|
@@ -4,7 +4,7 @@ Kernel initialization. Part 1.
|
|
First steps in the kernel code
|
|
First steps in the kernel code
|
|
--------------------------------------------------------------------------------
|
|
--------------------------------------------------------------------------------
|
|
|
|
|
|
-The previous [post](https://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html) was a last part of the Linux kernel [booting process](https://0xax.gitbooks.io/linux-insides/content/Booting/index.html) chapter and now we are starting to dive into initialization process of the Linux kernel. After the image of the Linux kernel is decompressed and placed in a correct place in memory, it starts to work. All previous parts describe the work of the Linux kernel setup code which does preparation before the first bytes of the Linux kernel code will be executed. From now we are in the kernel and all parts of this chapter will be devoted to the initialization process of the kernel before it will launch process with [pid](https://en.wikipedia.org/wiki/Process_identifier) `1`. There are many things to do before the kernel will start first `init` process. Hope we will see all of the preparations before kernel will start in this big chapter. We will start from the kernel entry point, which is located in the [arch/x86/kernel/head_64.S](https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S) and and will move further and further. We will see first preparations like early page tables initialization, switch to a new descriptor in kernel space and many many more, before we will see the `start_kernel` function from the [init/main.c](https://github.com/torvalds/linux/blob/master/init/main.c#L489) will be called.
|
|
|
|
|
|
+The previous [post](https://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html) was a last part of the Linux kernel [booting process](https://0xax.gitbooks.io/linux-insides/content/Booting/index.html) chapter and now we are starting to dive into initialization process of the Linux kernel. After the image of the Linux kernel is decompressed and placed in a correct place in memory, it starts to work. All previous parts describe the work of the Linux kernel setup code which does preparation before the first bytes of the Linux kernel code will be executed. From now we are in the kernel and all parts of this chapter will be devoted to the initialization process of the kernel before it will launch process with [pid](https://en.wikipedia.org/wiki/Process_identifier) `1`. There are many things to do before the kernel will start first `init` process. Hope we will see all of the preparations before kernel will start in this big chapter. We will start from the kernel entry point, which is located in the [arch/x86/kernel/head_64.S](https://github.com/torvalds/linux/blob/master/arch/x86/kernel/head_64.S) and will move further and further. We will see first preparations like early page tables initialization, switch to a new descriptor in kernel space and many many more, before we will see the `start_kernel` function from the [init/main.c](https://github.com/torvalds/linux/blob/master/init/main.c#L489) will be called.
|
|
|
|
|
|
In the last [part](https://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html) of the previous [chapter](https://0xax.gitbooks.io/linux-insides/content/Booting/index.html) we stopped at the [jmp](https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S) instruction from the [arch/x86/boot/compressed/head_64.S](https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S) assembly source code file:
|
|
In the last [part](https://0xax.gitbooks.io/linux-insides/content/Booting/linux-bootstrap-5.html) of the previous [chapter](https://0xax.gitbooks.io/linux-insides/content/Booting/index.html) we stopped at the [jmp](https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S) instruction from the [arch/x86/boot/compressed/head_64.S](https://github.com/torvalds/linux/blob/master/arch/x86/boot/compressed/head_64.S) assembly source code file:
|
|
|
|
|
|
@@ -169,7 +169,7 @@ The `level3_kernel_pgt` - stores two entries which map kernel space. At the star
|
|
|
|
|
|
access rights. The second - `level2_fixmap_pgt` is a virtual addresses which can refer to any physical addresses even under kernel space. They represented by the one `level2_fixmap_pgt` entry and `10` megabytes hole for the [vsyscalls](https://lwn.net/Articles/446528/) mapping. The next `level2_kernel_pgt` calls the `PDMS` macro which creates `512` megabytes from the `__START_KERNEL_map` for kernel `.text` (after these `512` megabytes will be modules memory space).
|
|
access rights. The second - `level2_fixmap_pgt` is a virtual addresses which can refer to any physical addresses even under kernel space. They represented by the one `level2_fixmap_pgt` entry and `10` megabytes hole for the [vsyscalls](https://lwn.net/Articles/446528/) mapping. The next `level2_kernel_pgt` calls the `PDMS` macro which creates `512` megabytes from the `__START_KERNEL_map` for kernel `.text` (after these `512` megabytes will be modules memory space).
|
|
|
|
|
|
-Now, after we saw definitions of these symbols, let's get back to the code which is described at the beginning of the section. Remember that the `rbp` register contains delta between the address of the `startup_64` symbol which was got during kernel [linking](https://en.wikipedia.org/wiki/Linker_%28computing%29) and the actual address. So, for this moment, we just need to add add this delta to the base address of some page table entries, that they'll have correct addresses. In our case these entries are:
|
|
|
|
|
|
+Now, after we saw definitions of these symbols, let's get back to the code which is described at the beginning of the section. Remember that the `rbp` register contains delta between the address of the `startup_64` symbol which was got during kernel [linking](https://en.wikipedia.org/wiki/Linker_%28computing%29) and the actual address. So, for this moment, we just need to add this delta to the base address of some page table entries, that they'll have correct addresses. In our case these entries are:
|
|
|
|
|
|
```assembly
|
|
```assembly
|
|
addq %rbp, early_level4_pgt + (L4_START_KERNEL*8)(%rip)
|
|
addq %rbp, early_level4_pgt + (L4_START_KERNEL*8)(%rip)
|
|
@@ -435,7 +435,7 @@ early_gdt_descr_base:
|
|
.quad INIT_PER_CPU_VAR(gdt_page)
|
|
.quad INIT_PER_CPU_VAR(gdt_page)
|
|
```
|
|
```
|
|
|
|
|
|
-We need to reload `Global Descriptor Table` because now kernel works in the low userspace addresses, but soon kernel will work in it's own space. Now let's look at the definition of `early_gdt_descr`. Global Descriptor Table contains `32` entries:
|
|
|
|
|
|
+We need to reload `Global Descriptor Table` because now kernel works in the low userspace addresses, but soon kernel will work in its own space. Now let's look at the definition of `early_gdt_descr`. Global Descriptor Table contains `32` entries:
|
|
|
|
|
|
```C
|
|
```C
|
|
#define GDT_ENTRIES 32
|
|
#define GDT_ENTRIES 32
|