|
@@ -0,0 +1,382 @@
|
|
|
+##########################################################################################
|
|
|
+## Knowledge:
|
|
|
+##########################################################################################
|
|
|
+
|
|
|
+* - Computer Arch Intro & Basics:
|
|
|
+ https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=1
|
|
|
+
|
|
|
+* - Parity & Hamming Code:
|
|
|
+ Parity:
|
|
|
+ https://www.youtube.com/watch?v=DdMcAUlxh1M
|
|
|
+ Hamming Code:
|
|
|
+ https://www.youtube.com/watch?v=1A_NcXxdoCc
|
|
|
+ https://www.youtube.com/watch?v=JAMLuxdHH8o
|
|
|
+ Error Checking:
|
|
|
+ https://www.youtube.com/watch?v=wbH2VxzmoZk
|
|
|
+
|
|
|
+* - C
|
|
|
+ * - K&R C book (ANSI C)
|
|
|
+- C++
|
|
|
+ * - basics
|
|
|
+ * - pointers
|
|
|
+ * - functions
|
|
|
+ * - references
|
|
|
+ * - templates
|
|
|
+ * - compilation
|
|
|
+ * - scope & linkage
|
|
|
+ * - namespaces
|
|
|
+ * - OOP
|
|
|
+ * - STL
|
|
|
+ * - functors: http://www.cprogramming.com/tutorial/functors-function-objects-in-c++.html
|
|
|
+ * - C++ at Google: https://www.youtube.com/watch?v=NOCElcMcFik
|
|
|
+ * - Google C++ Style Guide: https://google.github.io/styleguide/cppguide.html
|
|
|
+ - Google uses clang-format (Google setting)
|
|
|
+ - C++ Core Guidelines: http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
|
|
|
+ * - Efficiency with Algorithms, Performance with Data Structures: https://youtu.be/fHNmRkzxHWs
|
|
|
+ - review: https://www.youtube.com/watch?v=Rub-JsjMhWY
|
|
|
+
|
|
|
+compilers:
|
|
|
+ * - https://class.coursera.org/compilers-004/lecture/1
|
|
|
+ * - https://class.coursera.org/compilers-004/lecture/2
|
|
|
+ * - C++: https://www.youtube.com/watch?v=twodd1KFfGk
|
|
|
+ * - Understanding Compiler Optimization (C++): https://www.youtube.com/watch?v=FnGCDLhaxKU
|
|
|
+
|
|
|
+how computers process a program:
|
|
|
+ - https://www.youtube.com/watch?v=42KTvGYQYnA
|
|
|
+ - https://www.youtube.com/watch?v=Mv2XQgpbTNE
|
|
|
+ - https://www.youtube.com/watch?v=h8T3PWauYF4
|
|
|
+
|
|
|
+linked lists
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/OsBSF/arrays
|
|
|
+ - singly-linked
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/kHhgK/singly-linked-lists
|
|
|
+ - doubly-linked
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/jpGKD/doubly-linked-lists
|
|
|
+ - reverse a singly-linked list
|
|
|
+stacks
|
|
|
+ - see: https://class.coursera.org/algs4partI-010/lecture
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/UdKzQ/stacks
|
|
|
+queues
|
|
|
+ - see: https://class.coursera.org/algs4partI-010/lecture
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/EShpq/queues
|
|
|
+arrays
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/OsBSF/arrays
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/EwbnV/dynamic-arrays
|
|
|
+Vectors
|
|
|
+ - Vector calculus ?
|
|
|
+heaps
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/GRV2q/binary-trees
|
|
|
+ - min heap
|
|
|
+ - max heap
|
|
|
+Priority Queue
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/2OpTs/introduction
|
|
|
+ - see: https://class.coursera.org/algs4partI-010/lecture
|
|
|
+ - https://class.coursera.org/algs4partI-010/lecture/39
|
|
|
+ - https://en.wikipedia.org/wiki/Priority_queue
|
|
|
+Disjoint Sets:
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/JssSY/overview
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/Mxu0w/trees
|
|
|
+hashtables
|
|
|
+ - https://www.youtube.com/watch?v=C4Kc8xzcA68
|
|
|
+ - https://class.coursera.org/algs4partI-010/lecture/52
|
|
|
+ - https://www.coursera.org/learn/data-structures/home/week/3
|
|
|
+ - see: https://class.coursera.org/algs4partI-010/lecture
|
|
|
+ - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/m7UuP/core-hash-tables
|
|
|
+ - test: implement with only arrays
|
|
|
+tries
|
|
|
+ - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/08Xyf/core-introduction-to-tries
|
|
|
+Circular buffer/FIFO:
|
|
|
+ - https://en.wikipedia.org/wiki/Circular_buffer
|
|
|
+Bit operations
|
|
|
+ - count on bits
|
|
|
+ - https://youtu.be/Hzuzo9NJrlc
|
|
|
+ - max run of off bits
|
|
|
+ - bit shifting
|
|
|
+binary search
|
|
|
+Sorting
|
|
|
+ - no bubble sort - it's terrible
|
|
|
+ - at least one n*log(n) sorting algorithm, preferably two (say, quicksort and merge sort)
|
|
|
+ - Which algorithms can be used on lists? Which on arrays? Which on both? Is Quicksort stable?
|
|
|
+ - algos:
|
|
|
+ - mergesort
|
|
|
+ - quicksort
|
|
|
+Caches
|
|
|
+ - LRU cache
|
|
|
+Trees
|
|
|
+ - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/ovovP/core-trees
|
|
|
+ - see: https://class.coursera.org/algs4partI-010/lecture
|
|
|
+ - basic tree construction
|
|
|
+ - traversal
|
|
|
+ - manipulation algorithms
|
|
|
+ - binary search trees BSTs
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/E7cXP/introduction
|
|
|
+ - applications:
|
|
|
+ - https://class.coursera.org/algs4partI-010/lecture/57
|
|
|
+ - n-ary trees
|
|
|
+ - trie-trees
|
|
|
+ - at least one type of balanced binary tree (and know how it's implemented):
|
|
|
+ - red/black tree
|
|
|
+ - https://class.coursera.org/algs4partI-010/lecture/50
|
|
|
+ - splay trees
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/O9nZ6/splay-trees
|
|
|
+ - AVL trees
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/Qq5E0/avl-trees
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/PKEBC/avl-tree-implementation
|
|
|
+ - https://www.coursera.org/learn/data-structures/lecture/22BgE/split-and-merge
|
|
|
+ - 2-3 Search Trees
|
|
|
+ - https://class.coursera.org/algs4partI-010/lecture/49
|
|
|
+ - B-Trees:
|
|
|
+ - https://class.coursera.org/algs4partI-010/lecture/51
|
|
|
+ - BFS (breadth-first search)
|
|
|
+ - DFS (depth-first search)
|
|
|
+ - know the difference between
|
|
|
+ - inorder
|
|
|
+ - postorder
|
|
|
+ - preorder
|
|
|
+Graphs:
|
|
|
+ There are three basic ways to represent a graph in memory:
|
|
|
+ - objects and pointers
|
|
|
+ - matrix
|
|
|
+ - adjacency list
|
|
|
+ - familiarize yourself with each representation and its pros & cons
|
|
|
+ - now their computational complexity, their tradeoffs, and how to implement them in real code
|
|
|
+ - If you get a chance, try to study up on fancier algorithms:
|
|
|
+ - Dijkstra
|
|
|
+ - A*
|
|
|
+Other data structures:
|
|
|
+ - You should study up on as many other data structures and algorithms as possible
|
|
|
+ - You should especially know about the most famous classes of NP-complete problems, such as traveling salesman and the knapsack problem, and be able to recognize them when an interviewer asks you them in disguise.
|
|
|
+ - Find out what NP-complete means.
|
|
|
+Recursion
|
|
|
+ - when it is appropriate to use it
|
|
|
+Algorithmic complexity
|
|
|
+open-ended problems
|
|
|
+ - manipulate strings
|
|
|
+ - manipulate patterns
|
|
|
+design patterns:
|
|
|
+ - strategy
|
|
|
+ - singleton
|
|
|
+ - adapter
|
|
|
+ - prototype
|
|
|
+ - decorator
|
|
|
+Combinatorics (n choose k)
|
|
|
+Probability
|
|
|
+Dynamic Programming
|
|
|
+Processes, Threads, Concurrency issues
|
|
|
+ - difference: https://www.quora.com/What-is-the-difference-between-a-process-and-a-thread
|
|
|
+ - threads: https://www.youtube.com/playlist?list=PL5jc9xFGsL8E12so1wlMS0r0hTQoJL74M
|
|
|
+ - stopped here: https://www.youtube.com/watch?v=_N0B5ua7oN8&list=PL5jc9xFGsL8E12so1wlMS0r0hTQoJL74M&index=4
|
|
|
+ - locks
|
|
|
+ - mutexes
|
|
|
+ - semaphores
|
|
|
+ - monitors
|
|
|
+ - how they work
|
|
|
+ - deadlock
|
|
|
+ - livelock
|
|
|
+Process resource needs
|
|
|
+Thread resource needs
|
|
|
+Modern concurrency constructs with multicore processors
|
|
|
+Context switching
|
|
|
+ - How context switching is initiated by the operating system and underlying hardware
|
|
|
+Scheduling
|
|
|
+Weighted random sampling
|
|
|
+Implement system routines
|
|
|
+Distill large data sets to single values
|
|
|
+Transform one data set to another
|
|
|
+Handling obscenely large amounts of data
|
|
|
+System design:
|
|
|
+ - features sets
|
|
|
+ - interfaces
|
|
|
+ - class hierarchies
|
|
|
+ - designing a system under certain constraints
|
|
|
+ - simplicity and robustness
|
|
|
+ - tradeoffs
|
|
|
+Performance analysis and optimization
|
|
|
+Testing
|
|
|
+
|
|
|
+Information theory:
|
|
|
+ - Markov processes:
|
|
|
+ - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/waxgx/core-markov-text-generation
|
|
|
+ - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/gZhiC/core-implementing-markov-text-generation
|
|
|
+ - https://www.khanacademy.org/computing/computer-science/informationtheory/moderninfotheory/v/symbol-rate-information-theory
|
|
|
+ - includes Markov chain
|
|
|
+
|
|
|
+Bloom Filter
|
|
|
+ - https://www.youtube.com/watch?v=-SuTGoFYjZs
|
|
|
+ - http://blog.michaelschmatz.com/2016/04/11/how-to-write-a-bloom-filter-cpp/
|
|
|
+
|
|
|
+C (for basis of C)
|
|
|
+C++ (for interview answers)
|
|
|
+
|
|
|
+Machine Learning:
|
|
|
+ - http://www.analyticsvidhya.com/blog/2016/04/neural-networks-python-theano/
|
|
|
+ - review videos
|
|
|
+ - intro in Goodreader on iPad
|
|
|
+ - http://www.dataschool.io/
|
|
|
+
|
|
|
+---
|
|
|
+
|
|
|
+When you have time:
|
|
|
+
|
|
|
+C++ Talks at CPPCon:
|
|
|
+ - https://www.youtube.com/watch?v=hEx5DNLWGgA&index=2&list=PLHTh1InhhwT75gykhs7pqcR_uSiG601oh
|
|
|
+
|
|
|
+Compilers:
|
|
|
+ - https://class.coursera.org/compilers-004/lecture
|
|
|
+
|
|
|
+Computer and processor architecture:
|
|
|
+ - https://class.coursera.org/comparch-003/lecture
|
|
|
+
|
|
|
+Long series of C++ videos:
|
|
|
+ - https://www.youtube.com/playlist?list=PLfVsf4Bjg79Cu5MYkyJ-u4SyQmMhFeC1C
|
|
|
+
|
|
|
+---
|
|
|
+
|
|
|
+Biggest challenges faced
|
|
|
+Best/worst designs seen
|
|
|
+Ideas for improving existing products
|
|
|
+ - my search idea (optimal result exhaustion and refresh)
|
|
|
+
|
|
|
+##########################################################################################
|
|
|
+## Videos:
|
|
|
+##########################################################################################
|
|
|
+
|
|
|
+6.042: Math for CS (25 videos):
|
|
|
+ - https://www.youtube.com/watch?v=L3LMbpZIKhQ&list=PLB7540DEDD482705B
|
|
|
+
|
|
|
+6.006: Intro to Algorithms (47 videos):
|
|
|
+ - https://www.youtube.com/watch?v=HtSuA80QTyo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&nohtml5=False
|
|
|
+
|
|
|
+6.033: Computer System Engineering (22 videos):
|
|
|
+ - https://www.youtube.com/watch?v=zm2VP0kHl1M&list=PL6535748F59DCA484
|
|
|
+
|
|
|
+6.046: Design and Analysis of Algorithms (34 videos):
|
|
|
+ - https://www.youtube.com/watch?v=2P-yW7LQr08&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp
|
|
|
+
|
|
|
+6.851: Advanced Data Structures (22 videos):
|
|
|
+ - https://www.youtube.com/watch?v=T0yzrZL1py0&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf
|
|
|
+
|
|
|
+Stanford: Programming Paradigms (17 videos)
|
|
|
+ - https://www.youtube.com/watch?v=jTSvthW34GU&list=PLC0B8B318B7394B6F&nohtml5=False
|
|
|
+
|
|
|
+##########################################################################################
|
|
|
+## Articles:
|
|
|
+##########################################################################################
|
|
|
+
|
|
|
+- https://www.topcoder.com/community/data-science/data-science-tutorials/the-importance-of-algorithms/
|
|
|
+- http://highscalability.com/blog/2016/4/4/how-to-remove-duplicates-in-a-large-dataset-reducing-memory.html
|
|
|
+- http://highscalability.com/blog/2016/3/23/what-does-etsys-architecture-look-like-today.html
|
|
|
+- http://highscalability.com/blog/2016/3/21/to-compress-or-not-to-compress-that-was-ubers-question.html
|
|
|
+- http://highscalability.com/blog/2016/3/3/asyncio-tarantool-queue-get-in-the-queue.html
|
|
|
+- http://highscalability.com/blog/2016/2/25/when-should-approximate-query-processing-be-used.html
|
|
|
+- http://highscalability.com/blog/2016/2/23/googles-transition-from-single-datacenter-to-failover-to-a-n.html
|
|
|
+- http://highscalability.com/blog/2016/2/15/egnyte-architecture-lessons-learned-in-building-and-scaling.html
|
|
|
+- http://highscalability.com/blog/2016/2/1/a-patreon-architecture-short.html
|
|
|
+- http://highscalability.com/blog/2016/1/27/tinder-how-does-one-of-the-largest-recommendation-engines-de.html
|
|
|
+- http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html
|
|
|
+- http://highscalability.com/blog/2016/1/13/live-video-streaming-at-facebook-scale.html
|
|
|
+- http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling-to-11-million-users-on-amazons.html
|
|
|
+- http://highscalability.com/blog/2015/12/16/how-does-the-use-of-docker-effect-latency.html
|
|
|
+- http://highscalability.com/blog/2015/12/14/does-amp-counter-an-existential-threat-to-google.html
|
|
|
+- http://highscalability.com/blog/2015/11/9/a-360-degree-view-of-the-entire-netflix-stack.html
|
|
|
+
|
|
|
+##########################################################################################
|
|
|
+## Papers:
|
|
|
+##########################################################################################
|
|
|
+
|
|
|
+Computing Weak Consistency in Polynomial Time
|
|
|
+ - http://delivery.acm.org/10.1145/2770000/2767407/p395-golab.pdf?ip=104.200.154.80&id=2767407&acc=OA&key=4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35%2E5945DC2EABF3343C&CFID=769944592&CFTOKEN=71654301&__acm__=1460506755_42d28e3f230cc8e733e2e9ed1ebe3605
|
|
|
+
|
|
|
+How Developers Search for Code: A Case Study
|
|
|
+ - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43835.pdf
|
|
|
+
|
|
|
+Borg, Omega, and Kubernetes
|
|
|
+ - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf
|
|
|
+
|
|
|
+Continuous Pipelines at Google
|
|
|
+ - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43790.pdf
|
|
|
+
|
|
|
+AddressSanitizer: A Fast Address Sanity Checker
|
|
|
+ - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37752.pdf
|
|
|
+
|
|
|
+
|
|
|
+##########################################################################################
|
|
|
+## Interview Prep:
|
|
|
+##########################################################################################
|
|
|
+
|
|
|
+Videos:
|
|
|
+ - https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be
|
|
|
+ - https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be
|
|
|
+
|
|
|
+Articles:
|
|
|
+ - http://dondodge.typepad.com/the_next_big_thing/2010/09/how-to-get-a-job-at-google-interview-questions-hiring-process.html
|
|
|
+ - http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html
|
|
|
+ - http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions
|
|
|
+ - http://www.google.com/about/careers/lifeatgoogle/hiringprocess/
|
|
|
+
|
|
|
+Additional:
|
|
|
+ - https://courses.csail.mit.edu/iap/interview/materials.php
|
|
|
+ - http://www.coderust.com/blog/2014/04/10/effective-whiteboarding-during-programming-interviews/
|
|
|
+ - https://www.youtube.com/watch?v=rEJzOhC5ZtQ&feature=youtu.be
|
|
|
+ - https://www.youtube.com/watch?v=aClxtDcdpsQ&feature=youtu.be
|
|
|
+ - https://www.youtube.com/watch?v=2cf9xo1S134&feature=youtu.be
|
|
|
+
|
|
|
+##########################################################################################
|
|
|
+## Books:
|
|
|
+##########################################################################################
|
|
|
+
|
|
|
+%%%%% Mentioned in Coaching %%%%%%%%%%%%%%%
|
|
|
+
|
|
|
+The Algorithm Design Manual
|
|
|
+ http://sist.sysu.edu.cn/~isslxm/DSA/textbook/Skiena.-.TheAlgorithmDesignManual.pdf
|
|
|
+
|
|
|
+Algorithms and Programming: Problems and Solutions:
|
|
|
+ http://www.amazon.com/Algorithms-Programming-Solutions-Alexander-Shen/dp/0817638474
|
|
|
+
|
|
|
+Read first:
|
|
|
+Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition:
|
|
|
+ http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html
|
|
|
+
|
|
|
+Read second:
|
|
|
+Cracking the Coding Interview, Fourth Edition:
|
|
|
+ http://www.amazon.com/Cracking-Coding-Interview-Fourth-Edition/dp/145157827X
|
|
|
+
|
|
|
+%%%%% Additional %%%%%%%%%%%%%%%
|
|
|
+
|
|
|
+Programming Pearls:
|
|
|
+ - http://www.wou.edu/~jcm/Spring-P-2015/Programming%20Pearls%20(2nd%20Ed)%20Bentley.pdf
|
|
|
+
|
|
|
+The Google Resume:
|
|
|
+ - https://www.uop.edu.jo/download/research/members/495_1887_llll.pdf
|
|
|
+
|
|
|
+* - C Programming Language, Vol 2
|
|
|
+
|
|
|
+* - C++ Primer Plus
|
|
|
+
|
|
|
+Clean Code
|
|
|
+
|
|
|
+Code Complete
|
|
|
+
|
|
|
+Introduction to Algorithms
|
|
|
+
|
|
|
+##########################################################################################
|
|
|
+## Coding exercises/challenges:
|
|
|
+##########################################################################################
|
|
|
+
|
|
|
+Recommended: LeetCode: https://leetcode.com/
|
|
|
+
|
|
|
+HackerRank: https://www.hackerrank.com/
|
|
|
+Codility: https://codility.com/programmers/
|
|
|
+Proect Euler: https://projecteuler.net/index.php?section=problems
|
|
|
+InterviewCake: https://www.interviewcake.com/
|
|
|
+InterviewBit: https://www.interviewbit.com/invite/icjf
|
|
|
+
|
|
|
+##########################################################################################
|
|
|
+## Code:
|
|
|
+##########################################################################################
|
|
|
+
|
|
|
+https://github.com/lekkas/c-algorithms
|
|
|
+
|
|
|
+##########################################################################################
|
|
|
+## Done. ##
|
|
|
+##########################################################################################
|