plan.txt 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623
  1. ##########################################################################################
  2. ## How to read this
  3. ##########################################################################################
  4. Everything below is an outline, and you should tackle the items in order from top to bottom.
  5. I put an asterisk/star (*) at the beginning of a line when I'm done with it. When all sub-items are done,
  6. I put a * at the top level, meaning the entire block is done. Sorry you have to remove all my *
  7. to use this the same way. If you search/replace, there are a couple of places to look out for.
  8. Sometimes I just put a * at top level if I know I've done all the subtasks, to cut down on * clutter.
  9. ##########################################################################################
  10. ## Interview Prep:
  11. ##########################################################################################
  12. * - Videos:
  13. * - https://www.youtube.com/watch?v=oWbUtlUhwa8&feature=youtu.be
  14. * - https://www.youtube.com/watch?v=qc1owf2-220&feature=youtu.be
  15. * - https://www.youtube.com/watch?v=8npJLXkcmu8
  16. * - Articles:
  17. * - http://www.google.com/about/careers/lifeatgoogle/hiringprocess/
  18. * - http://steve-yegge.blogspot.com/2008/03/get-that-job-at-google.html
  19. - all the things he mentions that you need to know are listed below
  20. * - (very dated) http://dondodge.typepad.com/the_next_big_thing/2010/09/how-to-get-a-job-at-google-interview-questions-hiring-process.html
  21. * - http://sites.google.com/site/steveyegge2/five-essential-phone-screen-questions
  22. * - Additional (not suggested by Google but I added):
  23. * - https://medium.com/always-be-coding/abc-always-be-coding-d5f8051afce2#.4heg8zvm4
  24. * - https://medium.com/always-be-coding/four-steps-to-google-without-a-degree-8f381aa6bd5e#.asalo1vfx
  25. * - https://medium.com/@dpup/whiteboarding-4df873dbba2e#.hf6jn45g1
  26. * - http://www.kpcb.com/blog/lessons-learned-how-google-thinks-about-hiring-management-and-culture
  27. * - http://www.coderust.com/blog/2014/04/10/effective-whiteboarding-during-programming-interviews/
  28. * - Cracking The Coding Interview Set 1:
  29. * - https://www.youtube.com/watch?v=rEJzOhC5ZtQ
  30. * - https://www.youtube.com/watch?v=aClxtDcdpsQ
  31. * - How to Get a Job at the Big 4:
  32. * - https://www.youtube.com/watch?v=YJZCUhxNCv8
  33. ##########################################################################################
  34. ## Knowledge:
  35. ##########################################################################################
  36. This short section were prerequisites/interesting info I wanted to learn before getting started on the daily plan.
  37. You need to know C, C++, or Java to do the coding part of the interview.
  38. They will sometimes make an exception and let you use Python or some other language, but the language
  39. must be mainstream and allow you write your code low-level enough to solve the problems.
  40. You'll see some C, C++ learning included below.
  41. There are a few books involved, see the bottom.
  42. Some videos are available only by enrolling in a Coursera or EdX class. It is free to do so.
  43. * - how computers process a program:
  44. * - https://www.youtube.com/watch?v=42KTvGYQYnA
  45. * - https://www.youtube.com/watch?v=Mv2XQgpbTNE
  46. * - Computer Arch Intro:
  47. (first video only - interesting but not required) https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=1
  48. * - C
  49. * - K&R C book (ANSI C)
  50. * - Clang: https://www.youtube.com/watch?v=U3zCxnj2w8M
  51. * - GDB:
  52. - https://www.youtube.com/watch?v=USPvePv1uzE
  53. - https://www.youtube.com/watch?v=y5JmQItfFck
  54. - Valgrind: https://www.youtube.com/watch?v=fvTsFjDuag8
  55. - C++
  56. * - basics
  57. * - pointers
  58. * - functions
  59. * - references
  60. * - templates
  61. * - compilation
  62. * - scope & linkage
  63. * - namespaces
  64. * - OOP
  65. * - STL
  66. * - functors: http://www.cprogramming.com/tutorial/functors-function-objects-in-c++.html
  67. * - C++ at Google: https://www.youtube.com/watch?v=NOCElcMcFik
  68. * - Google C++ Style Guide: https://google.github.io/styleguide/cppguide.html
  69. * - Google uses clang-format (there is a command line "style" argument: -style=google)
  70. * - Efficiency with Algorithms, Performance with Data Structures: https://youtu.be/fHNmRkzxHWs
  71. - C++ Core Guidelines: http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
  72. - review of C++ concepts: https://www.youtube.com/watch?v=Rub-JsjMhWY
  73. * - compilers:
  74. * - https://class.coursera.org/compilers-004/lecture/1
  75. * - https://class.coursera.org/compilers-004/lecture/2
  76. * - C++: https://www.youtube.com/watch?v=twodd1KFfGk
  77. * - Understanding Compiler Optimization (C++): https://www.youtube.com/watch?v=FnGCDLhaxKU
  78. ----------------------------------------------------------------
  79. The Daily Plan:
  80. Each subject does not require a whole day to be able to understand it fully, and you can do multiple of these in a day.
  81. Each day I take one subject from the list below, watch videos about that subject, and write an implementation in:
  82. C - using structs and functions that take a struct * and something else as args.
  83. C++ - without using built-in types
  84. C++ - using built-in types, like STL's std::list for a linked list
  85. Python - using built-in types (to keep practicing Python)
  86. and write tests to ensure I'm doing it right, sometimes just using simple assert() statements
  87. You may do Java or something else, this is just my thing.
  88. Why code in all of these?
  89. Practice, practice, practice, until I'm sick of it, and can do it with no problem (some have many edge cases and bookkeeping details to remember)
  90. Work within the raw constraints (allocating/freeing memory without help of garbage collection (except Python))
  91. Make use of built-in types so I have experience using the built-in tools for real-world use (not going to write my own linked list implementation in production)
  92. I may not have time to do all of these for every subject, but I'll try.
  93. You don't need to memorize the guts of every algorithm.
  94. Write code on a whiteboard, not a computer. Test with some sample inputs.
  95. Then test it out on a computer to make sure it's not buggy from syntax.
  96. ----------------------------------------------------------------
  97. * - Before you get started:
  98. The myth of the Genius Programmer: https://www.youtube.com/watch?v=0SARbwvhupQ
  99. Google engineers are smart, but many have an insecurity that they aren't smart enough.
  100. * - Algorithmic complexity / Big O / Asymptotic analysis
  101. - nothing to implement
  102. - Harvard CS50 - Asymptotic Notation: https://www.youtube.com/watch?v=iOq5kSKqeR4
  103. - Big O Notations (general quick tutorial) - https://www.youtube.com/watch?v=V6mKVRU1evU
  104. - Big O Notation (and Omega and Theta) - best mathematical explanation:
  105. - https://www.youtube.com/watch?v=ei-A_wy5Yxw&index=2&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN
  106. - Skiena:
  107. - video: https://www.youtube.com/watch?v=gSyDMtdPNpU&index=2&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b
  108. - slides: http://www3.cs.stonybrook.edu/~algorith/video-lectures/2007/lecture2.pdf
  109. - A Gentle Introduction to Algorithm Complexity Analysis: http://discrete.gr/complexity/
  110. - Orders of Growth: https://class.coursera.org/algorithmicthink1-004/lecture/59
  111. - Asymptotics: https://class.coursera.org/algorithmicthink1-004/lecture/61
  112. - UC Berkeley Big O: https://youtu.be/VIS4YDpuP98
  113. - UC Berkeley Big Omega: https://youtu.be/ca3e7UVmeUc
  114. - Amortized Analysis: https://www.youtube.com/watch?v=B3SpQZaAZP4&index=10&list=PL1BaGV1cIH4UhkL8a9bJGG356covJ76qN
  115. - Illustrating "Big O": https://class.coursera.org/algorithmicthink1-004/lecture/63
  116. - Cheat sheet: http://bigocheatsheet.com/
  117. * - Arrays: (Implement an automatically resizing vector)
  118. * - Description:
  119. - Arrays: https://www.coursera.org/learn/data-structures/lecture/OsBSF/arrays
  120. - Arrays: https://www.lynda.com/Developer-Programming-Foundations-tutorials/Basic-arrays/149042/177104-4.html
  121. - Multi-dim: https://www.lynda.com/Developer-Programming-Foundations-tutorials/Multidimensional-arrays/149042/177105-4.html
  122. - Dynamic Arrays: https://www.coursera.org/learn/data-structures/lecture/EwbnV/dynamic-arrays
  123. - Jagged: https://www.lynda.com/Developer-Programming-Foundations-tutorials/Jagged-arrays/149042/177106-4.html
  124. - Resizing arrays:
  125. - https://class.coursera.org/algs4partI-010/lecture/19
  126. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/Resizable-arrays/149042/177108-4.html
  127. * - Implement a vector (mutable array with automatic resizing):
  128. * - Practice coding using arrays and pointers, and pointer math to jump to an index instead of using indexing.
  129. * - new raw data array with allocated memory
  130. - can allocate int array under the hood, just not use its features
  131. - start with 16, or if starting number is greater, use power of 2 - 16, 32, 64, 128
  132. * - size() - number of items
  133. * - capacity() - number of items it can hold
  134. * - is_empty()
  135. * - at(index) - returns item at given index, blows up if index out of bounds
  136. * - push(item)
  137. * - insert(index, item) - inserts item at index, shifts that index's value and trailing elements to the right
  138. * - prepend(item) - can use insert above at index 0
  139. * - pop() - remove from end, return value
  140. * - delete(index) - delete item at index, shifting all trailing elements left
  141. * - remove(item) - looks for value and removes index holding it (even if in multiple places)
  142. * - find(item) - looks for value and returns first index with that value, -1 if not found
  143. * - resize(new_capacity) // private function
  144. - when you reach capacity, resize to double the size
  145. - when popping an item, if size is 1/4 of capacity, resize to half
  146. * - Time
  147. - O(1) to add/remove at end (amortized for allocations for more space), index, or update
  148. - O(n) to insert/remove elsewhere
  149. * - Space
  150. - contiguous in memory, so proximity helps performance
  151. - space needed = (array capacity, which is >= n) * size of item, but even if 2n, still O(n)
  152. Linked Lists
  153. * - Description:
  154. * - https://www.coursera.org/learn/data-structures/lecture/kHhgK/singly-linked-lists
  155. * - Lynda.com:
  156. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/Introduction-lists/149042/177115-4.html
  157. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/Understanding-basic-list-implementations/149042/177116-4.html
  158. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/Using-singly-doubly-linked-lists/149042/177117-4.html
  159. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/List-support-across-languages/149042/177118-4.html
  160. * - C Code: https://www.youtube.com/watch?v=QN6FPiD0Gzo
  161. - not the whole video, just portions about Node struct and memory allocation.
  162. * - why you should avoid linked lists:
  163. - https://www.youtube.com/watch?v=YQs6IC-vgmo
  164. - implement (with tail pointer):
  165. * - size() - returns number of data elements in list
  166. * - empty() - bool returns true if empty
  167. * - front() - get value of front item
  168. * - back() - get value of end item
  169. * - push_front(value) - adds an item to the front of the list
  170. * - pop_front() - remove front item
  171. * - push_back(value) - adds an item at the end
  172. * - pop_back() - removes end item
  173. * - value_at(index) - returns the value of the nth item
  174. * - insert(index, value) - insert value at index, so current item at that index is pointed to by next at index
  175. * - erase(index) - removes node at given index
  176. - value_n_from_end(n) - returns the value of the node at nth position from the end of the list
  177. - reverse() - reverses the list
  178. - remove(value) - remove all elements with this value
  179. - find(value) - return pointer to the node that has this value
  180. Doubly-linked List
  181. - Description: https://www.coursera.org/learn/data-structures/lecture/jpGKD/doubly-linked-lists
  182. - No need to implement
  183. Stacks
  184. - see: https://class.coursera.org/algs4partI-010/lecture
  185. - https://www.coursera.org/learn/data-structures/lecture/UdKzQ/stacks
  186. Queues
  187. - see: https://class.coursera.org/algs4partI-010/lecture
  188. - https://www.coursera.org/learn/data-structures/lecture/EShpq/queues
  189. Heaps
  190. - Description:
  191. - https://en.wikipedia.org/wiki/Heap_(data_structure)
  192. - https://www.coursera.org/learn/data-structures/lecture/GRV2q/binary-trees
  193. - min heap
  194. - max heap
  195. Priority Queue
  196. - https://www.coursera.org/learn/data-structures/lecture/2OpTs/introduction
  197. - see: https://class.coursera.org/algs4partI-010/lecture
  198. - https://class.coursera.org/algs4partI-010/lecture/39
  199. - https://en.wikipedia.org/wiki/Priority_queue
  200. Disjoint Sets:
  201. - https://www.coursera.org/learn/data-structures/lecture/JssSY/overview
  202. - https://www.coursera.org/learn/data-structures/lecture/Mxu0w/trees
  203. Hash tables
  204. - https://www.youtube.com/watch?v=C4Kc8xzcA68
  205. - https://class.coursera.org/algs4partI-010/lecture/52
  206. - https://www.coursera.org/learn/data-structures/home/week/3
  207. - see: https://class.coursera.org/algs4partI-010/lecture
  208. - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/m7UuP/core-hash-tables
  209. - test: implement with only arrays
  210. Tries
  211. - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/08Xyf/core-introduction-to-tries
  212. Circular buffer/FIFO:
  213. - https://en.wikipedia.org/wiki/Circular_buffer
  214. Bit operations
  215. - count on bits
  216. - https://youtu.be/Hzuzo9NJrlc
  217. - max run of on/off bits
  218. - bit shifting
  219. * - Parity & Hamming Code:
  220. Parity:
  221. https://www.youtube.com/watch?v=DdMcAUlxh1M
  222. Hamming Code:
  223. https://www.youtube.com/watch?v=1A_NcXxdoCc
  224. https://www.youtube.com/watch?v=JAMLuxdHH8o
  225. Error Checking:
  226. https://www.youtube.com/watch?v=wbH2VxzmoZk
  227. Binary search
  228. Sorting
  229. - stability in sorting algorithms:
  230. - http://stackoverflow.com/questions/1517793/stability-in-sorting-algorithms
  231. - http://www.geeksforgeeks.org/stability-in-sorting-algorithms/
  232. - Which algorithms can be used on linked lists? Which on arrays? Which on both? Is Quicksort stable?
  233. - Implement & know best case/worst case, average complexity of each:
  234. - mergesort
  235. - quicksort
  236. - insertion sort
  237. - selection sort
  238. - no bubble sort - it's terrible at O(n^2)
  239. Caches
  240. - LRU cache
  241. Trees
  242. - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/ovovP/core-trees
  243. - see: https://class.coursera.org/algs4partI-010/lecture
  244. - basic tree construction
  245. - traversal
  246. - manipulation algorithms
  247. - binary search trees BSTs
  248. - https://www.coursera.org/learn/data-structures/lecture/E7cXP/introduction
  249. - applications:
  250. - https://class.coursera.org/algs4partI-010/lecture/57
  251. - n-ary trees
  252. - trie-trees
  253. - at least one type of balanced binary tree (and know how it's implemented):
  254. - red/black tree
  255. - https://class.coursera.org/algs4partI-010/lecture/50
  256. - splay trees
  257. - https://www.coursera.org/learn/data-structures/lecture/O9nZ6/splay-trees
  258. - AVL trees
  259. - https://www.coursera.org/learn/data-structures/lecture/Qq5E0/avl-trees
  260. - https://www.coursera.org/learn/data-structures/lecture/PKEBC/avl-tree-implementation
  261. - https://www.coursera.org/learn/data-structures/lecture/22BgE/split-and-merge
  262. - 2-3 Search Trees
  263. - https://class.coursera.org/algs4partI-010/lecture/49
  264. - B-Trees:
  265. - https://class.coursera.org/algs4partI-010/lecture/51
  266. - BFS (breadth-first search)
  267. - DFS (depth-first search)
  268. - know the difference between
  269. - inorder
  270. - postorder
  271. - preorder
  272. Graphs:
  273. There are three basic ways to represent a graph in memory:
  274. - objects and pointers
  275. - matrix
  276. - adjacency list
  277. - familiarize yourself with each representation and its pros & cons
  278. - BFS and DFS - know their computational complexity, their tradeoffs, and how to implement them in real code
  279. - If you get a chance, try to study up on fancier algorithms:
  280. - Dijkstra's algorithm
  281. - https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
  282. - A*
  283. - https://en.wikipedia.org/wiki/A*_search_algorithm
  284. - when asked a question, look for a graph-based solution first, then move on if none.
  285. Other data structures:
  286. - You should study up on as many other data structures and algorithms as possible
  287. - You should especially know about the most famous classes of NP-complete problems, such as traveling salesman
  288. and the knapsack problem, and be able to recognize them when an interviewer asks you them in disguise.
  289. - Know what NP-complete means.
  290. Recursion
  291. - when it is appropriate to use it
  292. open-ended problems
  293. - manipulate strings
  294. - manipulate patterns
  295. design patterns:
  296. - description:
  297. - https://www.lynda.com/Developer-Programming-Foundations-tutorials/Foundations-Programming-Design-Patterns/135365-2.html
  298. - strategy
  299. - singleton
  300. - adapter
  301. - prototype
  302. - decorator
  303. - visitor
  304. - factory
  305. Combinatorics (n choose k)
  306. Probability
  307. Dynamic Programming
  308. Processes, Threads, Concurrency issues
  309. - difference: https://www.quora.com/What-is-the-difference-between-a-process-and-a-thread
  310. - threads: https://www.youtube.com/playlist?list=PL5jc9xFGsL8E12so1wlMS0r0hTQoJL74M
  311. - stopped here: https://www.youtube.com/watch?v=_N0B5ua7oN8&list=PL5jc9xFGsL8E12so1wlMS0r0hTQoJL74M&index=4
  312. - locks
  313. - mutexes
  314. - semaphores
  315. - monitors
  316. - how they work
  317. - deadlock
  318. - livelock
  319. Process resource needs
  320. Thread resource needs
  321. Modern concurrency constructs with multicore processors
  322. Operating Systems:
  323. - https://www.youtube.com/watch?v=-KWd_eQYLwY&index=2&list=PL-XXv-cvA_iBDyz-ba4yDskqMDY6A1w_c
  324. Context switching
  325. - How context switching is initiated by the operating system and underlying hardware
  326. Scheduling
  327. Weighted random sampling
  328. Implement system routines
  329. Distill large data sets to single values
  330. Transform one data set to another
  331. Handling obscenely large amounts of data
  332. System design:
  333. - features sets
  334. - interfaces
  335. - class hierarchies
  336. - designing a system under certain constraints
  337. - simplicity and robustness
  338. - tradeoffs
  339. Performance analysis and optimization
  340. Familiarize yourself with unix-based souped-up code editor: emacs & vi(m)
  341. vi(m):
  342. - https://www.youtube.com/watch?v=5givLEMcINQ&index=1&list=PL13bz4SHGmRxlZVmWQ9DvXo1fEg4UdGkr
  343. - set of 4:
  344. - https://www.youtube.com/watch?v=SI8TeVMX8pk
  345. - https://www.youtube.com/watch?v=F3OO7ZIOaJE
  346. - https://www.youtube.com/watch?v=ZYEccA_nMaI
  347. - https://www.youtube.com/watch?v=1lYD5gwgZIA
  348. emacs:
  349. - https://www.youtube.com/watch?v=hbmV1bnQ-i0
  350. - set of 3:
  351. - https://www.youtube.com/watch?v=ujODL7MD04Q
  352. - https://www.youtube.com/watch?v=XWpsRupJ4II
  353. - https://www.youtube.com/watch?v=paSgzPso-yc
  354. - https://www.youtube.com/watch?v=JWD1Fpdd4Pc
  355. Testing
  356. -------------------------------------------------------------------
  357. Once you're closer to the interview:
  358. - Cracking The Coding Interview Set 2:
  359. - https://www.youtube.com/watch?v=4NIb9l3imAo
  360. - https://www.youtube.com/watch?v=Eg5-tdAwclo
  361. - https://www.youtube.com/watch?v=1fqxMuPmGak
  362. -------------------------------------------------------------------
  363. Extras that can't hurt:
  364. Computer Security:
  365. - MIT (23 videos): https://www.youtube.com/playlist?list=PLUl4u3cNGP62K2DjQLRxDNRi0z2IRWnNh
  366. Information theory:
  367. - Markov processes:
  368. - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/waxgx/core-markov-text-generation
  369. - https://www.coursera.org/learn/data-structures-optimizing-performance/lecture/gZhiC/core-implementing-markov-text-generation
  370. - https://www.khanacademy.org/computing/computer-science/informationtheory/moderninfotheory/v/symbol-rate-information-theory
  371. - includes Markov chain
  372. Bloom Filter
  373. - https://www.youtube.com/watch?v=-SuTGoFYjZs
  374. - http://blog.michaelschmatz.com/2016/04/11/how-to-write-a-bloom-filter-cpp/
  375. Fast Fourier Transform
  376. - http://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/
  377. Machine Learning:
  378. - great course: https://www.coursera.org/learn/machine-learning
  379. - http://www.analyticsvidhya.com/blog/2016/04/neural-networks-python-theano/
  380. - http://www.dataschool.io/
  381. Parallel Programming:
  382. - https://www.coursera.org/learn/parprog1/home/week/1
  383. ------------------------
  384. Be thinking of for when the interview comes:
  385. Think of about 20 interview questions you'll get, along the lines of the items below:
  386. have 2-3 answers for each
  387. Have a story, not just data, about something you accomplished
  388. Why do you want this job?
  389. What's a tough problem you've solved?
  390. Biggest challenges faced?
  391. Best/worst designs seen?
  392. Ideas for improving an existing Google product.
  393. How do you work best, as an individual and as part of a team?
  394. Which of your skills or experiences would be assets in the role and why?
  395. What did you most enjoy at [job x / project y]?
  396. What was the biggest challenge you faced at [job x / project y]?
  397. What was the hardest bug you faced at [job x / project y]?
  398. What did you learn at [job x / project y]?
  399. What would you have done better at [job x / project y]?
  400. ---------------------------
  401. Have questions for the interviewer.
  402. Some of mine (I already may know answer to but want their opinion or team perspective):
  403. - How large is your team?
  404. - What is your dev cycle look like? Do you do sprints/agile?
  405. - How are decisions made in your team?
  406. - How many meetings do you have per week?
  407. - Do you feel your work environment helps you concentrate?
  408. - What are you working on?
  409. - What do you like about it?
  410. - What is the work life like?
  411. ##########################################################################################
  412. ## Books:
  413. ##########################################################################################
  414. Mentioned in Coaching:
  415. The Algorithm Design Manual
  416. http://www.amazon.com/Algorithm-Design-Manual-Steven-Skiena/dp/1849967202
  417. Algorithms and Programming: Problems and Solutions:
  418. http://www.amazon.com/Algorithms-Programming-Solutions-Alexander-Shen/dp/0817638474
  419. Once you've understood everything in the daily plan:
  420. read and do exercises from the books below. Then move to coding challenges (below)
  421. Read first:
  422. Programming Interviews Exposed: Secrets to Landing Your Next Job, 2nd Edition:
  423. http://www.wiley.com/WileyCDA/WileyTitle/productCd-047012167X.html
  424. Read second:
  425. Cracking the Coding Interview, 6th Edition:
  426. - http://www.amazon.com/Cracking-Coding-Interview-6th-Programming/dp/0984782850/
  427. Additional (not suggested by Google but I added):
  428. * - C Programming Language, Vol 2
  429. * - C++ Primer Plus, 6th Edition
  430. Introduction to Algorithms
  431. Programming Pearls:
  432. - http://www.amazon.com/Programming-Pearls-2nd-Jon-Bentley/dp/0201657880
  433. If you see people reference "The Google Resume", it was replaced by "Cracking the Coding Interview".
  434. Clean Code
  435. Code Complete
  436. ##########################################################################################
  437. ##########################################################################################
  438. ##
  439. ##
  440. ##
  441. ## Everything below is my recommendation, not Google's, and
  442. ## you may not have enough time to watch or read them all.
  443. ## That's ok. I may not either.
  444. ##
  445. ##
  446. ##
  447. ##########################################################################################
  448. ##########################################################################################
  449. ## Videos:
  450. ##########################################################################################
  451. CSE373 - Analysis of Algorithms (25 videos):
  452. - https://www.youtube.com/watch?v=ZFjhkohHdAA&list=PLOtl7M3yp-DV69F32zdK7YJcNXpTunF2b&index=1
  453. 6.042: Math for CS (25 videos):
  454. - https://www.youtube.com/watch?v=L3LMbpZIKhQ&list=PLB7540DEDD482705B
  455. 6.006: Intro to Algorithms (47 videos):
  456. - https://www.youtube.com/watch?v=HtSuA80QTyo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&nohtml5=False
  457. 6.033: Computer System Engineering (22 videos):
  458. - https://www.youtube.com/watch?v=zm2VP0kHl1M&list=PL6535748F59DCA484
  459. 6.046: Design and Analysis of Algorithms (34 videos):
  460. - https://www.youtube.com/watch?v=2P-yW7LQr08&list=PLUl4u3cNGP6317WaSNfmCvGym2ucw3oGp
  461. 6.851: Advanced Data Structures (22 videos):
  462. - https://www.youtube.com/watch?v=T0yzrZL1py0&list=PLUl4u3cNGP61hsJNdULdudlRL493b-XZf
  463. Stanford: Programming Paradigms (17 videos)
  464. - https://www.youtube.com/watch?v=jTSvthW34GU&list=PLC0B8B318B7394B6F&nohtml5=False
  465. ##########################################################################################
  466. ## Articles:
  467. ##########################################################################################
  468. - https://www.topcoder.com/community/data-science/data-science-tutorials/the-importance-of-algorithms/
  469. - http://highscalability.com/blog/2016/4/4/how-to-remove-duplicates-in-a-large-dataset-reducing-memory.html
  470. - http://highscalability.com/blog/2016/3/23/what-does-etsys-architecture-look-like-today.html
  471. - http://highscalability.com/blog/2016/3/21/to-compress-or-not-to-compress-that-was-ubers-question.html
  472. - http://highscalability.com/blog/2016/3/3/asyncio-tarantool-queue-get-in-the-queue.html
  473. - http://highscalability.com/blog/2016/2/25/when-should-approximate-query-processing-be-used.html
  474. - http://highscalability.com/blog/2016/2/23/googles-transition-from-single-datacenter-to-failover-to-a-n.html
  475. - http://highscalability.com/blog/2016/2/15/egnyte-architecture-lessons-learned-in-building-and-scaling.html
  476. - http://highscalability.com/blog/2016/2/1/a-patreon-architecture-short.html
  477. - http://highscalability.com/blog/2016/1/27/tinder-how-does-one-of-the-largest-recommendation-engines-de.html
  478. - http://highscalability.com/blog/2016/1/25/design-of-a-modern-cache.html
  479. - http://highscalability.com/blog/2016/1/13/live-video-streaming-at-facebook-scale.html
  480. - http://highscalability.com/blog/2016/1/11/a-beginners-guide-to-scaling-to-11-million-users-on-amazons.html
  481. - http://highscalability.com/blog/2015/12/16/how-does-the-use-of-docker-effect-latency.html
  482. - http://highscalability.com/blog/2015/12/14/does-amp-counter-an-existential-threat-to-google.html
  483. - http://highscalability.com/blog/2015/11/9/a-360-degree-view-of-the-entire-netflix-stack.html
  484. ##########################################################################################
  485. ## Papers:
  486. ##########################################################################################
  487. Computing Weak Consistency in Polynomial Time
  488. - http://dl.acm.org/ft_gateway.cfm?id=2767407&ftid=1607485&dwn=1&CFID=627637486&CFTOKEN=49290244
  489. How Developers Search for Code: A Case Study
  490. - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43835.pdf
  491. Borg, Omega, and Kubernetes
  492. - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44843.pdf
  493. Continuous Pipelines at Google
  494. - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43790.pdf
  495. AddressSanitizer: A Fast Address Sanity Checker
  496. - http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37752.pdf
  497. ##########################################################################################
  498. ## Coding exercises/challenges:
  499. ##########################################################################################
  500. - https://courses.csail.mit.edu/iap/interview/materials.php
  501. LeetCode: https://leetcode.com/
  502. TopCoder: https://www.topcoder.com/
  503. More:
  504. HackerRank: https://www.hackerrank.com/
  505. Codility: https://codility.com/programmers/
  506. Project Euler: https://projecteuler.net/index.php?section=problems
  507. InterviewCake: https://www.interviewcake.com/
  508. InterviewBit: https://www.interviewbit.com/invite/icjf
  509. ##########################################################################################
  510. ## Maybe:
  511. ##########################################################################################
  512. http://www.gainlo.co/ - Mock interviewers from big companies
  513. ##########################################################################################
  514. ## Code References:
  515. ##########################################################################################
  516. For review questions in C book:
  517. https://github.com/lekkas/c-algorithms
  518. ##########################################################################################
  519. ## Once you've got the job (this is mainly for me):
  520. ##########################################################################################
  521. C++ Talks at CPPCon:
  522. - https://www.youtube.com/watch?v=hEx5DNLWGgA&index=2&list=PLHTh1InhhwT75gykhs7pqcR_uSiG601oh
  523. Compilers:
  524. - https://class.coursera.org/compilers-004/lecture
  525. Computer and processor architecture:
  526. - https://class.coursera.org/comparch-003/lecture
  527. Long series of C++ videos:
  528. - https://www.youtube.com/playlist?list=PLfVsf4Bjg79Cu5MYkyJ-u4SyQmMhFeC1C
  529. ##########################################################################################
  530. ## Done. ##
  531. ##########################################################################################