|
@@ -630,15 +630,15 @@ Escriba código en un pizarrón o en papel no en la computadora. Pruebe con algu
|
|
- [ ] [Binary Search (video)](https://www.youtube.com/watch?v=D5SrAga1pno)
|
|
- [ ] [Binary Search (video)](https://www.youtube.com/watch?v=D5SrAga1pno)
|
|
- [ ] [Binary Search (video)](https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search)
|
|
- [ ] [Binary Search (video)](https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search)
|
|
- [ ] [detail](https://www.topcoder.com/community/data-science/data-science-tutorials/binary-search/)
|
|
- [ ] [detail](https://www.topcoder.com/community/data-science/data-science-tutorials/binary-search/)
|
|
- - [ ] Implement:
|
|
|
|
- - binary search (on sorted array of integers)
|
|
|
|
- - binary search using recursion
|
|
|
|
|
|
+ - [ ] Implementar:
|
|
|
|
+ - Búsqueda binaria (en un arreglo ordenado de enteros)
|
|
|
|
+ - Búsqueda binaria usando recursión
|
|
|
|
|
|
- ### Operaciones bit a bit
|
|
- ### Operaciones bit a bit
|
|
- - [ ] [Bits cheat sheet](https://github.com/jwasham/coding-interview-university/blob/master/extras/cheat%20sheets/bits-cheat-cheet.pdf) - you should know many of the powers of 2 from (2^1 to 2^16 and 2^32)
|
|
|
|
- - [ ] Get a really good understanding of manipulating bits with: &, |, ^, ~, >>, <<
|
|
|
|
|
|
+ - [ ] [Bits cheat sheet](https://github.com/jwasham/coding-interview-university/blob/master/extras/cheat%20sheets/bits-cheat-cheet.pdf) - Debería conocer varias de las potencias de 2 a partir de (2^1 to 2^16 and 2^32)
|
|
|
|
+ - [ ] Obtenga un buen entendimiento de la manipulación de bits con: &, |, ^, ~, >>, <<
|
|
- [ ] [words](https://en.wikipedia.org/wiki/Word_(computer_architecture))
|
|
- [ ] [words](https://en.wikipedia.org/wiki/Word_(computer_architecture))
|
|
- - [ ] Good intro:
|
|
|
|
|
|
+ - [ ] Buena introducción:
|
|
[Bit Manipulation (video)](https://www.youtube.com/watch?v=7jkIUgLC29I)
|
|
[Bit Manipulation (video)](https://www.youtube.com/watch?v=7jkIUgLC29I)
|
|
- [ ] [C Programming Tutorial 2-10: Bitwise Operators (video)](https://www.youtube.com/watch?v=d0AwjSpNXR0)
|
|
- [ ] [C Programming Tutorial 2-10: Bitwise Operators (video)](https://www.youtube.com/watch?v=d0AwjSpNXR0)
|
|
- [ ] [Bit Manipulation](https://en.wikipedia.org/wiki/Bit_manipulation)
|
|
- [ ] [Bit Manipulation](https://en.wikipedia.org/wiki/Bit_manipulation)
|
|
@@ -661,26 +661,25 @@ Escriba código en un pizarrón o en papel no en la computadora. Pruebe con algu
|
|
- [ ] absolute value:
|
|
- [ ] absolute value:
|
|
- [Absolute Integer](http://bits.stephan-brumme.com/absInteger.html)
|
|
- [Absolute Integer](http://bits.stephan-brumme.com/absInteger.html)
|
|
|
|
|
|
-## Trees
|
|
|
|
-
|
|
|
|
-- ### Trees - Notes & Background
|
|
|
|
|
|
+## Árboles
|
|
|
|
+- ### Árboles - Notas & Antecedentes
|
|
- [ ] [Series: Core Trees (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/ovovP/core-trees)
|
|
- [ ] [Series: Core Trees (video)](https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/ovovP/core-trees)
|
|
- [ ] [Series: Trees (video)](https://www.coursera.org/learn/data-structures/lecture/95qda/trees)
|
|
- [ ] [Series: Trees (video)](https://www.coursera.org/learn/data-structures/lecture/95qda/trees)
|
|
- - basic tree construction
|
|
|
|
- - traversal
|
|
|
|
- - manipulation algorithms
|
|
|
|
- - BFS (breadth-first search)
|
|
|
|
|
|
+ - Construcción básica de árboles
|
|
|
|
+ - Recorrido
|
|
|
|
+ - Algoritmos de manipulación
|
|
|
|
+ - BFS (búsqueda en amplitud)
|
|
- [MIT (video)](https://www.youtube.com/watch?v=s-CYnVz-uh4&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=13)
|
|
- [MIT (video)](https://www.youtube.com/watch?v=s-CYnVz-uh4&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=13)
|
|
- - level order (BFS, using queue)
|
|
|
|
- time complexity: O(n)
|
|
|
|
- space complexity: best: O(1), worst: O(n/2)=O(n)
|
|
|
|
- - DFS (depth-first search)
|
|
|
|
|
|
+ - Orden de nivel(BFS, usando colas)
|
|
|
|
+ Tiempo de complejidad: O(n)
|
|
|
|
+ Espacio de complejidad: Mejor: O(1), Peor: O(n/2)=O(n)
|
|
|
|
+ - DFS (búsqueda en profundidad)
|
|
- [MIT (video)](https://www.youtube.com/watch?v=AfSk24UTFS8&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=14)
|
|
- [MIT (video)](https://www.youtube.com/watch?v=AfSk24UTFS8&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=14)
|
|
- - notes:
|
|
|
|
- time complexity: O(n)
|
|
|
|
- space complexity:
|
|
|
|
- best: O(log n) - avg. height of tree
|
|
|
|
- worst: O(n)
|
|
|
|
|
|
+ - Notas:
|
|
|
|
+ Tiempo de complejidad: O(n)
|
|
|
|
+ Espacio de complejidad:
|
|
|
|
+ Mejor: O(log n) – Promedio de la altura del árbol
|
|
|
|
+ Peor: O(n)
|
|
- inorder (DFS: left, self, right)
|
|
- inorder (DFS: left, self, right)
|
|
- postorder (DFS: left, right, self)
|
|
- postorder (DFS: left, right, self)
|
|
- preorder (DFS: self, left, right)
|
|
- preorder (DFS: self, left, right)
|