Version original: Inglés
Es mi guía de estudio en varios meses para ir de desarrollador web (Autodidacta, sin grado en Ciencias de la computación) a ingeniero de software en Google.
Esta larga lista, ha sido extraída y ampliada de las Google's coaching notes, asi que estas son las cosas que tienes que saber. Hay algunas cosas extra que he añadido al final, que pueden aparecer en una entrevista, o ser de ayuda al solucionar problemas. Extraje muchas de ellas de "Get that job at Google" de Steve Yegge, y a veces aparecen, palabra por palabra en las notas de coaching de Google.
He reducido lo que tienes que saber de lo que Yegge recomienda. He alterado los requerimientos de Yegge acorde con la información que me facilitó me contacto en Google. Está orientado para nuevos ingenieros de software or para aquellos que cambian el desarrollo de software o web, por ingeniería de software (donde se necesita conocimiento en ciencias de computadores). Si tienes muchos años de experiencia y gran parte es experiencia en ingeniería de software, espera que la entrevista sea más dura. Lee más aquí.
Si tienes muchos años de experiencia en desarrollo de software o web, ten en cuenta que Google ve la ingenieria del software como algo diferente al desarrollo web, y ellos requiren conocimiento en ciencias de computadores.
Si lo que quieres es ser ingeniero de escalabilidad / seguridad o ingeniero de sistemas, estudia más de la lista opcional (redes, seguridad).
---------------- Everything below this point is optional ----------------
Estoy siguiendo este plan para prepararme para mi entrevista en Google. He estado construyendo la web, construyendo servicios, e iniciando empresas desde 1997. Tengo un grado en economía, no un grado en ciencias de los computadores. He sido muy exitoso en mi carrera, pero quiero trabajar en Google. Quiero progresar dentro de sistemas más grandes y tener un entendimiento real de ciencias de los computadores, eficiencia algorítmica, rendimiento de estructuras de datos, lenguajes de bajo nivel, y cómo todo esto funciona. Y si tú no sabes alguno de estos, Google no te contratará.
Cuando comencé este proyecto, no sabía la diferencia entre un stack y un heap, no conocía la notación Big-O, nada acerca de árboles, ni cómo cruzar una gráfica. Si tenía que programar un algoritmo de clasificación, puedo decir que no sería muy bueno. Cada estructura de datos que había utilizado estaba incorporada al lenguaje, y yo no sabía cómo funcionaban realmente. Yo nunca tuve que manejar memoria a menos que un proceso que yo estaba corriendo diera un error de “out of memory”, y tenía que encontrar una alternativa. He usado pocos arreglos de varias dimensiones en mi vida y miles de arreglos asociativos, pero nunca he creado estructuras de datos desde cero.
Pero después de pasar por todo este plan de estudios tengo mucha confianza de que seré contratado. Me toará meses. Si mucho de ésto te resulta familiar entonces te tomará mucho menos tiempo.
Todo lo que aparece abajo es un plan, y deberías abordar los elementos en orden de arriba a abajo.
I'm using Github's special markdown flavor, including tasks lists to check progress.
[x] Create a new branch so you can check items like this, just put an x in the brackets: [x]
Fork a branch and follow the commands below
git checkout -b progress
git remote add jwasham https://github.com/jwasham/google-interview-university
git fetch --all
Mark all boxes with X after you completed your changes
git add .
git commit -m "Marked x"
git rebase jwasham/master
git push --force
More about Github-flavored markdown
Imprime una copia de "futuro Googler" (o dos) y mantente enfocado en la meta.
!Aun no he aplicado!.
Ahora estoy haciendo problemas de programación todo el día y continuará las próximas semanas, posteriormente aplicaré por medio de una recomendación que he estado posponiedno hasta Febrero (sí, como lo leiste, hasta Febrero).
Gracias a la persona que me esta recomendando, JP.
Mi breve historía: ¿Por que estudie a tiempo completo por 8 meses para una entrevista en Gooogle?
Aún sigo estudiando, sigue el progresso en:
Algunos vídeos estan disponibles sólo al inscribirte en Coursera, EdX o Lynda.com. Éstos se llaman MOOCs (Massive Open Online Courses, Cursos en línea abiertos masivos). A veces las clases no están disponibles, por lo que tienes que esperar un par de meses, lo que significa que no tienes acceso. Los cursos de Lynda.com no son gratis.
Agradecería tu ayuda para añadir recursos públicos gratis, que siempre estuvieran disponibles, como video s de YouTube
para acompañar los videos de cursos online.
Me gusta usar recursos procedentes de universidades.
[ ] Videos:
[ ] Artículos:
[ ] Cursos de preparacion:
[ ] Adicional (No sugerido por Google, pero los añadí):
I wrote this short article about it: Important: Pick One Language for the Google Interview
You can use a language you are comfortable in to do the coding part of the interview, but for Google, these are solid choices:
You could also use these, but read around first. There may be caveats:
You need to be very comfortable in the language and be knowledgeable.
Read more about choices:
You'll see some C, C++, and Python learning included below, because I'm learning. There are a few books involved, see the bottom.
This is a shorter list than what I used. This is abbreviated to save you time.
If you have tons of extra time:
If short on time:
If you have more time (I want this book):
You need to choose a language for the interview (see above). Here are my recommendations by language. I don't have resources for all languages. I welcome additions.
If you read though one of these, you should have all the data structures and algorithms knowledge you'll need to start doing coding problems. You can skip all the video lectures in this project, unless you'd like a review.
Additional language-specific resources here.
I haven't read these two, but they are highly rated and written by Sedgewick. He's awesome.
If you have a better recommendation for C++, please let me know. Looking for a comprehensive resource.
OR:
Some people recommend these, but I think it's going overboard, unless you have many years of software engineering experience and expect a much harder interview:
[ ] Algorithm Design Manual (Skiena)
[ ] Introduction to Algorithms
"Algorithms and Programming: Problems and Solutions" by Shen
This list grew over many months, and yes, it kind of got out of hand.
Here are some mistakes I made so you'll have a better experience.
I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going through my notes and making flashcards so I could review.
Read please so you won't make my mistakes:
Retaining Computer Science Knowledge
To solve the problem, I made a little flashcards site where I could add flashcards of 2 types: general and code. Each card has different formatting.
I made a mobile-first website so I could review on my phone and tablet, wherever I am.
Make your own for free:
Note on flashcards: The first time you recognize you know the answer, don't mark it as known. You have to see the same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in your brain.
An alternative to using my flashcard site is Anki, which has been recommended to me numerous times. It uses a repetition system to help you remember. It's user-friendly, available on all platforms and has a cloud sync system. It costs $25 on iOS but is free on other platforms.
My flashcard database in Anki format: https://ankiweb.net/shared/info/25173560 (thanks @xiewenya)
I keep a set of cheat sheets on ASCII, OSI stack, Big-O notations, and more. I study them when I have some spare time.
Take a break from programming problems for a half hour and go through your flashcards.
There are a lot of distractions that can take up valuable time. Focus and concentration are hard.
This big list all started as a personal to-do list made from Google interview coaching notes. These are prevalent technologies but were not mentioned in those notes:
Some subjects take one day, and some will take multiple days. Some are just learning with nothing to implement.
Each day I take one subject from the list below, watch videos about that subject, and write an implementation in:
You don't need all these. You need only one language for the interview.
Why code in all of these?
I may not have time to do all of these for every subject, but I'll try.
You can see my code here:
You don't need to memorize the guts of every algorithm.
Write code on a whiteboard or paper, not a computer. Test with some sample inputs. Then test it out on a computer.
[ ] Learn C
[ ] How computers process a program:
[ ] Cheat sheet
If some of the lectures are too mathy, you can jump down to the bottom and watch the discrete mathematics videos to get the background knowledge.
[ ] Videos:
[ ] Online Courses:
[ ] implement with array using linear probing
[ ] Notes:
For heapsort, see Heap data structure above. Heap sort is great, but not stable.
[ ] UC Berkeley:
[ ] Merge sort code:
[ ] Quick sort code:
[ ] Implement:
[ ] Not required, but I recommended them:
If you need more detail on this subject, see "Sorting" section in Additional Detail on Some Subjects
Graphs can be used to represent many problems in computer science, so this section is long, like trees and sorting were.
Notes from Yegge:
[ ] Skiena Lectures - great intro:
[ ] Graphs (review and more):
Full Coursera Course:
Yegge: If you get a chance, try to study up on fancier algorithms:
I'll implement:
You'll get more graph practice in Skiena's book (see Books section below) and the interview books
If you need more detail on this subject, see "String Matching" section in Additional Detail on Some Subjects
This section will have shorter videos that can you watch pretty quickly to review most of the important concepts.
It's nice if you want a refresher often.
Now that you know all the computer science topics above, it's time to practice answering coding problems.
Coding question practice is not about memorizing answers to programming problems.
Why you need to practice doing programming problems:
There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming interview books, too, but I found this outstanding: Algorithm design canvas
My Process for Coding Interview (Book) Exercises
No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". I added the pen in the photo for scale. If you use a pen, you'll wish you could erase. Gets messy quick.
Supplemental:
Read and Do Programming Problems (in this order):
See Book List above
Once you've learned your brains out, put those brains to work. Take coding challenges every day, as many as you can.
Challenge sites:
Maybe:
Think of about 20 interview questions you'll get, along with the lines of the items below. Have 2-3 answers for each. Have a story, not just data, about something you accomplished.
Some of mine (I already may know answer to but want their opinion or team perspective):
Congratulations!
Keep learning.
You're never really done.
*****************************************************************************************************
*****************************************************************************************************
Everything below this point is optional. These are my recommendations, not Google's.
By studying these, you'll get greater exposure to more CS concepts, and will be better prepared for
any software engineering job. You'll be a much more well-rounded software engineer.
*****************************************************************************************************
*****************************************************************************************************
[ ] AVL trees
[ ] Splay trees
[ ] Red/black trees
[ ] 2-3 search trees
[ ] 2-3-4 Trees (aka 2-4 trees)
[ ] N-ary (K-ary, M-ary) trees
[ ] B-Trees
--
I added these to reinforce some ideas already presented above, but didn't want to include them
above because it's just too much. It's easy to overdo it on a subject.
You want to get hired in this century, right?
[ ] Union-Find
[ ] More Dynamic Programming (videos)
[ ] Advanced Graph Processing (videos)
[ ] MIT Probability (mathy, and go slowly, which is good for mathy things) (videos):
[ ] String Matching
[ ] Sorting
Sit back and enjoy. "Netflix and skill" :P
[ ] List of individual Dynamic Programming problems (each is short)
[ ] Excellent - MIT Calculus Revisited: Single Variable Calculus
[ ] Computer Science 70, 001 - Spring 2015 - Discrete Mathematics and Probability Theory
[ ] CSE373 - Analysis of Algorithms (25 videos)
[ ] UC Berkeley 61B (Spring 2014): Data Structures (25 videos)
[ ] UC Berkeley 61B (Fall 2006): Data Structures (39 videos)
[ ] UC Berkeley CS 152: Computer Architecture and Engineering (20 videos)
[ ] Carnegie Mellon - Computer Architecture Lectures (39 videos)
[ ] MIT 6.034 Artificial Intelligence, Fall 2010 (30 videos)
[ ] MIT 6.042J: Mathematics for Computer Science, Fall 2010 (25 videos)
[ ] MIT 6.046: Design and Analysis of Algorithms (34 videos)
[ ] MIT 6.050J: Information and Entropy, Spring 2008 (19 videos)
[ ] Mining Massive Datasets - Stanford University (94 videos)