For
  13597. example, a vector of type \code{(Vector Any Any)} is tagged with
  13598. \code{Vector} and a procedure of type \code{(Any Any -> Any)}
  13599. is tagged with \code{Procedure}.
  13600. Next consider the match case for \code{vector-ref}. The
  13601. \code{check-tag} auxiliary function (Figure~\ref{fig:interp-Rdyn-aux})
  13602. is used to ensure that the first argument is a vector and the second
  13603. is an integer. If they are not, a \code{trapped-error} is raised.
  13604. Recall from Section~\ref{sec:interp_Lint} that when a definition
  13605. interpreter raises a \code{trapped-error} error, the compiled code
  13606. must also signal an error by exiting with return code \code{255}. A
  13607. \code{trapped-error} is also raised if the index is not less than
  13608. length of the vector.
  13609. \begin{figure}[tbp]
  13610. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13611. (define ((interp-Rdyn-exp env) ast)
  13612. (define recur (interp-Rdyn-exp env))
  13613. (match ast
  13614. [(Var x) (lookup x env)]
  13615. [(Int n) (Tagged n 'Integer)]
  13616. [(Bool b) (Tagged b 'Boolean)]
  13617. [(Lambda xs rt body)
  13618. (Tagged `(function ,xs ,body ,env) 'Procedure)]
  13619. [(Prim 'vector es)
  13620. (Tagged (apply vector (for/list ([e es]) (recur e))) 'Vector)]
  13621. [(Prim 'vector-ref (list e1 e2))
  13622. (define vec (recur e1)) (define i (recur e2))
  13623. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  13624. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  13625. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  13626. (vector-ref (Tagged-value vec) (Tagged-value i))]
  13627. [(Prim 'vector-set! (list e1 e2 e3))
  13628. (define vec (recur e1)) (define i (recur e2)) (define arg (recur e3))
  13629. (check-tag vec 'Vector ast) (check-tag i 'Integer ast)
  13630. (unless (< (Tagged-value i) (vector-length (Tagged-value vec)))
  13631. (error 'trapped-error "index ~a too big\nin ~v" (Tagged-value i) ast))
  13632. (vector-set! (Tagged-value vec) (Tagged-value i) arg)
  13633. (Tagged (void) 'Void)]
  13634. [(Let x e body) ((interp-Rdyn-exp (cons (cons x (recur e)) env)) body)]
  13635. [(Prim 'and (list e1 e2)) (recur (If e1 e2 (Bool #f)))]
  13636. [(Prim 'or (list e1 e2))
  13637. (define v1 (recur e1))
  13638. (match (Tagged-value v1) [#f (recur e2)] [else v1])]
  13639. [(Prim 'eq? (list l r)) (Tagged (equal? (recur l) (recur r)) 'Boolean)]
  13640. [(Prim op (list e1))
  13641. #:when (set-member? type-predicates op)
  13642. (tag-value ((interp-op op) (Tagged-value (recur e1))))]
  13643. [(Prim op es)
  13644. (define args (map recur es))
  13645. (define tags (for/list ([arg args]) (Tagged-tag arg)))
  13646. (unless (for/or ([expected-tags (op-tags op)])
  13647. (equal? expected-tags tags))
  13648. (error 'trapped-error "illegal argument tags ~a\nin ~v" tags ast))
  13649. (tag-value
  13650. (apply (interp-op op) (for/list ([a args]) (Tagged-value a))))]
  13651. [(If q t f)
  13652. (match (Tagged-value (recur q)) [#f (recur f)] [else (recur t)])]
  13653. [(Apply f es)
  13654. (define new-f (recur f)) (define args (map recur es))
  13655. (check-tag new-f 'Procedure ast) (define f-val (Tagged-value new-f))
  13656. (match f-val
  13657. [`(function ,xs ,body ,lam-env)
  13658. (unless (eq? (length xs) (length args))
  13659. (error 'trapped-error "~a != ~a\nin ~v" (length args) (length xs) ast))
  13660. (define new-env (append (map cons xs args) lam-env))
  13661. ((interp-Rdyn-exp new-env) body)]
  13662. [else (error "interp-Rdyn-exp, expected function, not" f-val)])]))
  13663. \end{lstlisting}
  13664. \caption{Interpreter for the \LangDyn{} language.}
  13665. \label{fig:interp-Rdyn}
  13666. \end{figure}
  13667. \begin{figure}[tbp]
  13668. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  13669. (define (interp-op op)
  13670. (match op
  13671. ['+ fx+]
  13672. ['- fx-]
  13673. ['read read-fixnum]
  13674. ['not (lambda (v) (match v [#t #f] [#f #t]))]
  13675. ['< (lambda (v1 v2)
  13676. (cond [(and (fixnum? v1) (fixnum? v2)) (< v1 v2)]))]
  13677. ['<= (lambda (v1 v2)
  13678. (cond [(and (fixnum? v1) (fixnum? v2)) (<= v1 v2)]))]
  13679. ['> (lambda (v1 v2)
  13680. (cond [(and (fixnum? v1) (fixnum? v2)) (> v1 v2)]))]
  13681. ['>= (lambda (v1 v2)
  13682. (cond [(and (fixnum? v1) (fixnum? v2)) (>= v1 v2)]))]
  13683. ['boolean? boolean?]
  13684. ['integer? fixnum?]
  13685. ['void? void?]
  13686. ['vector? vector?]
  13687. ['vector-length vector-length]
  13688. ['procedure? (match-lambda
  13689. [`(functions ,xs ,body ,env) #t] [else #f])]
  13690. [else (error 'interp-op "unknown operator" op)]))
  13691. (define (op-tags op)
  13692. (match op
  13693. ['+ '((Integer Integer))]
  13694. ['- '((Integer Integer) (Integer))]
  13695. ['read '(())]
  13696. ['not '((Boolean))]
  13697. ['< '((Integer Integer))]
  13698. ['<= '((Integer Integer))]
  13699. ['> '((Integer Integer))]
  13700. ['>= '((Integer Integer))]
  13701. ['vector-length '((Vector))]))
  13702. (define type-predicates
  13703. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  13704. (define (tag-value v)
  13705. (cond [(boolean? v) (Tagged v 'Boolean)]
  13706. [(fixnum? v) (Tagged v 'Integer)]
  13707. [(procedure? v) (Tagged v 'Procedure)]
  13708. [(vector? v) (Tagged v 'Vector)]
  13709. [(void? v) (Tagged v 'Void)]
  13710. [else (error 'tag-value "unidentified value ~a" v)]))
  13711. (define (check-tag val expected ast)
  13712. (define tag (Tagged-tag val))
  13713. (unless (eq? tag expected)
  13714. (error 'trapped-error "expected ~a, not ~a\nin ~v" expected tag ast)))
  13715. \end{lstlisting}
  13716. \caption{Auxiliary functions for the \LangDyn{} interpreter.}
  13717. \label{fig:interp-Rdyn-aux}
  13718. \end{figure}
  13719. \clearpage
  13720. \section{Representation of Tagged Values}
  13721. The interpreter for \LangDyn{} introduced a new kind of value, a tagged
  13722. value. To compile \LangDyn{} to x86 we must decide how to represent tagged
  13723. values at the bit level. Because almost every operation in \LangDyn{}
  13724. involves manipulating tagged values, the representation must be
  13725. efficient. Recall that all of our values are 64 bits. We shall steal
  13726. the 3 right-most bits to encode the tag. We use $001$ to identify
  13727. integers, $100$ for Booleans, $010$ for vectors, $011$ for procedures,
  13728. and $101$ for the void value. We define the following auxiliary
  13729. function for mapping types to tag codes.
  13730. \begin{align*}
  13731. \itm{tagof}(\key{Integer}) &= 001 \\
  13732. \itm{tagof}(\key{Boolean}) &= 100 \\
  13733. \itm{tagof}((\key{Vector} \ldots)) &= 010 \\
  13734. \itm{tagof}((\ldots \key{->} \ldots)) &= 011 \\
  13735. \itm{tagof}(\key{Void}) &= 101
  13736. \end{align*}
  13737. This stealing of 3 bits comes at some price: our integers are reduced
  13738. to ranging from $-2^{60}$ to $2^{60}$. The stealing does not adversely
  13739. affect vectors and procedures because those values are addresses, and
  13740. our addresses are 8-byte aligned so the rightmost 3 bits are unused,
  13741. they are always $000$. Thus, we do not lose information by overwriting
  13742. the rightmost 3 bits with the tag and we can simply zero-out the tag
  13743. to recover the original address.
  13744. To make tagged values into first-class entities, we can give them a
  13745. type, called \code{Any}, and define operations such as \code{Inject}
  13746. and \code{Project} for creating and using them, yielding the \LangAny{}
  13747. intermediate language. We describe how to compile \LangDyn{} to \LangAny{} in
  13748. Section~\ref{sec:compile-r7} but first we describe the \LangAny{} language
  13749. in greater detail.
  13750. \section{The \LangAny{} Language}
  13751. \label{sec:Rany-lang}
  13752. \begin{figure}[tp]
  13753. \centering
  13754. \fbox{
  13755. \begin{minipage}{0.96\textwidth}
  13756. \small
  13757. \[
  13758. \begin{array}{lcl}
  13759. \Type &::= & \ldots \MID \key{Any} \\
  13760. \itm{op} &::= & \ldots \MID \code{any-vector-length}
  13761. \MID \code{any-vector-ref} \MID \code{any-vector-set!}\\
  13762. &\MID& \code{boolean?} \MID \code{integer?} \MID \code{vector?}
  13763. \MID \code{procedure?} \MID \code{void?} \\
  13764. \Exp &::=& \ldots
  13765. \MID \gray{ \PRIM{\itm{op}}{\Exp\ldots} } \\
  13766. &\MID& \INJECT{\Exp}{\FType} \MID \PROJECT{\Exp}{\FType} \\
  13767. \Def &::=& \gray{ \FUNDEF{\Var}{\LP[\Var \code{:} \Type]\ldots\RP}{\Type}{\code{'()}}{\Exp} }\\
  13768. \LangAnyM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  13769. \end{array}
  13770. \]
  13771. \end{minipage}
  13772. }
  13773. \caption{The abstract syntax of \LangAny{}, extending \LangLam{} (Figure~\ref{fig:Rlam-syntax}).}
  13774. \label{fig:Rany-syntax}
  13775. \end{figure}
  13776. The abstract syntax of \LangAny{} is defined in Figure~\ref{fig:Rany-syntax}.
  13777. (The concrete syntax of \LangAny{} is in the Appendix,
  13778. Figure~\ref{fig:Rany-concrete-syntax}.) The $\INJECT{e}{T}$ form
  13779. converts the value produced by expression $e$ of type $T$ into a
  13780. tagged value. The $\PROJECT{e}{T}$ form converts the tagged value
  13781. produced by expression $e$ into a value of type $T$ or else halts the
  13782. program if the type tag is not equivalent to $T$.
  13783. %
  13784. Note that in both \code{Inject} and \code{Project}, the type $T$ is
  13785. restricted to a flat type $\FType$, which simplifies the
  13786. implementation and corresponds with what is needed for compiling \LangDyn{}.
  13787. The \code{any-vector} operators adapt the vector operations so that
  13788. they can be applied to a value of type \code{Any}. They also
  13789. generalize the vector operations in that the index is not restricted
  13790. to be a literal integer in the grammar but is allowed to be any
  13791. expression.
  13792. The type predicates such as \key{boolean?} expect their argument to
  13793. produce a tagged value; they return \key{\#t} if the tag corresponds
  13794. to the predicate and they return \key{\#f} otherwise.
  13795. The type checker for \LangAny{} is shown in
  13796. Figures~\ref{fig:type-check-Rany-part-1} and
  13797. \ref{fig:type-check-Rany-part-2} and uses the auxiliary functions in
  13798. Figure~\ref{fig:type-check-Rany-aux}.
  13799. %
  13800. The interpreter for \LangAny{} is in Figure~\ref{fig:interp-Rany} and the
  13801. auxiliary functions \code{apply-inject} and \code{apply-project} are
  13802. in Figure~\ref{fig:apply-project}.
  13803. \begin{figure}[btp]
  13804. \begin{lstlisting}[basicstyle=\ttfamily\small]
  13805. (define type-check-Rany_class
  13806. (class type-check-Rlambda_class
  13807. (super-new)
  13808. (inherit check-type-equal?)
  13809. (define/override (type-check-exp env)
  13810. (lambda (e)
  13811. (define recur (type-check-exp env))
  13812. (match e
  13813. [(Inject e1 ty)
  13814. (unless (flat-ty? ty)
  13815. (error 'type-check "may only inject from flat type, not ~a" ty))
  13816. (define-values (new-e1 e-ty) (recur e1))
  13817. (check-type-equal? e-ty ty e)
  13818. (values (Inject new-e1 ty) 'Any)]
  13819. [(Project e1 ty)
  13820. (unless (flat-ty? ty)
  13821. (error 'type-check "may only project to flat type, not ~a" ty))
  13822. (define-values (new-e1 e-ty) (recur e1))
  13823. (check-type-equal? e-ty 'Any e)
  13824. (values (Project new-e1 ty) ty)]
  13825. [(Prim 'any-vector-length (list e1))
  13826. (define-values (e1^ t1) (recur e1))
  13827. (check-type-equal? t1 'Any e)
  13828. (values (Prim 'any-vector-length (list e1^)) 'Integer)]
  13829. [(Prim 'any-vector-ref (list e1 e2))
  13830. (define-values (e1^ t1) (recur e1))
  13831. (define-values (e2^ t2) (recur e2))
  13832. (check-type-equal? t1 'Any e)
  13833. (check-type-equal? t2 'Integer e)
  13834. (values (Prim 'any-vector-ref (list e1^ e2^)) 'Any)]
  13835. [(Prim 'any-vector-set! (list e1 e2 e3))
  13836. (define-values (e1^ t1) (recur e1))
  13837. (define-values (e2^ t2) (recur e2))
  13838. (define-values (e3^ t3) (recur e3))
  13839. (check-type-equal? t1 'Any e)
  13840. (check-type-equal? t2 'Integer e)
  13841. (check-type-equal? t3 'Any e)
  13842. (values (Prim 'any-vector-set! (list e1^ e2^ e3^)) 'Void)]
  13843. \end{lstlisting}
  13844. \caption{Type checker for the \LangAny{} language, part 1.}
  13845. \label{fig:type-check-Rany-part-1}
  13846. \end{figure}
  13847. \begin{figure}[btp]
  13848. \begin{lstlisting}[basicstyle=\ttfamily\small]
  13849. [(ValueOf e ty)
  13850. (define-values (new-e e-ty) (recur e))
  13851. (values (ValueOf new-e ty) ty)]
  13852. [(Prim pred (list e1))
  13853. #:when (set-member? (type-predicates) pred)
  13854. (define-values (new-e1 e-ty) (recur e1))
  13855. (check-type-equal? e-ty 'Any e)
  13856. (values (Prim pred (list new-e1)) 'Boolean)]
  13857. [(If cnd thn els)
  13858. (define-values (cnd^ Tc) (recur cnd))
  13859. (define-values (thn^ Tt) (recur thn))
  13860. (define-values (els^ Te) (recur els))
  13861. (check-type-equal? Tc 'Boolean cnd)
  13862. (check-type-equal? Tt Te e)
  13863. (values (If cnd^ thn^ els^) (combine-types Tt Te))]
  13864. [(Exit) (values (Exit) '_)]
  13865. [(Prim 'eq? (list arg1 arg2))
  13866. (define-values (e1 t1) (recur arg1))
  13867. (define-values (e2 t2) (recur arg2))
  13868. (match* (t1 t2)
  13869. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...)) (void)]
  13870. [(other wise) (check-type-equal? t1 t2 e)])
  13871. (values (Prim 'eq? (list e1 e2)) 'Boolean)]
  13872. [else ((super type-check-exp env) e)])))
  13873. ))
  13874. \end{lstlisting}
  13875. \caption{Type checker for the \LangAny{} language, part 2.}
  13876. \label{fig:type-check-Rany-part-2}
  13877. \end{figure}
  13878. \begin{figure}[tbp]
  13879. \begin{lstlisting}
  13880. (define/override (operator-types)
  13881. (append
  13882. '((integer? . ((Any) . Boolean))
  13883. (vector? . ((Any) . Boolean))
  13884. (procedure? . ((Any) . Boolean))
  13885. (void? . ((Any) . Boolean))
  13886. (tag-of-any . ((Any) . Integer))
  13887. (make-any . ((_ Integer) . Any))
  13888. )
  13889. (super operator-types)))
  13890. (define/public (type-predicates)
  13891. (set 'boolean? 'integer? 'vector? 'procedure? 'void?))
  13892. (define/public (combine-types t1 t2)
  13893. (match (list t1 t2)
  13894. [(list '_ t2) t2]
  13895. [(list t1 '_) t1]
  13896. [(list `(Vector ,ts1 ...)
  13897. `(Vector ,ts2 ...))
  13898. `(Vector ,@(for/list ([t1 ts1] [t2 ts2])
  13899. (combine-types t1 t2)))]
  13900. [(list `(,ts1 ... -> ,rt1)
  13901. `(,ts2 ... -> ,rt2))
  13902. `(,@(for/list ([t1 ts1] [t2 ts2])
  13903. (combine-types t1 t2))
  13904. -> ,(combine-types rt1 rt2))]
  13905. [else t1]))
  13906. (define/public (flat-ty? ty)
  13907. (match ty
  13908. [(or `Integer `Boolean '_ `Void) #t]
  13909. [`(Vector ,ts ...) (for/and ([t ts]) (eq? t 'Any))]
  13910. [`(,ts ... -> ,rt)
  13911. (and (eq? rt 'Any) (for/and ([t ts]) (eq? t 'Any)))]
  13912. [else #f]))
  13913. \end{lstlisting}
  13914. \caption{Auxiliary methods for type checking \LangAny{}.}
  13915. \label{fig:type-check-Rany-aux}
  13916. \end{figure}
  13917. \begin{figure}[btp]
  13918. \begin{lstlisting}
  13919. (define interp-Rany_class
  13920. (class interp-Rlambda_class
  13921. (super-new)
  13922. (define/override (interp-op op)
  13923. (match op
  13924. ['boolean? (match-lambda
  13925. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Boolean))]
  13926. [else #f])]
  13927. ['integer? (match-lambda
  13928. [`(tagged ,v1 ,tg) (equal? tg (any-tag 'Integer))]
  13929. [else #f])]
  13930. ['vector? (match-lambda
  13931. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Vector Any)))]
  13932. [else #f])]
  13933. ['procedure? (match-lambda
  13934. [`(tagged ,v1 ,tg) (equal? tg (any-tag `(Any -> Any)))]
  13935. [else #f])]
  13936. ['eq? (match-lambda*
  13937. [`((tagged ,v1^ ,tg1) (tagged ,v2^ ,tg2))
  13938. (and (eq? v1^ v2^) (equal? tg1 tg2))]
  13939. [ls (apply (super interp-op op) ls)])]
  13940. ['any-vector-ref (lambda (v i)
  13941. (match v [`(tagged ,v^ ,tg) (vector-ref v^ i)]))]
  13942. ['any-vector-set! (lambda (v i a)
  13943. (match v [`(tagged ,v^ ,tg) (vector-set! v^ i a)]))]
  13944. ['any-vector-length (lambda (v)
  13945. (match v [`(tagged ,v^ ,tg) (vector-length v^)]))]
  13946. [else (super interp-op op)]))
  13947. (define/override ((interp-exp env) e)
  13948. (define recur (interp-exp env))
  13949. (match e
  13950. [(Inject e ty) `(tagged ,(recur e) ,(any-tag ty))]
  13951. [(Project e ty2) (apply-project (recur e) ty2)]
  13952. [else ((super interp-exp env) e)]))
  13953. ))
  13954. (define (interp-Rany p)
  13955. (send (new interp-Rany_class) interp-program p))
  13956. \end{lstlisting}
  13957. \caption{Interpreter for \LangAny{}.}
  13958. \label{fig:interp-Rany}
  13959. \end{figure}
  13960. \begin{figure}[tbp]
  13961. \begin{lstlisting}
  13962. (define/public (apply-inject v tg) (Tagged v tg))
  13963. (define/public (apply-project v ty2)
  13964. (define tag2 (any-tag ty2))
  13965. (match v
  13966. [(Tagged v1 tag1)
  13967. (cond
  13968. [(eq? tag1 tag2)
  13969. (match ty2
  13970. [`(Vector ,ts ...)
  13971. (define l1 ((interp-op 'vector-length) v1))
  13972. (cond
  13973. [(eq? l1 (length ts)) v1]
  13974. [else (error 'apply-project "vector length mismatch, ~a != ~a"
  13975. l1 (length ts))])]
  13976. [`(,ts ... -> ,rt)
  13977. (match v1
  13978. [`(function ,xs ,body ,env)
  13979. (cond [(eq? (length xs) (length ts)) v1]
  13980. [else
  13981. (error 'apply-project "arity mismatch ~a != ~a"
  13982. (length xs) (length ts))])]
  13983. [else (error 'apply-project "expected function not ~a" v1)])]
  13984. [else v1])]
  13985. [else (error 'apply-project "tag mismatch ~a != ~a" tag1 tag2)])]
  13986. [else (error 'apply-project "expected tagged value, not ~a" v)]))
  13987. \end{lstlisting}
  13988. \caption{Auxiliary functions for injection and projection.}
  13989. \label{fig:apply-project}
  13990. \end{figure}
  13991. \clearpage
  13992. \section{Cast Insertion: Compiling \LangDyn{} to \LangAny{}}
  13993. \label{sec:compile-r7}
  13994. The \code{cast-insert} pass compiles from \LangDyn{} to \LangAny{}.
  13995. Figure~\ref{fig:compile-r7-Rany} shows the compilation of many of the
  13996. \LangDyn{} forms into \LangAny{}. An important invariant of this pass is that
  13997. given a subexpression $e$ in the \LangDyn{} program, the pass will produce
  13998. an expression $e'$ in \LangAny{} that has type \key{Any}. For example, the
  13999. first row in Figure~\ref{fig:compile-r7-Rany} shows the compilation of
  14000. the Boolean \code{\#t}, which must be injected to produce an
  14001. expression of type \key{Any}.
  14002. %
  14003. The second row of Figure~\ref{fig:compile-r7-Rany}, the compilation of
  14004. addition, is representative of compilation for many primitive
  14005. operations: the arguments have type \key{Any} and must be projected to
  14006. \key{Integer} before the addition can be performed.
  14007. The compilation of \key{lambda} (third row of
  14008. Figure~\ref{fig:compile-r7-Rany}) shows what happens when we need to
  14009. produce type annotations: we simply use \key{Any}.
  14010. %
  14011. The compilation of \code{if} and \code{eq?} demonstrate how this pass
  14012. has to account for some differences in behavior between \LangDyn{} and
  14013. \LangAny{}. The \LangDyn{} language is more permissive than \LangAny{} regarding what
  14014. kind of values can be used in various places. For example, the
  14015. condition of an \key{if} does not have to be a Boolean. For \key{eq?},
  14016. the arguments need not be of the same type (in that case the
  14017. result is \code{\#f}).
  14018. \begin{figure}[btp]
  14019. \centering
  14020. \begin{tabular}{|lll|} \hline
  14021. \begin{minipage}{0.27\textwidth}
  14022. \begin{lstlisting}
  14023. #t
  14024. \end{lstlisting}
  14025. \end{minipage}
  14026. &
  14027. $\Rightarrow$
  14028. &
  14029. \begin{minipage}{0.65\textwidth}
  14030. \begin{lstlisting}
  14031. (inject #t Boolean)
  14032. \end{lstlisting}
  14033. \end{minipage}
  14034. \\[2ex]\hline
  14035. \begin{minipage}{0.27\textwidth}
  14036. \begin{lstlisting}
  14037. (+ |$e_1$| |$e_2$|)
  14038. \end{lstlisting}
  14039. \end{minipage}
  14040. &
  14041. $\Rightarrow$
  14042. &
  14043. \begin{minipage}{0.65\textwidth}
  14044. \begin{lstlisting}
  14045. (inject
  14046. (+ (project |$e'_1$| Integer)
  14047. (project |$e'_2$| Integer))
  14048. Integer)
  14049. \end{lstlisting}
  14050. \end{minipage}
  14051. \\[2ex]\hline
  14052. \begin{minipage}{0.27\textwidth}
  14053. \begin{lstlisting}
  14054. (lambda (|$x_1 \ldots x_n$|) |$e$|)
  14055. \end{lstlisting}
  14056. \end{minipage}
  14057. &
  14058. $\Rightarrow$
  14059. &
  14060. \begin{minipage}{0.65\textwidth}
  14061. \begin{lstlisting}
  14062. (inject
  14063. (lambda: ([|$x_1$|:Any]|$\ldots$|[|$x_n$|:Any]):Any |$e'$|)
  14064. (Any|$\ldots$|Any -> Any))
  14065. \end{lstlisting}
  14066. \end{minipage}
  14067. \\[2ex]\hline
  14068. \begin{minipage}{0.27\textwidth}
  14069. \begin{lstlisting}
  14070. (|$e_0$| |$e_1 \ldots e_n$|)
  14071. \end{lstlisting}
  14072. \end{minipage}
  14073. &
  14074. $\Rightarrow$
  14075. &
  14076. \begin{minipage}{0.65\textwidth}
  14077. \begin{lstlisting}
  14078. ((project |$e'_0$| (Any|$\ldots$|Any -> Any)) |$e'_1 \ldots e'_n$|)
  14079. \end{lstlisting}
  14080. \end{minipage}
  14081. \\[2ex]\hline
  14082. \begin{minipage}{0.27\textwidth}
  14083. \begin{lstlisting}
  14084. (vector-ref |$e_1$| |$e_2$|)
  14085. \end{lstlisting}
  14086. \end{minipage}
  14087. &
  14088. $\Rightarrow$
  14089. &
  14090. \begin{minipage}{0.65\textwidth}
  14091. \begin{lstlisting}
  14092. (any-vector-ref |$e_1'$| |$e_2'$|)
  14093. \end{lstlisting}
  14094. \end{minipage}
  14095. \\[2ex]\hline
  14096. \begin{minipage}{0.27\textwidth}
  14097. \begin{lstlisting}
  14098. (if |$e_1$| |$e_2$| |$e_3$|)
  14099. \end{lstlisting}
  14100. \end{minipage}
  14101. &
  14102. $\Rightarrow$
  14103. &
  14104. \begin{minipage}{0.65\textwidth}
  14105. \begin{lstlisting}
  14106. (if (eq? |$e'_1$| (inject #f Boolean)) |$e'_3$| |$e'_2$|)
  14107. \end{lstlisting}
  14108. \end{minipage}
  14109. \\[2ex]\hline
  14110. \begin{minipage}{0.27\textwidth}
  14111. \begin{lstlisting}
  14112. (eq? |$e_1$| |$e_2$|)
  14113. \end{lstlisting}
  14114. \end{minipage}
  14115. &
  14116. $\Rightarrow$
  14117. &
  14118. \begin{minipage}{0.65\textwidth}
  14119. \begin{lstlisting}
  14120. (inject (eq? |$e'_1$| |$e'_2$|) Boolean)
  14121. \end{lstlisting}
  14122. \end{minipage}
  14123. \\[2ex]\hline
  14124. \begin{minipage}{0.27\textwidth}
  14125. \begin{lstlisting}
  14126. (not |$e_1$|)
  14127. \end{lstlisting}
  14128. \end{minipage}
  14129. &
  14130. $\Rightarrow$
  14131. &
  14132. \begin{minipage}{0.65\textwidth}
  14133. \begin{lstlisting}
  14134. (if (eq? |$e'_1$| (inject #f Boolean))
  14135. (inject #t Boolean) (inject #f Boolean))
  14136. \end{lstlisting}
  14137. \end{minipage}
  14138. \\[2ex]\hline
  14139. \end{tabular}
  14140. \caption{Cast Insertion}
  14141. \label{fig:compile-r7-Rany}
  14142. \end{figure}
  14143. \section{Reveal Casts}
  14144. \label{sec:reveal-casts-Rany}
  14145. % TODO: define R'_6
  14146. In the \code{reveal-casts} pass we recommend compiling \code{project}
  14147. into an \code{if} expression that checks whether the value's tag
  14148. matches the target type; if it does, the value is converted to a value
  14149. of the target type by removing the tag; if it does not, the program
  14150. exits. To perform these actions we need a new primitive operation,
  14151. \code{tag-of-any}, and two new forms, \code{ValueOf} and \code{Exit}.
  14152. The \code{tag-of-any} operation retrieves the type tag from a tagged
  14153. value of type \code{Any}. The \code{ValueOf} form retrieves the
  14154. underlying value from a tagged value. The \code{ValueOf} form
  14155. includes the type for the underlying value which is used by the type
  14156. checker. Finally, the \code{Exit} form ends the execution of the
  14157. program.
  14158. If the target type of the projection is \code{Boolean} or
  14159. \code{Integer}, then \code{Project} can be translated as follows.
  14160. \begin{center}
  14161. \begin{minipage}{1.0\textwidth}
  14162. \begin{lstlisting}
  14163. (Project |$e$| |$\FType$|)
  14164. |$\Rightarrow$|
  14165. (Let |$\itm{tmp}$| |$e'$|
  14166. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$\itm{tmp}$|)))
  14167. (Int |$\itm{tagof}(\FType)$|)))
  14168. (ValueOf |$\itm{tmp}$| |$\FType$|)
  14169. (Exit)))
  14170. \end{lstlisting}
  14171. \end{minipage}
  14172. \end{center}
  14173. If the target type of the projection is a vector or function type,
  14174. then there is a bit more work to do. For vectors, check that the
  14175. length of the vector type matches the length of the vector (using the
  14176. \code{vector-length} primitive). For functions, check that the number
  14177. of parameters in the function type matches the function's arity (using
  14178. \code{procedure-arity}).
  14179. Regarding \code{inject}, we recommend compiling it to a slightly
  14180. lower-level primitive operation named \code{make-any}. This operation
  14181. takes a tag instead of a type.
  14182. \begin{center}
  14183. \begin{minipage}{1.0\textwidth}
  14184. \begin{lstlisting}
  14185. (Inject |$e$| |$\FType$|)
  14186. |$\Rightarrow$|
  14187. (Prim 'make-any (list |$e'$| (Int |$\itm{tagof}(\FType)$|)))
  14188. \end{lstlisting}
  14189. \end{minipage}
  14190. \end{center}
  14191. The type predicates (\code{boolean?}, etc.) can be translated into
  14192. uses of \code{tag-of-any} and \code{eq?} in a similar way as in the
  14193. translation of \code{Project}.
  14194. The \code{any-vector-ref} and \code{any-vector-set!} operations
  14195. combine the projection action with the vector operation. Also, the
  14196. read and write operations allow arbitrary expressions for the index so
  14197. the type checker for \LangAny{} (Figure~\ref{fig:type-check-Rany-part-1})
  14198. cannot guarantee that the index is within bounds. Thus, we insert code
  14199. to perform bounds checking at runtime. The translation for
  14200. \code{any-vector-ref} is as follows and the other two operations are
  14201. translated in a similar way.
  14202. \begin{lstlisting}
  14203. (Prim 'any-vector-ref (list |$e_1$| |$e_2$|))
  14204. |$\Rightarrow$|
  14205. (Let |$v$| |$e'_1$|
  14206. (Let |$i$| |$e'_2$|
  14207. (If (Prim 'eq? (list (Prim 'tag-of-any (list (Var |$v$|))) (Int 2)))
  14208. (If (Prim '< (list (Var |$i$|)
  14209. (Prim 'any-vector-length (list (Var |$v$|)))))
  14210. (Prim 'any-vector-ref (list (Var |$v$|) (Var |$i$|)))
  14211. (Exit))))
  14212. \end{lstlisting}
  14213. \section{Remove Complex Operands}
  14214. \label{sec:rco-Rany}
  14215. The \code{ValueOf} and \code{Exit} forms are both complex expressions.
  14216. The subexpression of \code{ValueOf} must be atomic.
  14217. \section{Explicate Control and \LangCAny{}}
  14218. \label{sec:explicate-Rany}
  14219. The output of \code{explicate\_control} is the \LangCAny{} language whose
  14220. syntax is defined in Figure~\ref{fig:c5-syntax}. The \code{ValueOf}
  14221. form that we added to \LangAny{} remains an expression and the \code{Exit}
  14222. expression becomes a $\Tail$. Also, note that the index argument of
  14223. \code{vector-ref} and \code{vector-set!} is an $\Atm$ instead
  14224. of an integer, as in \LangCVec{} (Figure~\ref{fig:c2-syntax}).
  14225. \begin{figure}[tp]
  14226. \fbox{
  14227. \begin{minipage}{0.96\textwidth}
  14228. \small
  14229. \[
  14230. \begin{array}{lcl}
  14231. \Exp &::= & \ldots
  14232. \MID \BINOP{\key{'any-vector-ref}}{\Atm}{\Atm} \\
  14233. &\MID& (\key{Prim}~\key{'any-vector-set!}\,(\key{list}\,\Atm\,\Atm\,\Atm))\\
  14234. &\MID& \VALUEOF{\Exp}{\FType} \\
  14235. \Stmt &::=& \gray{ \ASSIGN{\VAR{\Var}}{\Exp}
  14236. \MID \LP\key{Collect} \,\itm{int}\RP }\\
  14237. \Tail &::= & \gray{ \RETURN{\Exp} \MID \SEQ{\Stmt}{\Tail}
  14238. \MID \GOTO{\itm{label}} } \\
  14239. &\MID& \gray{ \IFSTMT{\BINOP{\itm{cmp}}{\Atm}{\Atm}}{\GOTO{\itm{label}}}{\GOTO{\itm{label}}} }\\
  14240. &\MID& \gray{ \TAILCALL{\Atm}{\Atm\ldots} }
  14241. \MID \LP\key{Exit}\RP \\
  14242. \Def &::=& \gray{ \DEF{\itm{label}}{\LP[\Var\key{:}\Type]\ldots\RP}{\Type}{\itm{info}}{\LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP} }\\
  14243. \LangCAnyM{} & ::= & \gray{ \PROGRAMDEFS{\itm{info}}{\LP\Def\ldots\RP} }
  14244. \end{array}
  14245. \]
  14246. \end{minipage}
  14247. }
  14248. \caption{The abstract syntax of \LangCAny{}, extending \LangCLam{} (Figure~\ref{fig:c4-syntax}).}
  14249. \label{fig:c5-syntax}
  14250. \end{figure}
  14251. \section{Select Instructions}
  14252. \label{sec:select-Rany}
  14253. In the \code{select\_instructions} pass we translate the primitive
  14254. operations on the \code{Any} type to x86 instructions that involve
  14255. manipulating the 3 tag bits of the tagged value.
  14256. \paragraph{Make-any}
  14257. We recommend compiling the \key{make-any} primitive as follows if the
  14258. tag is for \key{Integer} or \key{Boolean}. The \key{salq} instruction
  14259. shifts the destination to the left by the number of bits specified its
  14260. source argument (in this case $3$, the length of the tag) and it
  14261. preserves the sign of the integer. We use the \key{orq} instruction to
  14262. combine the tag and the value to form the tagged value. \\
  14263. \begin{lstlisting}
  14264. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  14265. |$\Rightarrow$|
  14266. movq |$e'$|, |\itm{lhs'}|
  14267. salq $3, |\itm{lhs'}|
  14268. orq $|$\itm{tag}$|, |\itm{lhs'}|
  14269. \end{lstlisting}
  14270. The instruction selection for vectors and procedures is different
  14271. because their is no need to shift them to the left. The rightmost 3
  14272. bits are already zeros as described at the beginning of this
  14273. chapter. So we just combine the value and the tag using \key{orq}. \\
  14274. \begin{lstlisting}
  14275. (Assign |\itm{lhs}| (Prim 'make-any (list |$e$| (Int |$\itm{tag}$|))))
  14276. |$\Rightarrow$|
  14277. movq |$e'$|, |\itm{lhs'}|
  14278. orq $|$\itm{tag}$|, |\itm{lhs'}|
  14279. \end{lstlisting}
  14280. \paragraph{Tag-of-any}
  14281. Recall that the \code{tag-of-any} operation extracts the type tag from
  14282. a value of type \code{Any}. The type tag is the bottom three bits, so
  14283. we obtain the tag by taking the bitwise-and of the value with $111$
  14284. ($7$ in decimal).
  14285. \begin{lstlisting}
  14286. (Assign |\itm{lhs}| (Prim 'tag-of-any (list |$e$|)))
  14287. |$\Rightarrow$|
  14288. movq |$e'$|, |\itm{lhs'}|
  14289. andq $7, |\itm{lhs'}|
  14290. \end{lstlisting}
  14291. \paragraph{ValueOf}
  14292. Like \key{make-any}, the instructions for \key{ValueOf} are different
  14293. depending on whether the type $T$ is a pointer (vector or procedure)
  14294. or not (Integer or Boolean). The following shows the instruction
  14295. selection for Integer and Boolean. We produce an untagged value by
  14296. shifting it to the right by 3 bits.
  14297. \begin{lstlisting}
  14298. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  14299. |$\Rightarrow$|
  14300. movq |$e'$|, |\itm{lhs'}|
  14301. sarq $3, |\itm{lhs'}|
  14302. \end{lstlisting}
  14303. %
  14304. In the case for vectors and procedures, there is no need to
  14305. shift. Instead we just need to zero-out the rightmost 3 bits. We
  14306. accomplish this by creating the bit pattern $\ldots 0111$ ($7$ in
  14307. decimal) and apply \code{bitwise-not} to obtain $\ldots 11111000$ (-8
  14308. in decimal) which we \code{movq} into the destination $\itm{lhs}$. We
  14309. then apply \code{andq} with the tagged value to get the desired
  14310. result. \\
  14311. \begin{lstlisting}
  14312. (Assign |\itm{lhs}| (ValueOf |$e$| |$T$|))
  14313. |$\Rightarrow$|
  14314. movq $|$-8$|, |\itm{lhs'}|
  14315. andq |$e'$|, |\itm{lhs'}|
  14316. \end{lstlisting}
  14317. %% \paragraph{Type Predicates} We leave it to the reader to
  14318. %% devise a sequence of instructions to implement the type predicates
  14319. %% \key{boolean?}, \key{integer?}, \key{vector?}, and \key{procedure?}.
  14320. \paragraph{Any-vector-length}
  14321. \begin{lstlisting}
  14322. (Assign |$\itm{lhs}$| (Prim 'any-vector-length (list |$a_1$|)))
  14323. |$\Longrightarrow$|
  14324. movq |$\neg 111$|, %r11
  14325. andq |$a_1'$|, %r11
  14326. movq 0(%r11), %r11
  14327. andq $126, %r11
  14328. sarq $1, %r11
  14329. movq %r11, |$\itm{lhs'}$|
  14330. \end{lstlisting}
  14331. \paragraph{Any-vector-ref}
  14332. The index may be an arbitrary atom so instead of computing the offset
  14333. at compile time, instructions need to be generated to compute the
  14334. offset at runtime as follows. Note the use of the new instruction
  14335. \code{imulq}.
  14336. \begin{center}
  14337. \begin{minipage}{0.96\textwidth}
  14338. \begin{lstlisting}
  14339. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$a_1$| |$a_2$|)))
  14340. |$\Longrightarrow$|
  14341. movq |$\neg 111$|, %r11
  14342. andq |$a_1'$|, %r11
  14343. movq |$a_2'$|, %rax
  14344. addq $1, %rax
  14345. imulq $8, %rax
  14346. addq %rax, %r11
  14347. movq 0(%r11) |$\itm{lhs'}$|
  14348. \end{lstlisting}
  14349. \end{minipage}
  14350. \end{center}
  14351. \paragraph{Any-vector-set!}
  14352. The code generation for \code{any-vector-set!} is similar to the other
  14353. \code{any-vector} operations.
  14354. \section{Register Allocation for \LangAny{}}
  14355. \label{sec:register-allocation-Rany}
  14356. \index{subject}{register allocation}
  14357. There is an interesting interaction between tagged values and garbage
  14358. collection that has an impact on register allocation. A variable of
  14359. type \code{Any} might refer to a vector and therefore it might be a
  14360. root that needs to be inspected and copied during garbage
  14361. collection. Thus, we need to treat variables of type \code{Any} in a
  14362. similar way to variables of type \code{Vector} for purposes of
  14363. register allocation. In particular,
  14364. \begin{itemize}
  14365. \item If a variable of type \code{Any} is live during a function call,
  14366. then it must be spilled. This can be accomplished by changing
  14367. \code{build\_interference} to mark all variables of type \code{Any}
  14368. that are live after a \code{callq} as interfering with all the
  14369. registers.
  14370. \item If a variable of type \code{Any} is spilled, it must be spilled
  14371. to the root stack instead of the normal procedure call stack.
  14372. \end{itemize}
  14373. Another concern regarding the root stack is that the garbage collector
  14374. needs to differentiate between (1) plain old pointers to tuples, (2) a
  14375. tagged value that points to a tuple, and (3) a tagged value that is
  14376. not a tuple. We enable this differentiation by choosing not to use the
  14377. tag $000$ in the $\itm{tagof}$ function. Instead, that bit pattern is
  14378. reserved for identifying plain old pointers to tuples. That way, if
  14379. one of the first three bits is set, then we have a tagged value and
  14380. inspecting the tag can differentiation between vectors ($010$) and the
  14381. other kinds of values.
  14382. \begin{exercise}\normalfont
  14383. Expand your compiler to handle \LangAny{} as discussed in the last few
  14384. sections. Create 5 new programs that use the \code{Any} type and the
  14385. new operations (\code{inject}, \code{project}, \code{boolean?},
  14386. etc.). Test your compiler on these new programs and all of your
  14387. previously created test programs.
  14388. \end{exercise}
  14389. \begin{exercise}\normalfont
  14390. Expand your compiler to handle \LangDyn{} as outlined in this chapter.
  14391. Create tests for \LangDyn{} by adapting ten of your previous test programs
  14392. by removing type annotations. Add 5 more tests programs that
  14393. specifically rely on the language being dynamically typed. That is,
  14394. they should not be legal programs in a statically typed language, but
  14395. nevertheless, they should be valid \LangDyn{} programs that run to
  14396. completion without error.
  14397. \end{exercise}
  14398. \begin{figure}[p]
  14399. \begin{tikzpicture}[baseline=(current bounding box.center)]
  14400. \node (Rfun) at (0,4) {\large \LangDyn{}};
  14401. \node (Rfun-2) at (3,4) {\large \LangDyn{}};
  14402. \node (Rfun-3) at (6,4) {\large \LangDyn{}};
  14403. \node (Rfun-4) at (9,4) {\large \LangDynFunRef{}};
  14404. \node (Rfun-5) at (9,2) {\large \LangAnyFunRef{}};
  14405. \node (Rfun-6) at (12,2) {\large \LangAnyFunRef{}};
  14406. \node (Rfun-7) at (12,0) {\large \LangAnyFunRef{}};
  14407. \node (F1-2) at (9,0) {\large \LangAnyFunRef{}};
  14408. \node (F1-3) at (6,0) {\large \LangAnyFunRef{}};
  14409. \node (F1-4) at (3,0) {\large \LangAnyAlloc{}};
  14410. \node (F1-5) at (0,0) {\large \LangAnyAlloc{}};
  14411. \node (C3-2) at (3,-2) {\large \LangCAny{}};
  14412. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  14413. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  14414. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  14415. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  14416. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  14417. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  14418. \path[->,bend left=15] (Rfun) edge [above] node
  14419. {\ttfamily\footnotesize shrink} (Rfun-2);
  14420. \path[->,bend left=15] (Rfun-2) edge [above] node
  14421. {\ttfamily\footnotesize uniquify} (Rfun-3);
  14422. \path[->,bend left=15] (Rfun-3) edge [above] node
  14423. {\ttfamily\footnotesize reveal\_functions} (Rfun-4);
  14424. \path[->,bend right=15] (Rfun-4) edge [left] node
  14425. {\ttfamily\footnotesize cast\_insert} (Rfun-5);
  14426. \path[->,bend left=15] (Rfun-5) edge [above] node
  14427. {\ttfamily\footnotesize check\_bounds} (Rfun-6);
  14428. \path[->,bend left=15] (Rfun-6) edge [left] node
  14429. {\ttfamily\footnotesize reveal\_casts} (Rfun-7);
  14430. \path[->,bend left=15] (Rfun-7) edge [below] node
  14431. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  14432. \path[->,bend right=15] (F1-2) edge [above] node
  14433. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  14434. \path[->,bend right=15] (F1-3) edge [above] node
  14435. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  14436. \path[->,bend right=15] (F1-4) edge [above] node
  14437. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  14438. \path[->,bend right=15] (F1-5) edge [right] node
  14439. {\ttfamily\footnotesize explicate\_control} (C3-2);
  14440. \path[->,bend left=15] (C3-2) edge [left] node
  14441. {\ttfamily\footnotesize select\_instr.} (x86-2);
  14442. \path[->,bend right=15] (x86-2) edge [left] node
  14443. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  14444. \path[->,bend right=15] (x86-2-1) edge [below] node
  14445. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  14446. \path[->,bend right=15] (x86-2-2) edge [left] node
  14447. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  14448. \path[->,bend left=15] (x86-3) edge [above] node
  14449. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  14450. \path[->,bend left=15] (x86-4) edge [right] node
  14451. {\ttfamily\footnotesize print\_x86} (x86-5);
  14452. \end{tikzpicture}
  14453. \caption{Diagram of the passes for \LangDyn{}, a dynamically typed language.}
  14454. \label{fig:Rdyn-passes}
  14455. \end{figure}
  14456. Figure~\ref{fig:Rdyn-passes} provides an overview of all the passes needed
  14457. for the compilation of \LangDyn{}.
  14458. % Further Reading
  14459. \fi % racketEd
  14460. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14461. {\if\edition\pythonEd
  14462. \chapter{Objects}
  14463. \label{ch:Robject}
  14464. \index{subject}{objects}
  14465. \index{subject}{classes}
  14466. \fi}
  14467. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  14468. \chapter{Gradual Typing}
  14469. \label{ch:Rgrad}
  14470. \index{subject}{gradual typing}
  14471. \if\edition\racketEd
  14472. This chapter studies a language, \LangGrad{}, in which the programmer
  14473. can choose between static and dynamic type checking in different parts
  14474. of a program, thereby mixing the statically typed \LangLoop{} language
  14475. with the dynamically typed \LangDyn{}. There are several approaches to
  14476. mixing static and dynamic typing, including multi-language
  14477. integration~\citep{Tobin-Hochstadt:2006fk,Matthews:2007zr} and hybrid
  14478. type checking~\citep{Flanagan:2006mn,Gronski:2006uq}. In this chapter
  14479. we focus on \emph{gradual typing}\index{subject}{gradual typing}, in which the
  14480. programmer controls the amount of static versus dynamic checking by
  14481. adding or removing type annotations on parameters and
  14482. variables~\citep{Anderson:2002kd,Siek:2006bh}.
  14483. %
  14484. The concrete syntax of \LangGrad{} is defined in
  14485. Figure~\ref{fig:Rgrad-concrete-syntax} and its abstract syntax is defined
  14486. in Figure~\ref{fig:Rgrad-syntax}. The main syntactic difference between
  14487. \LangLoop{} and \LangGrad{} is the additional \itm{param} and \itm{ret}
  14488. non-terminals that make type annotations optional. The return types
  14489. are not optional in the abstract syntax; the parser fills in
  14490. \code{Any} when the return type is not specified in the concrete
  14491. syntax.
  14492. \begin{figure}[tp]
  14493. \centering
  14494. \fbox{
  14495. \begin{minipage}{0.96\textwidth}
  14496. \small
  14497. \[
  14498. \begin{array}{lcl}
  14499. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  14500. \itm{ret} &::=& \epsilon \MID \key{:} \Type \\
  14501. \Exp &::=& \gray{ \Int \MID \CREAD{} \MID \CNEG{\Exp}
  14502. \MID \CADD{\Exp}{\Exp} \MID \CSUB{\Exp}{\Exp} } \\
  14503. &\MID& \gray{ \Var \MID \CLET{\Var}{\Exp}{\Exp} }\\
  14504. &\MID& \gray{\key{\#t} \MID \key{\#f}
  14505. \MID (\key{and}\;\Exp\;\Exp)
  14506. \MID (\key{or}\;\Exp\;\Exp)
  14507. \MID (\key{not}\;\Exp) } \\
  14508. &\MID& \gray{ (\key{eq?}\;\Exp\;\Exp) \MID \CIF{\Exp}{\Exp}{\Exp} } \\
  14509. &\MID& \gray{ (\key{vector}\;\Exp\ldots) \MID
  14510. (\key{vector-ref}\;\Exp\;\Int)} \\
  14511. &\MID& \gray{(\key{vector-set!}\;\Exp\;\Int\;\Exp)\MID (\key{void})
  14512. \MID (\Exp \; \Exp\ldots) } \\
  14513. &\MID& \gray{ \LP \key{procedure-arity}~\Exp\RP }
  14514. \MID \CGLAMBDA{\LP\itm{param}\ldots\RP}{\itm{ret}}{\Exp} \\
  14515. &\MID& \gray{ \CSETBANG{\Var}{\Exp}
  14516. \MID \CBEGIN{\Exp\ldots}{\Exp}
  14517. \MID \CWHILE{\Exp}{\Exp} } \\
  14518. \Def &::=& \CGDEF{\Var}{\itm{param}\ldots}{\itm{ret}}{\Exp} \\
  14519. \LangGradM{} &::=& \gray{\Def\ldots \; \Exp}
  14520. \end{array}
  14521. \]
  14522. \end{minipage}
  14523. }
  14524. \caption{The concrete syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  14525. \label{fig:Rgrad-concrete-syntax}
  14526. \end{figure}
  14527. \begin{figure}[tp]
  14528. \centering
  14529. \fbox{
  14530. \begin{minipage}{0.96\textwidth}
  14531. \small
  14532. \[
  14533. \begin{array}{lcl}
  14534. \itm{param} &::=& \Var \MID \LS\Var \key{:} \Type\RS \\
  14535. \Exp &::=& \gray{ \INT{\Int} \VAR{\Var} \MID \LET{\Var}{\Exp}{\Exp} } \\
  14536. &\MID& \gray{ \PRIM{\itm{op}}{\Exp\ldots} }\\
  14537. &\MID& \gray{ \BOOL{\itm{bool}}
  14538. \MID \IF{\Exp}{\Exp}{\Exp} } \\
  14539. &\MID& \gray{ \VOID{} \MID \LP\key{HasType}~\Exp~\Type \RP
  14540. \MID \APPLY{\Exp}{\Exp\ldots} }\\
  14541. &\MID& \LAMBDA{\LP\itm{param}\ldots\RP}{\Type}{\Exp} \\
  14542. &\MID& \gray{ \SETBANG{\Var}{\Exp} \MID \BEGIN{\LP\Exp\ldots\RP}{\Exp} } \\
  14543. &\MID& \gray{ \WHILE{\Exp}{\Exp} } \\
  14544. \Def &::=& \FUNDEF{\Var}{\LP\itm{param}\ldots\RP}{\Type}{\code{'()}}{\Exp} \\
  14545. \LangGradM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  14546. \end{array}
  14547. \]
  14548. \end{minipage}
  14549. }
  14550. \caption{The abstract syntax of \LangGrad{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-syntax}).}
  14551. \label{fig:Rgrad-syntax}
  14552. \end{figure}
  14553. Both the type checker and the interpreter for \LangGrad{} require some
  14554. interesting changes to enable gradual typing, which we discuss in the
  14555. next two sections in the context of the \code{map-vec} example from
  14556. Chapter~\ref{ch:Rfun}. In Figure~\ref{fig:gradual-map-vec} we
  14557. revised the \code{map-vec} example, omitting the type annotations from
  14558. the \code{add1} function.
  14559. \begin{figure}[btp]
  14560. % gradual_test_9.rkt
  14561. \begin{lstlisting}
  14562. (define (map-vec [f : (Integer -> Integer)]
  14563. [v : (Vector Integer Integer)])
  14564. : (Vector Integer Integer)
  14565. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14566. (define (add1 x) (+ x 1))
  14567. (vector-ref (map-vec add1 (vector 0 41)) 1)
  14568. \end{lstlisting}
  14569. \caption{A partially-typed version of the \code{map-vec} example.}
  14570. \label{fig:gradual-map-vec}
  14571. \end{figure}
  14572. \section{Type Checking \LangGrad{} and \LangCast{}}
  14573. \label{sec:gradual-type-check}
  14574. The type checker for \LangGrad{} uses the \code{Any} type for missing
  14575. parameter and return types. For example, the \code{x} parameter of
  14576. \code{add1} in Figure~\ref{fig:gradual-map-vec} is given the type
  14577. \code{Any} and the return type of \code{add1} is \code{Any}. Next
  14578. consider the \code{+} operator inside \code{add1}. It expects both
  14579. arguments to have type \code{Integer}, but its first argument \code{x}
  14580. has type \code{Any}. In a gradually typed language, such differences
  14581. are allowed so long as the types are \emph{consistent}, that is, they
  14582. are equal except in places where there is an \code{Any} type. The type
  14583. \code{Any} is consistent with every other type.
  14584. Figure~\ref{fig:consistent} defines the \code{consistent?} predicate.
  14585. \begin{figure}[tbp]
  14586. \begin{lstlisting}
  14587. (define/public (consistent? t1 t2)
  14588. (match* (t1 t2)
  14589. [('Integer 'Integer) #t]
  14590. [('Boolean 'Boolean) #t]
  14591. [('Void 'Void) #t]
  14592. [('Any t2) #t]
  14593. [(t1 'Any) #t]
  14594. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  14595. (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))]
  14596. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  14597. (and (for/and ([t1 ts1] [t2 ts2]) (consistent? t1 t2))
  14598. (consistent? rt1 rt2))]
  14599. [(other wise) #f]))
  14600. \end{lstlisting}
  14601. \caption{The consistency predicate on types.}
  14602. \label{fig:consistent}
  14603. \end{figure}
  14604. Returning to the \code{map-vec} example of
  14605. Figure~\ref{fig:gradual-map-vec}, the \code{add1} function has type
  14606. \code{(Any -> Any)} but parameter \code{f} of \code{map-vec} has type
  14607. \code{(Integer -> Integer)}. The type checker for \LangGrad{} allows this
  14608. because the two types are consistent. In particular, \code{->} is
  14609. equal to \code{->} and because \code{Any} is consistent with
  14610. \code{Integer}.
  14611. Next consider a program with an error, such as applying the
  14612. \code{map-vec} to a function that sometimes returns a Boolean, as
  14613. shown in Figure~\ref{fig:map-vec-maybe-add1}. The type checker for
  14614. \LangGrad{} accepts this program because the type of \code{maybe-add1} is
  14615. consistent with the type of parameter \code{f} of \code{map-vec}, that
  14616. is, \code{(Any -> Any)} is consistent with \code{(Integer ->
  14617. Integer)}. One might say that a gradual type checker is optimistic
  14618. in that it accepts programs that might execute without a runtime type
  14619. error.
  14620. %
  14621. Unfortunately, running this program with input \code{1} triggers an
  14622. error when the \code{maybe-add1} function returns \code{\#t}. \LangGrad{}
  14623. performs checking at runtime to ensure the integrity of the static
  14624. types, such as the \code{(Integer -> Integer)} annotation on parameter
  14625. \code{f} of \code{map-vec}. This runtime checking is carried out by a
  14626. new \code{Cast} form that is inserted by the type checker. Thus, the
  14627. output of the type checker is a program in the \LangCast{} language, which
  14628. adds \code{Cast} to \LangLoop{}, as shown in
  14629. Figure~\ref{fig:Rgrad-prime-syntax}.
  14630. \begin{figure}[tp]
  14631. \centering
  14632. \fbox{
  14633. \begin{minipage}{0.96\textwidth}
  14634. \small
  14635. \[
  14636. \begin{array}{lcl}
  14637. \Exp &::=& \ldots \MID \CAST{\Exp}{\Type}{\Type} \\
  14638. \LangCastM{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  14639. \end{array}
  14640. \]
  14641. \end{minipage}
  14642. }
  14643. \caption{The abstract syntax of \LangCast{}, extending \LangLoop{} (Figure~\ref{fig:Lwhile-syntax}).}
  14644. \label{fig:Rgrad-prime-syntax}
  14645. \end{figure}
  14646. \begin{figure}[tbp]
  14647. \begin{lstlisting}
  14648. (define (map-vec [f : (Integer -> Integer)]
  14649. [v : (Vector Integer Integer)])
  14650. : (Vector Integer Integer)
  14651. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14652. (define (add1 x) (+ x 1))
  14653. (define (true) #t)
  14654. (define (maybe-add1 x) (if (eq? 0 (read)) (add1 x) (true)))
  14655. (vector-ref (map-vec maybe-add1 (vector 0 41)) 0)
  14656. \end{lstlisting}
  14657. \caption{A variant of the \code{map-vec} example with an error.}
  14658. \label{fig:map-vec-maybe-add1}
  14659. \end{figure}
  14660. Figure~\ref{fig:map-vec-cast} shows the output of the type checker for
  14661. \code{map-vec} and \code{maybe-add1}. The idea is that \code{Cast} is
  14662. inserted every time the type checker sees two types that are
  14663. consistent but not equal. In the \code{add1} function, \code{x} is
  14664. cast to \code{Integer} and the result of the \code{+} is cast to
  14665. \code{Any}. In the call to \code{map-vec}, the \code{add1} argument
  14666. is cast from \code{(Any -> Any)} to \code{(Integer -> Integer)}.
  14667. \begin{figure}[btp]
  14668. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  14669. (define (map-vec [f : (Integer -> Integer)] [v : (Vector Integer Integer)])
  14670. : (Vector Integer Integer)
  14671. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  14672. (define (add1 [x : Any]) : Any
  14673. (cast (+ (cast x Any Integer) 1) Integer Any))
  14674. (define (true) : Any (cast #t Boolean Any))
  14675. (define (maybe-add1 [x : Any]) : Any
  14676. (if (eq? 0 (read)) (add1 x) (true)))
  14677. (vector-ref (map-vec (cast maybe-add1 (Any -> Any) (Integer -> Integer))
  14678. (vector 0 41)) 0)
  14679. \end{lstlisting}
  14680. \caption{Output of type checking \code{map-vec}
  14681. and \code{maybe-add1}.}
  14682. \label{fig:map-vec-cast}
  14683. \end{figure}
  14684. The type checker for \LangGrad{} is defined in
  14685. Figures~\ref{fig:type-check-Rgradual-1}, \ref{fig:type-check-Rgradual-2},
  14686. and \ref{fig:type-check-Rgradual-3}.
  14687. \begin{figure}[tbp]
  14688. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14689. (define type-check-gradual_class
  14690. (class type-check-Rwhile_class
  14691. (super-new)
  14692. (inherit operator-types type-predicates)
  14693. (define/override (type-check-exp env)
  14694. (lambda (e)
  14695. (define recur (type-check-exp env))
  14696. (match e
  14697. [(Prim 'vector-length (list e1))
  14698. (define-values (e1^ t) (recur e1))
  14699. (match t
  14700. [`(Vector ,ts ...)
  14701. (values (Prim 'vector-length (list e1^)) 'Integer)]
  14702. ['Any (values (Prim 'any-vector-length (list e1^)) 'Integer)])]
  14703. [(Prim 'vector-ref (list e1 e2))
  14704. (define-values (e1^ t1) (recur e1))
  14705. (define-values (e2^ t2) (recur e2))
  14706. (check-consistent? t2 'Integer e)
  14707. (match t1
  14708. [`(Vector ,ts ...)
  14709. (match e2^
  14710. [(Int i)
  14711. (unless (and (0 . <= . i) (i . < . (length ts)))
  14712. (error 'type-check "invalid index ~a in ~a" i e))
  14713. (values (Prim 'vector-ref (list e1^ (Int i))) (list-ref ts i))]
  14714. [else (define e1^^ (make-cast e1^ t1 'Any))
  14715. (define e2^^ (make-cast e2^ t2 'Integer))
  14716. (values (Prim 'any-vector-ref (list e1^^ e2^^)) 'Any)])]
  14717. ['Any
  14718. (define e2^^ (make-cast e2^ t2 'Integer))
  14719. (values (Prim 'any-vector-ref (list e1^ e2^^)) 'Any)]
  14720. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  14721. [(Prim 'vector-set! (list e1 e2 e3) )
  14722. (define-values (e1^ t1) (recur e1))
  14723. (define-values (e2^ t2) (recur e2))
  14724. (define-values (e3^ t3) (recur e3))
  14725. (check-consistent? t2 'Integer e)
  14726. (match t1
  14727. [`(Vector ,ts ...)
  14728. (match e2^
  14729. [(Int i)
  14730. (unless (and (0 . <= . i) (i . < . (length ts)))
  14731. (error 'type-check "invalid index ~a in ~a" i e))
  14732. (check-consistent? (list-ref ts i) t3 e)
  14733. (define e3^^ (make-cast e3^ t3 (list-ref ts i)))
  14734. (values (Prim 'vector-set! (list e1^ (Int i) e3^^)) 'Void)]
  14735. [else
  14736. (define e1^^ (make-cast e1^ t1 'Any))
  14737. (define e2^^ (make-cast e2^ t2 'Integer))
  14738. (define e3^^ (make-cast e3^ t3 'Any))
  14739. (values (Prim 'any-vector-set! (list e1^^ e2^^ e3^^)) 'Void)])]
  14740. ['Any
  14741. (define e2^^ (make-cast e2^ t2 'Integer))
  14742. (define e3^^ (make-cast e3^ t3 'Any))
  14743. (values (Prim 'any-vector-set! (list e1^ e2^^ e3^^)) 'Void)]
  14744. [else (error 'type-check "expected vector not ~a\nin ~v" t1 e)])]
  14745. \end{lstlisting}
  14746. \caption{Type checker for the \LangGrad{} language, part 1.}
  14747. \label{fig:type-check-Rgradual-1}
  14748. \end{figure}
  14749. \begin{figure}[tbp]
  14750. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14751. [(Prim 'eq? (list e1 e2))
  14752. (define-values (e1^ t1) (recur e1))
  14753. (define-values (e2^ t2) (recur e2))
  14754. (check-consistent? t1 t2 e)
  14755. (define T (meet t1 t2))
  14756. (values (Prim 'eq? (list (make-cast e1^ t1 T) (make-cast e2^ t2 T)))
  14757. 'Boolean)]
  14758. [(Prim 'not (list e1))
  14759. (define-values (e1^ t1) (recur e1))
  14760. (match t1
  14761. ['Any
  14762. (recur (If (Prim 'eq? (list e1 (Inject (Bool #f) 'Boolean)))
  14763. (Bool #t) (Bool #f)))]
  14764. [else
  14765. (define-values (t-ret new-es^)
  14766. (type-check-op 'not (list t1) (list e1^) e))
  14767. (values (Prim 'not new-es^) t-ret)])]
  14768. [(Prim 'and (list e1 e2))
  14769. (recur (If e1 e2 (Bool #f)))]
  14770. [(Prim 'or (list e1 e2))
  14771. (define tmp (gensym 'tmp))
  14772. (recur (Let tmp e1 (If (Var tmp) (Var tmp) e2)))]
  14773. [(Prim op es)
  14774. #:when (not (set-member? explicit-prim-ops op))
  14775. (define-values (new-es ts)
  14776. (for/lists (exprs types) ([e es])
  14777. (recur e)))
  14778. (define-values (t-ret new-es^) (type-check-op op ts new-es e))
  14779. (values (Prim op new-es^) t-ret)]
  14780. [(If e1 e2 e3)
  14781. (define-values (e1^ T1) (recur e1))
  14782. (define-values (e2^ T2) (recur e2))
  14783. (define-values (e3^ T3) (recur e3))
  14784. (check-consistent? T2 T3 e)
  14785. (match T1
  14786. ['Boolean
  14787. (define Tif (join T2 T3))
  14788. (values (If e1^ (make-cast e2^ T2 Tif)
  14789. (make-cast e3^ T3 Tif)) Tif)]
  14790. ['Any
  14791. (define Tif (meet T2 T3))
  14792. (values (If (Prim 'eq? (list e1^ (Inject (Bool #f) 'Boolean)))
  14793. (make-cast e3^ T3 Tif) (make-cast e2^ T2 Tif))
  14794. Tif)]
  14795. [else (error 'type-check "expected Boolean not ~a\nin ~v" T1 e)])]
  14796. [(HasType e1 T)
  14797. (define-values (e1^ T1) (recur e1))
  14798. (check-consistent? T1 T)
  14799. (values (make-cast e1^ T1 T) T)]
  14800. [(SetBang x e1)
  14801. (define-values (e1^ T1) (recur e1))
  14802. (define varT (dict-ref env x))
  14803. (check-consistent? T1 varT e)
  14804. (values (SetBang x (make-cast e1^ T1 varT)) 'Void)]
  14805. [(WhileLoop e1 e2)
  14806. (define-values (e1^ T1) (recur e1))
  14807. (check-consistent? T1 'Boolean e)
  14808. (define-values (e2^ T2) ((type-check-exp env) e2))
  14809. (values (WhileLoop (make-cast e1^ T1 'Boolean) e2^) 'Void)]
  14810. \end{lstlisting}
  14811. \caption{Type checker for the \LangGrad{} language, part 2.}
  14812. \label{fig:type-check-Rgradual-2}
  14813. \end{figure}
  14814. \begin{figure}[tbp]
  14815. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14816. [(Apply e1 e2s)
  14817. (define-values (e1^ T1) (recur e1))
  14818. (define-values (e2s^ T2s) (for/lists (e* ty*) ([e2 e2s]) (recur e2)))
  14819. (match T1
  14820. [`(,T1ps ... -> ,T1rt)
  14821. (for ([T2 T2s] [Tp T1ps])
  14822. (check-consistent? T2 Tp e))
  14823. (define e2s^^ (for/list ([e2 e2s^] [src T2s] [tgt T1ps])
  14824. (make-cast e2 src tgt)))
  14825. (values (Apply e1^ e2s^^) T1rt)]
  14826. [`Any
  14827. (define e1^^ (make-cast e1^ 'Any
  14828. `(,@(for/list ([e e2s]) 'Any) -> Any)))
  14829. (define e2s^^ (for/list ([e2 e2s^] [src T2s])
  14830. (make-cast e2 src 'Any)))
  14831. (values (Apply e1^^ e2s^^) 'Any)]
  14832. [else (error 'type-check "expected function not ~a\nin ~v" T1 e)])]
  14833. [(Lambda params Tr e1)
  14834. (define-values (xs Ts) (for/lists (l1 l2) ([p params])
  14835. (match p
  14836. [`[,x : ,T] (values x T)]
  14837. [(? symbol? x) (values x 'Any)])))
  14838. (define-values (e1^ T1)
  14839. ((type-check-exp (append (map cons xs Ts) env)) e1))
  14840. (check-consistent? Tr T1 e)
  14841. (values (Lambda (for/list ([x xs] [T Ts]) `[,x : ,T]) Tr
  14842. (make-cast e1^ T1 Tr)) `(,@Ts -> ,Tr))]
  14843. [else ((super type-check-exp env) e)]
  14844. )))
  14845. \end{lstlisting}
  14846. \caption{Type checker for the \LangGrad{} language, part 3.}
  14847. \label{fig:type-check-Rgradual-3}
  14848. \end{figure}
  14849. \begin{figure}[tbp]
  14850. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  14851. (define/public (join t1 t2)
  14852. (match* (t1 t2)
  14853. [('Integer 'Integer) 'Integer]
  14854. [('Boolean 'Boolean) 'Boolean]
  14855. [('Void 'Void) 'Void]
  14856. [('Any t2) t2]
  14857. [(t1 'Any) t1]
  14858. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  14859. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2)))]
  14860. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  14861. `(,@(for/list ([t1 ts1] [t2 ts2]) (join t1 t2))
  14862. -> ,(join rt1 rt2))]))
  14863. (define/public (meet t1 t2)
  14864. (match* (t1 t2)
  14865. [('Integer 'Integer) 'Integer]
  14866. [('Boolean 'Boolean) 'Boolean]
  14867. [('Void 'Void) 'Void]
  14868. [('Any t2) 'Any]
  14869. [(t1 'Any) 'Any]
  14870. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  14871. `(Vector ,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2)))]
  14872. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  14873. `(,@(for/list ([t1 ts1] [t2 ts2]) (meet t1 t2))
  14874. -> ,(meet rt1 rt2))]))
  14875. (define/public (make-cast e src tgt)
  14876. (cond [(equal? src tgt) e] [else (Cast e src tgt)]))
  14877. (define/public (check-consistent? t1 t2 e)
  14878. (unless (consistent? t1 t2)
  14879. (error 'type-check "~a is inconsistent with ~a\nin ~v" t1 t2 e)))
  14880. (define/override (type-check-op op arg-types args e)
  14881. (match (dict-ref (operator-types) op)
  14882. [`(,param-types . ,return-type)
  14883. (for ([at arg-types] [pt param-types])
  14884. (check-consistent? at pt e))
  14885. (values return-type
  14886. (for/list ([e args] [s arg-types] [t param-types])
  14887. (make-cast e s t)))]
  14888. [else (error 'type-check-op "unrecognized ~a" op)]))
  14889. (define explicit-prim-ops
  14890. (set-union
  14891. (type-predicates)
  14892. (set 'procedure-arity 'eq?
  14893. 'vector 'vector-length 'vector-ref 'vector-set!
  14894. 'any-vector-length 'any-vector-ref 'any-vector-set!)))
  14895. (define/override (fun-def-type d)
  14896. (match d
  14897. [(Def f params rt info body)
  14898. (define ps
  14899. (for/list ([p params])
  14900. (match p
  14901. [`[,x : ,T] T]
  14902. [(? symbol?) 'Any]
  14903. [else (error 'fun-def-type "unmatched parameter ~a" p)])))
  14904. `(,@ps -> ,rt)]
  14905. [else (error 'fun-def-type "ill-formed function definition in ~a" d)]))
  14906. \end{lstlisting}
  14907. \caption{Auxiliary functions for type checking \LangGrad{}.}
  14908. \label{fig:type-check-Rgradual-aux}
  14909. \end{figure}
  14910. \clearpage
  14911. \section{Interpreting \LangCast{}}
  14912. \label{sec:interp-casts}
  14913. The runtime behavior of first-order casts is straightforward, that is,
  14914. casts involving simple types such as \code{Integer} and
  14915. \code{Boolean}. For example, a cast from \code{Integer} to \code{Any}
  14916. can be accomplished with the \code{Inject} operator of \LangAny{}, which
  14917. puts the integer into a tagged value
  14918. (Figure~\ref{fig:interp-Rany}). Similarly, a cast from \code{Any} to
  14919. \code{Integer} is accomplished with the \code{Project} operator, that
  14920. is, by checking the value's tag and either retrieving the underlying
  14921. integer or signaling an error if it the tag is not the one for
  14922. integers (Figure~\ref{fig:apply-project}).
  14923. %
  14924. Things get more interesting for higher-order casts, that is, casts
  14925. involving function or vector types.
  14926. Consider the cast of the function \code{maybe-add1} from \code{(Any ->
  14927. Any)} to \code{(Integer -> Integer)}. When a function flows through
  14928. this cast at runtime, we can't know in general whether the function
  14929. will always return an integer.\footnote{Predicting the return value of
  14930. a function is equivalent to the halting problem, which is
  14931. undecidable.} The \LangCast{} interpreter therefore delays the checking
  14932. of the cast until the function is applied. This is accomplished by
  14933. wrapping \code{maybe-add1} in a new function that casts its parameter
  14934. from \code{Integer} to \code{Any}, applies \code{maybe-add1}, and then
  14935. casts the return value from \code{Any} to \code{Integer}.
  14936. Turning our attention to casts involving vector types, we consider the
  14937. example in Figure~\ref{fig:map-vec-bang} that defines a
  14938. partially-typed version of \code{map-vec} whose parameter \code{v} has
  14939. type \code{(Vector Any Any)} and that updates \code{v} in place
  14940. instead of returning a new vector. So we name this function
  14941. \code{map-vec!}. We apply \code{map-vec!} to a vector of integers, so
  14942. the type checker inserts a cast from \code{(Vector Integer Integer)}
  14943. to \code{(Vector Any Any)}. A naive way for the \LangCast{} interpreter to
  14944. cast between vector types would be a build a new vector whose elements
  14945. are the result of casting each of the original elements to the
  14946. appropriate target type. However, this approach is only valid for
  14947. immutable vectors; and our vectors are mutable. In the example of
  14948. Figure~\ref{fig:map-vec-bang}, if the cast created a new vector, then
  14949. the updates inside of \code{map-vec!} would happen to the new vector
  14950. and not the original one.
  14951. \begin{figure}[tbp]
  14952. % gradual_test_11.rkt
  14953. \begin{lstlisting}
  14954. (define (map-vec! [f : (Any -> Any)]
  14955. [v : (Vector Any Any)]) : Void
  14956. (begin
  14957. (vector-set! v 0 (f (vector-ref v 0)))
  14958. (vector-set! v 1 (f (vector-ref v 1)))))
  14959. (define (add1 x) (+ x 1))
  14960. (let ([v (vector 0 41)])
  14961. (begin (map-vec! add1 v) (vector-ref v 1)))
  14962. \end{lstlisting}
  14963. \caption{An example involving casts on vectors.}
  14964. \label{fig:map-vec-bang}
  14965. \end{figure}
  14966. Instead the interpreter needs to create a new kind of value, a
  14967. \emph{vector proxy}, that intercepts every vector operation. On a
  14968. read, the proxy reads from the underlying vector and then applies a
  14969. cast to the resulting value. On a write, the proxy casts the argument
  14970. value and then performs the write to the underlying vector. For the
  14971. first \code{(vector-ref v 0)} in \code{map-vec!}, the proxy casts
  14972. \code{0} from \code{Integer} to \code{Any}. For the first
  14973. \code{vector-set!}, the proxy casts a tagged \code{1} from \code{Any}
  14974. to \code{Integer}.
  14975. The final category of cast that we need to consider are casts between
  14976. the \code{Any} type and either a function or a vector
  14977. type. Figure~\ref{fig:map-vec-any} shows a variant of \code{map-vec!}
  14978. in which parameter \code{v} does not have a type annotation, so it is
  14979. given type \code{Any}. In the call to \code{map-vec!}, the vector has
  14980. type \code{(Vector Integer Integer)} so the type checker inserts a
  14981. cast from \code{(Vector Integer Integer)} to \code{Any}. A first
  14982. thought is to use \code{Inject}, but that doesn't work because
  14983. \code{(Vector Integer Integer)} is not a flat type. Instead, we must
  14984. first cast to \code{(Vector Any Any)} (which is flat) and then inject
  14985. to \code{Any}.
  14986. \begin{figure}[tbp]
  14987. \begin{lstlisting}
  14988. (define (map-vec! [f : (Any -> Any)] v) : Void
  14989. (begin
  14990. (vector-set! v 0 (f (vector-ref v 0)))
  14991. (vector-set! v 1 (f (vector-ref v 1)))))
  14992. (define (add1 x) (+ x 1))
  14993. (let ([v (vector 0 41)])
  14994. (begin (map-vec! add1 v) (vector-ref v 1)))
  14995. \end{lstlisting}
  14996. \caption{Casting a vector to \code{Any}.}
  14997. \label{fig:map-vec-any}
  14998. \end{figure}
  14999. The \LangCast{} interpreter uses an auxiliary function named
  15000. \code{apply-cast} to cast a value from a source type to a target type,
  15001. shown in Figure~\ref{fig:apply-cast}. You'll find that it handles all
  15002. of the kinds of casts that we've discussed in this section.
  15003. \begin{figure}[tbp]
  15004. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15005. (define/public (apply-cast v s t)
  15006. (match* (s t)
  15007. [(t1 t2) #:when (equal? t1 t2) v]
  15008. [('Any t2)
  15009. (match t2
  15010. [`(,ts ... -> ,rt)
  15011. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  15012. (define v^ (apply-project v any->any))
  15013. (apply-cast v^ any->any `(,@ts -> ,rt))]
  15014. [`(Vector ,ts ...)
  15015. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  15016. (define v^ (apply-project v vec-any))
  15017. (apply-cast v^ vec-any `(Vector ,@ts))]
  15018. [else (apply-project v t2)])]
  15019. [(t1 'Any)
  15020. (match t1
  15021. [`(,ts ... -> ,rt)
  15022. (define any->any `(,@(for/list ([t ts]) 'Any) -> Any))
  15023. (define v^ (apply-cast v `(,@ts -> ,rt) any->any))
  15024. (apply-inject v^ (any-tag any->any))]
  15025. [`(Vector ,ts ...)
  15026. (define vec-any `(Vector ,@(for/list ([t ts]) 'Any)))
  15027. (define v^ (apply-cast v `(Vector ,@ts) vec-any))
  15028. (apply-inject v^ (any-tag vec-any))]
  15029. [else (apply-inject v (any-tag t1))])]
  15030. [(`(Vector ,ts1 ...) `(Vector ,ts2 ...))
  15031. (define x (gensym 'x))
  15032. (define cast-reads (for/list ([t1 ts1] [t2 ts2])
  15033. `(function (,x) ,(Cast (Var x) t1 t2) ())))
  15034. (define cast-writes
  15035. (for/list ([t1 ts1] [t2 ts2])
  15036. `(function (,x) ,(Cast (Var x) t2 t1) ())))
  15037. `(vector-proxy ,(vector v (apply vector cast-reads)
  15038. (apply vector cast-writes)))]
  15039. [(`(,ts1 ... -> ,rt1) `(,ts2 ... -> ,rt2))
  15040. (define xs (for/list ([t2 ts2]) (gensym 'x)))
  15041. `(function ,xs ,(Cast
  15042. (Apply (Value v)
  15043. (for/list ([x xs][t1 ts1][t2 ts2])
  15044. (Cast (Var x) t2 t1)))
  15045. rt1 rt2) ())]
  15046. ))
  15047. \end{lstlisting}
  15048. \caption{The \code{apply-cast} auxiliary method.}
  15049. \label{fig:apply-cast}
  15050. \end{figure}
  15051. The interpreter for \LangCast{} is defined in
  15052. Figure~\ref{fig:interp-Rcast}, with the case for \code{Cast}
  15053. dispatching to \code{apply-cast}. To handle the addition of vector
  15054. proxies, we update the vector primitives in \code{interp-op} using the
  15055. functions in Figure~\ref{fig:guarded-vector}.
  15056. \begin{figure}[tbp]
  15057. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15058. (define interp-Rcast_class
  15059. (class interp-Rwhile_class
  15060. (super-new)
  15061. (inherit apply-fun apply-inject apply-project)
  15062. (define/override (interp-op op)
  15063. (match op
  15064. ['vector-length guarded-vector-length]
  15065. ['vector-ref guarded-vector-ref]
  15066. ['vector-set! guarded-vector-set!]
  15067. ['any-vector-ref (lambda (v i)
  15068. (match v [`(tagged ,v^ ,tg)
  15069. (guarded-vector-ref v^ i)]))]
  15070. ['any-vector-set! (lambda (v i a)
  15071. (match v [`(tagged ,v^ ,tg)
  15072. (guarded-vector-set! v^ i a)]))]
  15073. ['any-vector-length (lambda (v)
  15074. (match v [`(tagged ,v^ ,tg)
  15075. (guarded-vector-length v^)]))]
  15076. [else (super interp-op op)]
  15077. ))
  15078. (define/override ((interp-exp env) e)
  15079. (define (recur e) ((interp-exp env) e))
  15080. (match e
  15081. [(Value v) v]
  15082. [(Cast e src tgt) (apply-cast (recur e) src tgt)]
  15083. [else ((super interp-exp env) e)]))
  15084. ))
  15085. (define (interp-Rcast p)
  15086. (send (new interp-Rcast_class) interp-program p))
  15087. \end{lstlisting}
  15088. \caption{The interpreter for \LangCast{}.}
  15089. \label{fig:interp-Rcast}
  15090. \end{figure}
  15091. \begin{figure}[tbp]
  15092. \begin{lstlisting}[basicstyle=\ttfamily\footnotesize]
  15093. (define (guarded-vector-ref vec i)
  15094. (match vec
  15095. [`(vector-proxy ,proxy)
  15096. (define val (guarded-vector-ref (vector-ref proxy 0) i))
  15097. (define rd (vector-ref (vector-ref proxy 1) i))
  15098. (apply-fun rd (list val) 'guarded-vector-ref)]
  15099. [else (vector-ref vec i)]))
  15100. (define (guarded-vector-set! vec i arg)
  15101. (match vec
  15102. [`(vector-proxy ,proxy)
  15103. (define wr (vector-ref (vector-ref proxy 2) i))
  15104. (define arg^ (apply-fun wr (list arg) 'guarded-vector-set!))
  15105. (guarded-vector-set! (vector-ref proxy 0) i arg^)]
  15106. [else (vector-set! vec i arg)]))
  15107. (define (guarded-vector-length vec)
  15108. (match vec
  15109. [`(vector-proxy ,proxy)
  15110. (guarded-vector-length (vector-ref proxy 0))]
  15111. [else (vector-length vec)]))
  15112. \end{lstlisting}
  15113. \caption{The guarded-vector auxiliary functions.}
  15114. \label{fig:guarded-vector}
  15115. \end{figure}
  15116. \section{Lower Casts}
  15117. \label{sec:lower-casts}
  15118. The next step in the journey towards x86 is the \code{lower-casts}
  15119. pass that translates the casts in \LangCast{} to the lower-level
  15120. \code{Inject} and \code{Project} operators and a new operator for
  15121. creating vector proxies, extending the \LangLoop{} language to create
  15122. \LangProxy{}. We recommend creating an auxiliary function named
  15123. \code{lower-cast} that takes an expression (in \LangCast{}), a source type,
  15124. and a target type, and translates it to expression in \LangProxy{} that has
  15125. the same behavior as casting the expression from the source to the
  15126. target type in the interpreter.
  15127. The \code{lower-cast} function can follow a code structure similar to
  15128. the \code{apply-cast} function (Figure~\ref{fig:apply-cast}) used in
  15129. the interpreter for \LangCast{} because it must handle the same cases as
  15130. \code{apply-cast} and it needs to mimic the behavior of
  15131. \code{apply-cast}. The most interesting cases are those concerning the
  15132. casts between two vector types and between two function types.
  15133. As mentioned in Section~\ref{sec:interp-casts}, a cast from one vector
  15134. type to another vector type is accomplished by creating a proxy that
  15135. intercepts the operations on the underlying vector. Here we make the
  15136. creation of the proxy explicit with the \code{vector-proxy} primitive
  15137. operation. It takes three arguments, the first is an expression for
  15138. the vector, the second is a vector of functions for casting an element
  15139. that is being read from the vector, and the third is a vector of
  15140. functions for casting an element that is being written to the vector.
  15141. You can create the functions using \code{Lambda}. Also, as we shall
  15142. see in the next section, we need to differentiate these vectors from
  15143. the user-created ones, so we recommend using a new primitive operator
  15144. named \code{raw-vector} instead of \code{vector} to create these
  15145. vectors of functions. Figure~\ref{fig:map-vec-bang-lower-cast} shows
  15146. the output of \code{lower-casts} on the example in
  15147. Figure~\ref{fig:map-vec-bang} that involved casting a vector of
  15148. integers to a vector of \code{Any}.
  15149. \begin{figure}[tbp]
  15150. \begin{lstlisting}
  15151. (define (map-vec! [f : (Any -> Any)] [v : (Vector Any Any)]) : Void
  15152. (begin
  15153. (vector-set! v 0 (f (vector-ref v 0)))
  15154. (vector-set! v 1 (f (vector-ref v 1)))))
  15155. (define (add1 [x : Any]) : Any
  15156. (inject (+ (project x Integer) 1) Integer))
  15157. (let ([v (vector 0 41)])
  15158. (begin
  15159. (map-vec! add1 (vector-proxy v
  15160. (raw-vector (lambda: ([x9 : Integer]) : Any
  15161. (inject x9 Integer))
  15162. (lambda: ([x9 : Integer]) : Any
  15163. (inject x9 Integer)))
  15164. (raw-vector (lambda: ([x9 : Any]) : Integer
  15165. (project x9 Integer))
  15166. (lambda: ([x9 : Any]) : Integer
  15167. (project x9 Integer)))))
  15168. (vector-ref v 1)))
  15169. \end{lstlisting}
  15170. \caption{Output of \code{lower-casts} on the example in
  15171. Figure~\ref{fig:map-vec-bang}.}
  15172. \label{fig:map-vec-bang-lower-cast}
  15173. \end{figure}
  15174. A cast from one function type to another function type is accomplished
  15175. by generating a \code{Lambda} whose parameter and return types match
  15176. the target function type. The body of the \code{Lambda} should cast
  15177. the parameters from the target type to the source type (yes,
  15178. backwards! functions are contravariant\index{subject}{contravariant} in the
  15179. parameters), then call the underlying function, and finally cast the
  15180. result from the source return type to the target return type.
  15181. Figure~\ref{fig:map-vec-lower-cast} shows the output of the
  15182. \code{lower-casts} pass on the \code{map-vec} example in
  15183. Figure~\ref{fig:gradual-map-vec}. Note that the \code{add1} argument
  15184. in the call to \code{map-vec} is wrapped in a \code{lambda}.
  15185. \begin{figure}[tbp]
  15186. \begin{lstlisting}
  15187. (define (map-vec [f : (Integer -> Integer)]
  15188. [v : (Vector Integer Integer)])
  15189. : (Vector Integer Integer)
  15190. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  15191. (define (add1 [x : Any]) : Any
  15192. (inject (+ (project x Integer) 1) Integer))
  15193. (vector-ref (map-vec (lambda: ([x9 : Integer]) : Integer
  15194. (project (add1 (inject x9 Integer)) Integer))
  15195. (vector 0 41)) 1)
  15196. \end{lstlisting}
  15197. \caption{Output of \code{lower-casts} on the example in
  15198. Figure~\ref{fig:gradual-map-vec}.}
  15199. \label{fig:map-vec-lower-cast}
  15200. \end{figure}
  15201. \section{Differentiate Proxies}
  15202. \label{sec:differentiate-proxies}
  15203. So far the job of differentiating vectors and vector proxies has been
  15204. the job of the interpreter. For example, the interpreter for \LangCast{}
  15205. implements \code{vector-ref} using the \code{guarded-vector-ref}
  15206. function in Figure~\ref{fig:guarded-vector}. In the
  15207. \code{differentiate-proxies} pass we shift this responsibility to the
  15208. generated code.
  15209. We begin by designing the output language $R^p_8$. In
  15210. \LangGrad{} we used the type \code{Vector} for both real vectors and vector
  15211. proxies. In $R^p_8$ we return the \code{Vector} type to
  15212. its original meaning, as the type of real vectors, and we introduce a
  15213. new type, \code{PVector}, whose values can be either real vectors or
  15214. vector proxies. This new type comes with a suite of new primitive
  15215. operations for creating and using values of type \code{PVector}. We
  15216. don't need to introduce a new type to represent vector proxies. A
  15217. proxy is represented by a vector containing three things: 1) the
  15218. underlying vector, 2) a vector of functions for casting elements that
  15219. are read from the vector, and 3) a vector of functions for casting
  15220. values to be written to the vector. So we define the following
  15221. abbreviation for the type of a vector proxy:
  15222. \[
  15223. \itm{Proxy} (T\ldots \Rightarrow T'\ldots)
  15224. = (\ttm{Vector}~(\ttm{PVector}~ T\ldots) ~R~ W)
  15225. \to (\key{PVector}~ T' \ldots)
  15226. \]
  15227. where $R = (\ttm{Vector}~(T\to T') \ldots)$ and
  15228. $W = (\ttm{Vector}~(T'\to T) \ldots)$.
  15229. %
  15230. Next we describe each of the new primitive operations.
  15231. \begin{description}
  15232. \item[\code{inject-vector} : (\key{Vector} $T \ldots$) $\to$
  15233. (\key{PVector} $T \ldots$)]\ \\
  15234. %
  15235. This operation brands a vector as a value of the \code{PVector} type.
  15236. \item[\code{inject-proxy} : $\itm{Proxy}(T\ldots \Rightarrow T'\ldots)$
  15237. $\to$ (\key{PVector} $T' \ldots$)]\ \\
  15238. %
  15239. This operation brands a vector proxy as value of the \code{PVector} type.
  15240. \item[\code{proxy?} : (\key{PVector} $T \ldots$) $\to$
  15241. \code{Boolean}] \ \\
  15242. %
  15243. returns true if the value is a vector proxy and false if it is a
  15244. real vector.
  15245. \item[\code{project-vector} : (\key{PVector} $T \ldots$) $\to$
  15246. (\key{Vector} $T \ldots$)]\ \\
  15247. %
  15248. Assuming that the input is a vector (and not a proxy), this
  15249. operation returns the vector.
  15250. \item[\code{proxy-vector-length} : (\key{PVector} $T \ldots$)
  15251. $\to$ \code{Boolean}]\ \\
  15252. %
  15253. Given a vector proxy, this operation returns the length of the
  15254. underlying vector.
  15255. \item[\code{proxy-vector-ref} : (\key{PVector} $T \ldots$)
  15256. $\to$ ($i$ : \code{Integer}) $\to$ $T_i$]\ \\
  15257. %
  15258. Given a vector proxy, this operation returns the $i$th element of
  15259. the underlying vector.
  15260. \item[\code{proxy-vector-set!} : (\key{PVector} $T \ldots$) $\to$ ($i$
  15261. : \code{Integer}) $\to$ $T_i$ $\to$ \key{Void}]\ \\ Given a vector
  15262. proxy, this operation writes a value to the $i$th element of the
  15263. underlying vector.
  15264. \end{description}
  15265. Now to discuss the translation that differentiates vectors from
  15266. proxies. First, every type annotation in the program must be
  15267. translated (recursively) to replace \code{Vector} with \code{PVector}.
  15268. Next, we must insert uses of \code{PVector} operations in the
  15269. appropriate places. For example, we wrap every vector creation with an
  15270. \code{inject-vector}.
  15271. \begin{lstlisting}
  15272. (vector |$e_1 \ldots e_n$|)
  15273. |$\Rightarrow$|
  15274. (inject-vector (vector |$e'_1 \ldots e'_n$|))
  15275. \end{lstlisting}
  15276. The \code{raw-vector} operator that we introduced in the previous
  15277. section does not get injected.
  15278. \begin{lstlisting}
  15279. (raw-vector |$e_1 \ldots e_n$|)
  15280. |$\Rightarrow$|
  15281. (vector |$e'_1 \ldots e'_n$|)
  15282. \end{lstlisting}
  15283. The \code{vector-proxy} primitive translates as follows.
  15284. \begin{lstlisting}
  15285. (vector-proxy |$e_1~e_2~e_3$|)
  15286. |$\Rightarrow$|
  15287. (inject-proxy (vector |$e'_1~e'_2~e'_3$|))
  15288. \end{lstlisting}
  15289. We translate the vector operations into conditional expressions that
  15290. check whether the value is a proxy and then dispatch to either the
  15291. appropriate proxy vector operation or the regular vector operation.
  15292. For example, the following is the translation for \code{vector-ref}.
  15293. \begin{lstlisting}
  15294. (vector-ref |$e_1$| |$i$|)
  15295. |$\Rightarrow$|
  15296. (let ([|$v~e_1$|])
  15297. (if (proxy? |$v$|)
  15298. (proxy-vector-ref |$v$| |$i$|)
  15299. (vector-ref (project-vector |$v$|) |$i$|)
  15300. \end{lstlisting}
  15301. Note in the case of a real vector, we must apply \code{project-vector}
  15302. before the \code{vector-ref}.
  15303. \section{Reveal Casts}
  15304. \label{sec:reveal-casts-gradual}
  15305. Recall that the \code{reveal-casts} pass
  15306. (Section~\ref{sec:reveal-casts-Rany}) is responsible for lowering
  15307. \code{Inject} and \code{Project} into lower-level operations. In
  15308. particular, \code{Project} turns into a conditional expression that
  15309. inspects the tag and retrieves the underlying value. Here we need to
  15310. augment the translation of \code{Project} to handle the situation when
  15311. the target type is \code{PVector}. Instead of using
  15312. \code{vector-length} we need to use \code{proxy-vector-length}.
  15313. \begin{lstlisting}
  15314. (project |$e$| (PVector Any|$_1$| |$\ldots$| Any|$_n$|))
  15315. |$\Rightarrow$|
  15316. (let |$\itm{tmp}$| |$e'$|
  15317. (if (eq? (tag-of-any |$\itm{tmp}$| 2))
  15318. (let |$\itm{tup}$| (value-of |$\itm{tmp}$| (PVector Any |$\ldots$| Any))
  15319. (if (eq? (proxy-vector-length |$\itm{tup}$|) |$n$|) |$\itm{tup}$| (exit)))
  15320. (exit)))
  15321. \end{lstlisting}
  15322. \section{Closure Conversion}
  15323. \label{sec:closure-conversion-gradual}
  15324. The closure conversion pass only requires one minor adjustment. The
  15325. auxiliary function that translates type annotations needs to be
  15326. updated to handle the \code{PVector} type.
  15327. \section{Explicate Control}
  15328. \label{sec:explicate-control-gradual}
  15329. Update the \code{explicate\_control} pass to handle the new primitive
  15330. operations on the \code{PVector} type.
  15331. \section{Select Instructions}
  15332. \label{sec:select-instructions-gradual}
  15333. Recall that the \code{select\_instructions} pass is responsible for
  15334. lowering the primitive operations into x86 instructions. So we need
  15335. to translate the new \code{PVector} operations to x86. To do so, the
  15336. first question we need to answer is how will we differentiate the two
  15337. kinds of values (vectors and proxies) that can inhabit \code{PVector}.
  15338. We need just one bit to accomplish this, and use the bit in position
  15339. $57$ of the 64-bit tag at the front of every vector (see
  15340. Figure~\ref{fig:tuple-rep}). So far, this bit has been set to $0$, so
  15341. for \code{inject-vector} we leave it that way.
  15342. \begin{lstlisting}
  15343. (Assign |$\itm{lhs}$| (Prim 'inject-vector (list |$e_1$|)))
  15344. |$\Rightarrow$|
  15345. movq |$e'_1$|, |$\itm{lhs'}$|
  15346. \end{lstlisting}
  15347. On the other hand, \code{inject-proxy} sets bit $57$ to $1$.
  15348. \begin{lstlisting}
  15349. (Assign |$\itm{lhs}$| (Prim 'inject-proxy (list |$e_1$|)))
  15350. |$\Rightarrow$|
  15351. movq |$e'_1$|, %r11
  15352. movq |$(1 << 57)$|, %rax
  15353. orq 0(%r11), %rax
  15354. movq %rax, 0(%r11)
  15355. movq %r11, |$\itm{lhs'}$|
  15356. \end{lstlisting}
  15357. The \code{proxy?} operation consumes the information so carefully
  15358. stashed away by \code{inject-vector} and \code{inject-proxy}. It
  15359. isolates the $57$th bit to tell whether the value is a real vector or
  15360. a proxy.
  15361. \begin{lstlisting}
  15362. (Assign |$\itm{lhs}$| (Prim 'proxy? (list e)))
  15363. |$\Rightarrow$|
  15364. movq |$e_1'$|, %r11
  15365. movq 0(%r11), %rax
  15366. sarq $57, %rax
  15367. andq $1, %rax
  15368. movq %rax, |$\itm{lhs'}$|
  15369. \end{lstlisting}
  15370. The \code{project-vector} operation is straightforward to translate,
  15371. so we leave it up to the reader.
  15372. Regarding the \code{proxy-vector} operations, the runtime provides
  15373. procedures that implement them (they are recursive functions!) so
  15374. here we simply need to translate these vector operations into the
  15375. appropriate function call. For example, here is the translation for
  15376. \code{proxy-vector-ref}.
  15377. \begin{lstlisting}
  15378. (Assign |$\itm{lhs}$| (Prim 'proxy-vector-ref (list |$e_1$| |$e_2$|)))
  15379. |$\Rightarrow$|
  15380. movq |$e_1'$|, %rdi
  15381. movq |$e_2'$|, %rsi
  15382. callq proxy_vector_ref
  15383. movq %rax, |$\itm{lhs'}$|
  15384. \end{lstlisting}
  15385. We have another batch of vector operations to deal with, those for the
  15386. \code{Any} type. Recall that the type checker for \LangGrad{} generates an
  15387. \code{any-vector-ref} when there is a \code{vector-ref} on something
  15388. of type \code{Any}, and similarly for \code{any-vector-set!} and
  15389. \code{any-vector-length} (Figure~\ref{fig:type-check-Rgradual-1}). In
  15390. Section~\ref{sec:select-Rany} we selected instructions for these
  15391. operations based on the idea that the underlying value was a real
  15392. vector. But in the current setting, the underlying value is of type
  15393. \code{PVector}. So \code{any-vector-ref} can be translates to
  15394. pseudo-x86 as follows. We begin by projecting the underlying value out
  15395. of the tagged value and then call the \code{proxy\_vector\_ref}
  15396. procedure in the runtime.
  15397. \begin{lstlisting}
  15398. (Assign |$\itm{lhs}$| (Prim 'any-vector-ref (list |$e_1$| |$e_2$|)))
  15399. movq |$\neg 111$|, %rdi
  15400. andq |$e_1'$|, %rdi
  15401. movq |$e_2'$|, %rsi
  15402. callq proxy_vector_ref
  15403. movq %rax, |$\itm{lhs'}$|
  15404. \end{lstlisting}
  15405. The \code{any-vector-set!} and \code{any-vector-length} operators can
  15406. be translated in a similar way.
  15407. \begin{exercise}\normalfont
  15408. Implement a compiler for the gradually-typed \LangGrad{} language by
  15409. extending and adapting your compiler for \LangLoop{}. Create 10 new
  15410. partially-typed test programs. In addition to testing with these
  15411. new programs, also test your compiler on all the tests for \LangLoop{}
  15412. and tests for \LangDyn{}. Sometimes you may get a type checking error
  15413. on the \LangDyn{} programs but you can adapt them by inserting
  15414. a cast to the \code{Any} type around each subexpression
  15415. causing a type error. While \LangDyn{} doesn't have explicit casts,
  15416. you can induce one by wrapping the subexpression \code{e}
  15417. with a call to an un-annotated identity function, like this:
  15418. \code{((lambda (x) x) e)}.
  15419. \end{exercise}
  15420. \begin{figure}[p]
  15421. \begin{tikzpicture}[baseline=(current bounding box.center)]
  15422. \node (Rgradual) at (6,4) {\large \LangGrad{}};
  15423. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  15424. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  15425. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  15426. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  15427. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  15428. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  15429. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  15430. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  15431. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  15432. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  15433. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  15434. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  15435. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  15436. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  15437. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  15438. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  15439. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  15440. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  15441. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  15442. \path[->,bend right=15] (Rgradual) edge [above] node
  15443. {\ttfamily\footnotesize type\_check} (Rgradualp);
  15444. \path[->,bend right=15] (Rgradualp) edge [above] node
  15445. {\ttfamily\footnotesize lower\_casts} (Rwhilepp);
  15446. \path[->,bend right=15] (Rwhilepp) edge [right] node
  15447. {\ttfamily\footnotesize differentiate\_proxies} (Rwhileproxy);
  15448. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  15449. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  15450. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  15451. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  15452. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  15453. {\ttfamily\footnotesize reveal\_functions} (Rwhileproxy-4);
  15454. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  15455. {\ttfamily\footnotesize reveal\_casts} (Rwhileproxy-5);
  15456. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  15457. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  15458. \path[->,bend left=15] (F1-1) edge [below] node
  15459. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  15460. \path[->,bend right=15] (F1-2) edge [above] node
  15461. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  15462. \path[->,bend right=15] (F1-3) edge [above] node
  15463. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  15464. \path[->,bend right=15] (F1-4) edge [above] node
  15465. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  15466. \path[->,bend right=15] (F1-5) edge [right] node
  15467. {\ttfamily\footnotesize explicate\_control} (C3-2);
  15468. \path[->,bend left=15] (C3-2) edge [left] node
  15469. {\ttfamily\footnotesize select\_instr.} (x86-2);
  15470. \path[->,bend right=15] (x86-2) edge [left] node
  15471. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  15472. \path[->,bend right=15] (x86-2-1) edge [below] node
  15473. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  15474. \path[->,bend right=15] (x86-2-2) edge [left] node
  15475. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  15476. \path[->,bend left=15] (x86-3) edge [above] node
  15477. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  15478. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print-x86} (x86-5);
  15479. \end{tikzpicture}
  15480. \caption{Diagram of the passes for \LangGrad{} (gradual typing).}
  15481. \label{fig:Rgradual-passes}
  15482. \end{figure}
  15483. Figure~\ref{fig:Rgradual-passes} provides an overview of all the passes needed
  15484. for the compilation of \LangGrad{}.
  15485. \section{Further Reading}
  15486. This chapter just scratches the surface of gradual typing. The basic
  15487. approach described here is missing two key ingredients that one would
  15488. want in a implementation of gradual typing: blame
  15489. tracking~\citep{Tobin-Hochstadt:2006fk,Wadler:2009qv} and
  15490. space-efficient casts~\citep{Herman:2006uq,Herman:2010aa}. The
  15491. problem addressed by blame tracking is that when a cast on a
  15492. higher-order value fails, it often does so at a point in the program
  15493. that is far removed from the original cast. Blame tracking is a
  15494. technique for propagating extra information through casts and proxies
  15495. so that when a cast fails, the error message can point back to the
  15496. original location of the cast in the source program.
  15497. The problem addressed by space-efficient casts also relates to
  15498. higher-order casts. It turns out that in partially typed programs, a
  15499. function or vector can flow through very-many casts at runtime. With
  15500. the approach described in this chapter, each cast adds another
  15501. \code{lambda} wrapper or a vector proxy. Not only does this take up
  15502. considerable space, but it also makes the function calls and vector
  15503. operations slow. For example, a partially-typed version of quicksort
  15504. could, in the worst case, build a chain of proxies of length $O(n)$
  15505. around the vector, changing the overall time complexity of the
  15506. algorithm from $O(n^2)$ to $O(n^3)$! \citet{Herman:2006uq} suggested a
  15507. solution to this problem by representing casts using the coercion
  15508. calculus of \citet{Henglein:1994nz}, which prevents the creation of
  15509. long chains of proxies by compressing them into a concise normal
  15510. form. \citet{Siek:2015ab} give and algorithm for compressing coercions
  15511. and \citet{Kuhlenschmidt:2019aa} show how to implement these ideas in
  15512. the Grift compiler.
  15513. \begin{center}
  15514. \url{https://github.com/Gradual-Typing/Grift}
  15515. \end{center}
  15516. There are also interesting interactions between gradual typing and
  15517. other language features, such as parametetric polymorphism,
  15518. information-flow types, and type inference, to name a few. We
  15519. recommend the reader to the online gradual typing bibliography:
  15520. \begin{center}
  15521. \url{http://samth.github.io/gradual-typing-bib/}
  15522. \end{center}
  15523. % TODO: challenge problem:
  15524. % type analysis and type specialization?
  15525. % coercions?
  15526. \fi
  15527. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  15528. \chapter{Parametric Polymorphism}
  15529. \label{ch:Rpoly}
  15530. \index{subject}{parametric polymorphism}
  15531. \index{subject}{generics}
  15532. \if\edition\racketEd
  15533. This chapter studies the compilation of parametric
  15534. polymorphism\index{subject}{parametric polymorphism}
  15535. (aka. generics\index{subject}{generics}) in the subset \LangPoly{} of Typed
  15536. Racket. Parametric polymorphism enables improved code reuse by
  15537. parameterizing functions and data structures with respect to the types
  15538. that they operate on. For example, Figure~\ref{fig:map-vec-poly}
  15539. revisits the \code{map-vec} example but this time gives it a more
  15540. fitting type. This \code{map-vec} function is parameterized with
  15541. respect to the element type of the vector. The type of \code{map-vec}
  15542. is the following polymorphic type as specified by the \code{All} and
  15543. the type parameter \code{a}.
  15544. \begin{lstlisting}
  15545. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  15546. \end{lstlisting}
  15547. The idea is that \code{map-vec} can be used at \emph{all} choices of a
  15548. type for parameter \code{a}. In Figure~\ref{fig:map-vec-poly} we apply
  15549. \code{map-vec} to a vector of integers, a choice of \code{Integer} for
  15550. \code{a}, but we could have just as well applied \code{map-vec} to a
  15551. vector of Booleans (and a function on Booleans).
  15552. \begin{figure}[tbp]
  15553. % poly_test_2.rkt
  15554. \begin{lstlisting}
  15555. (: map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a))))
  15556. (define (map-vec f v)
  15557. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  15558. (define (add1 [x : Integer]) : Integer (+ x 1))
  15559. (vector-ref (map-vec add1 (vector 0 41)) 1)
  15560. \end{lstlisting}
  15561. \caption{The \code{map-vec} example using parametric polymorphism.}
  15562. \label{fig:map-vec-poly}
  15563. \end{figure}
  15564. Figure~\ref{fig:Rpoly-concrete-syntax} defines the concrete syntax of
  15565. \LangPoly{} and Figure~\ref{fig:Rpoly-syntax} defines the abstract
  15566. syntax. We add a second form for function definitions in which a type
  15567. declaration comes before the \code{define}. In the abstract syntax,
  15568. the return type in the \code{Def} is \code{Any}, but that should be
  15569. ignored in favor of the return type in the type declaration. (The
  15570. \code{Any} comes from using the same parser as in
  15571. Chapter~\ref{ch:Rdyn}.) The presence of a type declaration
  15572. enables the use of an \code{All} type for a function, thereby making
  15573. it polymorphic. The grammar for types is extended to include
  15574. polymorphic types and type variables.
  15575. \begin{figure}[tp]
  15576. \centering
  15577. \fbox{
  15578. \begin{minipage}{0.96\textwidth}
  15579. \small
  15580. \[
  15581. \begin{array}{lcl}
  15582. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  15583. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS \ldots}{\Type}{\Exp} } \\
  15584. &\MID& \LP\key{:}~\Var~\Type\RP \\
  15585. && \LP\key{define}~ \LP\Var ~ \Var\ldots\RP ~ \Exp\RP \\
  15586. \LangPoly{} &::=& \gray{ \Def \ldots ~ \Exp }
  15587. \end{array}
  15588. \]
  15589. \end{minipage}
  15590. }
  15591. \caption{The concrete syntax of \LangPoly{}, extending \LangLoop{}
  15592. (Figure~\ref{fig:Lwhile-concrete-syntax}).}
  15593. \label{fig:Rpoly-concrete-syntax}
  15594. \end{figure}
  15595. \begin{figure}[tp]
  15596. \centering
  15597. \fbox{
  15598. \begin{minipage}{0.96\textwidth}
  15599. \small
  15600. \[
  15601. \begin{array}{lcl}
  15602. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  15603. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  15604. &\MID& \DECL{\Var}{\Type} \\
  15605. && \DEF{\Var}{\LP\Var \ldots\RP}{\key{'Any}}{\code{'()}}{\Exp} \\
  15606. \LangPoly{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  15607. \end{array}
  15608. \]
  15609. \end{minipage}
  15610. }
  15611. \caption{The abstract syntax of \LangPoly{}, extending \LangLoop{}
  15612. (Figure~\ref{fig:Lwhile-syntax}).}
  15613. \label{fig:Rpoly-syntax}
  15614. \end{figure}
  15615. By including polymorphic types in the $\Type$ non-terminal we choose
  15616. to make them first-class which has interesting repercussions on the
  15617. compiler. Many languages with polymorphism, such as
  15618. C++~\citep{stroustrup88:_param_types} and Standard
  15619. ML~\citep{Milner:1990fk}, only support second-class polymorphism, so
  15620. it is useful to see an example of first-class polymorphism. In
  15621. Figure~\ref{fig:apply-twice} we define a function \code{apply-twice}
  15622. whose parameter is a polymorphic function. The occurrence of a
  15623. polymorphic type underneath a function type is enabled by the normal
  15624. recursive structure of the grammar for $\Type$ and the categorization
  15625. of the \code{All} type as a $\Type$. The body of \code{apply-twice}
  15626. applies the polymorphic function to a Boolean and to an integer.
  15627. \begin{figure}[tbp]
  15628. \begin{lstlisting}
  15629. (: apply-twice ((All (b) (b -> b)) -> Integer))
  15630. (define (apply-twice f)
  15631. (if (f #t) (f 42) (f 777)))
  15632. (: id (All (a) (a -> a)))
  15633. (define (id x) x)
  15634. (apply-twice id)
  15635. \end{lstlisting}
  15636. \caption{An example illustrating first-class polymorphism.}
  15637. \label{fig:apply-twice}
  15638. \end{figure}
  15639. The type checker for \LangPoly{} in Figure~\ref{fig:type-check-Lvar0} has
  15640. three new responsibilities (compared to \LangLoop{}). The type checking of
  15641. function application is extended to handle the case where the operator
  15642. expression is a polymorphic function. In that case the type arguments
  15643. are deduced by matching the type of the parameters with the types of
  15644. the arguments.
  15645. %
  15646. The \code{match-types} auxiliary function carries out this deduction
  15647. by recursively descending through a parameter type \code{pt} and the
  15648. corresponding argument type \code{at}, making sure that they are equal
  15649. except when there is a type parameter on the left (in the parameter
  15650. type). If it's the first time that the type parameter has been
  15651. encountered, then the algorithm deduces an association of the type
  15652. parameter to the corresponding type on the right (in the argument
  15653. type). If it's not the first time that the type parameter has been
  15654. encountered, the algorithm looks up its deduced type and makes sure
  15655. that it is equal to the type on the right.
  15656. %
  15657. Once the type arguments are deduced, the operator expression is
  15658. wrapped in an \code{Inst} AST node (for instantiate) that records the
  15659. type of the operator, but more importantly, records the deduced type
  15660. arguments. The return type of the application is the return type of
  15661. the polymorphic function, but with the type parameters replaced by the
  15662. deduced type arguments, using the \code{subst-type} function.
  15663. The second responsibility of the type checker is extending the
  15664. function \code{type-equal?} to handle the \code{All} type. This is
  15665. not quite a simple as equal on other types, such as function and
  15666. vector types, because two polymorphic types can be syntactically
  15667. different even though they are equivalent types. For example,
  15668. \code{(All (a) (a -> a))} is equivalent to \code{(All (b) (b -> b))}.
  15669. Two polymorphic types should be considered equal if they differ only
  15670. in the choice of the names of the type parameters. The
  15671. \code{type-equal?} function in Figure~\ref{fig:type-check-Lvar0-aux}
  15672. renames the type parameters of the first type to match the type
  15673. parameters of the second type.
  15674. The third responsibility of the type checker is making sure that only
  15675. defined type variables appear in type annotations. The
  15676. \code{check-well-formed} function defined in
  15677. Figure~\ref{fig:well-formed-types} recursively inspects a type, making
  15678. sure that each type variable has been defined.
  15679. The output language of the type checker is \LangInst{}, defined in
  15680. Figure~\ref{fig:Rpoly-prime-syntax}. The type checker combines the type
  15681. declaration and polymorphic function into a single definition, using
  15682. the \code{Poly} form, to make polymorphic functions more convenient to
  15683. process in next pass of the compiler.
  15684. \begin{figure}[tp]
  15685. \centering
  15686. \fbox{
  15687. \begin{minipage}{0.96\textwidth}
  15688. \small
  15689. \[
  15690. \begin{array}{lcl}
  15691. \Type &::=& \ldots \MID \LP\key{All}~\LP\Var\ldots\RP~ \Type\RP \MID \Var \\
  15692. \Exp &::=& \ldots \MID \INST{\Exp}{\Type}{\LP\Type\ldots\RP} \\
  15693. \Def &::=& \gray{ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp} } \\
  15694. &\MID& \LP\key{Poly}~\LP\Var\ldots\RP~ \DEF{\Var}{\LP\LS\Var \key{:} \Type\RS \ldots\RP}{\Type}{\code{'()}}{\Exp}\RP \\
  15695. \LangInst{} &::=& \gray{ \PROGRAMDEFSEXP{\code{'()}}{\LP\Def\ldots\RP}{\Exp} }
  15696. \end{array}
  15697. \]
  15698. \end{minipage}
  15699. }
  15700. \caption{The abstract syntax of \LangInst{}, extending \LangLoop{}
  15701. (Figure~\ref{fig:Lwhile-syntax}).}
  15702. \label{fig:Rpoly-prime-syntax}
  15703. \end{figure}
  15704. The output of the type checker on the polymorphic \code{map-vec}
  15705. example is listed in Figure~\ref{fig:map-vec-type-check}.
  15706. \begin{figure}[tbp]
  15707. % poly_test_2.rkt
  15708. \begin{lstlisting}
  15709. (poly (a) (define (map-vec [f : (a -> a)] [v : (Vector a a)]) : (Vector a a)
  15710. (vector (f (vector-ref v 0)) (f (vector-ref v 1)))))
  15711. (define (add1 [x : Integer]) : Integer (+ x 1))
  15712. (vector-ref ((inst map-vec (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  15713. (Integer))
  15714. add1 (vector 0 41)) 1)
  15715. \end{lstlisting}
  15716. \caption{Output of the type checker on the \code{map-vec} example.}
  15717. \label{fig:map-vec-type-check}
  15718. \end{figure}
  15719. \begin{figure}[tbp]
  15720. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  15721. (define type-check-poly-class
  15722. (class type-check-Rwhile-class
  15723. (super-new)
  15724. (inherit check-type-equal?)
  15725. (define/override (type-check-apply env e1 es)
  15726. (define-values (e^ ty) ((type-check-exp env) e1))
  15727. (define-values (es^ ty*) (for/lists (es^ ty*) ([e (in-list es)])
  15728. ((type-check-exp env) e)))
  15729. (match ty
  15730. [`(,ty^* ... -> ,rt)
  15731. (for ([arg-ty ty*] [param-ty ty^*])
  15732. (check-type-equal? arg-ty param-ty (Apply e1 es)))
  15733. (values e^ es^ rt)]
  15734. [`(All ,xs (,tys ... -> ,rt))
  15735. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  15736. (define env^^ (for/fold ([env^^ env^]) ([arg-ty ty*] [param-ty tys])
  15737. (match-types env^^ param-ty arg-ty)))
  15738. (define targs
  15739. (for/list ([x xs])
  15740. (match (dict-ref env^^ x (lambda () #f))
  15741. [#f (error 'type-check "type variable ~a not deduced\nin ~v"
  15742. x (Apply e1 es))]
  15743. [ty ty])))
  15744. (values (Inst e^ ty targs) es^ (subst-type env^^ rt))]
  15745. [else (error 'type-check "expected a function, not ~a" ty)]))
  15746. (define/override ((type-check-exp env) e)
  15747. (match e
  15748. [(Lambda `([,xs : ,Ts] ...) rT body)
  15749. (for ([T Ts]) ((check-well-formed env) T))
  15750. ((check-well-formed env) rT)
  15751. ((super type-check-exp env) e)]
  15752. [(HasType e1 ty)
  15753. ((check-well-formed env) ty)
  15754. ((super type-check-exp env) e)]
  15755. [else ((super type-check-exp env) e)]))
  15756. (define/override ((type-check-def env) d)
  15757. (verbose 'type-check "poly/def" d)
  15758. (match d
  15759. [(Generic ts (Def f (and p:t* (list `[,xs : ,ps] ...)) rt info body))
  15760. (define ts-env (for/list ([t ts]) (cons t 'Type)))
  15761. (for ([p ps]) ((check-well-formed ts-env) p))
  15762. ((check-well-formed ts-env) rt)
  15763. (define new-env (append ts-env (map cons xs ps) env))
  15764. (define-values (body^ ty^) ((type-check-exp new-env) body))
  15765. (check-type-equal? ty^ rt body)
  15766. (Generic ts (Def f p:t* rt info body^))]
  15767. [else ((super type-check-def env) d)]))
  15768. (define/override (type-check-program p)
  15769. (match p
  15770. [(Program info body)
  15771. (type-check-program (ProgramDefsExp info '() body))]
  15772. [(ProgramDefsExp info ds body)
  15773. (define ds^ (combine-decls-defs ds))
  15774. (define new-env (for/list ([d ds^])
  15775. (cons (def-name d) (fun-def-type d))))
  15776. (define ds^^ (for/list ([d ds^]) ((type-check-def new-env) d)))
  15777. (define-values (body^ ty) ((type-check-exp new-env) body))
  15778. (check-type-equal? ty 'Integer body)
  15779. (ProgramDefsExp info ds^^ body^)]))
  15780. ))
  15781. \end{lstlisting}
  15782. \caption{Type checker for the \LangPoly{} language.}
  15783. \label{fig:type-check-Lvar0}
  15784. \end{figure}
  15785. \begin{figure}[tbp]
  15786. \begin{lstlisting}[basicstyle=\ttfamily\scriptsize]
  15787. (define/override (type-equal? t1 t2)
  15788. (match* (t1 t2)
  15789. [(`(All ,xs ,T1) `(All ,ys ,T2))
  15790. (define env (map cons xs ys))
  15791. (type-equal? (subst-type env T1) T2)]
  15792. [(other wise)
  15793. (super type-equal? t1 t2)]))
  15794. (define/public (match-types env pt at)
  15795. (match* (pt at)
  15796. [('Integer 'Integer) env] [('Boolean 'Boolean) env]
  15797. [('Void 'Void) env] [('Any 'Any) env]
  15798. [(`(Vector ,pts ...) `(Vector ,ats ...))
  15799. (for/fold ([env^ env]) ([pt1 pts] [at1 ats])
  15800. (match-types env^ pt1 at1))]
  15801. [(`(,pts ... -> ,prt) `(,ats ... -> ,art))
  15802. (define env^ (match-types env prt art))
  15803. (for/fold ([env^^ env^]) ([pt1 pts] [at1 ats])
  15804. (match-types env^^ pt1 at1))]
  15805. [(`(All ,pxs ,pt1) `(All ,axs ,at1))
  15806. (define env^ (append (map cons pxs axs) env))
  15807. (match-types env^ pt1 at1)]
  15808. [((? symbol? x) at)
  15809. (match (dict-ref env x (lambda () #f))
  15810. [#f (error 'type-check "undefined type variable ~a" x)]
  15811. ['Type (cons (cons x at) env)]
  15812. [t^ (check-type-equal? at t^ 'matching) env])]
  15813. [(other wise) (error 'type-check "mismatch ~a != a" pt at)]))
  15814. (define/public (subst-type env pt)
  15815. (match pt
  15816. ['Integer 'Integer] ['Boolean 'Boolean]
  15817. ['Void 'Void] ['Any 'Any]
  15818. [`(Vector ,ts ...)
  15819. `(Vector ,@(for/list ([t ts]) (subst-type env t)))]
  15820. [`(,ts ... -> ,rt)
  15821. `(,@(for/list ([t ts]) (subst-type env t)) -> ,(subst-type env rt))]
  15822. [`(All ,xs ,t)
  15823. `(All ,xs ,(subst-type (append (map cons xs xs) env) t))]
  15824. [(? symbol? x) (dict-ref env x)]
  15825. [else (error 'type-check "expected a type not ~a" pt)]))
  15826. (define/public (combine-decls-defs ds)
  15827. (match ds
  15828. ['() '()]
  15829. [`(,(Decl name type) . (,(Def f params _ info body) . ,ds^))
  15830. (unless (equal? name f)
  15831. (error 'type-check "name mismatch, ~a != ~a" name f))
  15832. (match type
  15833. [`(All ,xs (,ps ... -> ,rt))
  15834. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  15835. (cons (Generic xs (Def name params^ rt info body))
  15836. (combine-decls-defs ds^))]
  15837. [`(,ps ... -> ,rt)
  15838. (define params^ (for/list ([x params] [T ps]) `[,x : ,T]))
  15839. (cons (Def name params^ rt info body) (combine-decls-defs ds^))]
  15840. [else (error 'type-check "expected a function type, not ~a" type) ])]
  15841. [`(,(Def f params rt info body) . ,ds^)
  15842. (cons (Def f params rt info body) (combine-decls-defs ds^))]))
  15843. \end{lstlisting}
  15844. \caption{Auxiliary functions for type checking \LangPoly{}.}
  15845. \label{fig:type-check-Lvar0-aux}
  15846. \end{figure}
  15847. \begin{figure}[tbp]
  15848. \begin{lstlisting}%[basicstyle=\ttfamily\scriptsize]
  15849. (define/public ((check-well-formed env) ty)
  15850. (match ty
  15851. ['Integer (void)]
  15852. ['Boolean (void)]
  15853. ['Void (void)]
  15854. [(? symbol? a)
  15855. (match (dict-ref env a (lambda () #f))
  15856. ['Type (void)]
  15857. [else (error 'type-check "undefined type variable ~a" a)])]
  15858. [`(Vector ,ts ...)
  15859. (for ([t ts]) ((check-well-formed env) t))]
  15860. [`(,ts ... -> ,t)
  15861. (for ([t ts]) ((check-well-formed env) t))
  15862. ((check-well-formed env) t)]
  15863. [`(All ,xs ,t)
  15864. (define env^ (append (for/list ([x xs]) (cons x 'Type)) env))
  15865. ((check-well-formed env^) t)]
  15866. [else (error 'type-check "unrecognized type ~a" ty)]))
  15867. \end{lstlisting}
  15868. \caption{Well-formed types.}
  15869. \label{fig:well-formed-types}
  15870. \end{figure}
  15871. % TODO: interpreter for R'_10
  15872. \section{Compiling Polymorphism}
  15873. \label{sec:compiling-poly}
  15874. Broadly speaking, there are four approaches to compiling parametric
  15875. polymorphism, which we describe below.
  15876. \begin{description}
  15877. \item[Monomorphization] generates a different version of a polymorphic
  15878. function for each set of type arguments that it is used with,
  15879. producing type-specialized code. This approach results in the most
  15880. efficient code but requires whole-program compilation (no separate
  15881. compilation) and increases code size. For our current purposes
  15882. monomorphization is a non-starter because, with first-class
  15883. polymorphism, it is sometimes not possible to determine which
  15884. generic functions are used with which type arguments during
  15885. compilation. (It can be done at runtime, with just-in-time
  15886. compilation.) This approach is used to compile C++
  15887. templates~\citep{stroustrup88:_param_types} and polymorphic
  15888. functions in NESL~\citep{Blelloch:1993aa} and
  15889. ML~\citep{Weeks:2006aa}.
  15890. \item[Uniform representation] generates one version of each
  15891. polymorphic function but requires all values have a common ``boxed''
  15892. format, such as the tagged values of type \code{Any} in
  15893. \LangAny{}. Non-polymorphic code (i.e. monomorphic code) is compiled
  15894. similarly to code in a dynamically typed language (like \LangDyn{}),
  15895. in which primitive operators require their arguments to be projected
  15896. from \code{Any} and their results are injected into \code{Any}. (In
  15897. object-oriented languages, the projection is accomplished via
  15898. virtual method dispatch.) The uniform representation approach is
  15899. compatible with separate compilation and with first-class
  15900. polymorphism. However, it produces the least-efficient code because
  15901. it introduces overhead in the entire program, including
  15902. non-polymorphic code. This approach is used in implementations of
  15903. CLU~\cite{liskov79:_clu_ref,Liskov:1993dk},
  15904. ML~\citep{Cardelli:1984aa,Appel:1987aa}, and
  15905. Java~\citep{Bracha:1998fk}.
  15906. \item[Mixed representation] generates one version of each polymorphic
  15907. function, using a boxed representation for type
  15908. variables. Monomorphic code is compiled as usual (as in \LangLoop{})
  15909. and conversions are performed at the boundaries between monomorphic
  15910. and polymorphic (e.g. when a polymorphic function is instantiated
  15911. and called). This approach is compatible with separate compilation
  15912. and first-class polymorphism and maintains the efficiency of
  15913. monomorphic code. The tradeoff is increased overhead at the boundary
  15914. between monomorphic and polymorphic code. This approach is used in
  15915. implementations of ML~\citep{Leroy:1992qb} and Java, starting in
  15916. Java 5 with the addition of autoboxing.
  15917. \item[Type passing] uses the unboxed representation in both
  15918. monomorphic and polymorphic code. Each polymorphic function is
  15919. compiled to a single function with extra parameters that describe
  15920. the type arguments. The type information is used by the generated
  15921. code to know how to access the unboxed values at runtime. This
  15922. approach is used in implementation of the Napier88
  15923. language~\citep{Morrison:1991aa} and ML~\citep{Harper:1995um}. Type
  15924. passing is compatible with separate compilation and first-class
  15925. polymorphism and maintains the efficiency for monomorphic
  15926. code. There is runtime overhead in polymorphic code from dispatching
  15927. on type information.
  15928. \end{description}
  15929. In this chapter we use the mixed representation approach, partly
  15930. because of its favorable attributes, and partly because it is
  15931. straightforward to implement using the tools that we have already
  15932. built to support gradual typing. To compile polymorphic functions, we
  15933. add just one new pass, \code{erase-types}, to compile \LangInst{} to
  15934. \LangCast{}.
  15935. \section{Erase Types}
  15936. \label{sec:erase-types}
  15937. We use the \code{Any} type from Chapter~\ref{ch:Rdyn} to
  15938. represent type variables. For example, Figure~\ref{fig:map-vec-erase}
  15939. shows the output of the \code{erase-types} pass on the polymorphic
  15940. \code{map-vec} (Figure~\ref{fig:map-vec-poly}). The occurrences of
  15941. type parameter \code{a} are replaced by \code{Any} and the polymorphic
  15942. \code{All} types are removed from the type of \code{map-vec}.
  15943. \begin{figure}[tbp]
  15944. \begin{lstlisting}
  15945. (define (map-vec [f : (Any -> Any)] [v : (Vector Any Any)])
  15946. : (Vector Any Any)
  15947. (vector (f (vector-ref v 0)) (f (vector-ref v 1))))
  15948. (define (add1 [x : Integer]) : Integer (+ x 1))
  15949. (vector-ref ((cast map-vec
  15950. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  15951. ((Integer -> Integer) (Vector Integer Integer)
  15952. -> (Vector Integer Integer)))
  15953. add1 (vector 0 41)) 1)
  15954. \end{lstlisting}
  15955. \caption{The polymorphic \code{map-vec} example after type erasure.}
  15956. \label{fig:map-vec-erase}
  15957. \end{figure}
  15958. This process of type erasure creates a challenge at points of
  15959. instantiation. For example, consider the instantiation of
  15960. \code{map-vec} in Figure~\ref{fig:map-vec-type-check}.
  15961. The type of \code{map-vec} is
  15962. \begin{lstlisting}
  15963. (All (a) ((a -> a) (Vector a a) -> (Vector a a)))
  15964. \end{lstlisting}
  15965. and it is instantiated to
  15966. \begin{lstlisting}
  15967. ((Integer -> Integer) (Vector Integer Integer)
  15968. -> (Vector Integer Integer))
  15969. \end{lstlisting}
  15970. After erasure, the type of \code{map-vec} is
  15971. \begin{lstlisting}
  15972. ((Any -> Any) (Vector Any Any) -> (Vector Any Any))
  15973. \end{lstlisting}
  15974. but we need to convert it to the instantiated type. This is easy to
  15975. do in the target language \LangCast{} with a single \code{cast}. In
  15976. Figure~\ref{fig:map-vec-erase}, the instantiation of \code{map-vec}
  15977. has been compiled to a \code{cast} from the type of \code{map-vec} to
  15978. the instantiated type. The source and target type of a cast must be
  15979. consistent (Figure~\ref{fig:consistent}), which indeed is the case
  15980. because both the source and target are obtained from the same
  15981. polymorphic type of \code{map-vec}, replacing the type parameters with
  15982. \code{Any} in the former and with the deduced type arguments in the
  15983. later. (Recall that the \code{Any} type is consistent with any type.)
  15984. To implement the \code{erase-types} pass, we recommend defining a
  15985. recursive auxiliary function named \code{erase-type} that applies the
  15986. following two transformations. It replaces type variables with
  15987. \code{Any}
  15988. \begin{lstlisting}
  15989. |$x$|
  15990. |$\Rightarrow$|
  15991. Any
  15992. \end{lstlisting}
  15993. and it removes the polymorphic \code{All} types.
  15994. \begin{lstlisting}
  15995. (All |$xs$| |$T_1$|)
  15996. |$\Rightarrow$|
  15997. |$T'_1$|
  15998. \end{lstlisting}
  15999. Apply the \code{erase-type} function to all of the type annotations in
  16000. the program.
  16001. Regarding the translation of expressions, the case for \code{Inst} is
  16002. the interesting one. We translate it into a \code{Cast}, as shown
  16003. below. The type of the subexpression $e$ is the polymorphic type
  16004. $\LP\key{All} xs T\RP$. The source type of the cast is the erasure of
  16005. $T$, the type $T'$. The target type $T''$ is the result of
  16006. substituting the arguments types $ts$ for the type parameters $xs$ in
  16007. $T$ followed by doing type erasure.
  16008. \begin{lstlisting}
  16009. (Inst |$e$| (All |$xs$| |$T$|) |$ts$|)
  16010. |$\Rightarrow$|
  16011. (Cast |$e'$| |$T'$| |$T''$|)
  16012. \end{lstlisting}
  16013. where $T'' = \LP\code{erase-type}~\LP\code{subst-type}~s~T\RP\RP$
  16014. and $s = \LP\code{map}~\code{cons}~xs~ts\RP$.
  16015. Finally, each polymorphic function is translated to a regular
  16016. functions in which type erasure has been applied to all the type
  16017. annotations and the body.
  16018. \begin{lstlisting}
  16019. (Poly |$ts$| (Def |$f$| ([|$x_1$| : |$T_1$|] |$\ldots$|) |$T_r$| |$\itm{info}$| |$e$|))
  16020. |$\Rightarrow$|
  16021. (Def |$f$| ([|$x_1$| : |$T'_1$|] |$\ldots$|) |$T'_r$| |$\itm{info}$| |$e'$|)
  16022. \end{lstlisting}
  16023. \begin{exercise}\normalfont
  16024. Implement a compiler for the polymorphic language \LangPoly{} by
  16025. extending and adapting your compiler for \LangGrad{}. Create 6 new test
  16026. programs that use polymorphic functions. Some of them should make
  16027. use of first-class polymorphism.
  16028. \end{exercise}
  16029. \begin{figure}[p]
  16030. \begin{tikzpicture}[baseline=(current bounding box.center)]
  16031. \node (Rpoly) at (9,4) {\large \LangPoly{}};
  16032. \node (Rpolyp) at (6,4) {\large \LangInst{}};
  16033. \node (Rgradualp) at (3,4) {\large \LangCast{}};
  16034. \node (Rwhilepp) at (0,4) {\large \LangProxy{}};
  16035. \node (Rwhileproxy) at (0,2) {\large \LangPVec{}};
  16036. \node (Rwhileproxy-2) at (3,2) {\large \LangPVec{}};
  16037. \node (Rwhileproxy-3) at (6,2) {\large \LangPVec{}};
  16038. \node (Rwhileproxy-4) at (9,2) {\large \LangPVecFunRef{}};
  16039. \node (Rwhileproxy-5) at (12,2) {\large \LangPVecFunRef{}};
  16040. \node (F1-1) at (12,0) {\large \LangPVecFunRef{}};
  16041. \node (F1-2) at (9,0) {\large \LangPVecFunRef{}};
  16042. \node (F1-3) at (6,0) {\large \LangPVecFunRef{}};
  16043. \node (F1-4) at (3,0) {\large \LangPVecAlloc{}};
  16044. \node (F1-5) at (0,0) {\large \LangPVecAlloc{}};
  16045. \node (C3-2) at (3,-2) {\large \LangCLoopPVec{}};
  16046. \node (x86-2) at (3,-4) {\large \LangXIndCallVar{}};
  16047. \node (x86-2-1) at (3,-6) {\large \LangXIndCallVar{}};
  16048. \node (x86-2-2) at (6,-6) {\large \LangXIndCallVar{}};
  16049. \node (x86-3) at (6,-4) {\large \LangXIndCallVar{}};
  16050. \node (x86-4) at (9,-4) {\large \LangXIndCall{}};
  16051. \node (x86-5) at (9,-6) {\large \LangXIndCall{}};
  16052. \path[->,bend right=15] (Rpoly) edge [above] node
  16053. {\ttfamily\footnotesize type\_check} (Rpolyp);
  16054. \path[->,bend right=15] (Rpolyp) edge [above] node
  16055. {\ttfamily\footnotesize erase\_types} (Rgradualp);
  16056. \path[->,bend right=15] (Rgradualp) edge [above] node
  16057. {\ttfamily\footnotesize lower\_casts} (Rwhilepp);
  16058. \path[->,bend right=15] (Rwhilepp) edge [right] node
  16059. {\ttfamily\footnotesize differentiate\_proxies} (Rwhileproxy);
  16060. \path[->,bend left=15] (Rwhileproxy) edge [above] node
  16061. {\ttfamily\footnotesize shrink} (Rwhileproxy-2);
  16062. \path[->,bend left=15] (Rwhileproxy-2) edge [above] node
  16063. {\ttfamily\footnotesize uniquify} (Rwhileproxy-3);
  16064. \path[->,bend left=15] (Rwhileproxy-3) edge [above] node
  16065. {\ttfamily\footnotesize reveal\_functions} (Rwhileproxy-4);
  16066. \path[->,bend left=15] (Rwhileproxy-4) edge [above] node
  16067. {\ttfamily\footnotesize reveal\_casts} (Rwhileproxy-5);
  16068. \path[->,bend left=15] (Rwhileproxy-5) edge [left] node
  16069. {\ttfamily\footnotesize convert\_assignments} (F1-1);
  16070. \path[->,bend left=15] (F1-1) edge [below] node
  16071. {\ttfamily\footnotesize convert\_to\_clos.} (F1-2);
  16072. \path[->,bend right=15] (F1-2) edge [above] node
  16073. {\ttfamily\footnotesize limit\_fun.} (F1-3);
  16074. \path[->,bend right=15] (F1-3) edge [above] node
  16075. {\ttfamily\footnotesize expose\_alloc.} (F1-4);
  16076. \path[->,bend right=15] (F1-4) edge [above] node
  16077. {\ttfamily\footnotesize remove\_complex.} (F1-5);
  16078. \path[->,bend right=15] (F1-5) edge [right] node
  16079. {\ttfamily\footnotesize explicate\_control} (C3-2);
  16080. \path[->,bend left=15] (C3-2) edge [left] node
  16081. {\ttfamily\footnotesize select\_instr.} (x86-2);
  16082. \path[->,bend right=15] (x86-2) edge [left] node
  16083. {\ttfamily\footnotesize uncover\_live} (x86-2-1);
  16084. \path[->,bend right=15] (x86-2-1) edge [below] node
  16085. {\ttfamily\footnotesize build\_inter.} (x86-2-2);
  16086. \path[->,bend right=15] (x86-2-2) edge [left] node
  16087. {\ttfamily\footnotesize allocate\_reg.} (x86-3);
  16088. \path[->,bend left=15] (x86-3) edge [above] node
  16089. {\ttfamily\footnotesize patch\_instr.} (x86-4);
  16090. \path[->,bend left=15] (x86-4) edge [right] node {\ttfamily\footnotesize print\_x86} (x86-5);
  16091. \end{tikzpicture}
  16092. \caption{Diagram of the passes for \LangPoly{} (parametric polymorphism).}
  16093. \label{fig:Rpoly-passes}
  16094. \end{figure}
  16095. Figure~\ref{fig:Rpoly-passes} provides an overview of all the passes needed
  16096. for the compilation of \LangPoly{}.
  16097. % TODO: challenge problem: specialization of instantiations
  16098. % Further Reading
  16099. \fi
  16100. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  16101. \clearpage
  16102. \appendix
  16103. \chapter{Appendix}
  16104. \if\edition\racketEd
  16105. \section{Interpreters}
  16106. \label{appendix:interp}
  16107. \index{subject}{interpreter}
  16108. We provide interpreters for each of the source languages \LangInt{},
  16109. \LangVar{}, $\ldots$ in the files \code{interp\_Lint.rkt},
  16110. \code{interp-Lvar.rkt}, etc. The interpreters for the intermediate
  16111. languages \LangCVar{} and \LangCIf{} are in \code{interp-Cvar.rkt} and
  16112. \code{interp-C1.rkt}. The interpreters for \LangCVec{}, \LangCFun{}, pseudo-x86,
  16113. and x86 are in the \key{interp.rkt} file.
  16114. \section{Utility Functions}
  16115. \label{appendix:utilities}
  16116. The utility functions described in this section are in the
  16117. \key{utilities.rkt} file of the support code.
  16118. \paragraph{\code{interp-tests}}
  16119. The \key{interp-tests} function runs the compiler passes and the
  16120. interpreters on each of the specified tests to check whether each pass
  16121. is correct. The \key{interp-tests} function has the following
  16122. parameters:
  16123. \begin{description}
  16124. \item[name (a string)] a name to identify the compiler,
  16125. \item[typechecker] a function of exactly one argument that either
  16126. raises an error using the \code{error} function when it encounters a
  16127. type error, or returns \code{\#f} when it encounters a type
  16128. error. If there is no type error, the type checker returns the
  16129. program.
  16130. \item[passes] a list with one entry per pass. An entry is a list with
  16131. four things:
  16132. \begin{enumerate}
  16133. \item a string giving the name of the pass,
  16134. \item the function that implements the pass (a translator from AST
  16135. to AST),
  16136. \item a function that implements the interpreter (a function from
  16137. AST to result value) for the output language,
  16138. \item and a type checker for the output language. Type checkers for
  16139. the $R$ and $C$ languages are provided in the support code. For
  16140. example, the type checkers for \LangVar{} and \LangCVar{} are in
  16141. \code{type-check-Lvar.rkt} and \code{type-check-Cvar.rkt}. The
  16142. type checker entry is optional. The support code does not provide
  16143. type checkers for the x86 languages.
  16144. \end{enumerate}
  16145. \item[source-interp] an interpreter for the source language. The
  16146. interpreters from Appendix~\ref{appendix:interp} make a good choice.
  16147. \item[test-family (a string)] for example, \code{"r1"}, \code{"r2"}, etc.
  16148. \item[tests] a list of test numbers that specifies which tests to
  16149. run. (see below)
  16150. \end{description}
  16151. %
  16152. The \key{interp-tests} function assumes that the subdirectory
  16153. \key{tests} has a collection of Racket programs whose names all start
  16154. with the family name, followed by an underscore and then the test
  16155. number, ending with the file extension \key{.rkt}. Also, for each test
  16156. program that calls \code{read} one or more times, there is a file with
  16157. the same name except that the file extension is \key{.in} that
  16158. provides the input for the Racket program. If the test program is
  16159. expected to fail type checking, then there should be an empty file of
  16160. the same name but with extension \key{.tyerr}.
  16161. \paragraph{\code{compiler-tests}}
  16162. runs the compiler passes to generate x86 (a \key{.s} file) and then
  16163. runs the GNU C compiler (gcc) to generate machine code. It runs the
  16164. machine code and checks that the output is $42$. The parameters to the
  16165. \code{compiler-tests} function are similar to those of the
  16166. \code{interp-tests} function, and consist of
  16167. \begin{itemize}
  16168. \item a compiler name (a string),
  16169. \item a type checker,
  16170. \item description of the passes,
  16171. \item name of a test-family, and
  16172. \item a list of test numbers.
  16173. \end{itemize}
  16174. \paragraph{\code{compile-file}}
  16175. takes a description of the compiler passes (see the comment for
  16176. \key{interp-tests}) and returns a function that, given a program file
  16177. name (a string ending in \key{.rkt}), applies all of the passes and
  16178. writes the output to a file whose name is the same as the program file
  16179. name but with \key{.rkt} replaced with \key{.s}.
  16180. \paragraph{\code{read-program}}
  16181. takes a file path and parses that file (it must be a Racket program)
  16182. into an abstract syntax tree.
  16183. \paragraph{\code{parse-program}}
  16184. takes an S-expression representation of an abstract syntax tree and converts it into
  16185. the struct-based representation.
  16186. \paragraph{\code{assert}}
  16187. takes two parameters, a string (\code{msg}) and Boolean (\code{bool}),
  16188. and displays the message \key{msg} if the Boolean \key{bool} is false.
  16189. \paragraph{\code{lookup}}
  16190. % remove discussion of lookup? -Jeremy
  16191. takes a key and an alist, and returns the first value that is
  16192. associated with the given key, if there is one. If not, an error is
  16193. triggered. The alist may contain both immutable pairs (built with
  16194. \key{cons}) and mutable pairs (built with \key{mcons}).
  16195. %The \key{map2} function ...
  16196. \fi %\racketEd
  16197. \section{x86 Instruction Set Quick-Reference}
  16198. \label{sec:x86-quick-reference}
  16199. \index{subject}{x86}
  16200. Table~\ref{tab:x86-instr} lists some x86 instructions and what they
  16201. do. We write $A \to B$ to mean that the value of $A$ is written into
  16202. location $B$. Address offsets are given in bytes. The instruction
  16203. arguments $A, B, C$ can be immediate constants (such as \code{\$4}),
  16204. registers (such as \code{\%rax}), or memory references (such as
  16205. \code{-4(\%ebp)}). Most x86 instructions only allow at most one memory
  16206. reference per instruction. Other operands must be immediates or
  16207. registers.
  16208. \begin{table}[tbp]
  16209. \centering
  16210. \begin{tabular}{l|l}
  16211. \textbf{Instruction} & \textbf{Operation} \\ \hline
  16212. \texttt{addq} $A$, $B$ & $A + B \to B$\\
  16213. \texttt{negq} $A$ & $- A \to A$ \\
  16214. \texttt{subq} $A$, $B$ & $B - A \to B$\\
  16215. \texttt{imulq} $A$, $B$ & $A \times B \to B$\\
  16216. \texttt{callq} $L$ & Pushes the return address and jumps to label $L$ \\
  16217. \texttt{callq} \texttt{*}$A$ & Calls the function at the address $A$. \\
  16218. %\texttt{leave} & $\texttt{ebp} \to \texttt{esp};$ \texttt{popl \%ebp} \\
  16219. \texttt{retq} & Pops the return address and jumps to it \\
  16220. \texttt{popq} $A$ & $*\mathtt{rsp} \to A; \mathtt{rsp} + 8 \to \mathtt{rsp}$ \\
  16221. \texttt{pushq} $A$ & $\texttt{rsp} - 8 \to \texttt{rsp}; A \to *\texttt{rsp}$\\
  16222. \texttt{leaq} $A$,$B$ & $A \to B$ ($B$ must be a register) \\
  16223. \texttt{cmpq} $A$, $B$ & compare $A$ and $B$ and set the flag register ($B$ must not
  16224. be an immediate) \\
  16225. \texttt{je} $L$ & \multirow{5}{3.7in}{Jump to label $L$ if the flag register
  16226. matches the condition code of the instruction, otherwise go to the
  16227. next instructions. The condition codes are \key{e} for ``equal'',
  16228. \key{l} for ``less'', \key{le} for ``less or equal'', \key{g}
  16229. for ``greater'', and \key{ge} for ``greater or equal''.} \\
  16230. \texttt{jl} $L$ & \\
  16231. \texttt{jle} $L$ & \\
  16232. \texttt{jg} $L$ & \\
  16233. \texttt{jge} $L$ & \\
  16234. \texttt{jmp} $L$ & Jump to label $L$ \\
  16235. \texttt{movq} $A$, $B$ & $A \to B$ \\
  16236. \texttt{movzbq} $A$, $B$ &
  16237. \multirow{3}{3.7in}{$A \to B$, \text{where } $A$ is a single-byte register
  16238. (e.g., \texttt{al} or \texttt{cl}), $B$ is a 8-byte register,
  16239. and the extra bytes of $B$ are set to zero.} \\
  16240. & \\
  16241. & \\
  16242. \texttt{notq} $A$ & $\sim A \to A$ \qquad (bitwise complement)\\
  16243. \texttt{orq} $A$, $B$ & $A | B \to B$ \qquad (bitwise-or)\\
  16244. \texttt{andq} $A$, $B$ & $A \& B \to B$ \qquad (bitwise-and)\\
  16245. \texttt{salq} $A$, $B$ & $B$ \texttt{<<} $A \to B$ (arithmetic shift left, where $A$ is a constant)\\
  16246. \texttt{sarq} $A$, $B$ & $B$ \texttt{>>} $A \to B$ (arithmetic shift right, where $A$ is a constant)\\
  16247. \texttt{sete} $A$ & \multirow{5}{3.7in}{If the flag matches the condition code,
  16248. then $1 \to A$, else $0 \to A$. Refer to \texttt{je} above for the
  16249. description of the condition codes. $A$ must be a single byte register
  16250. (e.g., \texttt{al} or \texttt{cl}).} \\
  16251. \texttt{setl} $A$ & \\
  16252. \texttt{setle} $A$ & \\
  16253. \texttt{setg} $A$ & \\
  16254. \texttt{setge} $A$ &
  16255. \end{tabular}
  16256. \vspace{5pt}
  16257. \caption{Quick-reference for the x86 instructions used in this book.}
  16258. \label{tab:x86-instr}
  16259. \end{table}
  16260. \if\edition\racketEd
  16261. \cleardoublepage
  16262. \section{Concrete Syntax for Intermediate Languages}
  16263. The concrete syntax of \LangAny{} is defined in
  16264. Figure~\ref{fig:Rany-concrete-syntax}.
  16265. \begin{figure}[tp]
  16266. \centering
  16267. \fbox{
  16268. \begin{minipage}{0.97\textwidth}\small
  16269. \[
  16270. \begin{array}{lcl}
  16271. \Type &::=& \gray{\key{Integer} \MID \key{Boolean}
  16272. \MID \LP\key{Vector}\;\Type\ldots\RP \MID \key{Void}} \\
  16273. &\MID& \gray{\LP\Type\ldots \; \key{->}\; \Type\RP} \MID \key{Any} \\
  16274. \FType &::=& \key{Integer} \MID \key{Boolean} \MID \key{Void}
  16275. \MID \LP\key{Vector}\; \key{Any}\ldots\RP \\
  16276. &\MID& \LP\key{Any}\ldots \; \key{->}\; \key{Any}\RP\\
  16277. \Exp &::=& \ldots \CINJECT{\Exp}{\FType}\RP \MID \CPROJECT{\Exp}{\FType}\\
  16278. &\MID& \LP\key{any-vector-length}\;\Exp\RP
  16279. \MID \LP\key{any-vector-ref}\;\Exp\;\Exp\RP \\
  16280. &\MID& \LP\key{any-vector-set!}\;\Exp\;\Exp\;\Exp\RP\\
  16281. &\MID& \LP\key{boolean?}\;\Exp\RP \MID \LP\key{integer?}\;\Exp\RP
  16282. \MID \LP\key{void?}\;\Exp\RP \\
  16283. &\MID& \LP\key{vector?}\;\Exp\RP \MID \LP\key{procedure?}\;\Exp\RP \\
  16284. \Def &::=& \gray{ \CDEF{\Var}{\LS\Var \key{:} \Type\RS\ldots}{\Type}{\Exp} } \\
  16285. \LangAnyM{} &::=& \gray{\Def\ldots \; \Exp}
  16286. \end{array}
  16287. \]
  16288. \end{minipage}
  16289. }
  16290. \caption{The concrete syntax of \LangAny{}, extending \LangLam{}
  16291. (Figure~\ref{fig:Rlam-syntax}).}
  16292. \label{fig:Rany-concrete-syntax}
  16293. \end{figure}
  16294. The concrete syntax for \LangCVar{}, \LangCIf{}, \LangCVec{} and \LangCFun{} is
  16295. defined in Figures~\ref{fig:c0-concrete-syntax},
  16296. \ref{fig:c1-concrete-syntax}, \ref{fig:c2-concrete-syntax},
  16297. and \ref{fig:c3-concrete-syntax}, respectively.
  16298. \begin{figure}[tbp]
  16299. \fbox{
  16300. \begin{minipage}{0.96\textwidth}
  16301. \small
  16302. \[
  16303. \begin{array}{lcl}
  16304. \Atm &::=& \gray{ \Int \MID \Var \MID \itm{bool} } \\
  16305. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  16306. \Exp &::=& \gray{ \Atm \MID \key{(read)} \MID \key{(-}~\Atm\key{)} \MID \key{(+}~\Atm~\Atm\key{)} } \\
  16307. &\MID& \gray{ \LP \key{not}~\Atm \RP \MID \LP \itm{cmp}~\Atm~\Atm\RP } \\
  16308. &\MID& \LP \key{allocate}~\Int~\Type \RP \\
  16309. &\MID& (\key{vector-ref}\;\Atm\;\Int) \MID (\key{vector-set!}\;\Atm\;\Int\;\Atm)\\
  16310. &\MID& \LP \key{global-value}~\Var \RP \MID \LP \key{void} \RP \\
  16311. \Stmt &::=& \gray{ \Var~\key{=}~\Exp\key{;} } \MID \LP\key{collect}~\Int \RP\\
  16312. \Tail &::= & \gray{ \key{return}~\Exp\key{;} \MID \Stmt~\Tail }
  16313. \MID \gray{ \key{goto}~\itm{label}\key{;} }\\
  16314. &\MID& \gray{ \key{if}~\LP \itm{cmp}~\Atm~\Atm \RP~ \key{goto}~\itm{label}\key{;} ~\key{else}~\key{goto}~\itm{label}\key{;} } \\
  16315. \LangCVecM{} & ::= & \gray{ (\itm{label}\key{:}~ \Tail)\ldots }
  16316. \end{array}
  16317. \]
  16318. \end{minipage}
  16319. }
  16320. \caption{The concrete syntax of the \LangCVec{} intermediate language.}
  16321. \label{fig:c2-concrete-syntax}
  16322. \end{figure}
  16323. \begin{figure}[tp]
  16324. \fbox{
  16325. \begin{minipage}{0.96\textwidth}
  16326. \small
  16327. \[
  16328. \begin{array}{lcl}
  16329. \Atm &::=& \gray{ \Int \MID \Var \MID \key{\#t} \MID \key{\#f} }
  16330. \\
  16331. \itm{cmp} &::= & \gray{ \key{eq?} \MID \key{<} } \\
  16332. \Exp &::= & \gray{ \Atm \MID \LP\key{read}\RP \MID \LP\key{-}\;\Atm\RP \MID \LP\key{+} \; \Atm\;\Atm\RP
  16333. \MID \LP\key{not}\;\Atm\RP \MID \LP\itm{cmp}\;\Atm\;\Atm\RP } \\
  16334. &\MID& \gray{ \LP\key{allocate}\,\Int\,\Type\RP
  16335. \MID \LP\key{vector-ref}\, \Atm\, \Int\RP } \\
  16336. &\MID& \gray{ \LP\key{vector-set!}\,\Atm\,\Int\,\Atm\RP \MID \LP\key{global-value} \,\itm{name}\RP \MID \LP\key{void}\RP } \\
  16337. &\MID& \LP\key{fun-ref}~\itm{label}\RP \MID \LP\key{call} \,\Atm\,\Atm\ldots\RP \\
  16338. \Stmt &::=& \gray{ \ASSIGN{\Var}{\Exp} \MID \RETURN{\Exp}
  16339. \MID \LP\key{collect} \,\itm{int}\RP }\\
  16340. \Tail &::= & \gray{\RETURN{\Exp} \MID \LP\key{seq}\;\Stmt\;\Tail\RP} \\
  16341. &\MID& \gray{\LP\key{goto}\,\itm{label}\RP
  16342. \MID \IF{\LP\itm{cmp}\, \Atm\,\Atm\RP}{\LP\key{goto}\,\itm{label}\RP}{\LP\key{goto}\,\itm{label}\RP}} \\
  16343. &\MID& \LP\key{tail-call}\,\Atm\,\Atm\ldots\RP \\
  16344. \Def &::=& \LP\key{define}\; \LP\itm{label} \; [\Var \key{:} \Type]\ldots\RP \key{:} \Type \; \LP\LP\itm{label}\,\key{.}\,\Tail\RP\ldots\RP\RP \\
  16345. \LangCFunM{} & ::= & \Def\ldots
  16346. \end{array}
  16347. \]
  16348. \end{minipage}
  16349. }
  16350. \caption{The \LangCFun{} language, extending \LangCVec{} (Figure~\ref{fig:c2-concrete-syntax}) with functions.}
  16351. \label{fig:c3-concrete-syntax}
  16352. \end{figure}
  16353. \fi % racketEd
  16354. \backmatter
  16355. \addtocontents{toc}{\vspace{11pt}}
  16356. %% \addtocontents{toc}{\vspace{11pt}}
  16357. %% \nocite{*} is a way to get all the entries in the .bib file to print in the bibliography:
  16358. \nocite{*}\let\bibname\refname
  16359. \addcontentsline{toc}{fmbm}{\refname}
  16360. \printbibliography
  16361. \printindex{authors}{Author Index}
  16362. \printindex{subject}{Subject Index}
  16363. \end{document}
  16364. % LocalWords: Nano Siek CC NC ISBN wonks wizardry Backus nanopasses
  16365. % LocalWords: dataflow nx generics autoboxing Hulman Ch CO Dybvig aa
  16366. % LocalWords: Abelson uq Felleisen Flatt Lutz vp vj Sweigart vn Matz
  16367. % LocalWords: Matthes github gcc MacOS Chez Friedman's Dipanwita fk
  16368. % LocalWords: Sarkar Dybvig's Abdulaziz Ghuloum bh IU Factora Bor qf
  16369. % LocalWords: Cameron Kuhlenschmidt Vollmer Vitousek Yuh Nystrom AST
  16370. % LocalWords: Tolmach Wollowski ASTs Aho ast struct int backquote op
  16371. % LocalWords: args neg def init UnaryOp USub func BinOp Naur BNF rkt
  16372. % LocalWords: fixnum datatype structure's arith exp stmt Num Expr tr
  16373. % LocalWords: plt PSF ref CPython cpython reynolds interp cond fx pe
  16374. % LocalWords: arg Hitchhiker's TODO nullary Lvar Lif cnd thn var sam
  16375. % LocalWords: IfExp Bool InterpLvar InterpLif InterpRVar alist jane
  16376. % LocalWords: basicstyle kate dict alists env stmts ss len lhs globl
  16377. % LocalWords: rsp rbp rax rbx rcx rdx rsi rdi movq retq callq jmp es
  16378. % LocalWords: pushq subq popq negq addq arity uniquify Cvar instr cg
  16379. % LocalWords: Seq CProgram gensym lib Fprivate Flist tmp ANF Danvy
  16380. % LocalWords: rco Flists py rhs unhandled cont immediates lstlisting
  16381. % LocalWords: numberstyle Cormen Sudoku Balakrishnan ve aka DSATUR
  16382. % LocalWords: Brelaz eu Gebremedhin Omari deletekeywords min JGS
  16383. % LocalWords: morekeywords fullflexible