|
@@ -84,7 +84,7 @@ wrmsrl(MSR_LSTAR, entry_SYSCALL_64);
|
|
|
|
|
|
in the [arch/x86/kernel/cpu/common.c](https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c) source code file.
|
|
|
|
|
|
-So, the `syscall` instruction invokes a handler of a given system call. But how does it know which handler to call? Actually it gets this information from the general purpose [registers](https://en.wikipedia.org/wiki/Processor_register). As you can see in the system call [table](https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl), each system call has an unique number. In our example, first system call is - `write` that writes data to the given file. Let's look in the system call table and try to find `write` system call. As we can see, the [write](https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L10) system call has number - `1`. We pass the number of this system call through the `rax` register in our example. The next general purpose registers: `%rdi`, `%rsi` and `%rdx` take parameters of the `write` syscall. In our case, they are [file descriptor](https://en.wikipedia.org/wiki/File_descriptor) (`1` is [stdout](https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29) in our case), second parameter is the pointer to our string, and the third is size of data. Yes, you heard right. Parameters for a system call. As I already wrote above, a system call is a just `C` function in the kernel space. In our case first system call is write. This system call defined in the [fs/read_write.c](https://github.com/torvalds/linux/blob/master/fs/read_write.c) source code file and looks like:
|
|
|
+So, the `syscall` instruction invokes a handler of a given system call. But how does it know which handler to call? Actually it gets this information from the general purpose [registers](https://en.wikipedia.org/wiki/Processor_register). As you can see in the system call [table](https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl), each system call has a unique number. In our example, first system call is - `write` that writes data to the given file. Let's look in the system call table and try to find `write` system call. As we can see, the [write](https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl#L10) system call has number - `1`. We pass the number of this system call through the `rax` register in our example. The next general purpose registers: `%rdi`, `%rsi` and `%rdx` take parameters of the `write` syscall. In our case, they are [file descriptor](https://en.wikipedia.org/wiki/File_descriptor) (`1` is [stdout](https://en.wikipedia.org/wiki/Standard_streams#Standard_output_.28stdout.29) in our case), second parameter is the pointer to our string, and the third is size of data. Yes, you heard right. Parameters for a system call. As I already wrote above, a system call is a just `C` function in the kernel space. In our case first system call is write. This system call defined in the [fs/read_write.c](https://github.com/torvalds/linux/blob/master/fs/read_write.c) source code file and looks like:
|
|
|
|
|
|
```C
|
|
|
SYSCALL_DEFINE3(write, unsigned int, fd, const char __user *, buf,
|