plan.txt 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612
  1. ##########################################################################################
  2. ## How to read this
  3. ##########################################################################################
  4. Everything below is an outline, and you should tackle the items in order from top to bottom.
  5. I put an asterisk/star (*) at the beginning of a line when I'm done with it. When all sub-items are done,
  6. I put a * at the top level, meaning the entire block is done. Sorry you have to remove all my *
  7. to use this the same way. If you search/replace, there are a couple of places to look out for.
  8. Sometimes I just put a * at top level if I know I've done all the subtasks, to cut down on * clutter.
  9. ##########################################################################################
  10. ## Interview Prep:
  11. ##########################################################################################
  12. * - Videos:
  13. * - https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be
  14. * - https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be
  15. * - https://www.youtube.com/watch?v=8npJLXkcmu8
  16. * - Articles:
  17. * - http://www.google.com/about/careers/lifeatgoogle/hiringprocess/
  18. * - http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html
  19. - all the things he mentions that you need to know are listed below
  20. * - (very dated) http://dondodge.typepad.com/the_next_big_thing/2010/09/how-to-get-a-job-at-google-interview-questions-hiring-process.html
  21. * - http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions
  22. * - Additional (not suggested by Google but I added):
  23. * - https://medium.com/always-be-coding/abc-always-be-coding-d5f8051afce2#.4heg8zvm4
  24. * - https://medium.com/always-be-coding/four-steps-to-google-without-a-degree-8f381aa6bd5e#.asalo1vfx
  25. * - https://medium.com/@dpup/whiteboarding-4df873dbba2e#.hf6jn45g1
  26. * - http://www.kpcb.com/blog/lessons-learned-how-google-thinks-about-hiring-management-and-culture
  27. * - http://www.coderust.com/blog/2014/04/10/effective-whiteboarding-during-programming-interviews/
  28. * - Cracking The Coding Interview Set 1:
  29. * - https://www.youtube.com/watch?v=rEJzOhC5ZtQ
  30. * - https://www.youtube.com/watch?v=aClxtDcdpsQ
  31. * - How to Get a Job at the Big 4:
  32. * - https://www.youtube.com/watch?v=YJZCUhxNCv8
  33. ##########################################################################################
  34. ## Knowledge:
  35. ##########################################################################################
  36. This short section were prerequisites/interesting info I wanted to learn before getting started on the daily plan.
  37. You need to know C, C++, or Java to do the coding part of the interview.
  38. They will sometimes make an exception and let you use Python or some other language, but the language
  39. must be mainstream and allow you write your code low-level enough to solve the problems.
  40. You'll see some C, C++ learning included below.
  41. There are a few books involved, see the bottom.
  42. Some videos are available only by enrolling in a Coursera or EdX class. It is free to do so.
  43. * - how computers process a program:
  44. * - https://www.youtube.com/watch?v=42KTvGYQYnA
  45. * - https://www.youtube.com/watch?v=Mv2XQgpbTNE
  46. * - Computer Arch Intro:
  47. (first video only - interesting but not required) https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=1
  48. * - C
  49. * - K&R C book (ANSI C)
  50. * - Clang: https://www.youtube.com/watch?v=U3zCxnj2w8M
  51. * - GDB:
  52. - https://www.youtube.com/watch?v=USPvePv1uzE
  53. - https://www.youtube.com/watch?v=y5JmQItfFck
  54. - Valgrind: https://www.youtube.com/watch?v=fvTsFjDuag8
  55. - C++
  56. * - basics
  57. * - pointers
  58. * - functions
  59. * - references
  60. * - templates
  61. * - compilation
  62. * - scope & linkage
  63. * - namespaces
  64. * - OOP
  65. * - STL
  66. * - functors: http://www.cprogramming.com/tutorial/functors-function-objects-in-c++.html
  67. * - C++ at Google: https://www.youtube.com/watch?v=NOCElcMcFik
  68. * - Google C++ Style Guide: https://google.github.io/styleguide/cppguide.html
  69. * - Google uses clang-format (there is a command line "style" argument: -style=google)
  70. * - Efficiency with Algorithms, Performance with Data Structures: https://youtu.be/fHNmRkzxHWs
  71. - C++ Core Guidelines: http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
  72. - review of C++ concepts: https://www.youtube.com/watch?v=Rub-JsjMhWY
  73. * - compilers:
  74. * - https://class.coursera.org/compilers-004/lecture/1
  75. * - https://class.coursera.org/compilers-004/lecture/2
  76. * - C++: https://www.youtube.com/watch?v=twodd1KFfGk
  77. * - Understanding Compiler Optimization (C++): https://www.youtube.com/watch?v=FnGCDLhaxKU
  78. ----------------------------------------------------------------
  79. The Daily Plan:
  80. Each subject does not require a whole day to be able to understand it fully, and you can do multiple of these in a day.
  81. Each day I take one subject from the list below, watch videos about that subject, and write an implementation in:
  82. C - using structs and functions that take a struct * and something else as args.
  83. C++ - without using built-in types
  84. C++ - using built-in types, like STL's std::list for a linked list
  85. Python - without using built-in types (to keep practicing Python)
  86. and write tests to ensure I'm doing it right, sometimes just using simple assert() statements
  87. You may do Java or something else, this is just my thing.
  88. Why code in all of these?
  89. Practice, practice, practice, until I'm sick of it, and can do it with no problem (some have many edge cases and bookkeeping details to remember)
  90. Work within the raw constraints (allocating/freeing memory without help of garbage collection (except Python))
  91. Make use of built-in types so I have experience using the built-in tools for real-world use (not going to write my own linked list implementation in production)
  92. You don't need to memorize the guts of every algorithm.
  93. Write code on a whiteboard, not a computer. Test with some sample inputs.
  94. Then test it out on a computer to make sure it's not buggy from syntax.
  95. ----------------------------------------------------------------
  96. * - Before you get started:
  97. The myth of the Genius Programmer: https://www.youtube.com/watch?v=0SARbwvhupQ
  98. Google engineers are smart, but many have an insecurity that they aren't smart enough.
  99. * - Algorithmic complexity / Big O / Asymptotic analysis
  100. - nothing to implement
  101. - Harvard CS50 - Asymptotic Notation: https://www.youtube.com/watch?v=iOq5kSKqeR4
  102. - Big O Notations (general quick tutorial) - https://www.youtube.com/watch?v=V6mKVRU1evU
  103. - Big O Notation (and Omega and Theta) - best mathematical explanation:
  104. - https://www.youtube.com/watch?v=ei-A_wy5Yxw&index=2&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN
  105. - Skiena:
  106. - video: https://www.youtube.com/watch?v=gSyDMtdPNpU&index=2&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b
  107. - slides: http://www3.cs.stonybrook.edu/~algorith/video-lectures/2007/lecture2.pdf
  108. - A Gentle Introduction to Algorithm Complexity Analysis: http://discrete.gr/complexity/
  109. - Orders of Growth: https://class.coursera.org/algorithmicthink1-004/lecture/59
  110. - Asymptotics: https://class.coursera.org/algorithmicthink1-004/lecture/61
  111. - UC Berkeley Big O: https://youtu.be/VIS4YDpuP98
  112. - UC Berkeley Big Omega: https://youtu.be/ca3e7UVmeUc
  113. - Amortized Analysis: https://www.youtube.com/watch?v=B3SpQZaAZP4&index=10&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN
  114. - Illustrating "Big O": https://class.coursera.org/algorithmicthink1-004/lecture/63
  115. - Cheat sheet: http://bigocheatsheet.com/
  116. Arrays
  117. * - Description:
  118. - Arrays: https://www.coursera.org/learn/data-structures/lecture/OsBSF/arrays
  119. - Arrays: https://www.lynda.com/Developer-Programming-Foundations-tutorials/Basic-arrays/149042/177104-4.html
  120. - Multi-dim: https://www.lynda.com/Developer-Programming-Foundations-tutorials/Multidimensional-arrays/149042/177105-4.html
  121. - Dynamic Arrays: https://www.coursera.org/learn/data-structures/lecture/EwbnV/dynamic-arrays
  122. - Jagged: https://www.lynda.com/Developer-Programming-Foundations-tutorials/Jagged-arrays/149042/177106-4.html
  123. - Resizing arrays:
  124. - https://class.coursera.org/algs4partI-010/lecture/19
  125. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/Resizable-arrays/149042/177108-4.html
  126. * - Implement a vector (mutable array with automatic resizing):
  127. * - Practice coding using arrays and pointers, and pointer math to jump to an index instead of using indexing.
  128. * - new raw data array with allocated memory
  129. - can allocate int array under the hood, just not use its features
  130. - start with 16, or if starting number is greater, use power of 2 - 16, 32, 64, 128
  131. * - size() - number of items
  132. * - capacity() - number of items it can hold
  133. * - is_empty()
  134. * - at(index) - returns item at given index, blows up if index out of bounds
  135. * - push(item)
  136. * - insert(index, item) - inserts item at index, shifts that index's value and trailing elements to the right
  137. * - prepend(item) - can use insert above at index 0
  138. * - pop() - remove from end, return value
  139. * - delete(index) - delete item at index, shifting all trailing elements left
  140. * - remove(item) - looks for value and removes index holding it (even if in multiple places)
  141. * - find(item) - looks for value and returns first index with that value, -1 if not found
  142. * - resize(new_capacity) // private function
  143. - when you reach capacity, resize to double the size
  144. - when popping an item, if size is 1/4 of capacity, resize to half
  145. * - Time
  146. - O(1) to add/remove at end (amortized for allocations for more space), index, or update
  147. - O(n) to insert/remove elsewhere
  148. * - Space
  149. - contiguous in memory, so proximity helps performance
  150. - space needed = (array capacity, which is >= n) * size of item, but even if 2n, still O(n)
  151. Linked lists
  152. - singly-linked
  153. * - Description: https://www.coursera.org/learn/data-structures/lecture/kHhgK/singly-linked-lists
  154. * - Lynda.com:
  155. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/Introduction-lists/149042/177115-4.html
  156. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/Understanding-basic-list-implementations/149042/177116-4.html
  157. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-singly-doubly-linked-lists/149042/177117-4.html
  158. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/List-support-across-languages/149042/177118-4.html
  159. * - C Code: https://www.youtube.com/watch?v=QN6FPiD0Gzo
  160. - not the whole video, just portions about Node struct and memory allocation.
  161. * - why you should avoid linked lists:
  162. - https://www.youtube.com/watch?v=YQs6IC-vgmo
  163. - implement (with tail pointer), item is the data item in a node:
  164. - push_front
  165. - get_front
  166. - pop_front
  167. - insert_before(node, value)
  168. - insert_after(node, value)
  169. - size()
  170. - is_empty()
  171. - find(value) - assume each item is unique
  172. - remove(value) - assume each item is unique
  173. - reverse - reverses the list
  174. - doubly-linked list
  175. - Description: https://www.coursera.org/learn/data-structures/lecture/jpGKD/doubly-linked-lists
  176. - implement:
  177. - same as above for singly linked list
  178. - push_back()
  179. - get_back()
  180. - pop_back()
  181. Stacks
  182. - see: https://class.coursera.org/algs4partI-010/lecture
  183. - https://www.coursera.org/learn/data-structures/lecture/UdKzQ/stacks
  184. Queues
  185. - see: https://class.coursera.org/algs4partI-010/lecture
  186. - https://www.coursera.org/learn/data-structures/lecture/EShpq/queues
  187. Heaps
  188. - https://www.coursera.org/learn/data-structures/lecture/GRV2q/binary-trees
  189. - min heap
  190. - max heap
  191. Priority Queue
  192. - https://www.coursera.org/learn/data-structures/lecture/2OpTs/introduction
  193. - see: https://class.coursera.org/algs4partI-010/lecture
  194. - https://class.coursera.org/algs4partI-010/lecture/39
  195. - https://en.wikipedia.org/wiki/Priority_queue
  196. Disjoint Sets:
  197. - https://www.coursera.org/learn/data-structures/lecture/JssSY/overview
  198. - https://www.coursera.org/learn/data-structures/lecture/Mxu0w/trees
  199. Hash tables
  200. - https://www.youtube.com/watch?v=C4Kc8xzcA68
  201. - https://class.coursera.org/algs4partI-010/lecture/52
  202. - https://www.coursera.org/learn/data-structures/home/week/3
  203. - see: https://class.coursera.org/algs4partI-010/lecture
  204. - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/m7UuP/core-hash-tables
  205. - test: implement with only arrays
  206. Tries
  207. - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/08Xyf/core-introduction-to-tries
  208. Circular buffer/FIFO:
  209. - https://en.wikipedia.org/wiki/Circular_buffer
  210. Bit operations
  211. - count on bits
  212. - https://youtu.be/Hzuzo9NJrlc
  213. - max run of on/off bits
  214. - bit shifting
  215. * - Parity & Hamming Code:
  216. Parity:
  217. https://www.youtube.com/watch?v=DdMcAUlxh1M
  218. Hamming Code:
  219. https://www.youtube.com/watch?v=1A_NcXxdoCc
  220. https://www.youtube.com/watch?v=JAMLuxdHH8o
  221. Error Checking:
  222. https://www.youtube.com/watch?v=wbH2VxzmoZk
  223. Binary search
  224. Sorting
  225. - stability in sorting algorithms:
  226. - http://stackoverflow.com/questions/1517793/stability-in-sorting-algorithms
  227. - http://www.geeksforgeeks.org/stability-in-sorting-algorithms/
  228. - Which algorithms can be used on linked lists? Which on arrays? Which on both? Is Quicksort stable?
  229. - Implement & know best case/worst case, average complexity of each:
  230. - mergesort
  231. - quicksort
  232. - insertion sort
  233. - selection sort
  234. - no bubble sort - it's terrible at O(n^2)
  235. Caches
  236. - LRU cache
  237. Trees
  238. - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/ovovP/core-trees
  239. - see: https://class.coursera.org/algs4partI-010/lecture
  240. - basic tree construction
  241. - traversal
  242. - manipulation algorithms
  243. - binary search trees BSTs
  244. - https://www.coursera.org/learn/data-structures/lecture/E7cXP/introduction
  245. - applications:
  246. - https://class.coursera.org/algs4partI-010/lecture/57
  247. - n-ary trees
  248. - trie-trees
  249. - at least one type of balanced binary tree (and know how it's implemented):
  250. - red/black tree
  251. - https://class.coursera.org/algs4partI-010/lecture/50
  252. - splay trees
  253. - https://www.coursera.org/learn/data-structures/lecture/O9nZ6/splay-trees
  254. - AVL trees
  255. - https://www.coursera.org/learn/data-structures/lecture/Qq5E0/avl-trees
  256. - https://www.coursera.org/learn/data-structures/lecture/PKEBC/avl-tree-implementation
  257. - https://www.coursera.org/learn/data-structures/lecture/22BgE/split-and-merge
  258. - 2-3 Search Trees
  259. - https://class.coursera.org/algs4partI-010/lecture/49
  260. - B-Trees:
  261. - https://class.coursera.org/algs4partI-010/lecture/51
  262. - BFS (breadth-first search)
  263. - DFS (depth-first search)
  264. - know the difference between
  265. - inorder
  266. - postorder
  267. - preorder
  268. Graphs:
  269. There are three basic ways to represent a graph in memory:
  270. - objects and pointers
  271. - matrix
  272. - adjacency list
  273. - familiarize yourself with each representation and its pros & cons
  274. - BFS and DFS - know their computational complexity, their tradeoffs, and how to implement them in real code
  275. - If you get a chance, try to study up on fancier algorithms:
  276. - Dijkstra
  277. - A*
  278. - when asked a question, look for a graph-based solution first, then move on if none.
  279. Other data structures:
  280. - You should study up on as many other data structures and algorithms as possible
  281. - You should especially know about the most famous classes of NP-complete problems, such as traveling salesman and the knapsack problem, and be able to recognize them when an interviewer asks you them in disguise.
  282. - Know what NP-complete means.
  283. Recursion
  284. - when it is appropriate to use it
  285. open-ended problems
  286. - manipulate strings
  287. - manipulate patterns
  288. design patterns:
  289. - description:
  290. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/Foundations-Programming-Design-Patterns/135365-2.html
  291. - strategy
  292. - singleton
  293. - adapter
  294. - prototype
  295. - decorator
  296. - visitor
  297. - factory
  298. Combinatorics (n choose k)
  299. Probability
  300. Dynamic Programming
  301. Processes, Threads, Concurrency issues
  302. - difference: https://www.quora.com/What-is-the-difference-between-a-process-and-a-thread
  303. - threads: https://www.youtube.com/playlist?list=PL5jc9xFGsL8E12so1wlMS0r0hTQoJL74M
  304. - stopped here: https://www.youtube.com/watch?v=_N0B5ua7oN8&list=PL5jc9xFGsL8E12so1wlMS0r0hTQoJL74M&index=4
  305. - locks
  306. - mutexes
  307. - semaphores
  308. - monitors
  309. - how they work
  310. - deadlock
  311. - livelock
  312. Process resource needs
  313. Thread resource needs
  314. Modern concurrency constructs with multicore processors
  315. Operating Systems:
  316. - https://www.youtube.com/watch?v=-KWd_eQYLwY&index=2&list=PL-XXv-cvA_iBDyz-ba4yDskqMDY6A1w_c
  317. Context switching
  318. - How context switching is initiated by the operating system and underlying hardware
  319. Scheduling
  320. Weighted random sampling
  321. Implement system routines
  322. Distill large data sets to single values
  323. Transform one data set to another
  324. Handling obscenely large amounts of data
  325. System design:
  326. - features sets
  327. - interfaces
  328. - class hierarchies
  329. - designing a system under certain constraints
  330. - simplicity and robustness
  331. - tradeoffs
  332. Performance analysis and optimization
  333. Familiarize yourself with unix-based souped-up code editor: emacs & vi(m)
  334. vi(m):
  335. - https://www.youtube.com/watch?v=5givLEMcINQ&index=1&list=PL13bz4SHGmRxlZVmWQ9DvXo1fEg4UdGkr
  336. - set of 4:
  337. - https://www.youtube.com/watch?v=SI8TeVMX8pk
  338. - https://www.youtube.com/watch?v=F3OO7ZIOaJE
  339. - https://www.youtube.com/watch?v=ZYEccA_nMaI
  340. - https://www.youtube.com/watch?v=1lYD5gwgZIA
  341. emacs:
  342. - https://www.youtube.com/watch?v=hbmV1bnQ-i0
  343. - set of 3:
  344. - https://www.youtube.com/watch?v=ujODL7MD04Q
  345. - https://www.youtube.com/watch?v=XWpsRupJ4II
  346. - https://www.youtube.com/watch?v=paSgzPso-yc
  347. - https://www.youtube.com/watch?v=JWD1Fpdd4Pc
  348. Testing
  349. -------------------------------------------------------------------
  350. Once you're closer to the interview:
  351. - Cracking The Coding Interview Set 2:
  352. - https://www.youtube.com/watch?v=4NIb9l3imAo
  353. - https://www.youtube.com/watch?v=Eg5-tdAwclo
  354. - https://www.youtube.com/watch?v=1fqxMuPmGak
  355. -------------------------------------------------------------------
  356. Extras that can't hurt:
  357. Information theory:
  358. - Markov processes:
  359. - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/waxgx/core-markov-text-generation
  360. - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/gZhiC/core-implementing-markov-text-generation
  361. - https://www.khanacademy.org/computing/computer-science/informationtheory/moderninfotheory/v/symbol-rate-information-theory
  362. - includes Markov chain
  363. Bloom Filter
  364. - https://www.youtube.com/watch?v=-SuTGoFYjZs
  365. - http://blog.michaelschmatz.com/2016/04/11/how-to-write-a-bloom-filter-cpp/
  366. Fast Fourier Transform
  367. - http://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/
  368. Machine Learning:
  369. - great course: https://www.coursera.org/learn/machine-learning
  370. - http://www.analyticsvidhya.com/blog/2016/04/neural-networks-python-theano/
  371. - http://www.dataschool.io/
  372. Parallel Programming:
  373. - https://www.coursera.org/learn/parprog1/home/week/1
  374. ------------------------
  375. Be thinking of for when the interview comes:
  376. Think of about 20 interview questions you'll get, along the lines of the items below:
  377. have 2-3 answers for each
  378. Have a story, not just data, about something you accomplished
  379. Why do you want this job?
  380. What's a tough problem you've solved?
  381. Biggest challenges faced?
  382. Best/worst designs seen?
  383. Ideas for improving an existing Google product.
  384. How do you work best, as an individual and as part of a team?
  385. Which of your skills or experiences would be assets in the role and why?
  386. What did you most enjoy at [job x / project y]?
  387. What was the biggest challenge you faced at [job x / project y]?
  388. What was the hardest bug you faced at [job x / project y]?
  389. What did you learn at [job x / project y]?
  390. What would you have done better at [job x / project y]?
  391. ---------------------------
  392. Have questions for the interviewer.
  393. Some of mine (I already may know answer to but want their opinion or team perspective):
  394. - How large is your team?
  395. - What is your dev cycle look like? Do you do sprints/agile?
  396. - How are decisions made in your team?
  397. - How many meetings do you have per week?
  398. - Do you feel your work environment helps you concentrate?
  399. - What are you working on?
  400. - What do you like about it?
  401. - What is the work life like?
  402. ##########################################################################################
  403. ## Books:
  404. ##########################################################################################
  405. Mentioned in Coaching:
  406. The Algorithm Design Manual
  407. http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202
  408. Algorithms and Programming: Problems and Solutions:
  409. http://www.amazon.com/Algorithms-Programming-Solutions-Alexander-Shen/dp/0817638474
  410. Once you've understood everything in the daily plan:
  411. read and do exercises from the books below. Then move to coding challenges (below)
  412. Read first:
  413. Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition:
  414. http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html
  415. Read second:
  416. Cracking the Coding Interview, 6th Edition:
  417. - http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/
  418. Additional (not suggested by Google but I added):
  419. * - C Programming Language, Vol 2
  420. * - C++ Primer Plus, 6th Edition
  421. Introduction to Algorithms
  422. Programming Pearls:
  423. - http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880
  424. If you see people reference "The Google Resume", it was replaced by "Cracking the Coding Interview".
  425. Clean Code
  426. Code Complete
  427. ##########################################################################################
  428. ##########################################################################################
  429. ##
  430. ##
  431. ##
  432. ## Everything below is my recommendation, not Google's, and
  433. ## you may not have enough time to watch or read them all.
  434. ## That's ok. I may not either.
  435. ##
  436. ##
  437. ##
  438. ##########################################################################################
  439. ##########################################################################################
  440. ## Videos:
  441. ##########################################################################################
  442. CSE373 - Analysis of Algorithms (25 videos):
  443. - https://www.youtube.com/watch?v=ZFjhkohHdAA&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=1
  444. 6.042: Math for CS (25 videos):
  445. - https://www.youtube.com/watch?v=L3LMbpZIKhQ&list=PLB7540DEDD482705B
  446. 6.006: Intro to Algorithms (47 videos):
  447. - https://www.youtube.com/watch?v=HtSuA80QTyo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&nohtml5=False
  448. 6.033: Computer System Engineering (22 videos):
  449. - https://www.youtube.com/watch?v=zm2VP0kHl1M&list=PL6535748F59DCA484
  450. 6.046: Design and Analysis of Algorithms (34 videos):
  451. - https://www.youtube.com/watch?v=2P-yW7LQr08&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp
  452. 6.851: Advanced Data Structures (22 videos):
  453. - https://www.youtube.com/watch?v=T0yzrZL1py0&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf
  454. Stanford: Programming Paradigms (17 videos)
  455. - https://www.youtube.com/watch?v=jTSvthW34GU&list=PLC0B8B318B7394B6F&nohtml5=False
  456. ##########################################################################################
  457. ## Articles:
  458. ##########################################################################################
  459. - https://www.topcoder.com/community/data-science/data-science-tutorials/the-importance-of-algorithms/
  460. - http://highscalability.com/blog/2016/4/4/how-to-remove-duplicates-in-a-large-dataset-reducing-memory.html
  461. - http://highscalability.com/blog/2016/3/23/what-does-etsys-architecture-look-like-today.html
  462. - http://highscalability.com/blog/2016/3/21/to-compress-or-not-to-compress-that-was-ubers-question.html
  463. - http://highscalability.com/blog/2016/3/3/asyncio-tarantool-queue-get-in-the-queue.html
  464. - http://highscalability.com/blog/2016/2/25/when-should-approximate-query-processing-be-used.html
  465. - http://highscalability.com/blog/2016/2/23/googles-transition-from-single-datacenter-to-failover-to-a-n.html
  466. - http://highscalability.com/blog/2016/2/15/egnyte-architecture-lessons-learned-in-building-and-scaling.html
  467. - http://highscalability.com/blog/2016/2/1/a-patreon-architecture-short.html
  468. - http://highscalability.com/blog/2016/1/27/tinder-how-does-one-of-the-largest-recommendation-engines-de.html
  469. - http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html
  470. - http://highscalability.com/blog/2016/1/13/live-video-streaming-at-facebook-scale.html
  471. - http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling-to-11-million-users-on-amazons.html
  472. - http://highscalability.com/blog/2015/12/16/how-does-the-use-of-docker-effect-latency.html
  473. - http://highscalability.com/blog/2015/12/14/does-amp-counter-an-existential-threat-to-google.html
  474. - http://highscalability.com/blog/2015/11/9/a-360-degree-view-of-the-entire-netflix-stack.html
  475. ##########################################################################################
  476. ## Papers:
  477. ##########################################################################################
  478. Computing Weak Consistency in Polynomial Time
  479. - http://dl.acm.org/ft_gateway.cfm?id=2767407&ftid=1607485&dwn=1&CFID=627637486&CFTOKEN=49290244
  480. How Developers Search for Code: A Case Study
  481. - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43835.pdf
  482. Borg, Omega, and Kubernetes
  483. - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf
  484. Continuous Pipelines at Google
  485. - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43790.pdf
  486. AddressSanitizer: A Fast Address Sanity Checker
  487. - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37752.pdf
  488. ##########################################################################################
  489. ## Coding exercises/challenges:
  490. ##########################################################################################
  491. - https://courses.csail.mit.edu/iap/interview/materials.php
  492. LeetCode: https://leetcode.com/
  493. TopCoder: https://www.topcoder.com/
  494. More:
  495. HackerRank: https://www.hackerrank.com/
  496. Codility: https://codility.com/programmers/
  497. Project Euler: https://projecteuler.net/index.php?section=problems
  498. InterviewCake: https://www.interviewcake.com/
  499. InterviewBit: https://www.interviewbit.com/invite/icjf
  500. ##########################################################################################
  501. ## Maybe:
  502. ##########################################################################################
  503. http://www.gainlo.co/ - Mock interviewers from big companies
  504. ##########################################################################################
  505. ## Code References:
  506. ##########################################################################################
  507. For review questions in C book:
  508. https://github.com/lekkas/c-algorithms
  509. ##########################################################################################
  510. ## Once you've got the job (this is mainly for me):
  511. ##########################################################################################
  512. C++ Talks at CPPCon:
  513. - https://www.youtube.com/watch?v=hEx5DNLWGgA&index=2&list=PLHTh1InhhwT75gykhs7pqcR_uSiG601oh
  514. Compilers:
  515. - https://class.coursera.org/compilers-004/lecture
  516. Computer and processor architecture:
  517. - https://class.coursera.org/comparch-003/lecture
  518. Long series of C++ videos:
  519. - https://www.youtube.com/playlist?list=PLfVsf4Bjg79Cu5MYkyJ-u4SyQmMhFeC1C
  520. ##########################################################################################
  521. ## Done. ##
  522. ##########################################################################################