|
8 năm trước cách đây | |
---|---|---|
.. | ||
README.md | 8 năm trước cách đây |
Oryginał (angielski): https://github.com/jwasham/google-interview-university
Pierwotnie, to była mała lista rzeczy do nauki, ale urosła ona do dużych rozmiarów, jak to można dzisiaj zobaczyć. Praca w Google była główną motywacją, stąd nazwa. Nie dostałem się do Google'a, ale nazwa pozostanie taka sama, bo zmiana mogła by zmylić wielu z was. Zagadnienia zawarte tutaj, przygotują was do pracy w każdej firmie, wliczając w to gigantów: Amazon, Microsoft, Google i Facebook.
Powodzenia!
Tłumaczenia:
Jest to mój wielomiesięczny program nauczania mający na celu awans z poziomu web developera (samouka, bez studiów informatycznych) do poziomu inżyniera oprogramowania w Google.
Znajdziesz tutaj wiele rzeczy związanych z Google, ale starałem się uogólnić tę listę, aby była przydatna dla każdego.
Ta długa lista została napisana na podstawie porad i wskazówek Google'a, więc znajdziesz tu rzeczy, które musisz wiedzieć. Są tutaj też dodatkowe rzeczy, które dodałem na końcu, mogące pojawić się na rozmowie kwalifikacyjnej lub okazać się pomocne w rozwiązywaniu problemów. Wiele pozycji jest z "Get that job at Google" od Steva Yegge i czasem są też przepisane słowo w słowo z notek Google'a.
Wybrałem to co musisz wiedzieć spośród rzeczy zalecanych przez Yegge'a. Poprawiłem także listę wymagań podanych przez niego na podstawie informacji, które otrzymałem od swojego kontaktu w Google. Projekt jest napisany z myślą o początkujących inżynierach oprogramowania lub tych, którzy przerzucają się z oprogramowania/web-devu na inżynierę oprogramowania, gdzie informatyka (computer science) jest potrzebna. Jeżeli masz wiele lat doświadczenia, spodziewaj się trudniejszej rozmowy kwalifikacyjnej. Przeczytaj więcej tutaj (EN).
Weź pod uwagę fakt, iz Google traktuje oprogramowanie/web-dev inaczej niż inżynierę oprogramowania i wymagają szczegołowej wiedzy z zarkesu informatyki.
Jeśli chcesz być inżynierem ds. niezawodności i bezpieczeństwa lub systemów, ucz się więcej z dodatkowej listy (sieć, bezpieczeństwo).
---------------- Everything below this point is optional ----------------
Kiedy zaczynałem ten projekt, nie odróżniałem stacka od heapu, nie wiedziałem o żadnej notacji "duże O", nic o drzewkach, ani jak przeszukiwać graf. Gdybym miał napisać algorym sortujący, mówię Ci, byłby zły. Każda struktura danych, którą używałem była wpudowana w język, kompletnie nie wiedziałem jak działają. Nigdy nie musiałem zarządzać pamięcią, dopóki proces nie wyrzucił błędu o "braku pamięci". Używałem kilku wielowymiarowych tablic i tysięcy tablic asocjacyjnych w swoim życiu, ale nigdy nie stworzyłem struktury od podstaw.
To długi plan. Może zająć Ci nawet kilka miesięcy. Jeśli jednak jesteś zaznajomiony z tymi rzeczami, zajmie Ci to o wiele mniej czasu.
Wszystko co znajdziesz poniżej jest planem, powinieneś zaznaczać wpisy od góry do dołu.
Używam specjalniej, GitHubowej odmiany markdowna.
Stwórz nową gałąź (branch), abyś mógł zaznaczać element stawiając x w nawiasie, tj. [x]
Zforkuj galąź i wpisz poniższe polecenia
git checkout -b progress
git remote add jwasham https://github.com/jwasham/google-interview-university
git fetch --all
Zaznacz wszystkie pola X-em kiedy skończysz.
git add .
git commit -m "Marked x"
git rebase jwasham/master
git push --force
Więcej o markdownie na GitHubie
Some videos are available only by enrolling in a Coursera, EdX, or Lynda.com class. These are called MOOCs. Sometimes the classes are not in session so you have to wait a couple of months, so you have no access. Lynda.com courses are not free.
I'd appreciate your help to add free and always-available public sources, such as YouTube videos to accompany the online course videos.
I like using university lectures.
[ ] How to Get a Job at the Big 4:
[ ] Prep Course:
You can use a language you are comfortable in to do the coding part of the interview, but for large companies, these are solid choices:
You could also use these, but read around first. There may be caveats:
You need to be very comfortable in the language and be knowledgeable.
Read more about choices:
You'll see some C, C++, and Python learning included below, because I'm learning. There are a few books involved, see the bottom.
This is a shorter list than what I used. This is abbreviated to save you time.
If you have tons of extra time:
If short on time:
If you have more time (I want this book):
You need to choose a language for the interview (see above). Here are my recommendations by language. I don't have resources for all languages. I welcome additions.
If you read though one of these, you should have all the data structures and algorithms knowledge you'll need to start doing coding problems. You can skip all the video lectures in this project, unless you'd like a review.
Additional language-specific resources here.
I haven't read these two, but they are highly rated and written by Sedgewick. He's awesome.
If you have a better recommendation for C++, please let me know. Looking for a comprehensive resource.
OR:
Some people recommend these, but I think it's going overboard, unless you have many years of software engineering experience and expect a much harder interview:
[ ] Algorithm Design Manual (Skiena)
[ ] Introduction to Algorithms
"Algorithms and Programming: Problems and Solutions" by Shen
This list grew over many months, and yes, it kind of got out of hand.
Here are some mistakes I made so you'll have a better experience.
I watched hours of videos and took copious notes, and months later there was much I didn't remember. I spent 3 days going through my notes and making flashcards so I could review.
Read please so you won't make my mistakes:
Retaining Computer Science Knowledge
To solve the problem, I made a little flashcards site where I could add flashcards of 2 types: general and code. Each card has different formatting.
I made a mobile-first website so I could review on my phone and tablet, wherever I am.
Make your own for free:
Keep in mind I went overboard and have cards covering everything from assembly language and Python trivia to machine learning and statistics. It's way too much for what's required.
Note on flashcards: The first time you recognize you know the answer, don't mark it as known. You have to see the same card and answer it several times correctly before you really know it. Repetition will put that knowledge deeper in your brain.
An alternative to using my flashcard site is Anki, which has been recommended to me numerous times. It uses a repetition system to help you remember. It's user-friendly, available on all platforms and has a cloud sync system. It costs $25 on iOS but is free on other platforms.
My flashcard database in Anki format: https://ankiweb.net/shared/info/25173560 (thanks @xiewenya)
I keep a set of cheat sheets on ASCII, OSI stack, Big-O notations, and more. I study them when I have some spare time.
Take a break from programming problems for a half hour and go through your flashcards.
There are a lot of distractions that can take up valuable time. Focus and concentration are hard.
This big list all started as a personal to-do list made from Google interview coaching notes. These are prevalent technologies but were not mentioned in those notes:
Some subjects take one day, and some will take multiple days. Some are just learning with nothing to implement.
Each day I take one subject from the list below, watch videos about that subject, and write an implementation in:
You don't need all these. You need only one language for the interview.
Why code in all of these?
I may not have time to do all of these for every subject, but I'll try.
You can see my code here:
You don't need to memorize the guts of every algorithm.
Write code on a whiteboard or paper, not a computer. Test with some sample inputs. Then test it out on a computer.
[ ] Learn C
[ ] How computers process a program:
[ ] Cheat sheet
If some of the lectures are too mathy, you can jump down to the bottom and watch the discrete mathematics videos to get the background knowledge.
[ ] Videos:
[ ] Online Courses:
[ ] implement with array using linear probing
[ ] Notes:
For heapsort, see Heap data structure above. Heap sort is great, but not stable.
[ ] UC Berkeley:
[ ] Merge sort code:
[ ] Quick sort code:
[ ] Implement:
[ ] Not required, but I recommended them:
If you need more detail on this subject, see "Sorting" section in Additional Detail on Some Subjects
Graphs can be used to represent many problems in computer science, so this section is long, like trees and sorting were.
Notes from Yegge:
[ ] Skiena Lectures - great intro:
[ ] Graphs (review and more):
Full Coursera Course:
Yegge: If you get a chance, try to study up on fancier algorithms:
I'll implement:
You'll get more graph practice in Skiena's book (see Books section below) and the interview books
If you need more detail on this subject, see "String Matching" section in Additional Detail on Some Subjects
This section will have shorter videos that you can watch pretty quickly to review most of the important concepts.
It's nice if you want a refresher often.
Now that you know all the computer science topics above, it's time to practice answering coding problems.
Coding question practice is not about memorizing answers to programming problems.
Why you need to practice doing programming problems:
There is a great intro for methodical, communicative problem solving in an interview. You'll get this from the programming interview books, too, but I found this outstanding: Algorithm design canvas
My Process for Coding Interview (Book) Exercises
No whiteboard at home? That makes sense. I'm a weirdo and have a big whiteboard. Instead of a whiteboard, pick up a large drawing pad from an art store. You can sit on the couch and practice. This is my "sofa whiteboard". I added the pen in the photo for scale. If you use a pen, you'll wish you could erase. Gets messy quick.
Supplemental:
Read and Do Programming Problems (in this order):
See Book List above
Once you've learned your brains out, put those brains to work. Take coding challenges every day, as many as you can.
Coding Interview Question Videos:
Challenge sites:
Mock Interviews:
Think of about 20 interview questions you'll get, along with the lines of the items below. Have 2-3 answers for each. Have a story, not just data, about something you accomplished.
Some of mine (I already may know answer to but want their opinion or team perspective):
Congratulations!
Keep learning.
You're never really done.
*****************************************************************************************************
*****************************************************************************************************
Everything below this point is optional.
By studying these, you'll get greater exposure to more CS concepts, and will be better prepared for
any software engineering job. You'll be a much more well-rounded software engineer.
*****************************************************************************************************
*****************************************************************************************************
[ ] AVL trees
[ ] Splay trees
[ ] Red/black trees
[ ] 2-3 search trees
[ ] 2-3-4 Trees (aka 2-4 trees)
[ ] N-ary (K-ary, M-ary) trees
[ ] B-Trees
--
I added these to reinforce some ideas already presented above, but didn't want to include them
above because it's just too much. It's easy to overdo it on a subject.
You want to get hired in this century, right?
[ ] Union-Find
[ ] More Dynamic Programming (videos)
[ ] Advanced Graph Processing (videos)
[ ] MIT Probability (mathy, and go slowly, which is good for mathy things) (videos):
[ ] String Matching
[ ] Sorting
Sit back and enjoy. "Netflix and skill" :P
[ ] List of individual Dynamic Programming problems (each is short)
[ ] Excellent - MIT Calculus Revisited: Single Variable Calculus
[ ] Computer Science 70, 001 - Spring 2015 - Discrete Mathematics and Probability Theory
[ ] CSE373 - Analysis of Algorithms (25 videos)
[ ] UC Berkeley 61B (Spring 2014): Data Structures (25 videos)
[ ] UC Berkeley 61B (Fall 2006): Data Structures (39 videos)
[ ] UC Berkeley CS 152: Computer Architecture and Engineering (20 videos)
[ ] Carnegie Mellon - Computer Architecture Lectures (39 videos)
[ ] MIT 6.034 Artificial Intelligence, Fall 2010 (30 videos)
[ ] MIT 6.042J: Mathematics for Computer Science, Fall 2010 (25 videos)
[ ] MIT 6.046: Design and Analysis of Algorithms (34 videos)
[ ] MIT 6.050J: Information and Entropy, Spring 2008 (19 videos)
[ ] Mining Massive Datasets - Stanford University (94 videos)