|
vor 7 Jahren | |
---|---|---|
extras | vor 7 Jahren | |
translations | vor 8 Jahren | |
.gitignore | vor 8 Jahren | |
LICENSE.txt | vor 8 Jahren | |
README-he.md | vor 8 Jahren | |
README-hi.md | vor 8 Jahren | |
README.md | vor 7 Jahren | |
programming-language-resources.md | vor 8 Jahren |
זוהי התוכנית הפעולה אותה הגיתי על מנת להפוך בהצלחה ממפתח אתרים, ללא תואר במדעי המחשב, למהנדס תוכנה בחברת גוגל.
רשימת המשימות הארוכה המצורפת להלן, הוצאה מקובץ האימון האישי אותו מפרסמת גוגל לעזור למועמדים פוטנציאליים Google's coaching notes. לפני שאתם מתחילים במשימה ישנם מספר דברים שעליכם לדעת. ישנם מספר דברים בתחתית הרשימה שמעוד יועילו בהכנה לראיון עצמו לאחר שצלחתם את חומר הלימוד, על מנת לפתור את הבעיות המוצגות בראיון ביעילות.
חלק גדול מהתכנים לקוחים מהאתר המצויין של סטיב יגיי: המשרה הזו בגוגל? שלך! "Get that job at Google"
ערכתי וקיצרתי עבורכם את מה שלדעתי נדרש עבור מהנדס תוכנה מתחיל עם מעט ניסיון מתוך המקורות הנ"ל. עבור אלו מכם הרוצים הסבת מקצוע מפיתוח אתרים או פיתוח תוכנה בתפקידים כאלו ואחרים שאינם הנדסת תוכנה. עבור אלו מכם בעלי הניסיון כמהנדסי תוכנה, בייחוד אם ישנן שנות ניסיון רבות כמהנדס תוכנה בתחום, המשימות הנ"ל עלולות להיות קלות מדי והציפיות מהם בראיון לגוגל יהיו הרבה יותר גבוהות. במידה ואתם בעלי מספר שנות ניסיון כמפתחים, גוגל רואה בהנדסת תוכנה משהו שונה מתכנות נטו ולכן הדרישות הן שונות ודבוהות יותר.
---------------- מתחת לקו זה נמצא חומר הרשות שמומלץ לרקע כללי או למהנדסי מערכת ותפקידים נוספים ----------------
אני מתכונן לראיון בגוגל תוך כדי יישום תוכנית זו. בניתי את הרשת, בניתי שרותים ברשת, אני בונה ומשיק סטארטאפים מאז 1997. יש לי תואר בכלכלה, לא במדעי המחשב. הייתה לי קריירה מוצלחת אבל אני חולם לעבוד בגוגל. אני רוצה להתקדם ולעבוד עם מערכות גדולות יותר ולקבל הבנה מעמירה של מערכות מחשוב, אלגוריתמים יעילים, התנהגות בסיסי נתונים, I'm following this plan to prepare for my Google interview. I've been building the web, building services, and launching startups since 1997. I have an economics degree, not a CS degree. I've been very successful in my career, but I want to work at Google. I want to progress into larger systems and get a real understanding of computer systems, algorithmic efficiency, data structure performance, low-level languages, and how it all works. And if you don't know any of it, Google won't hire you. When I started this project, I didn't know a stack from a heap, didn't know Big-O anything, anything about trees, or how to traverse a graph. If I had to code a sorting algorithm, I can tell ya it wouldn't have been very good. Every data structure I've ever used was built into the language, and I didn't know how they worked under the hood at all. I've never had to manage memory unless a process I was running would give an "out of memory" error, and then I'd have to find a workaround. I've used a few multidimensional arrays in my life and thousands of associative arrays, but I've never created data structures from scratch.
But after going through this study plan I have high confidence I'll be hired. It's a long plan. It's going to take me months. If you are familiar with a lot of this already it will take you a lot less time.
Everything below is an outline, and you should tackle the items in order from top to bottom.
I'm using Github's special markdown flavor, including tasks lists to check progress.
[x] Create a new branch so you can check items like this, just put an x in the brackets: [x]
Fork a branch and follow the commands below
git checkout -b progress
git remote add jwasham https://github.com/jwasham/google-interview-university
git fetch --all
Mark all boxes with X after you completed your changes
git add .
git commit -m "Marked x"
git rebase jwasham/master
git push --force
More about Github-flavored markdown
Print out a "future Googler" sign (or two) and keep your eyes on the prize.
אני בתור כרגע. אני מקווה להתראיין בקרוב.
Thanks for the referral, JP.
הסיפור שלי: Why I Studied Full-Time for 8 Months for a Google Interview
גם אני עובר את המסע. עקבו אחריי:
Some videos are available only by enrolling in a Coursera, EdX, or Lynda.com class. These are called MOOCs. Sometimes the classes are not in session so you have to wait a couple of months, so you have no access. Lynda.com courses are not free.
I'd appreciate your help to add free and always-available public sources, such as YouTube videos to accompany the online course videos.
I like using university lectures.
[ ] סרטונים:
[ ] מאמרים:
[ ] קורסי הכנה:
[ ] תוספות (not suggested by Google but I added):
I wrote this short article about it: Important: Pick One Language for the Google Interview
You can use a language you are comfortable in to do the coding part of the interview, but for Google, these are solid choices:
You could also use these, but read around first. There may be caveats:
You need to be very comfortable in the language and be knowledgeable.
Read more about choices:
You'll see some C, C++, and Python learning included below, because I'm learning. There are a few books involved, see the bottom.
This is a shorter list than what I used. This is abbreviated to save you time.
If you have tons of extra time:
If short on time:
If you have more time (I want this book):
You need to choose a language for the interview (see above). Here are my recommendations by language. I don't have resources for all languages. I welcome additions.
If you read though one of these, you should have all the data structures and algorithms knowledge you'll need to start doing coding problems. You can skip all the video lectures in this project, unless you'd like a review.
Additional language-specific resources here.
I haven't read these two, but they are highly rated and written by Sedgewick. He's awesome.
If you have a better recommendation for C++, please let me know. Looking for a comprehensive resource.
OR:
Some people recommend these, but I think it's going overboard, unless you have many years of software engineering experience and expect a much harder interview:
[ ] Algorithm Design Manual (Skiena)
[ ] Introduction to Algorithms
"Algorithms and Programming: Problems and Solutions" by Shen
This list grew over many months, and yes, it kind of got out of hand.
Here are some mistakes I made so you'll have a better experience.
I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going through my notes and making flashcards so I could review.
Read please so you won't make my mistakes:
Retaining Computer Science Knowledge
To solve the problem, I made a little flashcards site where I could add flashcards of 2 types: general and code. Each card has different formatting.
I made a mobile-first website so I could review on my phone and tablet, wherever I am.
Make your own for free:
Note on flashcards: The first time you recognize you know the answer, don't mark it as known. You have to see the same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in your brain.
An alternative to using my flashcard site is Anki, which has been recommended to me numerous times. It uses a repetition system to help you remember. It's user-friendly, available on all platforms and has a cloud sync system. It costs $25 on iOS but is free on other platforms.
My flashcard database in Anki format: https://ankiweb.net/shared/info/25173560 (thanks @xiewenya)
I keep a set of cheat sheets on ASCII, OSI stack, Big-O notations, and more. I study them when I have some spare time.
Take a break from programming problems for a half hour and go through your flashcards.
There are a lot of distractions that can take up valuable time. Focus and concentration are hard.
This big list all started as a personal to-do list made from Google interview coaching notes. These are prevalent technologies but were not mentioned in those notes:
Some subjects take one day, and some will take multiple days. Some are just learning with nothing to implement.
Each day I take one subject from the list below, watch videos about that subject, and write an implementation in:
You don't need all these. You need only one language for the interview.
Why code in all of these?
I may not have time to do all of these for every subject, but I'll try.
You can see my code here:
You don't need to memorize the guts of every algorithm.
Write code on a whiteboard or paper, not a computer. Test with some sample inputs. Then test it out on a computer.
[ ] Learn C
[ ] How computers process a program:
[ ] Cheat sheet
If some of the lectures are too mathy, you can jump down to the bottom and watch the discrete mathematics videos to get the background knowledge.
[ ] Videos:
[ ] Online Courses:
[ ] implement with array using linear probing
[ ] Notes:
For heapsort, see Heap data structure above. Heap sort is great, but not stable.
[ ] UC Berkeley:
[ ] Merge sort code:
[ ] Quick sort code:
[ ] Implement:
[ ] Not required, but I recommended them:
If you need more detail on this subject, see "Sorting" section in Additional Detail on Some Subjects
Graphs can be used to represent many problems in computer science, so this section is long, like trees and sorting were.
Notes from Yegge:
[ ] Skiena Lectures - great intro:
[ ] Graphs (review and more):
Full Coursera Course:
Yegge: If you get a chance, try to study up on fancier algorithms:
I'll implement:
You'll get more graph practice in Skiena's book (see Books section below) and the interview books
If you need more detail on this subject, see "String Matching" section in Additional Detail on Some Subjects
This section will have shorter videos that can you watch pretty quickly to review most of the important concepts.
It's nice if you want a refresher often.
Now that you know all the computer science topics above, it's time to practice answering coding problems.
Coding question practice is not about memorizing answers to programming problems.
Why you need to practice doing programming problems:
There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming interview books, too, but I found this outstanding: Algorithm design canvas
My Process for Coding Interview (Book) Exercises
No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". I added the pen in the photo for scale. If you use a pen, you'll wish you could erase. Gets messy quick.
Supplemental:
Read and Do Programming Problems (in this order):
See Book List above
Once you've learned your brains out, put those brains to work. Take coding challenges every day, as many as you can.
Challenge sites:
Maybe:
Think of about 20 interview questions you'll get, along with the lines of the items below. Have 2-3 answers for each. Have a story, not just data, about something you accomplished.
Some of mine (I already may know answer to but want their opinion or team perspective):
Congratulations!
Keep learning.
You're never really done.
*****************************************************************************************************
*****************************************************************************************************
Everything below this point is optional. These are my recommendations, not Google's.
By studying these, you'll get greater exposure to more CS concepts, and will be better prepared for
any software engineering job. You'll be a much more well-rounded software engineer.
*****************************************************************************************************
*****************************************************************************************************
[ ] AVL trees
[ ] Splay trees
[ ] Red/black trees
[ ] 2-3 search trees
[ ] 2-3-4 Trees (aka 2-4 trees)
[ ] N-ary (K-ary, M-ary) trees
[ ] B-Trees
--
I added these to reinforce some ideas already presented above, but didn't want to include them
above because it's just too much. It's easy to overdo it on a subject.
You want to get hired in this century, right?
[ ] Union-Find
[ ] More Dynamic Programming (videos)
[ ] Advanced Graph Processing (videos)
[ ] MIT Probability (mathy, and go slowly, which is good for mathy things) (videos):
[ ] String Matching
[ ] Sorting
Sit back and enjoy. "Netflix and skill" :P
[ ] List of individual Dynamic Programming problems (each is short)
[ ] Excellent - MIT Calculus Revisited: Single Variable Calculus
[ ] Computer Science 70, 001 - Spring 2015 - Discrete Mathematics and Probability Theory
[ ] CSE373 - Analysis of Algorithms (25 videos)
[ ] UC Berkeley 61B (Spring 2014): Data Structures (25 videos)
[ ] UC Berkeley 61B (Fall 2006): Data Structures (39 videos)
[ ] UC Berkeley CS 152: Computer Architecture and Engineering (20 videos)
[ ] Carnegie Mellon - Computer Architecture Lectures (39 videos)
[ ] MIT 6.034 Artificial Intelligence, Fall 2010 (30 videos)
[ ] MIT 6.042J: Mathematics for Computer Science, Fall 2010 (25 videos)
[ ] MIT 6.046: Design and Analysis of Algorithms (34 videos)
[ ] MIT 6.050J: Information and Entropy, Spring 2008 (19 videos)
[ ] Mining Massive Datasets - Stanford University (94 videos)